

FCC 47 CFR § 2.1093

RF EVALUATION REPORT (Digitizer)

FOR

GSM/WCDMA/LTE/5G NR Phone + BT/BLE, DTS/UNII a/b/g/n/ac/ax, NFC,WPT and UWB

MODEL NUMBER: SC-55D, SCG22

FCC ID: A3LSMF946JPN

REPORT NUMBER: 4790841160-S4V1

ISSUE DATE: 7/10/2023

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

> TEL: (031) 337-9902 FAX: (031) 213-5433

Testing Laboratory

TL-637

Revision History

Rev.	Date	Revisions	Revised By
V1	7/10/2023	Initial Issue	

Table of Contents

1.	Attestation of SAR Characterization	4
2.	Test Specification, Methods and Procedures	5
3.	Facilities and Accreditation	5
4.	H-field Measurement System & Test Equipment	6
4.1.	H-field Measurement System	6
4.2.	H-field measurement & extrapolation using MAGpy probe	8
4.3.	Test Equipment	8
5.	Measurement Uncertainty	9
6.	DUT Informations	9
7.	RF Exposure Conditions (Test Configurations)	9
8.	System verification	10
9.	Test results	11
10.	TER analysis results	12
Appe	endixes	14
47	90841160-S4 FCC Report Digitizer evaluation _App A_Test setup photos	14
47	90841160-S4 FCC Report Digitizer evaluation _App B_Highest Magnetic field strength Test Plot	s 14
47	790841160-S4 FCC Report Digitizer evaluation _App C_System verification Plots	14
47	790841160-S4 FCC Report Digitizer evaluation _App D_Probe Cal. Certificates	14
47	790841160-S4 FCC Report Digitizer evaluation App E Verification Source Cal. Certificates	14

1. Attestation of SAR Characterization

Applicant Name	SAMSUNG ELECTRONICS CO.,LTD.			
FCC ID	A3LSMF946JPN			
Model Number	SC-55D, SCG22			
Applicable Standards	FCC 47 CFR § 2.1093			
Exposure Category	Magnetic field strength limit (A/m)			
General population / Uncontrolled exposure	1.63			
DE Evacoure Conditions	The Highest Magnetic field strength (A/m)			
RF Exposure Conditions	0.734			
TER (Total Exposure Ratio)	0.977			
Date Tested	7/10/2023			
Test Results	Pass			
I .				

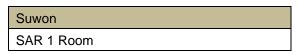
UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government

Approved & Released By:	Prepared By:		
- fres	2/180		
Justin Park	Sunghoon Kim		
Operations Leader	Senior Laboratory Engineer		
UL Korea, Ltd. Suwon Laboratory	UL Korea, Ltd. Suwon Laboratory		

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093.


o 447498 D04 Interim General RF Exposure Guidance v01

In addition to the above, the following information was used:

- o TCB workshop April, 2022; Part18 and Wireless Power Transfer Updates (Part I)
- o DASY6 MODULE WPT system handbook (incl. SW module WPT 2.0)

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637.

The full scope of accreditation can be viewed at;

https://www.iasonline.org/wp-content/uploads/2017/05/TL-637-cert-New.pdf.

4. H-field Measurement System & Test Equipment

4.1. H-field Measurement System

DASYsystem Module WPT - MAGPy is optimized for evaluation of compliance for wireless power transfer (WPT) systems and any other sources operating in the 3kHz - 10MHz frequency range. Module WPT V2.0 is compatible with the DASY 6 systems and in addition has been extended for easy evaluations of pulsed sources.

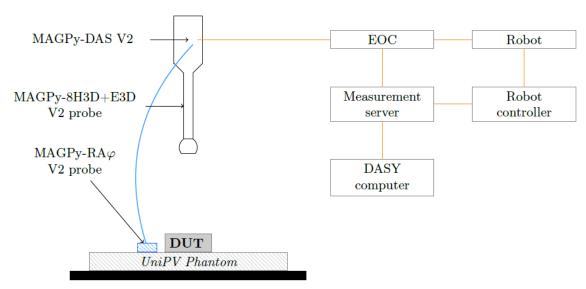


Figure: Typical measurement setup with DASY system Module WPT-MAGPy

DASYsystem Module WPT – MAGPy's Specifications						
	DASY Module WPT is composed of the isotropic probe MAGPy-8H3D+E3D					

DAOTSYSTEM MOdule WI	- MAGPY'S Specifications
System	DASY Module WPT is composed of the isotropic probe MAGPy-8H3D+E3D Version 2.0, the reference probe (MAGPy-RAφ), and the data acquisition system (MAGPy-DAS) mounted to the DASY8 robot via the emergency stop (MAGPy-ES). The induced electric (E-) fields and specific absorption rate (SAR) are assessed with Sim4Life's Quasi-Static EM Solver (P-EM-QS) using only the measured data. At each probe location, eight isotropic H-field values are acquired in parallel. The dedicated graphical user interface (GUI) fully automates the testing workflow.
	The MAGPy-DAS includes:
MAGPy-DAS	 27x14 Bit ADC Channels with 25 MSPs Peak detection stage Hardware supervising unit Data transfer to the backend 22 tap FIR Filter
	The MAGPy-H3D probe consists of eight isotropic H-field sensors and one isotropic E-field sensor:
MAGPy-8H3D+E3D V2	 Probe design: Probe length: 335 mm Probe tip diameter: 60 mm 8H3D: eight isotropic 1 cm3-H-field sensors, arranged at the corners of a 22 mm cube First isotropic H-field sensor plane: 7.5 mm from the tip E3D: one isotropic E-field sensor (dipole / monopole) Sensor specifications: Frequency range: 3 kHz – 10 MHz H-field dynamic range: 0.1 A/m – 3200 A/m (0.12 µT – 4 mT) H-field extrapolation uncertainty: 0.6 dB (k = 2) E-field dynamic range: 0.08 V/m – 2000 V/m
MAGPy-RAφV2	 The MAGPy-RAφ reference amplitude and phase probe includes: Frequency range: 3 kHz – 10 MHz Dynamic range: 0.1 A/m – 3200 A/m (0.12 μT – 4 mT) Loop coil area (sensor size): 18.9 cm2 Size: 51 x 51 x 0.2 mm Sensor center: 25.5 x 25.5 mm
Software	Software components: DASY8 Module WPT application programming interface (API) MAGPy-DAS Sim4Life WPT (vector potential reconstruction, P-EM-QS solver) Graphic library, Report generator

4.2. H-field measurement & extrapolation using MAGpy probe.

MAGPy probe can measured H-field strength at 7.83 mm distance from DUT's surface. And it is possible to Extrapolated the H-field strength of 0.5 mm using Sim4Life WPT software.

So we can use this function for MAGPy probe to measure H-field strength radiating of digitizer's coil and check the 0mm H-field strength. In order to additionally verify the H-field strength Extrapolated method, we progress to test using Reference source(V-coil50/400) as follows and compared Measured H-field strength and Extrapolated H-field strength at 7.83 mm separation distance from reference source.

(Test A is Measured H-field at 7.83 mm & Extrapolated H-field at 0.5 mm.

Test B is Measured H-field at 14.33 mm & Extrapolated H-field at 7.83 mm.

Test distance	Test A (at 7.83 mm)	Test B (at 14.33 mm)	Diviation(%)	Plot
Measured H-field	126.02	72.85	2.2	1
Extrapolated H-field	234.0	122.0	-3.2	2

Depending on the test results, the deviation between Measured H-field at 7mm and Extrapolated H-field at 7.83 mm is -3.2 %. Therefore, DUT measurement proceeds using the function of that extrapolation method. (The Plots refer to App_C.)

4.3. Test Equipment

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal Date	Cal. Due Date
Probe	SPEAG	MAGPy-8H3D+E3D	3054	1-9-2023	1-9-2024
Probe	SPEAG	MAGPy-DAS	3054	1-9-2023	1-9-2024
System verification Source	SPEAG	V-Coil50/400	1014	10-6-2022	10-6-2023

5. Measurement Uncertainty

Measurement uncertainty of H-field (3 kHz to 10 MHz) (According to IEC/IEEE 63184)

Error Description	Unc. Value (± dB)	Prob. Distr.	Div.	ci	Std. Unc. (± dB)		
Probe uncertainty							
Amplitude calibration uncertainty	0.47	Normal	1	1	0.47		
Probe anisotropy	0.50	Rectangular	1.732	1	0.29		
Probe dynamic linearity	0.15	Rectangular	1.732	1	0.09		
Probe frequency domain response	0.25	Rectangular	1.732	1	0.14		
Gradient uncertainty	0.10	Rectangular	1.732	1	0.06		
Parasitic E-field sensitivuty	0.10	Rectangular	1.732	1	0.06		
Detection limit	0.15	Rectangular	1.732	1	0.09		
Readout electronics	0.00	Normal	1	1	0.00		
Probe positioning	0.19	Normal	1	1	0.19		
Repeatability	0.10	Normal	1	1	0.10		
Combined Standard Uncertainty (k = 1)							
Expanded Uncertainty U, Coverage F	Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence =						

6. DUT Informations

The manufacturer implemented the FTM mode at 593kHz that forcedly operates one coil among the X-Y axis coils of Digitizer built into the DUT, we tested this FTM mode.

7. RF Exposure Conditions (Test Configurations)

RF Exposure Conditions	Mode (Scanning)	Separation distance of DUT's surface-to-Probe's element	Test Position	
Extremity 10-g	FTM mode	7.83 mm	Front	

Notes:

- 1. Digitizer is generally not expected to be used in head & body-worn exposure conditions. It is considered in the Hand exposure condition because it is mainly used by holding it in the hand. And Digitizer's coils operates to radiated to display of DUT. So other surface or edges are not considered.
- 2. Test distance 7.83 mm means that distance between DUT's surface to Probe's element. In fact, DUT's surface to Probe's tip are almost touched(0.5mm gap).

8. System verification

A set of four system verification sources (3kHz, 85kHz, 400kHz and 6.78 MHz) are available. According to the manufacturer's guide, the system verification was performed in the nearest frequency band with DUT's operate frequency. And The deviation of measured values from the target values of calibration report should be less than the expanded uncertainty (1.24 dB).

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles.

Verification	Serial No.	Cal. Date	Cal.due date	Target Magnetic field strength (A/m)	
Source	Serial No.	Cai. Date	Date Callude date	Measured at 7mm	Extrapolated at 2mm
V-coil50/400	1014 10-6-2022		10-6-2023	158.56	245.00

System verification Results

SAR 1 Room

ſ		System	Source	Measured at 7m	m Results (A/m)	Delta	Extrapolated a	t 2mm Results	Delta	
	Date Tested	Туре	Serial #	Test results	Target	(±dB)	Test results	Target	(±dB)	Plot No.
	7-10-2023	V-coil50/400	1014	126.02	158.56	-0.99	212.00	245.00	-0.63	1

Notes:

The deviation of measured values from the target values of calibration report should be less than the expanded uncertainty (1.24 dB).

9. Test results

		Magnetic field stre		
Test mode	Test positon	Measured Result at 7.83 mm	Extrapolated Result at 0.5 mm	Plot No.
FTM mode	Front	0.316	0.734	1

Additional test Guidance

	Test positon/	Magnetic field stre				
Test mode	Test distance	Measured Result at 7.83 mm	Extrapolated Result at 7.83 mm	Deviation (%)	Plot No.	
FTM mode	Front / 7.83 mm	0.316		-10.8	1	
FTM mode	Front / 14.83 mm		0.282	-10.6	2	

Notes:

- 1. For Extrapolated Results at 0.5mm, The result are estimated based on the measured Magnetic field strength at 7.83 mm.
- 2. For Additional test Guidance, It was confirmed that the deviation between Measured H-field and Estimated H-field was within 30% at 7.83 test distance according to 2022. April TCB workshop note (Part.18 and Wireless Power Transfer Updates)

10. TER analysis results

Summation of AG0 and AG1

Configurations			AG0				A	G1			SUM
Connigi	urations	Ant.A+B	Ant.B	Worst	Ant.F	Ant.G	Ant.H	Ant.H+G	Ant.H+J	Worst	SOIVI
Extremity 10-g	Front	1.328	1.341	1.341	0.764	0.654	0.459	0.999	1.109	1.109	2.450

Antenna Grouping analysis

Test		Antenna pairs		A	AG0		AG1		ODI OD
position	No.	AG0	AG1	SAR (W/kg)	Y-axis location (mm)	SAR (W/kg)	Y-axis location (mm)	AG0+AG1 SUM SAR (W/kg)	SPLSR of AG0 & AG1
	1	Ant.A+B	Ant.F	1.328	N/A	0.764	N/A	2.092	N/A
	2	Ant.A+B	Ant.G	1.328	N/A	0.654	N/A	1.982	N/A
	3	Ant.A+B	Ant.H	1.328	N/A	0.459	N/A	1.787	N/A
	4	Ant.A+B	Ant.H+G	1.328	36.2	0.999	-76.2	2.327	0.03
Extremity 10-g	5	Ant.A+B	Ant.H+J	1.328	36.2	1.109	-28.1	2.437	0.06
(Front)	6	Ant.B	Ant.F	1.341	N/A	0.764	N/A	2.105	N/A
	7	Ant.B	Ant.G	1.341	N/A	0.654	N/A	1.995	N/A
	8	Ant.B	Ant.H	1.341	N/A	0.459	N/A	1.800	N/A
	9	Ant.B	Ant.H+G	1.341	75.8	0.999	-76.2	2.340	0.02
	10	Ant.B	Ant.H+J	1.341	75.8	1.109	-28.1	2.450	0.04

Antenna

Group

AG1

Antenna

Ant.H+G

Ant.H+J

Bands

2.4G MIMO

Worst configuration

5G MIMO

6G MIMO

Worst configuration

Highest Reported SAR and Peak SAR location (only Y-axis location) in each WWAN&WLAN Bands in each Antennas

Antenna Group	Antenna	Bands	SAR (W/kg)	Y-axis(mm) from ERP point	
		GSM 850	0.752	39.3	
		WCDMA B5	1.287	54.5	
		LTE B5	1.262	54.5	
	Ant.A+B	LTE B12	1.068	40.5	
	AILAID	LTE B13	0.622	37.8	
		LTE B26	1.328	48.1	
		NR Bn5	1.156	36.2	
AG0		Worst configuration	1.328	36.2	
		GSM 1900	0.739	81.1	
		LTE B2	0.963	84.5	
		LTE B41	1.115	75.8	
	Ant.B	LTE B66	1.341	83.0	
		NR Bn41	0.818	82.0	
		NR Bn66	0.936	80.7	
		Worst configuration	1.341	75.8	

Note(s)

1. If SPLSR criteria is below 0.10 (10-g respectively) in all antenna pair (AG0 & AG1), additional evaluation is not required.

Y-axis(mm)

from ERP point

-76.2

-76.2

-35.4

-28.1

-28.1

SAR (W/kg)

0.999

0.999

1.109

0.211

1.109

^{2.} In order to satisfy TER with Digitizer function's ER, additional Antenna Grouping analysis was performed. For SAR results, please refer to Sec.12.1.2.1 and Sec.12.2.2 of Part.1 report.

AG0+AG1+ER

RF Exposure	Test Position	Highes	SUM SAR			
	Test Fosition	AG0	AG1	ER-NFC	ER-UWB	(W/kg)
Extremity 10-g	Front	1.341	0.764	0.000	0.000	2.105

TER Analysis

DE Europe	Test Position	SAR e va (AG0 + A0		——————————————————————————————————————	trength evaluation gitizer)	TER
RF Exposure	Test Fosition	SAR (W/kg)	SAR's ER	Magnetic field strength (A/m)	Magnetic field strength's ER	(Total Exposure Ratio)
Extremity (10-g SAR)	Front	2.105	0.526	0.734	0.450	0.977

^{*} SAR's ER = Meas SAR (W/kg) / SAR limit (4.0 W/kg) & Magnetic field strength's ER = Meas H-filed (A/m) / H-field limit (1.63 A/m)

Conclusion;

TER result is below 1.0.

Appendixes

Refer to separated files for the following appendixes.

4790841160-S4 FCC Report Digitizer evaluation _App A_Test setup photos

4790841160-S4 FCC Report Digitizer evaluation _App B_Highest Magnetic field strength Test Plots

4790841160-S4 FCC Report Digitizer evaluation _App C_System verification Plots

4790841160-S4 FCC Report Digitizer evaluation _App D_Probe Cal. Certificates

4790841160-S4 FCC Report Digitizer evaluation _App E_Verification Source Cal. Certificates

END OF REPORT