DASY5 Validation Report for Head TSL Date: 25.04.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1178 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 37.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.68, 7.68, 7.68) @ 2600 MHz; Calibrated: 10.01.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 120.8 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 29.3 W/kg SAR(1 g) = 14.7 W/kg; SAR(10 g) = 6.53 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 50.1% Maximum value of SAR (measured) = 24.6 W/kg 0 dB = 24.6 W/kg = 13.91 dBW/kg ## Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client UL Gyeonggi-do, Republic of Korea Certificate No. D5GHzV2-1325_Apr23 ## CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1325 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: April 21, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Scheduled Calibration | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 3503 | 07-Mar-23 (No. EX3-3503_Mar23) | Mar-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Mar-24 | | | 1 | 10-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | | | Power meter E4419B | SN: GB39512475 | | Scheduled Check | | Power sensor HP 8481A | SN: US37292783 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct 15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | | 1 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | | | Calibrated by: | Aidonia Georgiadou | | Signature | | | | Laboratory Technician | AT. | | | | | 199 | | Approved by: | Sven Kühn | Tochnical Manager | | | | | Technical Manager | 16/1/ | | | | I.a. | 1. 18800C | Issued: April 25, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | V32.10.4 | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz
5800 MHz ± 1 MHz | 1.4 (2 direction) | ## Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.5 ± 6 % | 4.63 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 1.00 (III)0/III ± 0 78 | ## SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.98 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 4.99 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.40 W/ka | | SAR for nominal Head TSL parameters | normalized to 1W | 83.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | | 100 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | N. C. | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|-------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 5.11 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 0.11 mno/m ± 0 /6 | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | | 100 mW input power | 2.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.0 ± 6 % | 5.14 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.5 W/kg ± 19.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 49.4 Ω - 0.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 38.9 dB | ## Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 53.1 Ω + 4.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.6 dB | ## Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | $53.1 \Omega + 5.0 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 24.9 dB | ## Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 53.1 Ω + 4.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.3 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | | |----------------------------------|----------| | Licetural Delay (one direction) | 1.004 | | | 1.201 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | | |-----------------|---------| | Mandactured by | SPEAG | | |) SPEAG | | | | ## DASY5 Validation Report for Head TSL Date: 21.04.2023 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1325 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.63$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.99$ S/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; σ = 5.11 S/m; ϵ_r = 35.1; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.14$ S/m; $\epsilon_r = 35$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.44 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.7% Maximum value of SAR (measured) = 17.8 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.23 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 8.40 W/kg; SAR(10 g) = 2.39 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 68.9% Maximum value of SAR (measured) = 19.4 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.13 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.27 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.7% Maximum value of SAR (measured) = 19.1 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.93 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.26 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 19.2 W/kg ## Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL Korea (Dymstec)** Certificate No: CLA13-1015_Aug22 | CALIBRATION C | ERTIFICATI | | 7))) -) | |------------------------------------|-----------------------------|--|------------------------------------| | | | 但 | 丁 8 世 王 孝 号 | | Object | CLA13 - SN: 10 | | > > h | | | | 재 | 7 7 1 | | Calibration procedure(s) | QA CAL-15.v9 | | . / / | | . , , | | edure for SAR Validation Source | ces bolow 700 MHz | | | | oddio for Chir Valldation Soul | Ses Delow 700 IVITZ | | | | | | | | | | | | alibration date: | August 23, 2022 | | | | | | | | | his calibration certificate docume | nts the traceability to nat | ional standards, which realize the physica | I units of measurements (SI). | | le measurements and the uncert | ainties with confidence p | probability are given on the following pages | s and are part of the certificate. | | I calibrations have been sending | ad in the elected lab | () () () () () () () () () () | | | i campianons nave been conducti | eu in the closed laborato | ry facility: environment temperature (22 ± | 3)°C and humidity < 70%. | | alibration Equipment used (M&TE | E critical for calibration) | | | | -quipmont acca (Ma) L | - ontical for calibration) | | | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | ower meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | ower sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | wer sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | eference 20 dB Attenuator | SN: CC2552 (20x) | 04-Apr-22 (No. 217-03527) | Apr-23 | | ype-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | eference Probe EX3DV4 | SN: 3877 | 31-Dec-21 (No. EX3-3877_Dec21) | Dec-22 | | AE4 | SN: 654 | 26-Jan-22 (No. DAE4-654_Jan22) | Jan-23 | | econdary Standards | ID# | Check Date (in house) | Scheduled Check | | ower meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | ower sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | ower sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | F generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | In house check: Jun-24 | | etwork Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | | | 500 E | | | Name | Function | Signature | | alibrated by: | Jeffrey Katzman | Laboratory Technician | 1/1 | | | | | Or koth | | | | | | | pproved by: | Sven Kühn | Technical Manager | | | | | | 5 6 | | | | | | | | | | | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |----------------------|--------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | EUT Positioning | Touch Position | | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 13 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 55.0 | 0.75 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 0.74 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|---------------------------| | SAR measured | 1 W input power | 0.543 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 0.548 W/kg ± 18.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|------------------|---------------------------| | SAR measured | 1 W input power | 0.337 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 0.340 W/kg ± 18.0 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 50.6 Ω + 3.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.7 dB | ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------| | | JI LAG | ### **DASY5 Validation Report for Head TSL** Date: 23.08.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1015 Communication System: UID 0 - CW; Frequency: 13 MHz Medium parameters used: f = 13 MHz; $\sigma = 0.74$ S/m; $\epsilon_r = 54.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(15.33, 15.33, 15.33) @ 13 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 26.01.2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 29.78 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.10 W/kg SAR(1 g) = 0.543 W/kg; SAR(10 g) = 0.337 W/kg Smallest distance from peaks to all points 3 dB below = 18.4 mm Ratio of SAR at M2 to SAR at M1 = 78.5% Maximum value of SAR (measured) = 0.800 W/kg 0 dB = 0.800 W/kg = -0.969 dBW/kg ### Impedance Measurement Plot for Head TSL