

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{[\ln(b/a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

Mixtures		
escription: Aqueous solution with		
clarable, or hazardous compon		
AS: 107-21-1	Ethanediol	>1.0-4.9%
INECS: 203-473-3	STOT RE 2, H373;	
teg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
AS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
INECS: 271-781-5	Eye Irrit. 2, H319	
leg.nr.: 01-2119527859-22-0000		
AS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
INECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
eg.nr.: 01-2119539582-35-0000		
AS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
ILP: 500-236-9	Aquatic Chronic 2, H411;	
deg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Iditional information:		
r the wording of the listed risk phra	ases refer to section 16	
	gistration numbers are to be regarded as Proprietary	Confidential

Figure D-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID: A3LSMF936JPN	6 - 8 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager	
DUT Type: Portable Handset		APPENDIX D: Page 2 of 3	

3.6 -5.2 1.2 -0.8 1.1 -0.7 1.0 -0.5

0.4 0.3 0.2 0.6 0.0 0.8 -0.4 1.4 -1.3 1.6 -2.2 2.0

-4.1 2.1 -5.0 2.0 -5.9 1.6 1.2 -6.7

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HBBL600-10000V6)

Product No. SL AAH U16 BC (Batch: 210629-3)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Condition 22°C; 30% humidity

TSL Temperature 22°C Test Date 1-Jul-21 Operator WM

Additional Information
TSL Density

TSL Heat-capacity

	Measu	ured		Targe	t	Diff.to Targ	jet [%]	15.0							
[MHz]	e'	е"	sigma	eps	sigma	∆-eps	∆-sigma	10.0					101		13
600	44.7	25.5	0.85	42.7	0.88	4.6	-3.6	% 5.0							
750	44.1	21.6	0.90	41.9	0.89	5.1	0.7								
00	44.0	20.6	0.92	41.7	0.90	5.6	2.5	Permittivity 0.0							
25	44.0	20.2	0.93	41.6	0.91	5.8	2.6	E -5.0							
5	44.0	20.0	0.93	41.5	0.91	5.9	2.0	3-10.0 -15.0	- 1				4 1		_
0	43.9	19.8	0.93	41.5	0.92	5.8	1.5		700 450	0.0500	0500 45	00 5500 6			
0	43.8	19.0	0.95	41.5	0.97	5.5	-2.1	,	150	0 2500	Frequen		500 7500	8500 9	500
00	42.8	15.1	1.18	40.6	1.18	5.4	0.0	15.0							=
0	42.7	14.9	1.20	40.5	1.20	5.4	0.0	10.0							M
0	42.4	14.4	1.28	40.3	1.28	5.2	-0.3	>0	- 90	A				11/5	
5	42.4	14.3	1.30	40.3	1.30	5.3	0.1	₹ 5.0	A	1					
0	42.4	14.3	1.31	40.3	1.31	5.3	0.3	5.0 Conductivity 5.0 10.0	10	1					
0	42.3	14.3	1.31	40.2	1.31	5.1	-0.2	0.5.0			_				
	42.3	14.2	1.34	40.2	1.34	5.3	-0.2	910.0 2015.0					1000		
I	42.2	14.1	1.37	40.1	1.37	5.3	-0.1		00 150	0 2500 :	3500 450	0 5500 6	500 7500	8500 95	500
	42.1	14.0	1.40	40.0	1.40	5.3	0.0					ncy MHz		0000 00	
	42.1	13.9	1.41	40.0	1.40	5.3	0.7	3500	39.4	14.2	2.77	37.9	2.91	3.8	-
	42.1	13.9	1.42	40.0	1.40	5.3	1.4	3700	39.0	14.4	2.96	37.7	3.12	3.6	3
	42.0	13.9	1.43	40.0	1.40	5.0	2.1	5200	36.4	16.0	4.62	36.0	4.66	1.2	-
	42.0	13.8	1.46	40.0	1.40	5.0	4.3	5250	36.3	16.0	4.68	35.9	4.71	1.1	
1	41.9	13.8	1.49	40.0	1.40	4.7	6.4	5300	36.2	16.1	4.73	35.9	4.76	1.0	-
	41.8	13.7	1.53	40.0	1.40	4.5	9.3	5500	35.9	16.2	4.96	35.6	4.96	0.6	-
	41.8	13.7	1.56	39.9	1.44	4.7	8.0	5600	35.7	16.3	5.08	35.5	5.07	0.4	- 1
	41.7	13.7	1.59	39.8	1.49	4.7	6.8	5700	35.5	16.4	5.20	35.4	5.17	0.2	3
	41.6	13.6	1.63	39.7	1.53	4.7	6.3	5800	35.3	16.5	5.31	35.3	5.27	0.0	9
0	41.6	13.6	1.67	39.6	1.58	4.9	5.8	6000	34.9	16.6	5.55	35.1	5.48	-0.4	-
0	41.5	13.6	1.70	39.6	1.62	4.9	4.8	6500	34.0	17.1	6.17	34.5	6.07	-1.3	9
0	41.4	13.6	1.74	39.5	1.67	4.9	4.4	7000	33.1	17.4	6.78	33.9	6.65	-2.2	4
0	41.3	13.6	1.78	39.4	1.71	4.9	4.0	7500	32.3	17.7	7.40	33.3	7.24	-3.1	1
0	41.3	13.6	1.82	39.3	1.76	5.1	3.7	8000	31.4	18.0	8.01	32.7	7.84	-4.1	1
0	41.2	13.6	1.86	39.2	1.80	5.1	3.3	8500	30.5	18.2	8.62	32.1	8.45	-5.0	2
0	41.1	13.6	1.90	39.1	1.85	5.0	2.5	9000	29.7	18.4	9.22	31.5	9.08	-5.9	
1	41.0	13.7	1.94	39.1	1.91	4.9	1.6	9500	28.9	18.6	9.82	31.0	9.71	-6.7	
00	41.0	13.7	1.98	39.0	1.96	5.1	0.8	10000	28.1	18.7	10.42	30.4	10.36	-7.6	

Figure D-2 600 - 10000 MHz Head Tissue Equivalent Matter

FCC ID: A3LSMF936JPN	A3LSMF936JPN 6 - 8 GHZ RF EXPOSURE EVALUATION	
DUT Type: Portable Handset		APPENDIX D: Page 3 of 3