

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

PART 27 MEASUREMENT REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing:

6/15 - 7/6/2022 **Test Report Issue Date:** 7/7/2022 **Test Site/Location:** Element lab., Columbia, MD, USA **Test Report Serial No.:** 1M2206010070-05.A3L

FCC ID:

A3LSMF936JPN

Applicant Name:

Samsung Electronics Co., Ltd.

Application Type: Model: Additional Model(s): EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s):

Certification SC-55C SCG16 Portable Handset PCS Licensed Transmitter Held to Ear (PCE) 27 ANSI C63.26-2015, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: A3LSMF936JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Page 1 of 69
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 1 01 09
© 2022 ELEMENT			V3.0 1/6/2022

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	4
	1.1	Scope	4
	1.2	Element Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PROE	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	Software and Firmware	5
	2.5	EMI Suppression Device(s)/Modifications	5
3.0	DESC	RIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	Radiated Power and Radiated Spurious Emissions	6
4.0	MEAS	SUREMENT UNCERTAINTY	7
5.0	TEST	EQUIPMENT CALIBRATION DATA	8
6.0	SAMF	PLE CALCULATIONS	9
7.0	TEST	RESULTS	10
	7.1	Summary	10
	7.2	Conducted Output Power Data	11
	7.3	Occupied Bandwidth	13
	7.4	Spurious and Harmonic Emissions at Antenna Terminal	22
	7.5	Band Edge Emissions at Antenna Terminal	39
	7.6	Radiated Power (EIRP)	49
	7.7	Radiated Spurious Emissions Measurements	52
	7.8	Frequency Stability / Temperature Variation	67
8.0	CON	CLUSION	69

FCC ID: A3LSMF936JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates: EUT Type:		Page 2 of 69
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 2 01 09
© 2022 ELEMENT	•	·	V3.0 1/6/2022

		EI		RP		
Mode	Bandwidth	Modulation	Tx Frequency Range [MHz]	Max. Power [W]	Max. Power [dBm]	Emission Designator
	20 MHz	QPSK	2506.0 - 2680.0	0.192	22.83	18M0G7D
		16QAM	2506.0 - 2680.0	0.159	22.02	18M0W7D
		QPSK	2503.5 - 2682.5	0.204	23.09	13M6G7D
LTE Band 41(PC3)	15 MHz	16QAM	2503.5 - 2682.5	0.168	22.26	13M5W7D
Ant B	10 MHz	QPSK	2501.0 - 2685.0	0.212	23.26	9M03G7D
		16QAM	2501.0 - 2685.0	0.173	22.39	9M05W7D
	5 MHz	QPSK	2498.5 - 2687.5	0.193	22.86	4M55G7D
		16QAM	2498.5 - 2687.5	0.152	21.81	4M54W7D
	20 MHz	QPSK	2580.0 - 2610.0	0.123	20.88	18M1G7D
		16QAM	2580.0 - 2610.0	0.102	20.06	18M0W7D
	45 MUL	QPSK	2577.5 - 2612.5	0.122	20.86	13M6G7D
LTE Band 41(PC3) Ant F	15 MHz	16QAM	2577.5 - 2612.5	0.102	20.10	13M5W7D
		QPSK	2575.0 - 2615.0	0.126	21.00	9M07G7D
	10 MHz	16QAM	2575.0 - 2615.0	0.109	20.39	9M04W7D
	5 MHz	QPSK	2572.5 - 2617.5	0.129	21.12	4M54G7D
		16QAM	2572.5 - 2617.5	0.093	19.68	4M54W7D

PART 27 MEASUREMENT REPORT

Overview Table

FCC ID: A3LSMF936JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Page 3 of 69
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 5 01 09
© 2022 ELEMENT			V3.0 1/6/2022

V3.0 1/6/2022 V3

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreement.

FCC ID: A3LSMF936JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 60	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 4 of 69	
© 2022 ELEMENT			V3.0 1/6/2022	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMF936JPN**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 27.

Test Device Serial No.: 0370M, 0402M, 0421M, 0068M

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5, 6GHz), Bluetooth (1x, EDR, LE), NFC, UWB, Wireless Power Transfer

This device uses a tuner circuit that dynamically updates the antenna impedance parameters to optimize antenna performance for certain bands and modes of operation. The tuner for this device was set to simulate a "free space" condition where the transmit antenna is matched to the medium into which it is transmitting and, thus, the power is at its maximum level.

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

This device supports two configurations: one is with screen open and one is with screen closed. Open, half opened and closed configurations are tested, and the worst case radiated emissions data is shown in this report.

2.4 Software and Firmware

Testing was performed on device(s) using software/firmware version SC55COMU0AVEE installed on the EUT.

2.5 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 5 of 69
© 2022 ELEMENT	-		V3.0 1/6/2022

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015) were used in the measurement of the EUT.

Deviation from Measurement Procedure......None

3.2 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated power measurements, substitution method is used per the guidance of ANSI C63.26-2015. For emissions below 1GHz, a half-wave dipole is substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

$P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi];$

where P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g \, [dBm]}$ – cable loss [dB].

For radiated spurious emissions measurements, the field strength conversion method is used per the formulas in Section 5.2.7 of ANSI C63.26-2015. Field Strength (EIRP) is calculated using the following formulas:

$$\begin{split} E_{[dB\mu V/m]} &= Measured \ amplitude \ level_{[dBm]} + 107 + Cable \ Loss_{[dB]} + Antenna \ Factor_{[dB/m]} \\ And \\ EIRP_{[dBm]} &= E_{[dB\mu V/m]} + 20logD - 104.8; \ where \ D \ is the measurement \ distance \ in \ meters. \end{split}$$

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI C63.26-2015.

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 6 of 69
© 2022 ELEMENT	•		V3.0 1/6/2022

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMF936JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Page 7 of 69
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 7 01 09
© 2022 ELEMENT			V3.0 1/6/2022

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	AP2-001	EMC Cable and Switch System	1/4/2022	Annual	1/4/2023	AP2-001
-	AP2-002	EMC Cable and Switch System	3/11/2022	Annual	3/11/2023	AP2-002
-	ETS-001	EMC Cable and Switch System	12/9/2021	Annual	12/9/2022	ETS-001
-	ETS-002	EMC Cable and Switch System	3/10/2022	Annual	3/10/2023	ETS-002
-	LTx1	Licensed Transmitter Cable Set	12/19/2021	Annual	12/19/2022	LTx1
-	LTx3	LIcensed Transmitter Cable Set	8/18/2021	Annual	8/18/2022	LTx3
-	LTx5	LIcensed Transmitter Cable Set	12/19/2021	Annual	12/19/2022	LTx5
-	LTx6-40	Licensed Transmitter Cable Set	12/19/2021	Annual	12/19/2022	LTx6-40
-	WL40-1	WLAN Cable Set (40GHz)	12/19/2021	Annual	12/19/2022	WL40-1
Anritsu	MT8000A	Radio Communication Test Station	8/2/2021	Annual	8/2/2022	6272337437
Anritsu	MT8821C	Radio Communication Analyzer	N/A		6201525694	
Espec	ESX-2CA	Environmental Chamber	8/27/2020	Annual	8/27/2022	17620
ETS-Lindgren	3116C	DRG Horn Antenna	5/11/2021	Biennial	5/11/2023	218893
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	4/20/2021	Biennial	4/20/2023	00125518
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	7/21/2021	Annual	7/21/2022	MY49430494
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	2/14/2022	Annual	2/14/2023	MY52350166
Keysight Technologies	N9030B	PXA Signal Analyzer, Multi-touch	1/7/2022	Annual	1/7/2023	MY57141001
Keysight Technologies	N9038A	MXE EMI Receiver	1/21/2022	Annual	1/21/2023	MY51210133
Rohde & Schwarz	CMW500	Radio Communication Tester		N/A		100976
Rohde & Schwarz	CMW500	Radio Communication Tester		N/A		112347
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	5/25/2021	Annual	7/25/2022	100348
Rohde & Schwarz	ESW44	EMI Test Receiver 2Hz to 44 GHz	3/28/2022	Annual	3/28/2023	101716
Rohde & Schwarz	TC-TA18	Cross Polarized Vivaldi Test Antenna	8/13/2020	Biennial	8/13/2022	101073
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	7/27/2020	Biennial	7/27/2022	A051107
Sunol	JB6	LB6 Antenna	11/13/2020	Biennial	11/13/2022	A082816

Table 5-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: A3LSMF936JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 8 of 69
© 2022 ELEMENT	•		V3.0 1/6/2022

6.0 SAMPLE CALCULATIONS

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: A3LSMF936JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 69
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 9 01 09
© 2022 ELEMENT	•	·	V3.0 1/6/2022

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMF936JPN
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	LTE/ULCA

Test Condition	Test Description	FCC Part Section(s)	Test Limit	Test Result	Reference			
	Transmitter Conducted Output Power*	2.1046(a), 2.1046(c)	N/A	PASS	Section 7.2			
CONDUCTED	Occupied Bandwidth	2.1049(h)	N/A	PASS	Section 7.3			
CONDI	Conducted Band Edge / Spurious Emissions (LTE Band 41)	2.1051, 27.53(m)(4)	Undesirable emissions must meet the limits detailed in 27.53(m)(4)	PASS	Sections 7.4, 7.5			
	Frequency Stability	2.1055, 27.54	Fundamental emissions stay within authorized frequency block	PASS	Section 7.8			
RADIATED	Equivalent Isotropic Radiated Power (LTE Band 41)	27.50(h)(2)	≤ 2 Watts max. EIRP	PASS	Section 7.6			
RADI	Radiated Spurious Emissions (LTE Band 41)	2.1053, 27.53(m)	Undesirable emissions must meet the limits detailed in 27.53(m)	PASS	Section 7.7			
-	* The only transmitter output conducted powers included in this report are those where the Pmax value, per the tune-up document, is higher than any of the DSI power levels. For the remaining conducted power measurements, see the RF Exposure Report .							

Table 7-1. Summary of Test Results (FCC)

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized is EMC Software Tool v1.1.

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 60
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 10 of 69
© 2022 ELEMENT			V3.0 1/6/2022

7.2 Conducted Output Power Data

Test Overview

All emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

A-MPR is implemented in this device when operating at Power Class 2 in LTE Band 41 per the A-MPR specification in 3GPP TS 36.101. The conducted powers are shown herein to cover the different A-MPR levels specified in the standard. Measurement equipment was set up with triggering/gating on the spectrum analyzer such that powers were measured only during the on-time of the signal.

Test Procedure Used

ANSI C63.26-2015 – Section 5.2

Test Settings

- 1. Span = $2 \times OBW$ to $3 \times OBW$
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

- 1. Uplink carrier aggregation is only supported in this EUT while operating in Power Class 3.
- 2. Conducted power measurements were evaluated using various combinations of RB size, RB offset, modulation, and channel bandwidth. Channel bandwidth data is shown in the tables below based only on the channel bandwidths that were supported in this device.
- 3. All other conducted power measurements are contained in the RF exposure report for this filing.

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 60
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 11 of 69
© 2022 ELEMENT			V3.0 1/6/2022

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]
N		39750	2506.0	1 / 99	23.30
H	QPSK	40620	2593.0	1 / 99	23.01
20 MHz		41490	2680.0	1 / 99	23.37
7	16-QAM	40620	2593.0	1 / 99	22.16
N	QPSK	39725	2503.5	1 / 74	23.47
MHz		40620	2593.0	1 / 74	23.27
15 1		41515	2682.5	1 / 74	23.52
-	16-QAM	40620	2593.0	1 / 74	22.39
N	QPSK	39700	2501.0	1 / 49	23.72
MHz		40620	2593.0	1 / 49	23.44
10 1		41540	2685.0	1 / 49	23.55
-	16-QAM	40620	2593.0	1 / 49	22.53
N		39675	2498.5	1 / 0	23.25
MHz	QPSK	40620	2593.0	1 / 0	23.03
5 N		41565	2687.5	1 / 12	22.96
	16-QAM	40620	2593.0	1 / 0	21.94

Table 7-1. Conducted Power Data (LTE Band 41 (PC3) – Ant B)

Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]
	39790	2510.0	1 / 50	23.72
QPSK	40620	2593.0	1/0	23.66
	41490	2680.0	1 / 50	23.53
16-QAM	39790	2510.0	1 / 50	22.64
	39765	2507.5	1 / 37	23.69
QPSK	40620	2593.0	1 / 37	23.72
	41515	2682.5	1 / 37	23.66
16-QAM	39765	2507.5	1 / 37	22.68
QPSK	39740	2505.0	1 / 49	23.84
	40620	2593.0	1 / 25	23.85
	41540	2685.0	1/0	23.60
16-QAM	39740	2505.0	1 / 49	22.97
	39715	2502.5	1 / 12	23.96
QPSK	40620	2593.0	1 / 12	23.56
	41565	2687.5	1/0	23.03
16-QAM	39715	2502.5	1 / 12	22.25
	QPSK 16-QAM QPSK 16-QAM QPSK 16-QAM 16-QAM	39790 QPSK 39790 40620 41490 16-QAM 39790 A0620 41490 16-QAM 39765 QPSK 40620 41515 40620 16-QAM 39765 QPSK 39740 QPSK 40620 41540 39740 QPSK 39740 QPSK 40620 41540 39740 16-QAM 39740 QPSK 40620 41540 16-QAM 16-QAM 39715 QPSK 40620 41565 16-QAM	Modulation Channel [MHz] 39790 2510.0 QPSK 40620 2593.0 41490 2680.0 16-QAM 39790 2510.0 A1490 2680.0 16-QAM 39790 2510.0 QPSK 40620 2593.0 41490 2680.0 16 QPSK 40620 2593.0 41515 2682.5 16 QPSK 39765 2507.5 QPSK 39765 2507.5 QPSK 40620 2593.0 41515 2682.5 16 QPSK 40620 2593.0 41540 2685.0 16 QPSK 39715 2502.5 QPSK 40620 2593.0 41540 2685.0 16 QPSK 40620 2593.0 41565 2687.5 16 QPSK 40620 2593.0 41565 2687.5 16	Modulation Channel [MHz] Size/Offset 39790 2510.0 1/50 QPSK 40620 2593.0 1/0 41490 2680.0 1/50 16-QAM 39790 2510.0 1/50 16-QAM 39790 2510.0 1/50 2000 39765 2507.5 1/37 QPSK 40620 2593.0 1/37 41515 2682.5 1/37 16-QAM 39765 2507.5 1/37 16-QAM 39765 2507.5 1/37 QPSK 40620 2593.0 1/49 QPSK 40620 2593.0 1/25 41540 2685.0 1/0 1/25 41540 2685.0 1/10 1/49 QPSK 39715 2502.5 1/12 QPSK 40620 2593.0 1/12 QPSK 2687.5 1/12 1/12 QPSK 40620 2593.0 1/12

Table 7-2. Conducted Power Data (LTE Band 41 (PC3) – Ant F)

		Bandwidth		PCC			scc				ULCA TX.		
Power State Band	(PCC + SCC)	Modulation	UL Channel	UL Frequency	UL # RB	UL RB Offset	Modulation	UL Channel	UL Frequency	UL # RB	UL RB Offset	Power [dBm]	
			39750	2506.0	1	99		39948	2525.8	1	0	23.5	
		QPSK	QPSK	40620	2593.0	1	99	QPSK	40818	2612.8	1	0	23.2
Max		20MHz + 20MHz		41490	2680.0	1	0		41292	2660.2	1	99	23.54
IVICIA	LTE B41 (PC3)		QPSK	41490	2680	100	0	QPSK	41292	2660.2	100	0	21.57
		16-QAM	41490	2680	100	0	16-QAM	41292	2660.2	100	0	20.58	
		64-QAM	41490	2680	100	0	64-QAM	41292	2660.2	100	0	20.57	

Table 7-3. Conducted Power Data (ULCA LTE B41(PC3) – Ant B)

FCC ID: A3LSMF936JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 60
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 12 of 69
© 2022 ELEMENT		•	V3.0 1/6/2022

7.3 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.4.4

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 13 of 60
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 13 of 69
© 2022 ELEMENT	•		V3.0 1/6/2022

LTE Band 41(PC3) – Ant B

Plot 7-4. Occupied Bandwidth Plot (LTE Band 41(PC3) - 20MHz QPSK - Full RB - Ant B)

Plot 7-5. Occupied Bandwidth Plot (LTE Band 41(PC3) - 20MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 69	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 14 01 09	
© 2022 ELEMENT			\/3.0.1/6/2022	

🔤 Keysight Spectrum Analyzer - Occ						
LXI RL RF 50 Ω	DC CORREC	SENSE:INT Center Freg: 2.593000	ALIGN AUTO	11:13:05 PM Jun Radio Std: Nor		Trace/Detector
		Trig: Free Run	Avg Hold:>100/100			
	#IFGain:Low	#Atten: 36 dB		Radio Device: I	315	
10 dB/div Ref 40.00	0 dBm					
Log						
30.0						Clear Write
20.0	- Announder	and a state of the	Maryh-May May			Giedi Wille
10.0						
0.00						
-10.0	a she have the second s		MALINA			Average
-20.0				WWWWWW	MUNIVAN .	
-30.0						
-40.0						Max Hold
-50.0						
Center 2.59300 GHz				Span 37.50		
Res BW 360 kHz		#VBW 1.1 M	Hz	Sweep		Min Hold
						Wint Hora
Occupied Band		Total Po	ower 30.7	′ dBm		
	13.561 MH	z				Detector
Transmit Frag Fr	or 0.029 k			00.9/	Au	Peak▶ uto Man
Transmit Freq Err				.00 %	7.0	
x dB Bandwidth	16.14 M	Hz x dB	-26.0	00 dB		
MSG			STATUS	1		

Plot 7-6. Occupied Bandwidth Plot (LTE Band 41(PC3) - 15MHz QPSK - Full RB - Ant B)

Plot 7-7. Occupied Bandwidth Plot (LTE Band 41(PC3) - 15MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMF936JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 69
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 15 01 09
© 2022 ELEMENT			V3.0 1/6/2022

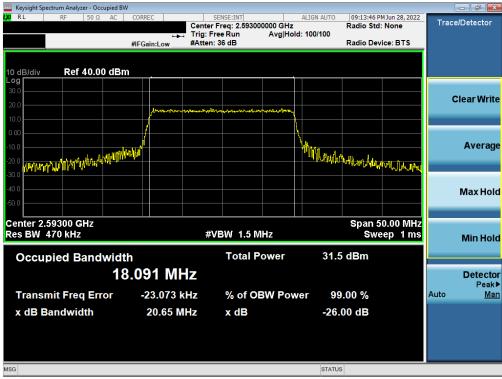
Keysight Spectrum Analyzer - Occupied	BW						
(X) RL RF 50Ω DC	CORREC	SENSE:INT Center Freq: 2.59300	ALIGN AUTO	11:13:39 P Radio Std	M Jun 15, 2022	Trac	e/Detector
	••••	Trig: Free Run	Avg Hold: 100/100				
	#IFGain:Low	#Atten: 36 dB		Radio Dev	ice: BTS		
10 dB/div Ref 40.00 dB	Bm						
Log 30.0							
						(Clear Write
20.0	manne	www.	mmy				
10.0							
0.00							
-10.0	. Millin		When h	n			Average
-10.0 -20.0 -20.0				ป <i>ิฟ</i> ปิงศุก _ษ าป	montand	_	
-30.0							
-40.0							Max Hold
-50.0							inux
Center 2.59300 GHz		#VDW 7501			5.00 MHz		
Res BW 240 kHz		#VBW 7501	(Hz	Swe	ep 1 ms		Min Hold
Occupied Bandwig	dth	Total F	ower 30.	7 dBm			
	9.0308 MH	Z					Detector Peak▶
Transmit Freq Error	-1.184 kl	Hz % of O	BW Power 9	9.00 %		Auto	Man
x dB Bandwidth	10.52 MI	Hz xdB	-20	.00 dB			
MSG			STAT	JS			

Plot 7-8. Occupied Bandwidth Plot (LTE Band 41(PC3) - 10MHz QPSK - Full RB - Ant B)


Plot 7-9. Occupied Bandwidth Plot (LTE Band 41(PC3) - 10MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMF936JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 16 of 69
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 10 01 09
© 2022 ELEMENT			V3.0 1/6/2022

Plot 7-10. Occupied Bandwidth Plot (LTE Band 41(PC3) - 5MHz QPSK - Full RB - Ant B)



Plot 7-11. Occupied Bandwidth Plot (LTE Band 41(PC3) - 5MHz 16-QAM - Full RB - Ant B)

FCC ID: A3LSMF936JPN		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 17 of 69	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 17 01 09	
© 2022 ELEMENT	•		V3.0 1/6/2022	

LTE Band 41(PC3) – Ant F

Plot 7-12. Occupied Bandwidth Plot (LTE Band 41(PC3) - 20MHz QPSK - Full RB - Ant F)

Plot 7-13. Occupied Bandwidth Plot (LTE Band 41(PC3) - 20MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMF936JPN		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 18 of 60	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 18 of 69	
© 2022 ELEMENT			V3.0 1/6/2022	

🔤 Keysight Spectrum Analyzer - Occupie	ed BW					(- @ <u>*</u>
<mark>LX4</mark> RL RF 50Ω A	AC CORREC	SENSE:INT	ALIGN AUTO	09:12:43 P	M Jun 28, 2022	Trace	/Detector
		Center Freq: 2.59300 Trig: Free Run	Avg Hold: 100/100	Radio Std	None		
	#IFGain:Low	#Atten: 36 dB		Radio Dev	ice: BTS		
10 dB/div Ref 40.00 d	Bm						
30.0							
20.0						c	lear Write
10.0	hanne	union Multon Mark				_	
0.00	/		L A				
			1				
-10.0 -20.0 .70.0 .30.0	w Mary M		MA W WALK	u.			Average
-20.0 man white				and the state of t	Making	_	_
-30.0							
-40.0							Max Hold
-50.0							Μάλ Ποιά
30.0							
Center 2.59300 GHz				Span 3	7.50 MHz		
Res BW 360 kHz		#VBW 1.1 M	Hz		ep 1ms		Min Hold
							Milline
Occupied Bandwi	idth	Total P	ower 31.9	dBm			
	13.580 MF	7					Detector
	10.000 Mil	12					Peak►
Transmit Freq Error	-8.539 k	Hz % of Of	BW Power 99	9.00 %		Auto	<u>Man</u>
x dB Bandwidth	16.24 M	Hz xdB	26	00 dB			
	10.24 M		-20.	UU UB			
MSG			STATU	s			

Plot 7-14. Occupied Bandwidth Plot (LTE Band 41(PC3) - 15MHz QPSK - Full RB - Ant F)

Plot 7-15. Occupied Bandwidth Plot (LTE Band 41(PC3) - 15MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMF936JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 69
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 19 01 09
© 2022 ELEMENT			V3.0 1/6/2022

Plot 7-16. Occupied Bandwidth Plot (LTE Band 41(PC3) - 10MHz QPSK - Full RB - Ant F)

Plot 7-17. Occupied Bandwidth Plot (LTE Band 41(PC3) - 10MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMF936JPN		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 69	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 20 01 09	
© 2022 ELEMENT			V3.0 1/6/2022	

Plot 7-18. Occupied Bandwidth Plot (LTE Band 41(PC3) - 5MHz QPSK - Full RB - Ant F)

Plot 7-19. Occupied Bandwidth Plot (LTE Band 41(PC3) - 5MHz 16-QAM - Full RB - Ant F)

FCC ID: A3LSMF936JPN		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 69	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 21 01 09	
© 2022 ELEMENT			V3.0 1/6/2022	

7.4 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

For Band 41, the minimum permissible attenuation level of any spurious emission is 55 + 10log₁₀(P_[Watts]).

Test Procedure Used

ANSI C63.26-2015 – Section 5.7.4

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

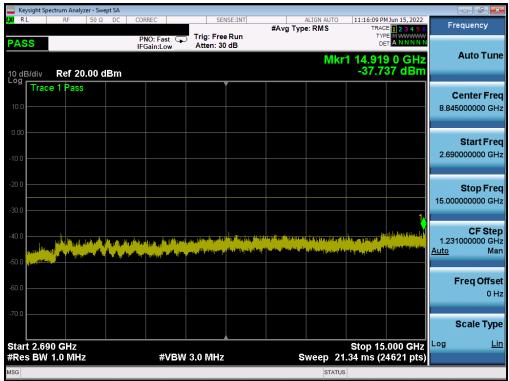
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

1. Per Part 27, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz.


FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 60		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 22 of 69		
© 2022 ELEMENT			V3.0 1/6/2022		

LTE Band 41(PC3) – Ant B

	ectrum Analyzer - Swo										
LXIRL	RF 50 Ω	DC CO	RREC	SEI	NSE:INT	#Avg Typ	ALIGN AUTO		4 Jun 15, 2022	F	requency
PASS			NO: Fast 🖵	Trig: Free Atten: 30		#111g 1)p		TYP			
TASS		IF	Gain:Low	Atten: 30	aB						Auto Tune
10 10 11	Ref 20.00 c	Das					IVI	<r1 2.472<br="">-30 6</r1>	2 5 GHZ 35 dBm		
10 dB/div	e 1 Pass	вш			•			1			
Trac	e i Pass									(Center Freq
10.0										1.25	2500000 GHz
0.00											Start Freq
										30	0.000000 MHz
-10.0											
-20.0											
-20.0											Stop Freq
-30.0									<u>k</u>	2.47	5000000 GHz
									1		
-40.0											CF Step 4.500000 MHz
						للالفية مراد الار	مەلەر. خەربار رولالە ر		Land the barrier	Auto	4.500000 MHZ Man
-50.0 (iliteration					an along the second	mand Addre School descents	and the second second	and a second			
	a all directions of the										Freq Offset
-60.0											0 Hz
-70.0											
											Scale Type
Start 0.03	0 GHz							Stop 2	.475 GHz	Log	<u>Lin</u>
#Res BW	1.0 MHz		#VBW	/ 3.0 MHz			Sweep 3	3.260 ms (4891 pts)		
MSG							STATUS	s			

Plot 7-20. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel - Ant B)

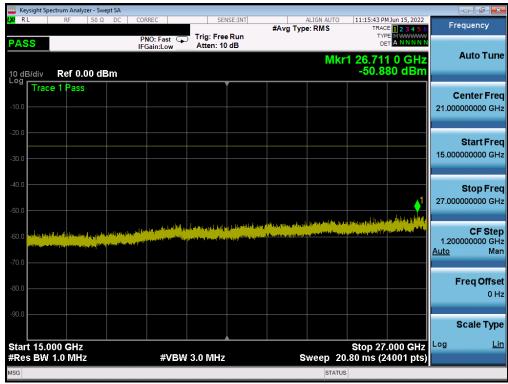
Plot 7-21. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel - Ant B)

FCC ID: A3LSMF936JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 69
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 23 01 09
© 2022 ELEMENT			V3.0 1/6/2022

	ectrum Analyz											- 7
<mark>(</mark> RL	RF	50 Ω	DC	CORREC	SEI	NSE:INT	#Avg Typ	ALIGN AUTO De: RMS	TRA	MJun 15, 2022	Fre	quency
PASS				PNO: Fast IFGain:Low	Trig: Free Atten: 10				TY D			
0 dB/div	Ref 0.()0 dBn	n					M	r1 26.76 -52.0	2 5 GHz 12 dBm		Auto Tur
^{-og} Trac	e 1 Pass											
10.0												enter Fre
10.0											21.0000	00000 G
20.0												
_												Start Fr
30.0											15.0000	000000 G
40.0												Stop Fr
50.0											27.000	000000 G
				. If and the	المريبة المعارية	d	بالمحادث والارتبار	an and the state of the state o	(panting in the part of	demonstration of		
60.0 <mark>ethieth</mark>	and the strategy of	2010 C	adentifi (fr	A REAL PROPERTY AND A REAL	terretaria de la comunia. Escala de la comunia	an a	ر بې مېرې يې د د ويند کې د . د بې مېرې يې د د ويند کې د .	and the second	مى بىلى يەرىلەر يەرىلەر يەرىكى يەرىپى مەرىكى يەرىلەر يەرىلەر يەرىكى يەرىكى يەرىكى يەرىكى يەرىكى يەرىكى يەرىكى يە	a des de collecte de la desta de la de La desta de la d	1 2000	CF St 000000 G
i dina na di	And all a literate p		فالتراب والتريين								Auto	M
70.0												
80.0											F	req Offs
00.0												0
90.0												
											S	cale Ty
Start 15.0									Stop 27	.000 GHz	Log	L
	1.0 MHz			#VBW	/ 3.0 MHz		s	weep 2	20.80 ms (2	.000 0112		
ISG								STAT				

Plot 7-22. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel - Ant B)

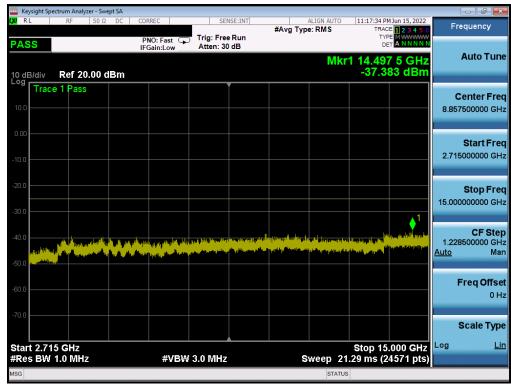
		m Analyzer											
<mark>o</mark> RL		RF 5	50Ω D	C COR	REC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO		4 Jun 15, 2022	Fr	equency
				P	IO: Fast 🗔	Trig: Free		#Avg Typ	e: RIVIS	TYF	E 1 2 3 4 5 6 E M WWWW		- 4
PASS				IFO	Gain:Low	Atten: 30	dB						
									Μ	kr1 2.47	7 0 GHz		Auto Tur
0 dB/c	div R	ef 20.0	0 dBr	n						-35.	81 dBm		
- ^{og} 🗖	Trace 1	Pass											
													enter Fr
10.0												1.263	3000000 GI
0.00													Start Fr
												30	.000000 M
10.0												50	.000000 141
20.0													Stop Fr
												2.49	5000000 G
30.0 -											<u> </u>		
											l Y		05.04
40.0 —												246	CF St .600000 M
							الالدين وبالحالي	i	in and data		I pelocal mana	Auto	M
50.0 🖵	for a state of the second s	and a state of the	a Mathalita				الكاريما وراجعه		and share provide the				
11	a million for lata pacifi												
60.0 —													Freq Offs
													0
70.0													
												1	Scale Ty
												1.00	
	0.030 0								_	Stop 2	.496 GHz	Log	L
Res	BW 1.0	MHŻ			#VBW	3.0 MHz			sweep	3.288 ms (4933 pts)		
SG									STATU	JS			


Plot 7-23. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel - Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 24 of 60		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 24 of 69		
© 2022 ELEMENT	÷		V3.0 1/6/2022		

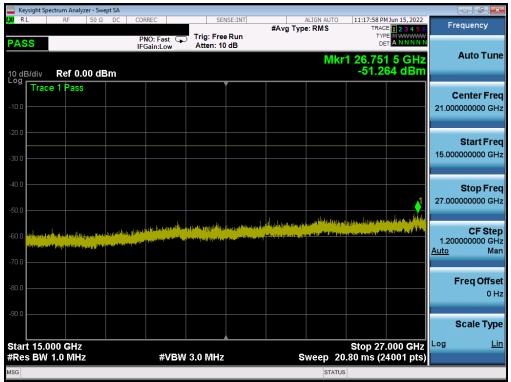
Keysight Spectrum Analyzer - Swept SA			
🗶 RL RF 50Ω DC	CORREC SENSE:IN	#Avg Type: RMS TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast Trig: Free Run IFGain:Low Atten: 30 dB	түре Миники Der A NNNNN Mkr1 14.645 0 GHz -37.461 dBm	Auto Tune
10 dB/div Ref 20.00 dBm		-57.401 (18)	Center Freq
10.0			8.845000000 GHz
0.00			Start Freq 2.69000000 GHz
-10.0			
-30.0			Stop Freq 15.00000000 GHz
-40.0	181	n hand a pharticle of the program gard present of the second product of the second product of the second second	CF Step 1.231000000 GHz
-50.0			Auto Man
-60.0			Freq Offset 0 Hz
-70.0			Scale Type
Start 2.690 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Stop 15.000 GHz Sweep 21.34 ms (24621 pts)	Log <u>Lin</u>
MSG		STATUS	

Plot 7-24. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel - Ant B)


Plot 7-25. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel - Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 69		
1M2206010070-05.A3L	6/15 - 7/6/2022	22 Portable Handset			
© 2022 ELEMENT			V3.0 1/6/2022		

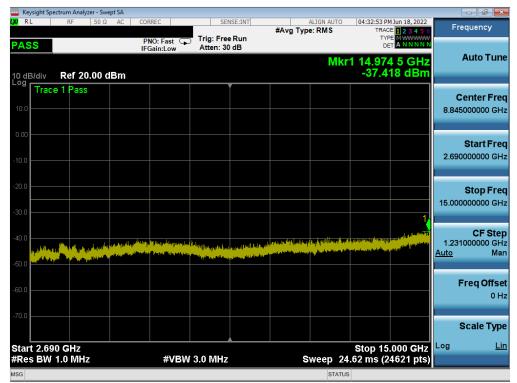
🤤 Keysight Spectrum Analyzer - Swept SA 🚽							
LXU RL RF 50Ω DC	CORREC	SENSE:INT	#Avg Type	ALIGN AUTO e: RMS	11:17:04 PM TRACE	Jun 15, 2022 1 2 3 4 5 6	Frequency
PASS		g: Free Run ten: 30 dB	0 ,1	ML	TYPE	ANNNN	Auto Tune
10 dB/div Ref 20.00 dBm		•		IVIN	-40.66	9 dBm	
10.0 Trace 1 Pass							Center Freq 1.263000000 GHz
0.00							
-10.0							Start Free 30.000000 MH;
-20.0							Stop Free
-30.0							2.496000000 GH
-40.0						1	CF Step 246.600000 MH
-50.0 - optimist and in the state state and the state of the	u pupulu de del ante del alter de la del alter	م أنه الحصل من أنه المن المول أنه المربع المربع بمحمد ومعلم من المربع من المربع من المربع المربع الم		i and that			<u>Auto</u> Mar
-60.0							Freq Offse
-70.0							0 H:
							Scale Type
Start 0.030 GHz #Res BW 1.0 MHz	#VBW 3.0	MHz		Sweep 3	4.Stop 2 4.288 ms	496 GHz 933 pts)	
MSG				STATUS			


Plot 7-26. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel - Ant B)

Plot 7-27. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel - Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 69		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset			
© 2022 ELEMENT			V3.0 1/6/2022		

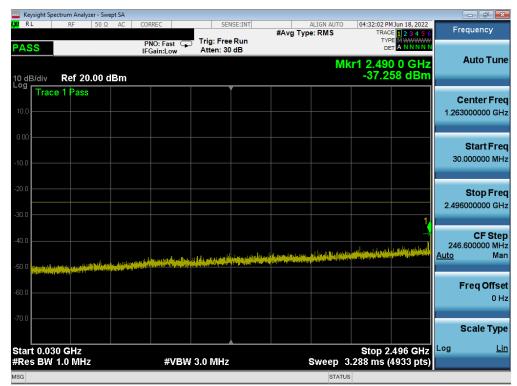
Plot 7-28. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel - Ant B)


FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 69		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 27 01 09		
© 2022 ELEMENT			V3.0 1/6/2022		

LTE Band 41(PC3) – Ant F

		ctrum A	Analyzer - Sv												
l <mark>XI</mark> RI	L	RF	50 \$	2 AC	CORREC		SEN	ISE:INT	#Ava	Al Type:	LIGN AUTO		MJun 18, 2022	Fr	equency
PAS	S				PNO: Fa IFGain:Lo		Trig: Free Atten: 30			, . ,		TY D			Auto Tune
10 dE	3/div	Ref	20.00	dBm							M	(r1 2.39 -40.9	6 5 GHz 17 dBm		Auto Tulle
Log 10.0	Trace	e 1 P	ass												Center Freq 2500000 GHz
0.00 -10.0														30	Start Freq 0.000000 MHz
-20.0 -30.0														2.47	Stop Freq 5000000 GHz
-40.0	Atta dat		. to the line	and lease been		the sectors				line		l and a finite of the		244 <u>Auto</u>	CF Step 500000 MHz Man
-60.0															Freq Offset 0 Hz
-70.0															Scale Type
	t 0.03 s BW				#	VBW 3	.0 MHz			s	weep_3	Stop 2	.475 GHz (4891 pts)	Log	<u>Lin</u>
MSG											STATUS				

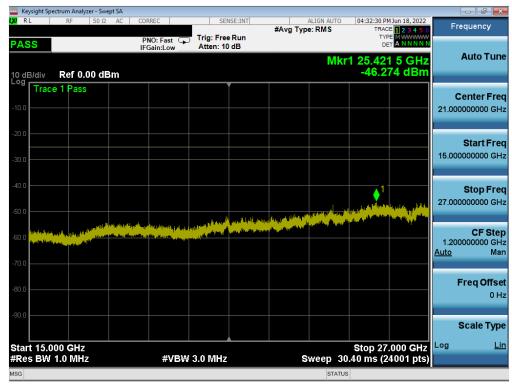
Plot 7-29. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel - Ant F)


Plot 7-30. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel - Ant F)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 28 of 69		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset			
© 2022 ELEMENT			V3.0 1/6/2022		

Keysight Spectrum Analyzer - Swept SA					
LXI RE 50Ω AC		#Avg Type	RMS TRAC	4Jun 18, 2022 E 1 2 3 4 5 6	Frequency
PASS	PNO: Fast Trig: Free IFGain:Low Atten: 10		TYF		
			Mkr1 26.64	5 GHz	Auto Tune
10 dB/div Ref 0.00 dBm			-46.3	28 dBm	
Trace 1 Pass	Ĭ				Center Freq
-10.0				2	1.000000000 GHz
-20.0					
-20.0					Start Freq
-30.0				1	5.000000000 GHz
-40.0				1	Stop Freq
-50.0				2	7.000000000 GHz
and the second states of the s	the section (A red a barried or section and a section of the		and the state of the		05.04+**
-60.0	ا الله العظيم بلغان و بن من و عن و عن و عن هذا و و عليه و ع المحكم المحكم و عن من و عليه و المحكم و عليه و عليه و عليه و عليه و المحكم و عليه و عليه و عليه و عليه و عليه و				CF Step 1.20000000 GHz
-70.0				Au	<u>uto</u> Man
-80.0					Freq Offset 0 Hz
					0112
-90.0					Scale Type
			<u> </u>		
Start 15.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	SI	/2 Stop 2/ weep 30.40 ms	.000 GHz 4001 pts)	
MSG			STATUS		

Plot 7-31. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel - Ant F)


Plot 7-32. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel - Ant F)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 60		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 29 of 69		
© 2022 ELEMENT		·	V3.0 1/6/2022		

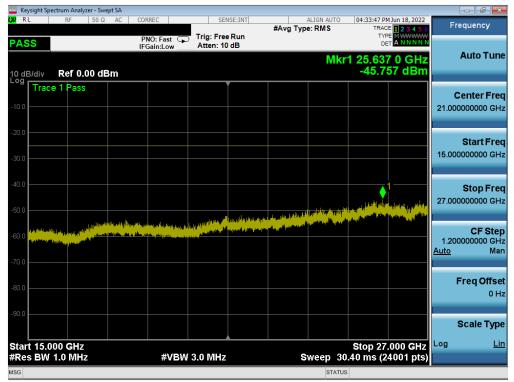
		ectrum Analyzer - Sw										
LXU R	L	RF 50 Ω	2 AC	CORREC	SEI	ISE:INT	#Avg Ty	ALIGN AU		PM Jun 18, 2022	Fre	quency
PAS	20			PNO: Fast 🔾	Trig: Free Atten: 30							
	50			IFGain:Low	Atten: 30	dВ					4	Auto Tune
		B-5 00 00	-1121					IV	1KF1 14.7 -37	79 0 GHz 361 dBm	-	
10 di Log	B/div	Ref 20.00	dBM		· · · · · · · · · · · · · · · · · · ·				-57.			
	Irac	e 1 Pass									Ce	enter Freg
10.0	<u> </u>										8.8450	000000 GHz
0.00	<u> </u>											
												Start Freq
-10.0											2.0900	00000 GH2
-20.0												Stop Freq
											15.0000	000000 GHz
-30.0										1		
-40.0										I. INTRODUCTION		CF Step
-40.0	, and the	أراديا فيراوا ويتحر بالمحادي	a managera (se	Milelplatic and any public	a lateration and an	ayuqulahani	p Joll official and	a a si	anna a sua a sua ang ing sua ang Mangang ang ang ing sua ang	nyp a je v an er Helle en del ander de la del beter	1.2310 Auto	000000 GHz Man
-50.0	and the second	الشعار بالأروا	N NULL STATE		and the second se	and state and state		1			Auto	Ivian
-60.0											F	req Offset
												0 Hz
-70.0												
											S	cale Type
Star	+ 2 60	0 GHz							Stop 1	5.000 GHz	Log	Lin
		1.0 MHz		#VBV	V 3.0 MHz			Sweep	24.62 ms	(24621 pts)	_	
MSG									ATUS			

Plot 7-33. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel - Ant F)

Plot 7-34. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel - Ant F)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 69		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 50 01 09		
© 2022 ELEMENT	•	·	V3.0 1/6/2022		

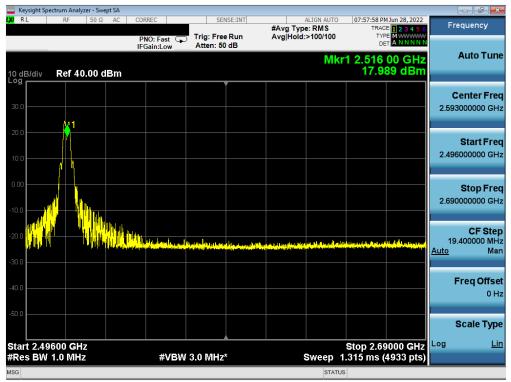
	ctrum Analyzer - Swe										
L <mark>XI</mark> RL	RF 50 Ω	AC COI	RREC		ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRA	MJun 18, 2022 CE 1 2 3 4 5 6	Fre	equency
PASS			NO: Fast 🖵 Gain:Low	Trig: Free Atten: 30				TΥ			
,			Galli.LUw	/ttern oo	ub		N	lkr1 2.48	0.5 GHz		Auto Tune
10 dB/div	Ref 20.00 d	Bm						-39	53 dBm		
Log	1 Pass			``````````````````````````````````````							
											enter Freq
10.0										1.263	000000 GHz
0.00											
0.00											Start Freq
-10.0										30.	000000 MHz
-20.0											Stop Freq
											000000 GHz
-30.0											
10.0									👌		CF Step
-40.0							Lau	والمرادعا فرأ والرام وأحرار الرف	and a state of the state		600000 MHz
-50.0	ينقفون وترجي الر	Telescology and	ري احداد الحزيرات وريد. ويلادر ويتداده ماريور	م الفرانية والمركز (1) (م. مع 1) (1) (1) (1) (1) (1) (1) (1)				hinstein inigh	A Industrial State Party of the Industrial	<u>Auto</u>	Man
	(Brocks 19 Constant State States State States)	الكالا المشاور									
-60.0										F	req Offset 0 Hz
											0 H2
-70.0											Deals The
										S	Scale Type
Start 0.030								Stop 2	.430 0112	Log	Lin
#Res BW 1	1.0 MHz		#VBW	3.0 MHz			Sweep	3.288 ms	(4933 pts)		
MSG							STAT	US			


Plot 7-35. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel - Ant F)

Plot 7-36. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel - Ant F)

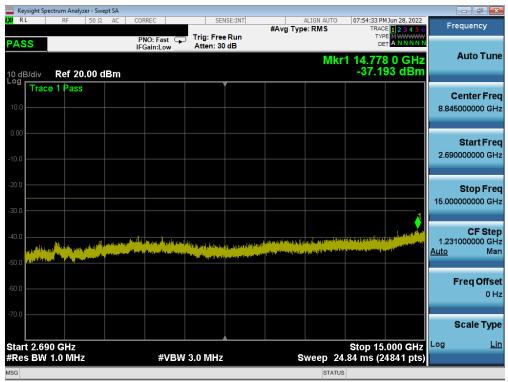
FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:			
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 31 of 69		
© 2022 ELEMENT			V3.0 1/6/2022		

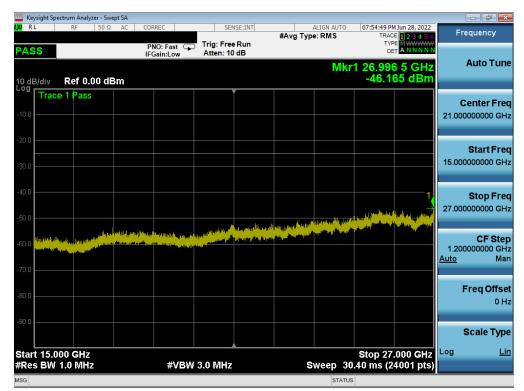
Plot 7-37. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel - Ant F)


FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	Test Dates: EUT Type:			
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 32 of 69		
© 2022 ELEMENT	·		V3.0 1/6/2022		

ULCA - LTE B41(PC3) - Ant B

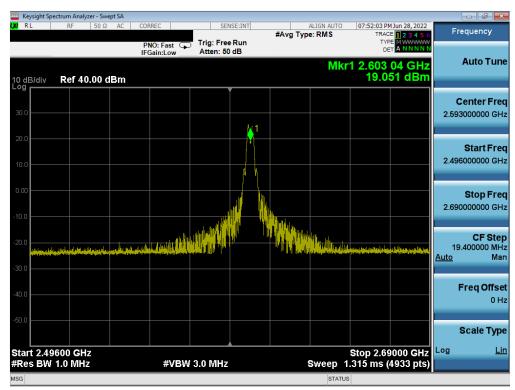
	ectrum Analyz	er - Swept	t SA									
RL	RF	50 Ω	AC CO	RREC	SEI	NSE:INT	#Avg Typ	ALIGN AUTO e: RMS		MJun 28, 2022	Fr	equency
PASS				NO: Fast 🕞 Gain:Low	Trig: Free Atten: 30		• • •		TY			
0 dB/div	Ref 20	.00 dE	3m					MI	r1 2.46 -41.8	5 0 GHz 93 dBm		Auto Tune
.og Trac	e 1 Pass											Center Fre
10.0												2500000 GH
0.00												Start Fre
10.0											30	.000000 MH
20.0												Stop Fre
30.0											2.47	5000000 GH
										4		
40.0											244	CF Ste 1.500000 MH
		latar Ita		and a participation	a la constante de la constante		(Ladard, Inc. 1944)	al Inconstant State To constant of ^{the constant}	ni na last strikterik Listerik		<u>Auto</u>	Mai
50.0 mitplates		in the state of the										
60.0											I	Freq Offse 0 H
												UH
70.0												Scale Typ
tart 0.03 Res BW				#\/R\A	/ 3.0 MHz			Sween	Stop 2	.475 GHz 4913 pts)	Log	Li
SG DW				# 4 D 9 1	5.0 1911/2			sweep	_	as is pis)		


Plot 7-38. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel Ant B)


Plot 7-39. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 69			
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 33 01 69			
© 2022 ELEMENT			V3.0 1/6/2022			

Plot 7-40. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel Ant B)


Plot 7-41. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel Ant B)

FCC ID: A3LSMF936JPN		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	ates: EUT Type:		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 34 of 69	
© 2022 ELEMENT	•	·	V3.0 1/6/2022	

	trum Analyzer - Swe									
LXU RL	RF 50 Ω	AC COR	REC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS		MJun 28, 2022	Frequency
PASS			NO: Fast 🖵	Trig: Free Atten: 30				TYP		
T AOO		IFC	Gain:Low	Atten: 30	ab					Auto Tune
	Ref 20.00 d	Bm					IV	1kr1 2.48	87 dBm	
10 dB/div		ыш								
Trace	1 Pass									Center Fred
10.0										1.263000000 GHz
0.00										Start Fred
										30.000000 MHz
-10.0										
-20.0										
-20.0										Stop Fred
-30.0										2.496000000 GHz
00.0									1	
-40.0										CF Step
					والمتعادية والمتعاد	a control of the second se		a dia dia da mandra dia kating	transfilment assisted	246.600000 MHz Auto Mar
-50.0	in the first state		Alexandra Alexandra Andre Angeletina Alexandra Andre		and the second	a an la start and	للأنفان ألاعلى إعمال			
										Freq Offset
-60.0										0 Hz
										0112
-70.0										
										Scale Type
Start 0.030) GHz							Stop 2	.496 GHz	Log <u>Lir</u>
#Res BW 1			#VBW	3.0 MHz			Sweep	3.052 ms (5087 pts)	
MSG							STAT	US		

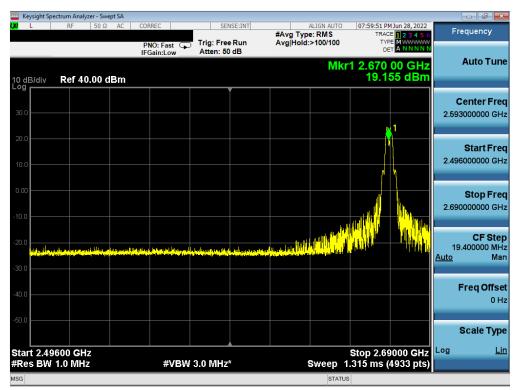
Plot 7-42. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel Ant B)


Plot 7-43. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	Dates: EUT Type:			
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 35 of 69		
© 2022 ELEMENT		·	V3.0 1/6/2022		

Keysight Spectrum A							
LXI RL RF	50 Ω AC (CORREC	SENSE:INT	ALIG #Avg Type: R		PM Jun 28, 2022 RACE 1 2 3 4 5 6	Frequency
PASS			Trig: Free Run Atten: 30 dB	• //			
		IFGaIn:Low	Atten: 30 dB		Mkr1 14.8		Auto Tune
10 dB/div Ref	20.00 dBm				-37.	176 dBm	
			Ţ				
	ass						Center Freq
10.0							8.845000000 GHz
0.00							Start Freq
-10.0							2.690000000 GHz
-10.0							
-20.0							
20.0							Stop Freq
-30.0							15.00000000 GHz
						-	
-40.0		of a damatata a		المراجعة المراجع	^{Adde} n berne het det erke kan so	The second s	CF Step 1.231000000 GHz
			aldan ^{la} dan desta glaster al angelsen		الأحمد والمستاع فالدا وتحادثه إعان		Auto Man
-50.0							
							Freq Offset
-60.0							0 Hz
-70.0							Scale Type
							Scale Type
Start 2.690 GH					Stop '	10.000 GHZ I	Log <u>Lin</u>
#Res BW 1.0 N	/IHz	#VBW 3	.0 MHz	Swe	ep 24.62 ms	(24621 pts)	
MSG					STATUS		

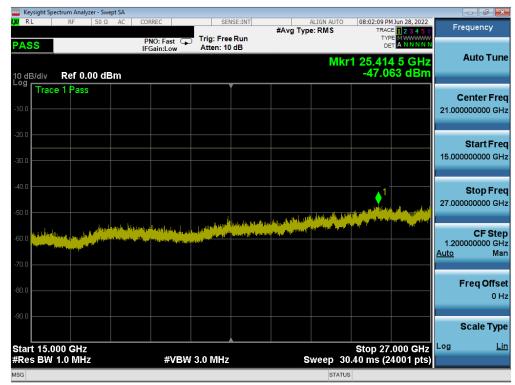
Plot 7-44. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel Ant B)


Plot 7-45. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 69		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset			
© 2022 ELEMENT	·		V3.0 1/6/2022		

W R.L RF SO.Q AC CORREC SENSEINT ALIGN AUTO Design Mynu 28, 2022 Frequency PASS PN0: Fast IFGain:Low Trig: Free Run Atten: 30 dB TACE 292 40 TACE 292 40 Auto Tune 10 dB/div Ref 20.00 dBm -40.567 dBm -40.567 dBm Center Freq 1.26300000 GHz 100 Trace 1 Pass -40.567 dBm -40.5		ght Spect	rum Analyzer - Sw										
PASS PHO: Fast Pice Run Atten: 30 dB Mikr1 2.489 3 GHz -40.567 dBm 10 dB/div Ref 20.00 dBm Center Freq 10 dB/div Ref 20.00 dBm Center Freq 10 dB/div Ref 20.00 dBm Center Freq 10 dB/div Ref 20.00 dBm Start Freq 20 dB/div Ref 20.00 dBm Start Freq 20 dB/div Ref 20.00 dBm Start Freq 20 dB/div Ref 20.00 dBm Man 20 dB/div Ref 20.00 dBm Start Freq 20 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 20 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 20 dB/div Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm 20 dB/div<	L <mark>XI</mark> RL		RF 50 Ω	AC O	DRREC	SEI	ISE:INT	#Ava Tv				Fr	equency
10 dB/div Ref 20.00 dBm -40.567 dBm 10 dB/div Ref 20.00 dBm -40.567 dBm 10 dB/div Ref 20.00 dBm -10.567 dBm 00 dB/div Ref 20.00 dBm -10.567 dBm 10 dB/div Ref 20.00 dBm -10.567 dBm -20 dB/div -10.567 dBm -10.567 dBm -20 dB/div <t< td=""><td>PASS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>TY D</td><td></td><td></td><td>Auto Tune</td></t<>	PASS									TY D			Auto Tune
100 Center Freq 100 Center Freq 100 Start Start Freq 100 Start Start Freq 100 Start Start Start Freq 100 Start	Log 👝			dBm						-40.5	67 dBm		
0.00 Image: start freq 0.00 Image: start freq <td< td=""><td></td><td>Trace</td><td>Trass</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		Trace	Trass										
-100 -100												1.26	3000000 GHz
-100 -100	0.00												•
-300 -300												30	0.000000 MHz
-30.0 -30.0 <td< td=""><td>-20.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-20.0												
 400 and a list of a second back of the second and a secon	-30.0											2.49	6000000 GHz
-50 0 -50 0	-40.0 —										1	246	
-60.0 -60.0 -70.0 Freq Offset -70.0 -70.0 -70.0 -70.0 Start 0.030 GHz #VBW 3.0 MHz Sweep 3.096 ms (5161 pts)			ويعد بالارد .	المرابعة والمرابع	ومربا المجداد إردامه	و الصاد و سال			ار المعالي إيرا. الجامعات الم				
460 0 400 0 100 0 Hz 0 Hz 700 0 500 0 Hz 500 0 Hz 500 0 Hz Start 0.030 GHz #VBW 3.0 MHz Sweep 3.096 ms (5161 pts)	-50.0				and the second	and the second sec	1						
-70.0 Start 0.030 GHz Stop 2.496 GHz Log Lin #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 3.096 ms (5161 pts) Sweep 3.096 ms (5161 pts)	-60.0												•
Start 0.030 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 3.096 ms (5161 pts)	70.0												
#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 3.096 ms (5161 pts)	-70.0												Scale Type
					#\/B\A	(30 MHz			Sween	Stop 2	.496 GHz	Log	Lin
					# V D VI	- 5.0 WITZ					oror pis)		

Plot 7-46. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel Ant B)


Plot 7-47. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 37 of 69	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 37 01 69	
© 2022 ELEMENT	-		V3.0 1/6/2022	

	pectrum Analyzer - Swe									-	
LX/IRL	RF 50 Ω	AC COF	REC	SEN	SE:INT	#Avg Typ	ALIGN AUT e: RMS		MJun 28, 2022	Free	quency
PASS			NO: Fast 🖵 Gain:Low	Trig: Free Atten: 30		0 ,1		TY D			Auto Tune
10 dB/div Log	Ref 20.00 d	Bm					M	kr1 14.77 -37.0	3 5 GHz 13 dBm		auto i une
	e 1 Pass										enter Freq
10.0										8.8575	500000 GHz
0.00										;	Start Freq
-10.0										2.7150	000000 GHz
-20.0											Stop Freq
-30.0										15.0000	000000 GHz
-40.0											CF Step
our Attor	na ¹⁹ mangang panganan Mangang panganan katala	a Regelerander and Barrierander Anderster ander	ntengatipapan pang Kelalahan pang	^{al} lengestyddiadau ^{Allen} adau arlana		a paragramatika paralang Ang kanang kanang paragramatika paragramatika paragramatika paragramatika paragramatika paragramatika paragrama		nen 114 gemierten er en er		1.2285 <u>Auto</u>	600000 GHz Man
-50.0										E	req Offset
-60.0											0 Hz
-70.0										S	cale Type
Start 2.7	15 CH2							Stop 14	.000 GHz	Log	Lin
	1.0 MHz		#VBW	3.0 MHz		s	weep	24.57 ms (2	.000 GHZ		
MSG							STA	TUS			

Plot 7-48. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel Ant B)

Plot 7-49. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 69	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 30 01 09	
© 2022 ELEMENT			V3.0 1/6/2022	

7.5 Band Edge Emissions at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

The minimum permissible attenuation level for Band 41 is as noted in the Test Notes on the following page.

Test Procedure Used

ANSI C63.26-2015 - Section 5.7.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1% of the emission bandwidth
- 4. VBW > 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

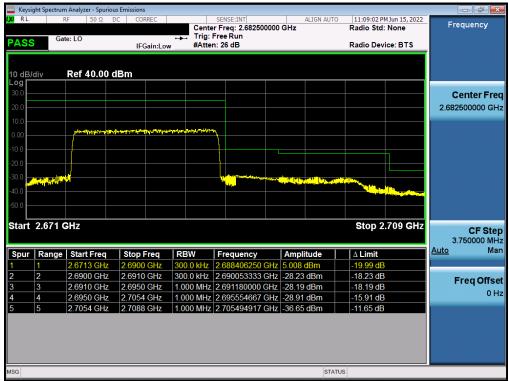
Test Notes

Per 27.53(m) for operations in the BRS/EBS bands, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz.

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 39 of 69	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 39 01 09	
© 2022 ELEMENT			V3.0 1/6/2022	

LTE Band 41(PC3) – Ant B

Plot 7-50. Lower ACP Plot (LTE Band 41(PC3) - 20MHz QPSK - Full RB - Ant B)


Plot 7-51. Upper ACP Plot (LTE Band 41(PC3) - 20MHz QPSK - Full RB - Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 40 of 60		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 40 of 69		
© 2022 ELEMENT			\/3.0.1/6/2022		

		-Spuriou i0Ω D	us Emission	s RREC		SENSE:INT		ALIGN AUTO	11:10:27	MJun 15, 2022	
X/RL	NF D	10 32 L		RREC	Cente	r Freq: 2.50350	0000 GHz	ALIGN AUTO	Radio Sto		Frequency
PASS	Gate: LO					Free Run					
ASS			IF	Gain:Lo	w #Atte	n: 26 dB			Radio De	VICE: BIS	r
10 dB/div	Ref 40	0.00 c	1Bm								
30.0											
											Center Fr
20.0											2.503500000 0
10.0											
0.00						In surgery and the	der California (Marinel and Al	ingle-strates-region	the second states and the second states of the second states of the second states of the second states of the s		
10.0											
20.0											
						1					
-30.0			No. of Concession, Name	A LAND	and the second					and the second	
-40.0	والمحافة واللمار										
-50.0 - 10 k da	and the second second										
Start 2.4	77 GHz								Stop 2	2.515 GHz	CF St
Start 2.4	77 GHz								Stop 2	2.515 GHz	CF St 3.750000 M
	77 GHz nge Start F	req	Stop	Freq	RBW	Frequency	Amp	olitude	Stop 2	2.515 GHz	
			Stop			Frequency 2.490389583					3.750000 N
Start 2.4 Spur Ra 1 1 2 2	nge Start F	GHz		5 GHz	1.000 MHz		GHz -26.8	2 dBm	∆ Limit	3	3.750000 M <u>Auto</u> N
Spur Ra 1 1 2 2 3 3	nge Start F 2.4773 2.4905 2.4950	GHz GHz GHz	2.4905 2.4950 2.4960	5 <mark>GHz</mark>) GHz) GHz	1.000 MHz 1.000 MHz 300.0 kHz	2.490389583 2.494910000 2.495286667	<mark>GHz -26.8</mark> GHz -25.5 GHz -26.5	<mark>2 dBm</mark> 7 dBm 7 dBm	Δ Limit -1.816 dl -12.57 dl -13.57 dl	3 3 3	3.750000 M <u>Auto</u> M Freq Offs
Spur Ra 1 1 2 2	nge Start F 2.4773 2.4905	GHz GHz GHz	2.4905 2.4950	5 <mark>GHz</mark>) GHz) GHz	1.000 MHz 1.000 MHz 300.0 kHz	2.490389583 2.494910000	<mark>GHz -26.8</mark> GHz -25.5 GHz -26.5	<mark>2 dBm</mark> 7 dBm 7 dBm	Δ Limit -1.816 dl -12.57 dl	3 3 3	3.750000 M <u>Auto</u> N
Spur Ra 1 1 2 2 3 3	nge Start F 2.4773 2.4905 2.4950	GHz GHz GHz	2.4905 2.4950 2.4960	5 <mark>GHz</mark>) GHz) GHz	1.000 MHz 1.000 MHz 300.0 kHz	2.490389583 2.494910000 2.495286667	<mark>GHz -26.8</mark> GHz -25.5 GHz -26.5	<mark>2 dBm</mark> 7 dBm 7 dBm	Δ Limit -1.816 dl -12.57 dl -13.57 dl	3 3 3	3.750000 M <u>Auto</u> M Freq Offs
Spur Ra 1 1 2 2 3 3	nge Start F 2.4773 2.4905 2.4950	GHz GHz GHz	2.4905 2.4950 2.4960	5 <mark>GHz</mark>) GHz) GHz	1.000 MHz 1.000 MHz 300.0 kHz	2.490389583 2.494910000 2.495286667	<mark>GHz -26.8</mark> GHz -25.5 GHz -26.5	<mark>2 dBm</mark> 7 dBm 7 dBm	Δ Limit -1.816 dl -12.57 dl -13.57 dl	3 3 3	3.750000 M <u>Auto</u> M Freq Offs
Spur Ra 1 1 2 2 3 3	nge Start F 2.4773 2.4905 2.4950	GHz GHz GHz	2.4905 2.4950 2.4960	5 <mark>GHz</mark>) GHz) GHz	1.000 MHz 1.000 MHz 300.0 kHz	2.490389583 2.494910000 2.495286667	<mark>GHz -26.8</mark> GHz -25.5 GHz -26.5	<mark>2 dBm</mark> 7 dBm 7 dBm	Δ Limit -1.816 dl -12.57 dl -13.57 dl	3 3 3	3.750000 M <u>Auto</u> M Freq Offs
Spur Ra 1 1 2 2 3 3	nge Start F 2.4773 2.4905 2.4950	GHz GHz GHz	2.4905 2.4950 2.4960	5 <mark>GHz</mark>) GHz) GHz	1.000 MHz 1.000 MHz 300.0 kHz	2.490389583 2.494910000 2.495286667	<mark>GHz -26.8</mark> GHz -25.5 GHz -26.5	<mark>2 dBm</mark> 7 dBm 7 dBm	Δ Limit -1.816 dl -12.57 dl -13.57 dl	3 3 3	3.750000 M <u>Auto</u> M Freq Offs
Spur Ra 1 1 2 2 3 3	nge Start F 2.4773 2.4905 2.4950	GHz GHz GHz	2.4905 2.4950 2.4960	5 <mark>GHz</mark>) GHz) GHz	1.000 MHz 1.000 MHz 300.0 kHz	2.490389583 2.494910000 2.495286667	<mark>GHz -26.8</mark> GHz -25.5 GHz -26.5	<mark>2 dBm</mark> 7 dBm 7 dBm	Δ Limit -1.816 dl -12.57 dl -13.57 dl	3 3 3	3.750000 M <u>Auto</u> M Freq Offs

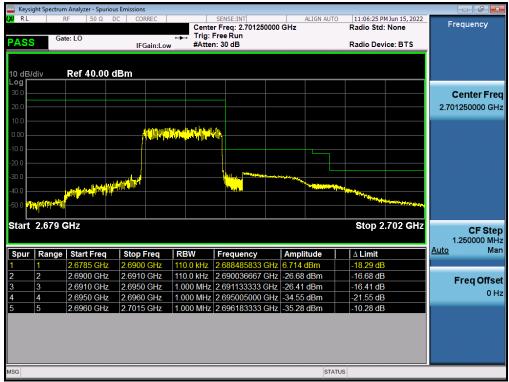
Plot 7-52. Lower ACP Plot (LTE Band 41(PC3) - 15MHz QPSK - Full RB - Ant B)

Plot 7-53. Upper ACP Plot (LTE Band 41(PC3) - 15MHz QPSK - Full RB - Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 60		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 41 of 69		
© 2022 ELEMENT	· · ·		V3.0 1/6/2022		

Key Karra	rsight Spectrum	Analyzer - S					CENCE INT		ALTON AL	170	1.07.20.0	M http://www.alic.co.co.co.	_	
N <mark>i</mark> Kl	- R	F 50	Ω DC	. COI	RREC	Cente	SENSE:INT r Freq: 2.5010	00000 G	ALIGN AL		adio Std	MJun 15, 2022 : None	Fi	requency
PAS	Gat	e: LO					Free Run n: 26 dB				adia Dav	vice: BTS		
				IFC	Gain:Lov	w #Alle	n. 20 uB			Re	adio Dev	ICE. DI S		
				_										
10 dE Log [3/div	Ref 40.	00 di	Bm										
30.0														Center Fre
20.0														1000000 GH
10.0														
0.00							1140M	n fra fa et	an in the second second	***	MARK			
							, i i i i i i i i i i i i i i i i i i i							
10.0														
20.0						and the second second								
-30.0				al official second	er på ester diretter for	and a second second	a de la composición de					The state of the		
40.0	al et mater autor	الا الالاروبية المراجد ال	CALCULAR AND	·		u						a the second		
-50.0														
	4 0 404 6	NI I-									0 4	500 011-		
siar	t 2.484 G	ΠZ									Stop 2	.509 GHz		CF Ste
_					_					1 1 1			Auto	2.500000 MH Ma
Spui 1	r Range	Start Fre 2.4835 G		Stop		RBW	Frequency 2.49037166		Amplitude		Limit)		
2	2	2.4835 G		2.4900			2.49497000				1.27 dE			_
3	3	2.4950 G		2.4960			2.49586166				14.52 dE			Freq Offse
4	4	2.4960 G	Hz	2.5085	GHz	200.0 kHz	2.50097916	7 GHz 5	.826 dBm	-1	9.17 dE	}		0 H
SG									01	TATUS				

Plot 7-54. Lower ACP Plot (LTE Band 41(PC3) - 10MHz QPSK - Full RB - Ant B)


Plot 7-55. Upper ACP Plot (LTE Band 41(PC3) - 10MHz QPSK – Full RB - Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 60	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 42 of 69	
© 2022 ELEMENT			V3.0 1/6/2022	

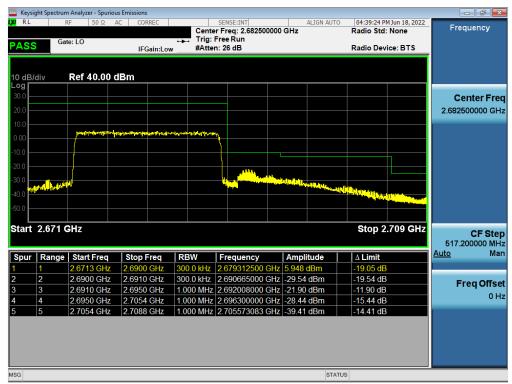
Plot 7-56. Lower ACP Plot (LTE Band 41(PC3) - 5MHz QPSK - Full RB - Ant B)

Plot 7-57. Upper ACP Plot (LTE Band 41(PC3) - 5MHz QPSK - Full RB - Ant B)

FCC ID: A3LSMF936JPN		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 42 of 60	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 43 of 69	
© 2022 ELEMENT	•		V3.0 1/6/2022	

LTE Band 41(PC3) – Ant F

Plot 7-58. Lower ACP Plot (LTE Band 41(PC3) - 20MHz QPSK - Full RB - Ant F)


Plot 7-59. Upper ACP Plot (LTE Band 41(PC3) - 20MHz QPSK - Full RB - Ant F)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 60
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 44 of 69
© 2022 ELEMENT	-		V3.0.1/6/2022

		n Analyzer - Spuri		ns								
LXU RL		RF 50 Ω	AC CC	ORREC		SENSE:INT er Freq: 2.50350 Free Run	00000 GH	ALIGN AUT	0 04:38:41 Radio Sto	MJun 18, 2022 : None	Freque	ency
PASS	Ga	te: LO	IF	Gain:Lov		n: 26 dB			Radio De	vice: BTS		
10 dB/	div	Ref 40.00	dBm									
Log												
30.0											Cent	er Freq
20.0											2.503500	000 GHz
10.0												
0.00						physicality	and the second second	waaane Maariyaan	and the production of the second			
-10.0				ſ								
-20.0												
-30.0					n ku din					where the ster		
-40.0		an a	a har and a start of the start	WWW.Warren	and a second					an a shulle		
-50.0												
Start	2.477 (SHz							Stop 2	2.515 GHz		F Step
												000 MHz
Spur	Range	Start Freq	Stop	Freg	RBW	Frequency	A	mplitude	∆ Limit		<u>Auto</u>	Man
1	1	2.4773 GHz		5 GHz		2.490080417			-7.087 df	3		
2	2	2.4905 GHz	_	0 GHz		2.494104500			-12.15 dl		Erec	Offeet
3	3	2.4950 GHz	2.496	0 GHz	300.0 kHz	2.495998333	GHz -30).93 dBm	-17.93 df	3	Free	Offset
4	4	2.4960 GHz	2.514	8 GHz	300.0 kHz	2.507968750	GHz 6.4	175 dBm	-18.52 dl	3		0 Hz
MSG								STA	TUS			

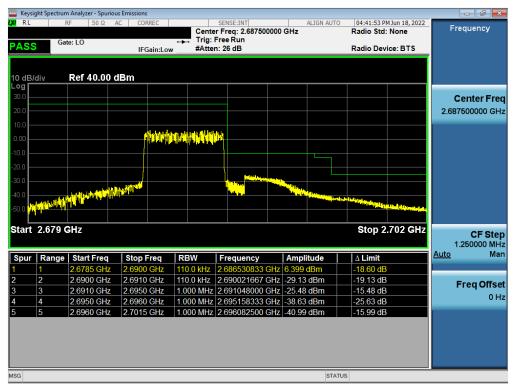
Plot 7-60. Lower ACP Plot (LTE Band 41(PC3) - 15MHz QPSK - Full RB - Ant F)


Plot 7-61. Upper ACP Plot (LTE Band 41(PC3) - 15MHz QPSK - Full RB - Ant F)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 60			
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 45 of 69			
© 2022 ELEMENT		·	V3.0 1/6/2022			

		n Analyzer - Spi														- 0 ×
🗶 RL	6	¥F 50 Ω	AC	CORF	EC		SENSE:INT ALIGN AUTO Center Freq: 2.501000000 GHz Trig: Free Run							PM Jun 18, 2022 d: None	Fre	quency
PAS	Gat	te: LO		IFGa	in:Lov								adio De	evice: BTS		
10 dB	diu	Ref 40.0	0 dBn	n												
		Kei 40.0														
30.0 -														_	Ce	enter Freq
20.0																000000 GHz
10.0																
								NA NO POR	A Marca	the state	n/~irijiwiki	n <mark>na na sa</mark>	e hharitety			
0.00 -							ľ									
-10.0							 †									
-20.0																
-30.0 -														N 4		
-40.0		and the second state of the	-			1.1								New Market		
· · · ·																
-50.0 —																
Start	2.484 0	H7											Ston	2.509 GHz		
	2.1.0.1.4														2.5	CF Step
						1									Auto 2.0	Man
Spur	Range	Start Free		top Fi		RBW		uency		Ampl			∆ Limit		<u>/ (uro</u>	
1	2	2.4835 GH 2.4905 GH		4905 (1.000 MHz 1.000 MHz							9.550 d			
2 3	3	2.4905 GF 2.4950 GF		4950 (4960 (200.0 kHz							16.90 d 19.69 d		F	req Offset
4	4	2.4950 GF		4900 (5085 (200.0 kHz							19.38 d			0 Hz
-		2.4300 01		0000	21.12	200.0 1012	2.004	000000	OHZ	0.024	dom		10.000			

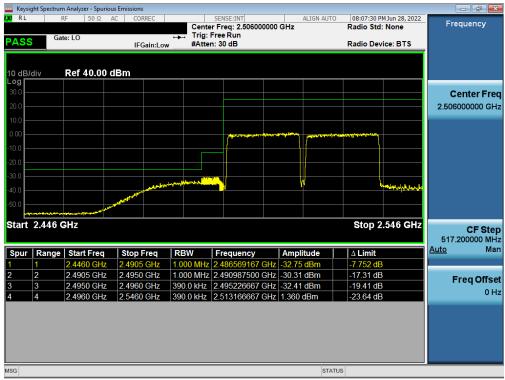
Plot 7-62. Lower ACP Plot (LTE Band 41(PC3) - 10MHz QPSK - Full RB - Ant F)


Plot 7-63. Upper ACP Plot (LTE Band 41(PC3) - 10MHz QPSK – Full RB - Ant F)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Page 46 of 69			
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 46 01 69			
© 2022 ELEMENT	•	•	V3.0 1/6/2022			

	sight Spectrum																					- P	×
L <mark>XI</mark> RL			50 Ω	AC	COP	REC			Center Trig: F	Fre	SE:INT eq: 2.49850 Run	0000		ALI	IGN AUTO		04:41:04 Radio St		un 18, 2022 one		Fr	equency	1
PAS	SGa	te: LO			IFG	ain:L			Atter								Radio De	vice	: BTS				
10 dB	Idiv	Ref 4	0.00) dBr	n																		
Log														Γ									
30.0																					C	enter F	req
20.0																					2.498	500000	GHz
10.0																							
0.00													vile ini	ħ.									
-10.0 -												1											
														Π									
-20.0 -														Ħţ									
-30.0 -						,			- 11	TTP -				h	Millione .								
-40.0			March Street	-	. And the second second	(and the second	h.		<mark>ىم</mark>	Jul I				┢		P		i.	tick, al.				
-50.0 🛥	Contraction of the second	where a															10.1	F					
Start	2.485 (GHz															Stop	2.5	08 GHz			CFS	ten
																					1	250000	
Spur	Range	Start	Freg	8	itop F	req		RBW		Fre	equency		Ampli	itu	de		∆ Limit			A	<u>uto</u>		Man
1	1	2.484			4905		1	1.000			90140000	GHz					-14.08 d	В					
2	2	2.490	5 GHz	z 2.	4950	GHz	1	1.000	MHz	2.4	94640000	GHz	2 -26.91	dE	Bm		-13.91 d	B				reg Of	feot
3	3	2.495	0 GHz	z 2.	4960	GHz	1	110.0	kHz	2.4	95900000	GHz	2 -28.70) dE	Bm		-15.70 d	B			ſ		
4	4	2.496	0 GHz	z 2.	5075	GHz	1	110.0	kHz	2.5	00005833	GHz	7.047	dB	3m		-17.95 d	В					0 Hz
MSG				_	-	_	-	_	_	-		_		-	STAT	us		_					
										_						_							

Plot 7-64. Lower ACP Plot (LTE Band 41(PC3) - 5MHz QPSK - Full RB - Ant F)



Plot 7-65. Upper ACP Plot (LTE Band 41(PC3) - 5MHz QPSK – Full RB - Ant F)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dage 47 of 60				
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 47 of 69				
© 2022 ELEMENT		·	V3.0 1/6/2022				

ULCA - LTE Band 41(PC3) – Ant B

Plot 7-66. Lower ACP Plot (ULCA LTE B41(PC3) - 20MHz QPSK - Full RB - Ant B)

Plot 7-67. Upper ACP Plot (ULCA LTE B41(PC3) - 20MHz QPSK - Full RB - Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dage 49 of 60				
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 48 of 69				
© 2022 ELEMENT			V3.0.1/6/2022				

7.6 Radiated Power (EIRP)

Test Overview

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

ANSI C63.26-2015 - Section 5.2.4.4

Test Settings

- Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation. For signals with burst transmission, the signal analyzer's "time domain power" measurement capability is used
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration.
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize.

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 of 60				
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 49 of 69				
© 2022 ELEMENT	•		V3.0 1/6/2022				

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

The EUT and measurement equipment were set up as shown in the diagram below.

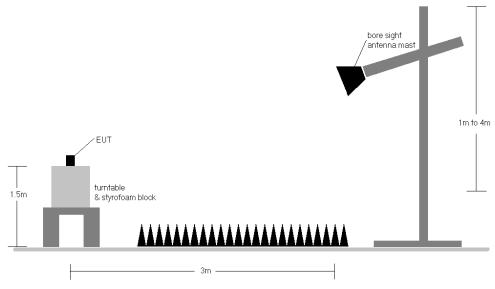


Figure 7-5. Radiated Test Setup >1GHz

Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst-case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dama 50 of 60			
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 50 of 69			
© 2022 ELEMENT	•		V3.0 1/6/2022			

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

Radiated Power (EIRP)

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
z	QPSK	2506.0	Н	102	152	9.54	1/0	12.75	22.29	0.170	33.01	-10.72
MHz	QPSK	2593.0	Н	116	150	9.46	1 / 50	13.37	22.83	0.192	33.01	-10.18
20 1	QPSK	2680.0	Н	133	149	9.51	1/0	12.42	21.93	0.156	33.01	-11.08
2	16-QAM	2593.0	Н	116	150	9.46	1 / 50	12.56	22.02	0.159	33.01	-10.99
N	QPSK	2503.5	Н	102	152	9.54	1 / 74	12.92	22.46	0.176	33.01	-10.55
MHz	QPSK	2593.0	Н	116	150	9.46	1 / 74	13.63	23.09	0.204	33.01	-9.92
15 1	QPSK	2682.5	Η	133	149	9.51	1 / 74	12.57	22.08	0.161	33.01	-10.93
-	16-QAM	2593.0	Н	116	150	9.46	1 / 74	12.80	22.26	0.168	33.01	-10.75
Z	QPSK	2501.0	Η	102	152	9.54	1 / 49	13.17	22.71	0.187	33.01	-10.30
MHz	QPSK	2593.0	Н	116	150	9.46	1 / 49	13.80	23.26	0.212	33.01	-9.75
101	QPSK	2685.0	H	133	149	9.51	1 / 49	12.60	22.11	0.163	33.01	-10.90
	16-QAM	2593.0	Н	116	150	9.46	1 / 49	12.93	22.39	0.173	33.01	-10.62
N	QPSK	2498.5	Н	102	152	9.54	1/0	12.70	22.24	0.168	33.01	-10.77
5 MHz	QPSK	2593.0	Н	116	150	9.46	1/0	13.40	22.86	0.193	33.01	-10.15
2	QPSK	2687.5	Н	133	149	9.51	1 / 12	12.01	21.52	0.142	33.01	-11.49
	16-QAM	2593.0	Н	116	150	9.46	1/0	12.35	21.81	0.152	33.01	-11.20
	QPSK (Opposite Pol.)	2593.0	V	275	264	9.49	1 / 50	12.41	21.90	0.155	33.01	-11.11
20 MHz	QPSK (Half Open)	2593.0	Н	139	149	9.46	1 / 50	12.41	21.87	0.154	33.01	-11.14
	QPSK (WCP)	2593.0	Н	143	145	9.46	1 / 50	12.01	21.47	0.140	33.01	-11.54

Table 7-2. EIRP Data (LTE Band 41(PC3) – Ant B)

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
z	QPSK	2506.0	Н	128	34	9.54	1 / 50	11.34	20.88	0.123	33.01	-12.13
MHz	QPSK	2593.0	Н	114	348	9.46	1 / 50	11.27	20.73	0.118	33.01	-12.28
20 N	QPSK	2680.0	Н	102	347	9.51	1/0	11.13	20.64	0.116	33.01	-12.37
2	16-QAM	2506.0	Н	128	34	9.54	1 / 50	10.52	20.06	0.102	33.01	-12.95
N	QPSK	2503.5	Н	128	34	9.54	1 / 37	11.31	20.86	0.122	33.01	-12.15
MHz	QPSK	2593.0	Н	114	348	9.46	1 / 37	11.33	20.79	0.120	33.01	-12.22
15	QPSK	2682.5	Н	102	347	9.51	1 / 37	11.26	20.77	0.120	33.01	-12.24
-	16-QAM	2503.5	Н	128	34	9.54	1 / 37	10.56	20.10	0.102	33.01	-12.91
N	QPSK	2501.0	Н	128	34	9.54	1 / 49	11.45	21.00	0.126	33.01	-12.01
MHz	QPSK	2593.0	Н	114	348	9.46	1 / 25	11.47	20.93	0.124	33.01	-12.08
101	QPSK	2685.0	Н	102	347	9.51	1 / 0	11.20	20.71	0.118	33.01	-12.30
-	16-QAM	2501.0	Н	128	34	9.54	1 / 49	10.85	20.39	0.109	33.01	-12.62
N	QPSK	2498.5	Н	128	34	9.54	1 / 12	11.58	21.12	0.129	33.01	-11.89
MHz	QPSK	2593.0	Н	114	348	9.46	1 / 12	11.18	20.64	0.116	33.01	-12.37
5 M	QPSK	2687.5	Н	102	347	9.51	1 / 0	10.63	20.14	0.103	33.01	-12.87
	16-QAM	2498.5	Н	128	34	9.54	1 / 12	10.13	19.68	0.093	33.01	-13.33
	QPSK (Opposite Pol.)	2506.0	V	280	24	9.50	1 / 0	9.94	19.44	0.088	33.01	-13.57
20 MHz	QPSK (Half Open)	2506.0	Н	164	6	9.54	1 / 50	10.08	19.62	0.092	33.01	-13.39
	QPSK (WCP)	2506.0	Н	235	239	9.54	1 / 50	7.37	16.91	0.049	33.01	-16.10

Table 7-3. EIRP Data (LTE Band 41(PC3) – Ant F)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT						
Test Report S/N:	Test Dates:	EUT Type:	Page 51 of 69					
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 51 01 09					
© 2022 ELEMENT			V3.0 1/6/2022					

V3.0 1/6/2022 V3

7.7 Radiated Spurious Emissions Measurements

Test Overview

Radiated spurious emissions measurements are performed using the field strength conversion method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using hybrid (biconical/log) antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

ANSI C63.26-2015 - Section 5.5.4

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	Test Dates: EUT Type:			
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 52 of 69		
© 2022 ELEMENT V3.0 1/6/2022					

The EUT and measurement equipment were set up as shown in the diagram below.

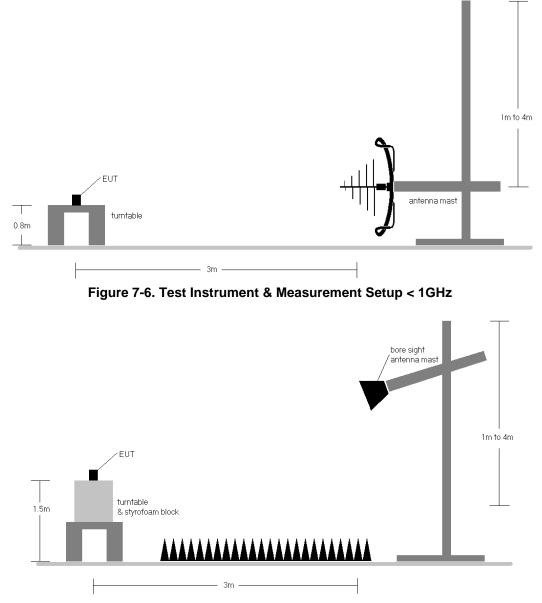
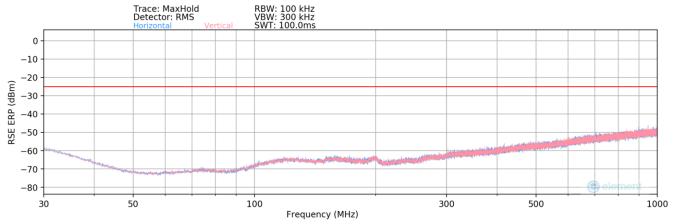


Figure 7-7. Test Instrument & Measurement Setup >1 GHz

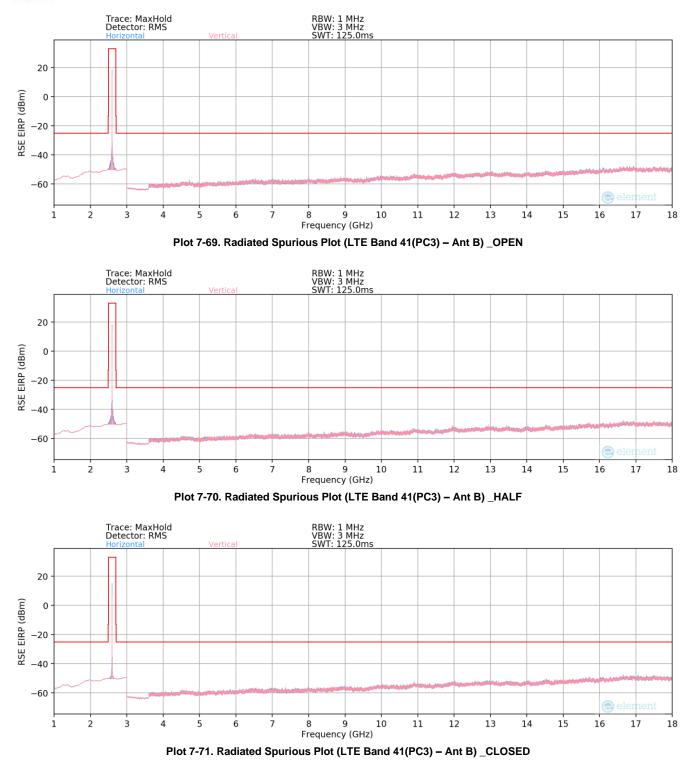
FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 60	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 53 of 69	
© 2022 ELEMENT V3.0 1/6/2022				


Test Notes

- 1) Field strengths are calculated using the Measurement quantity conversions in ANSI C63.26-2015 Section 5.2.7:
 - a) $E(dB\mu V/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m) b) EIRP (dBm) = E(dB\mu V/m) + 20logD 104.8; where D is the measurement distance in meters.$
- 2) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst-case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 3) This unit was tested with its standard battery.
- 4) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 5) Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 6) The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 7) ULCA spurious emissions measurements were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth. Channel bandwidth data is shown in the tables below based only on the channel bandwidths that were supported in this device.

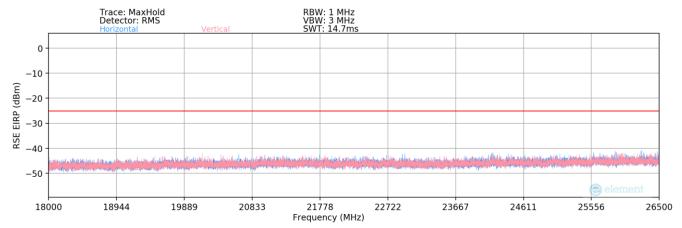
FCC ID: A3LSMF936JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago E4 of 60
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 54 of 69
© 2022 ELEMENT			V3.0 1/6/2022

LTE Band 41(PC3) - Ant B



Bandwidth (MHz):	20								
Frequency (MHz):		2593.0							
RB / Offset:	1 / 50								
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
735.32	Н	-	-	-90.64	29.23	45.59	-51.82	-25.00	-26.82
901.72	Н	-	-	-90.94	31.24	47.30	-50.11	-25.00	-25.11
918.44	Н	-	-	-90.73	31.54	47.81	-49.60	-25.00	-24.60

Table 7-4. Radiated Spurious Data (LTE Band 41(PC3) - Mid Channel - Ant B)


FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	Test Dates: EUT Type:			
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 55 of 69		
© 2022 ELEMENT V3.0 1/6/202					

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	Test Dates: EUT Type:			
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 56 of 69		
© 2022 ELEMENT V3.0 1/6/2022					

Plot 7-72. Radiated Spurious Plot (LTE Band 41(PC3) – Ant B)

Bandwidth (MHz):	20
Frequency (MHz):	2506.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5012.00	Н	329	66	-74.81	4.32	36.51	-58.74	-25.00	-33.74
7518.00	Н	128	314	-75.05	7.81	39.76	-55.50	-25.00	-30.50
10024.00	Н	-	-	-76.25	10.39	41.14	-54.12	-25.00	-29.12
12530.00	Н	-	-	-78.15	13.85	42.70	-52.56	-25.00	-27.56
15036.00	Н	-	-	-78.56	15.63	44.07	-51.18	-25.00	-26.18
17542.00	Н	-	-	-77.60	17.80	47.20	-48.06	-25.00	-23.06

Table 7-5. Radiated Spurious Data (LTE Band 41(PC3) – Low Channel – Ant B)

Bandwidth (MHz):	20
Frequency (MHz):	2593.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5186.00	Н	332	56	-74.66	5.18	37.52	-57.74	-25.00	-32.74
7779.00	Н	242	79	-74.62	7.47	39.85	-55.41	-25.00	-30.41
10372.00	Н	-	-	-77.47	11.18	40.71	-54.54	-25.00	-29.54
12965.00	Н	-	-	-77.47	14.27	43.80	-51.45	-25.00	-26.45
15558.00	Н	-	-	-77.41	16.00	45.59	-49.67	-25.00	-24.67
18151.00	Н	-	-	-52.29	1.74	56.46	-48.34	-25.00	-23.34

Table 7-6. Radiated Spurious Data (LTE Band 41(PC3) – Mid Channel – Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 57 of 60		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 57 of 69		
© 2022 ELEMENT V3.0 1/6/2022					

Bandwidth (MHz):	20
Frequency (MHz):	2680.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5360.00	Н	136	72	-74.66	5.17	37.51	-57.75	-25.00	-32.75
8040.00	Н	-	-	-76.83	8.11	38.28	-56.98	-25.00	-31.98
10720.00	Н	-	-	-77.29	11.72	41.43	-53.83	-25.00	-28.83
13400.00	Н	-	-	-78.25	14.19	42.94	-52.32	-25.00	-27.32
16080.00	Н	-	-	-78.22	17.01	45.79	-49.47	-25.00	-24.47
18760.00	Н	-	-	-51.88	2.06	57.18	-47.62	-25.00	-22.62

Table 7-7. Radiated Spurious Data (LTE Band 41(PC3) – High Channel – Ant B)

Case:	w/ Wireless Charging Pad
Bandwidth (MHz):	20
Frequency (MHz):	2593.0
RB / Offset:	1 / 50

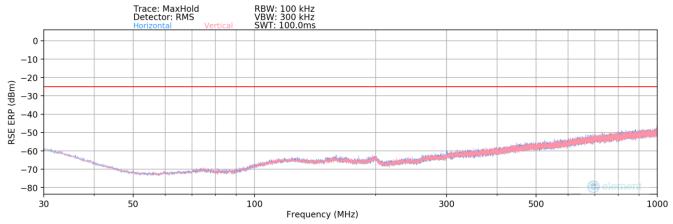

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5186.00	Н	-	-	-75.90	5.18	36.28	-58.98	-25.00	-33.98
7779.00	Н	-	-	-76.04	7.47	38.43	-56.83	-25.00	-31.83
10372.00	Н	-	-	-77.18	11.18	41.00	-54.25	-25.00	-29.25
12965.00	Н	-	-	-78.09	14.27	43.18	-52.07	-25.00	-27.07
15558.00	Н	-	-	-77.52	16.00	45.48	-49.78	-25.00	-24.78

Table 7-8. Radiated Spurious Data with WCP (LTE Band 41(PC3) – Ant B)

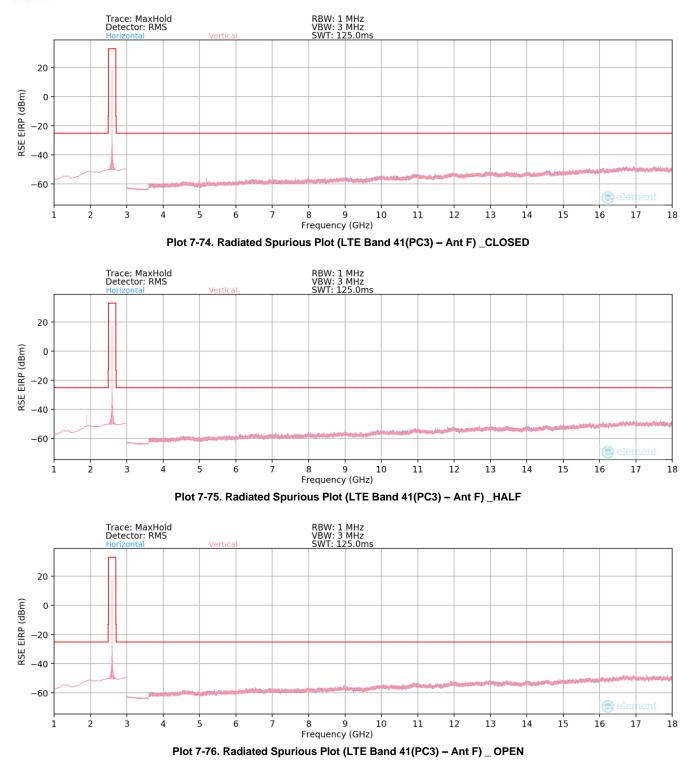
FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 50 of 60		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 58 of 69		
© 2022 ELEMENT	•		V3.0 1/6/2022		

LTE Band 41(PC3) - Ant F

Bandwidth (MHz):		20						
Frequency (MHz):		2593.0						
RB / Offset:		1 / 50						
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]
188.66	Н	-	-	-89.67	18.68	36.01	-61.39	-25.00
710.62	Н	-	-	-88.21	28.86	47.65	-49.75	-25.00

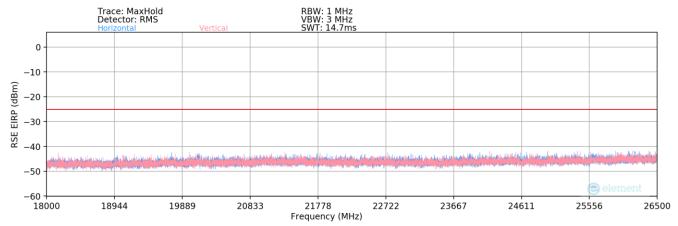
Table 7-9. Radiated Spurious Data (LTE Band 41(PC3) – Mid Channel – Ant F)

Margin


[dB]

-36.39

-24.75


FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 59 of 69		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 59 01 69		
© 2022 ELEMENT			V3.0 1/6/2022		

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 60 of 69
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 60 01 09
© 2022 ELEMENT	·	·	V3.0 1/6/2022

Plot 7-77. Radiated Spurious Plot (LTE Band 41(PC3) - Ant F)

Bandwidth (MHz):	20
Frequency (MHz):	2510.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5020.00	Н	314	306	-69.04	4.51	42.47	-52.78	-25.00	-27.78
7530.00	Н	164	25	-75.46	7.87	39.41	-55.85	-25.00	-30.85
10040.00	Н	-	-	-77.48	10.41	39.93	-55.33	-25.00	-30.33
12550.00	Н	-	-	-78.22	14.06	42.84	-52.42	-25.00	-27.42
15060.00	Н	-	-	-78.14	15.50	44.36	-50.90	-25.00	-25.90
17570.00	H	-	-	-77.57	17.55	46.98	-48.28	-25.00	-23.28

Table 7-10. Radiated Spurious Data (LTE Band 41(PC3) – Low Channel – Ant F)

Bandwidth (MHz):	20
Frequency (MHz):	2593.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5186.00	Н	336	39	-69.86	5.18	42.32	-52.94	-25.00	-27.94
7779.00	Н	169	350	-75.82	7.47	38.65	-56.61	-25.00	-31.61
10372.00	Н	-	-	-77.69	11.18	40.49	-54.76	-25.00	-29.76
12965.00	Н	-	-	-78.01	14.27	43.26	-51.99	-25.00	-26.99
15558.00	Н	-	-	-77.85	16.00	45.15	-50.11	-25.00	-25.11
18151.00	H	-	-	-52.54	1.74	56.21	-48.59	-25.00	-23.59

Table 7-11. Radiated Spurious Data (LTE Band 41(PC3) – Mid Channel – Ant F)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 61 of 60		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 61 of 69		
© 2022 ELEMENT			V3.0 1/6/2022		

Bandwidth (MHz):	20
Frequency (MHz):	2680.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5360.00	Н	154	315	-72.06	5.17	40.11	-55.15	-25.00	-30.15
8040.00	Н	-	-	-77.10	8.11	38.01	-57.25	-25.00	-32.25
10720.00	Н	-	-	-77.37	11.72	41.35	-53.91	-25.00	-28.91
13400.00	Н	-	-	-78.22	14.19	42.97	-52.29	-25.00	-27.29
16080.00	Н	-	-	-78.03	17.01	45.98	-49.28	-25.00	-24.28

Table 7-12. Radiated Spurious Data (LTE Band 41(PC3) – High Channel – Ant F)

Case:	w/ Wireless Charging Pad
Bandwidth (MHz):	20
Frequency (MHz):	2510.0
RB / Offset:	1 / 50

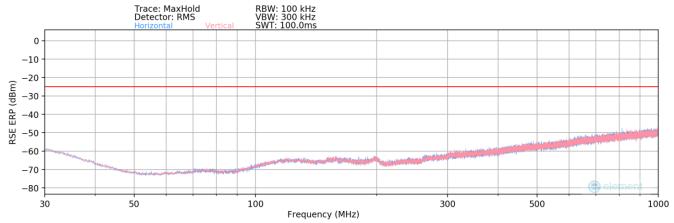
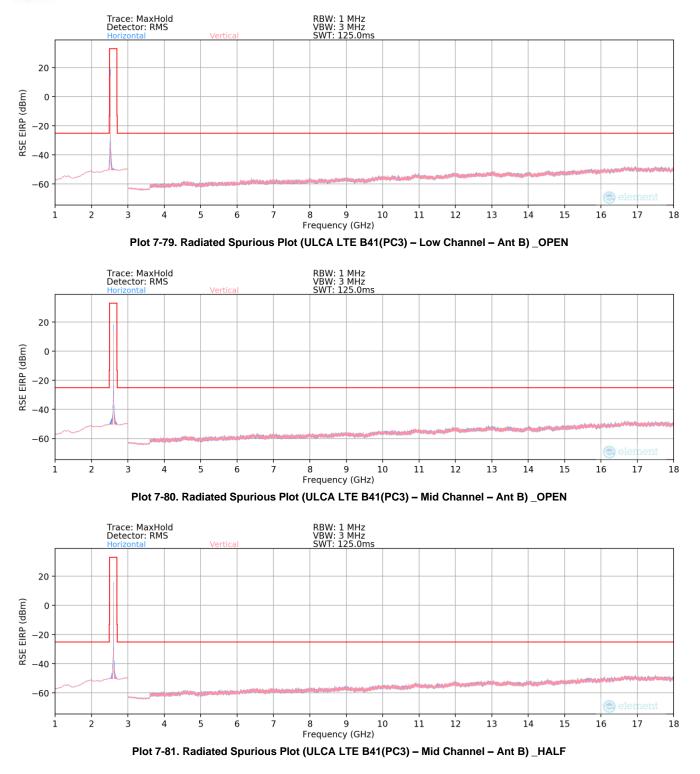

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5020.00	Н	187	340	-73.12	4.51	38.39	-56.86	-25.00	-31.86
7530.00	Н	238	327	-76.13	7.87	38.74	-56.52	-25.00	-31.52
10040.00	Н	-	-	-77.05	10.41	40.36	-54.90	-25.00	-29.90
12550.00	Н	-	-	-78.46	14.06	42.60	-52.66	-25.00	-27.66
15060.00	Н	-	-	-78.48	15.50	44.02	-51.24	-25.00	-26.24

Table 7-13. Radiated Spurious Data with WCP (LTE Band 41(PC3) – Ant F)

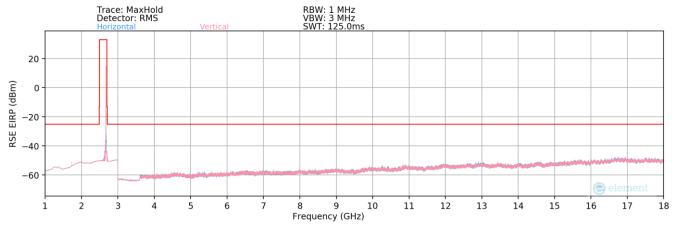
FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 62 of 69		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 02 01 09		
© 2022 ELEMENT V3.0 1/6/202					

ULCA - LTE B41(PC3) - Ant B


PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2593.0
PCC RB / Offset:	1 / 99
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2612.8
SCC RB / Offset:	1/0

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
336.76	Н	-	-	-93.03	21.97	35.94	-61.47	-25.00	-36.47
773.82	Н	-	-	-91.37	29.78	45.41	-52.00	-25.00	-27.00
806.50	Н	-	-	-90.56	29.85	46.29	-51.12	-25.00	-26.12

Table 7-14. Radiated Spurious Data (ULCA LTE B41(PC3) – Mid Channel – Ant B)


FCC ID: A3LSMF936JPN		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:			
1M2206010070-05.A3L	6/15 - 7/6/2022	15 - 7/6/2022 Portable Handset			
© 2022 ELEMENT V3.0 1/6/2022					

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 64 of 69		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 64 01 69		
© 2022 ELEMENT V3.0 1/6/20					

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2506.0
PCC RB / Offset:	1 / 99
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2525.8
SCC RB / Offset:	1/0

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5031.80	Н	258	339	-75.42	4.46	36.04	-59.22	-25.00	-34.22
7547.70	Н	204	68	-75.13	7.51	39.38	-55.87	-25.00	-30.87
10063.60	Н	-	-	-76.96	10.59	40.63	-54.62	-25.00	-29.62
12579.50	Н	-	-	-78.04	13.93	42.89	-52.37	-25.00	-27.37
15095.40	Н	-	-	-78.65	15.23	43.58	-51.68	-25.00	-26.68

Table 7-15. Radiated Spurious Data (ULCA LTE B41(PC3) – Low Channel – Ant B)

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2593.0
PCC RB / Offset:	1 / 99
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2612.8
SCC RB / Offset:	1/0

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5205.80	Н	240	358	-74.96	5.09	37.13	-58.12	-25.00	-33.12
7808.70	Н	244	43	-74.37	7.34	39.97	-55.29	-25.00	-30.29
10411.60	Н	-	-	-78.07	11.33	40.26	-55.00	-25.00	-30.00
13014.50	Н	-	-	-77.92	14.32	43.40	-51.86	-25.00	-26.86
15617.40	Н	-	-	-77.96	15.84	44.88	-50.38	-25.00	-25.38
18220.30	Н	-	-	-50.94	1.59	57.64	-47.16	-25.00	-22.16

Table 7-16. Radiated Spurious Data (ULCA LTE B41(PC3) – Mid Channel – Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 65 of 60		
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Page 65 of 69		
© 2022 ELEMENT V3.0 1/6/2022					

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2680.0
PCC RB / Offset:	1/0
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2660.2
SCC RB / Offset:	1 / 99

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5340.20	Н	233	356	-73.96	4.74	37.78	-57.47	-25.00	-32.47
8010.30	Н	185	77	-75.51	7.73	39.22	-56.04	-25.00	-31.04
10680.40	Н	-	-	-78.03	11.75	40.72	-54.54	-25.00	-29.54
13350.50	Н	-	-	-77.83	13.80	42.97	-52.28	-25.00	-27.28
16020.60	H	-	-	-77.84	16.51	45.67	-49.58	-25.00	-24.58

Table 7-17. Radiated Spurious Data (ULCA LTE B41(PC3) – High Channel – Ant B)

Case:	w/ Wireless Charging Pad
PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2593.0
PCC RB / Offset:	1 / 99
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2612.8
SCC RB / Offset:	1/0

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5205.80	Н	167	344	-75.30	5.09	36.79	-58.46	-25.00	-33.46
7808.70	Н	291	33	-76.59	7.34	37.75	-57.51	-25.00	-32.51
10411.60	Н	-	-	-77.93	11.33	40.40	-54.86	-25.00	-29.86
13014.50	Н	-	-	-77.90	14.32	43.42	-51.84	-25.00	-26.84
15617.40	Н	-	-	-78.11	15.84	44.73	-50.53	-25.00	-25.53

Table 7-18. Radiated Spurious Data with WCP (ULCA LTE B41(PC3) – Ant B)

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 66 of 69
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 00 01 09
© 2022 ELEMENT			V3.0 1/6/2022

7.8 Frequency Stability / Temperature Variation

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 27, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure Used

ANSI C63.26-2015 – Section 5.6

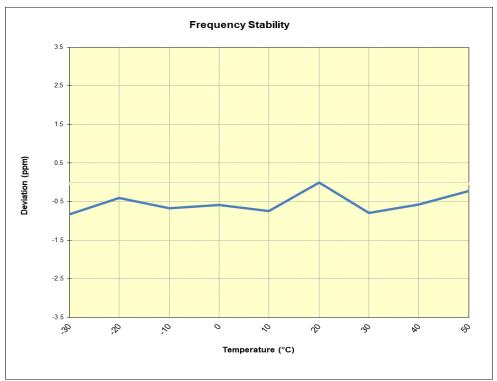
Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes


None

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 67 of 69	
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 67 01 09	
© 2022 ELEMENT	•		V3.0 1/6/2022	

LTE Band 41							
	Operating F	requency (Hz):	2,593,000),000			
	Ref.	Voltage (VDC):	4.38				
Voltage (%)	Power (VDC)	Temp (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)		
		- 30	2,593,000,420	-2,145	-0.0000827		
		- 20	2,593,001,515	-1,050	-0.0000405		
		- 10	2,593,000,823	-1,742	-0.0000672		
		0	2,593,001,056	-1,510	-0.0000582		
100 %	4.38	+ 10	2,593,000,629	-1,936	-0.0000747		
		+ 20 (Ref)	2,593,002,565	0	0.0000000		
		+ 30	2,593,000,520	-2,046	-0.0000789		
		+ 40	2,593,001,090	-1,476	-0.0000569		
		+ 50	2,593,001,982	-584	-0.0000225		
Battery Endpoint	3.35	+ 20	2,593,001,867	-698	-0.0000269		

Table 7-19. LTE Band 41 Frequency Stability Data

Plot 7-83. LTE Band 41 Frequency Stability Chart

FCC ID: A3LSMF936JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 68 of 69
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Faye to UI 09
© 2022 ELEMENT		·	V3.0 1/6/2022

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMF936JPN** complies with all the requirements of Part 27 of the FCC rules.

FCC ID: A3LSMF936JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 69 of 69
1M2206010070-05.A3L	6/15 - 7/6/2022	Portable Handset	Fage 09 01 09
© 2022 ELEMENT			V3.0 1/6/2022