

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST) 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com

PART 0 SAR CHAR REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 05/08/22 - 07/11/22 Test Site/Location: Element, Columbia, MD, USA Document Serial No.: 1M2204110052-30.A3L (Rev1)

FCC ID:

A3LSMF936B

APPLICANT:

SAMSUNG ELECTRONICS CO., LTD

Report Type: DUT Type: Model(s): Additional Model: Part 0 SAR Characterization Portable Handset SM-F936B/DS SM-F936B

Note: This revised Test Report (S/N: 1M2204110052-30.A3L (Rev1)) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Test results reported herein relate only to the item(s) tested.

RJ Ortanez Executive Vice President

FCC ID: A3LSMF936B	PART 0 SAR CHAR REPORT	Approved by: Technical Manager	
Document S/N: 1M2204110052-30.A3L (Rev1)	DUT Type: Portable Handset	Page 1 of 12	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact cT.Info@Element.com.

TABLE OF CONTENTS

1	DE\	VICE UNDER TEST	3
	1.1	Device Overview	3
	1.2	Time-Averaging for SAR and Power Density	4
	1.3	Nomenclature for Part 0 Report	4
	1.4	Bibliography	4
2	SAF	R AND POWER DENSITY MEASUREMENTS	5
	2.1	SAR Definition	5
	2.2	SAR Measurement Procedure	5
3	SAF	R CHARACTERIZATION	7
	3.1	DSI and SAR Determination	7
	3.2	SAR Design Target	8
	3.3	SAR Char	9
4	EQI	UIPMENT LIST	11
5	ME	ASUREMENT UNCERTAINTIES	12
Al	PPEN	DIX A: SAR TEST RESULTS FOR PLimit CALCULATIONS	1

FCC ID: A3LSMF936B	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2204110052-30.A3L (Rev1)	DUT Type: Portable Handset	Page 2 of 12
		REV 1.1 04/08/2022

1 DEVICE UNDER TEST

1.1 Device Overview

This device uses the Qualcomm[®] Gen2 Smart Transmit feature to control and manage transmitting power in real time and to ensure the time-averaged RF exposure is in compliance with the FCC requirement at all times for 2G/3G/4G/5G WWAN operations. Additionally, this device supports WLAN/BT/NFC/MST technologies, but the output power of these modems is not controlled by the Smart Transmit algorithm.

Band & Mode	Operating Modes	Tx Frequency	
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz	
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz	
UMTS 850	Voice/Data	826.40 - 846.60 MHz	
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz	
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz	
LTE Band 12	Voice/Data	699.7 - 715.3 MHz	
LTE Band 17	Voice/Data	706.5 - 713.5 MHz	
LTE Band 13	Voice/Data	779.5 - 784.5 MHz	
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz	
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz	
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz	
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz	
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz	
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz	
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz	
NR Band n12	Voice/Data	701.5 - 713.5 MHz	
NR Band n5 (Cell)	Voice/Data	826.5 - 846.5 MHz	
NR Band n66 (AWS)	Voice/Data	1712.5 - 1777.5 MHz	
NR Band n25 (PCS)	Voice/Data	1852.5 - 1912.5 MHz	
NR Band n2 (PCS)	Voice/Data	1852.5 - 1907.5 MHz	
NR Band n41	Voice/Data	2506.02 - 2679.99 MHz	
NR Band n77 DoD	Voice/Data	3455.01 - 3544.98 MHz	
NR Band n77	Voice/Data	3705 - 3975 MHz	
2.4 GHz WLAN	Voice/Data	2412 - 2472 MHz	
U-NII-1	Voice/Data	5180 - 5240 MHz	
U-NII-2A	Voice/Data	5260 - 5320 MHz	
U-NII-2C	Voice/Data	5500 - 5720 MHz	
U-NII-3	Voice/Data	5745 - 5825 MHz	
U-NII-4	Voice/Data	5845 - 5885 MHz	
U-NII-5	Voice/Data	5935 - 6415 MHz	
U-NII-6	Voice/Data	6435 - 6525 MHz	
U-NII-7	Voice/Data	6535 - 6875 MHz	
U-NII-8	Voice/Data	6895 - 7115 MHz	
Bluetooth	Data	2402 - 2480 MHz	
NFC	Data	13.56 MHz	
UWB	Data	6489.6 - 7987.2 MHz	

FCC ID: A3LSMF936B	PART 0 SAR CHAR REPORT	Approved by: Technical Manager	
Document S/N: 1M2204110052-30.A3L (Rev1)	DUT Type: Portable Handset	Page 3 of 12	

1.2 Time-Averaging for SAR and Power Density

This device is enabled with Qualcomm[®] Gen2 Smart Transmit algorithm to control and manage transmitting power in real time and to ensure that the time-averaged RF exposure from 2G/3G/4G/5G Sub-6 NR WWAN is in compliance with FCC requirements. This Part 0 report shows SAR characterization of WWAN radios for 2G/3G/4G/5G Sub-6 NR. Characterization is achieved by determining P_{Limit} for 2G/3G/4G/5G Sub-6 NR that corresponds to the exposure design targets after accounting for all device design related uncertainties, i.e., SAR_design_target (< FCC SAR limit) for sub-6 radio. The SAR characterization is denoted as SAR Char in this report. Section 1.3 includes a nomenclature of the specific terms used in this report.

The compliance test under the static transmission scenario and simultaneous transmission analysis are reported in Part 1 report. The validation of the time-averaging algorithm and compliance under the dynamic (time- varying) transmission scenario for WWAN technologies are reported in Part 2 report (report SN could be found in Section 1.4 – Bibliography).

1.3 Nomenclature for Part 0 Report

Technology	Term	Description		
	Plimit	Power level that corresponds to the exposure design target (<i>SAR_design_target</i>) after accounting for all device design related uncertainties		
2G/3G/4G/5G Sub-6 NR	P _{max}	Maximum tune up output power		
Sub-0 NR	SAR_design_target	Target SAR level < FCC SAR limit after accounting for all device design related uncertainties		
	SAR Char	Table containing Plimit for all technologies and bands		

1.4 Bibliography

Report Type	Report Serial Number
FCC SAR Evaluation Report (Part 1)	1M2204110052-18.A3L
RF Exposure Part 2 Test Report	1M2204110052-29.A3L
RF Exposure Compliance Summary	1M2204110052-31.A3L

FCC ID: A3LSMF936B	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2204110052-30.A3L (Rev1)	DUT Type: Portable Handset	Page 4 of 12
		REV 1

2 SAR AND POWER DENSITY MEASUREMENTS

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 SAR Mathematical Equation

$SAR = -\frac{a}{2}$	$d\left(\frac{dU}{dU}\right)$	d	dU
$\beta A \Lambda = -$	$\frac{d}{dt}\left(\frac{dU}{dm}\right)$	$\frac{1}{dt}$	$\left(\overline{\rho dv} \right)$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

σ	=	conductivity of the tissue-simulating material (S/m)
ρ	=	mass density of the tissue-simulating material (kg/m ³)
Ē	=	Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

2.2 SAR Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 2-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

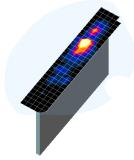


Figure 2-1 Sample SAR Area Scan

 Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 2-1) and IEEE 1528-2013. On the

FCC ID: A3LSMF936B	PART 0 SAR CHAR REPORT	Approved by: Technical Manager	
Document S/N: 1M2204110052-30.A3L (Rev1)	DUT Type: Portable Handset	Page 5 of 12	
		DEV/11	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@Element.com.

basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 2-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points ($10 \times 10 \times 10$) were obtained through interpolation, in order to calculate the averaged SAR.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

	Maximum Area Scan			Maximum Zoom Scan Spatial Resolution (mm)			
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	Graded Grid		Volume (mm) (x,y,z)	
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	∆z _{zoom} (n>1)*		
≤ 2 GHz	≤ 15	≤8	≤ 5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30	
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30	
3-4 GHz	≤12	≤ 5	≤ 4	≤3	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 28	
4-5 GHz	≤ 10	≤ 4	≤3	≤ 2.5	≤ 1.5*Δz _{zoom} (n-1)	≥ 25	
5-6 GHz	≤ 10	≤ 4	≤2	≤2	≤ 1.5*Δz _{zoom} (n-1)	≥ 22	
	*Also compliant to IEEE 1528 2013 Table 6						

Table 2-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6

FCC ID: A3LSMF936B	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2204110052-30.A3L (Rev1)	DUT Type: Portable Handset	Page 6 of 12
		DEV/11

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.Info@Element.com.

3 SAR CHARACTERIZATION

3.1 DSI and SAR Determination

This device uses different Device State Index (DSI) to configure different time averaged power levels based on certain exposure scenarios. Depending on the detection scheme implemented in the smartphone, the worst-case SAR was determined by measurements for the relevant exposure conditions for that DSI. Detailed descriptions of the detection mechanisms are included in the operational description.

When 1g SAR and 10g SAR exposure comparison is needed, the worst-case was determined from SAR normalized to 1g or 10g SAR limit.

The device state index (DSI) conditions used in Table 3-1 represent different exposure scenarios.

DSI and Corresponding Exposure Scenarios								
Scenario	Description	SAR Test Cases						
Head – Folder Open (DSI = 4)	Device positioned next to headReceiver ActiveFolder Open	Head SAR per KDB Publication 648474 D04						
Head – Folder Closed (DSI = 5)	 Device positioned next to head Receiver Active Folder Closed 	Head SAR per KDB Publication 648474 D04						
Hotspot mode – Folder Open (DSI = 2/6)	Device transmits in hotspot mode near bodyHotspot Mode ActiveFolder Open	UMPC Mini-Tablet SAR per KDB 941225 D07v01r02						
Hotspot mode – Folder Closed (DSI = 7)	 Device transmits in hotspot mode near body Hotspot Mode Active Folder Closed 	Hotspot SAR per KDB Publication 941225 D06						
Extremity Grip – Folder Open (DSI=2 or 8)	 Device is held with hand and grip sensor is triggered Grip sensor triggered or earjack is active Folder Open 	Phablet SAR per KDB Publication 648474 D04 & KDB Publication 616217 D04						
Phablet Grip – Folder Closed (DSI=3 or 9)	 Device is held with hand and grip sensor is triggered Grip sensor triggered or earjack is active Folder Closed 	Phablet SAR per KDB Publication 648474 D04 & KDB Publication 616217 D04						
Extremity – Folder Open (DSI = 0)	 Device is held with hand and grip sensor is not triggered Distance grip sensor not triggered Folder Open 	UMPC Mini-Tablet SAR per KDB 941225 D07v01r02						
Phablet – Folder Closed (DSI = 1)	 Device is held with hand and grip sensor is not triggered Distance grip sensor not triggered Folder Closed 	Phablet SAR per KDB Publication 648474 D04 & KDB Publication 616217 D04						
Body-worn – Folder Open (DSI = 0)	Device being used with a body-worn accessoryFolder Open	UMPC Mini-Tablet SAR per KDB 941225 D07v01r02						
Body-worn – Folder Closed (DSI = 1)	 Device being used with a body-worn accessory Folder Closed 	Body-worn SAR per KDB Publication 648474 D04						

 Table 3-1

 DSI and Corresponding Exposure Scenario

Document S/N: DUT Type: 1M2204110052-30.A3L (Rev1) Portable Handset	

3.2 SAR Design Target

SAR_design_target is determined by ensuring that it is less than FCC SAR limit after accounting for total device designed related uncertainties specified by the manufacturer (see Table 3-2).

Table 3-2 SAR_design_target Calculations							
SAR_design_target							
$SAR_design_target < SAR_regulatory_limit \times 10^{\frac{-Total Uncertainty}{10}}$							
1g SAR (W/kg)		10g SAR (W/kg)					
Total Uncertainty	1.0 dB	Total Uncertainty	1.0 dB				
SAR_regulatory_limit	1.6 W/kg	SAR_regulatory_limit	4.0 W/kg				
SAR_design_target	1.0 W/kg	SAR_design_target	2.5 W/kg				

FCC ID: A3LSMF936B	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2204110052-30.A3L (Rev1)	DUT Type: Portable Handset	Page 8 of 12
		REV 1 1

3.3 SAR Char

SAR test results corresponding to *Pmax* for each antenna/technology/band/DSI can be found in Appendix A.

Plimit is calculated by linearly scaling with the measured SAR at the Ppart0 to correspond to the *SAR_design_target*. When *Plimit < Pmax*, *Ppart0* was used as Plimit in the Smart Transmit EFS. When *Plimit > Pmax* and *Ppart0*=Pmax, calculated *Plimit* was used in the Smart Transmit EFS. All reported SAR obtained from the Ppart0 SAR tests was less than *SAR_Design_target* + 1 dB Uncertainty. The final *Plimit* determination for each exposure scenario corresponding to *SAR_design_target* are shown in Table 3-3.

Device State Index (DSI)	PLimit Determination Scenarios
0 or 1	 The worst-case SAR exposure is determined as maximum SAR normalized to the limit (i.e. lowest plimit) among: UMPC 1g SAR folder open For AG0: Measured SAR at 14, 12 and 18 mm for back, front, and bottom surfaces respectively and measured SAR at 10 mm for right surface. For AG1: Measured SAR at 10 mm for back, front, top, and right surfaces. Body Worn SAR folder open. For AG0: Measured SAR at 14, 12 and 18 mm for back, front, and bottom surfaces respectively and measured SAR at 0 mm for back, front, and right surface. Body Worn SAR folder closed. UMPC 10g SAR folder open. For AG0: Measured SAR at 14, 12 and 18 mm for back, front, and bottom surfaces respectively and measured SAR at 0 mm for right surface. For AG1: Measured SAR at 0 mm for back, front, top, and right surfaces. Extremity SAR folder closed. For AG0: Measured SAR at 12 and 14 mm spacing for back and bottom respectively, and measured SAR at 0mm for front, left, and right surfaces
2 or 8	 <i>Plimit</i> is calculated based on: 1. For AG0: 1g Body SAR at 10 mm for back, front, bottom, and right surfaces and 10g Extremity SAR at 0 mm for back, front, bottom, and right surfaces with folder open For AG1: 1g Body SAR at 10 mm for back, front, top, and right surfaces and 10g Extremity SAR at 0 mm for back, front, top, and right surfaces and 10g Extremity SAR at 0 mm for back, front, top, and right surfaces with folder open <i>Plimit</i> is calculated based on: 1. For AG0: 10g Extremity SAR at 0 mm for back, front, bottom, left, and right
3 or 9	 For AGU: Tug Extremity SAR at 0 mm for back, front, bottom, left, and right surfaces with folder closed For AG1: 10g Extremity SAR at 0 mm for back, front, top, left, and right surfaces with folder closed
4 or 5	Plimit is calculated based on 1g Head SAR
6 or 7	Plimit is calculated based on 1g Hotspot SAR at 10 mm

Table 3-3 PLimit Determination

FCC ID: A3LSMF936B	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2204110052-30.A3L (Rev1)	DUT Type: Portable Handset	Page 9 of 12

Exposure Senario			Folder Open Body	Folder Open Extremity	Folder Closed - Body-Worn	Folder Closed - Phablet Max	Folder Open - Grip Sensor Active	Folder Open - Grip Sensor Active	Folder Closed - Grip Sensor Active	Folder Open - Head	Folder Closed - Head	Folder Open - Hotspot	Folder Closed - Hotspot	Folder Open - Earjack	Folder Closed - Earjack	Maximum
Averaging Volume			lg	10g	1g	10g	lg	10g	10g	lg	lg	lg	lg	10g	10g	Tune-Up
Spacing	10, 14, 12, 0, 14, 12, 1		0, 14, 12, 18 mm	15 mm	12, 14, 0 mm	10 mm	0 mm	0 mm	0 mm	0 mm	10 mm	10 mm	0 mm	0 mm	Output Power*	
Configuration		Folder Open	Folder Open	Folder Closed	Folder Closed	Folder Open	Folder Open	Folder Closed	Folder Open	Folder Closed	Folder Open	Folder Closed	Folder Open	Folder Closed		
DSI			0	0	1	1	2	2	3	4	5	6	7	8	9	
Technology/Band	Antenna	Antenna Group														Pmax
GSM 850	A, A+B	AG0	24	4.5	30	0.0	28	8.7	30.0	34.8	34.8	29.0	31.8	28.7	30.0	25.3
GSM 1900	В	AG0		4.8	27	7.1		5.8	16.8	34.4	34.4	16.8	16.8	16.8	16.8	22.1
UMTS 850	A, A+B	AG0	28		28			8.3	28.4	33.9	33.9	28.5	30.2	28.3	28.4	24.5
UMTS 1750	В	AG0		7.1	25			8.0	18.0	34.5	34.5	18.0	18.0	18.0	18.0	24.0
UMTS 1900	В	AG0		5.2		28.4		8.0	18.0	35.0	35.0	18.0	18.0	18.0	18.0	24.0
LTE Band 12/17	A, A+B	AG0		7.8		28.4		7.8	28.4 26.6	32.5	32.5	29.3	29.5	27.8	28.4	24.5
LTE Band 13	A, A+B	AG0		5.5		26.4		29.1		31.4	31.4	29.1	29.6	29.1	26.6	23.0
LTE Band 26/5 (Cell)	A, A+B	AG0	28		27.7		27		27.7 18.0	33.5	33.5	27.0	30.3	27.0	27.7	24.5
LTE Band 66/4 (AWS)	В	AG0		7.0		26.9		18.0		34.3	34.3	18.0	18.0	18.0	18.0	24.0
LTE Band 66 (AWS)	F	AG1	N			18.0		/A	18.0	N/A	22.2	N/A	18.0	N/A	18.0	24.0
LTE Band 4 (AWS)	F	AG1		3.0		3.0		8.0	18.0	22.2	22.2	18.0	18.0	18.0	18.0	24.0
LTE Band 25/2 (PCS)	B	AG0		7.4	28			8.0	18.0	35.1	35.1	18.0	18.0	18.0	18.0	24.0
LTE Band 41 (PC3)	B	AG0		0.0		0.0		5.5	15.5	20.0	20.0	15.5	15.5	15.5	15.5	22.0
LTE Band 41 (PC2)	В	AG0		0.0		0.0		5.5	15.5	20.0	20.0	15.5	15.5	15.5	15.5	21.9
NR Band n12	A, A+B	AG0		5.7	27			8.2	27.3	32.6	32.6	28.6	29.6	28.2	27.3	24.0
NR Band n5 (Cell)	A, A+B	AG0		7.9	27			7.7	27.2	34.1	34.1	28.0	30.7	27.7	27.2	24.0
NR Band n66 (AWS)	В	AG0		7.4	26			8.0	18.0	34.7	34.7	18.0	18.0	18.0	18.0	23.5
NR Band n66 (AWS)	F	AG1		9.0	-	0.0		9.0	19.0	22.0	22.0	19.0	19.0	19.0	19.0	23.5
NR Band n25/n2 (PCS)	В	AG0		7.2	28			8.0	18.0	34.4	34.4	18.0	18.0	18.0	18.0	23.5
NR Band n41	F	AG1		3.0	18			8.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	24.0
NR Band n41	В	AG0		5.0	15			5.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	16.0
NR Band n41	E	AG1		5.0		5.0		5.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	19.0
NR Band n41	С	AG0		1.0	11			1.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	14.0
NR Band n77 DoD	F	AG1		7.5	17			7.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	24.0
NR Band n77 DoD	E	AG1		7.0		17.0		7.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	23.0
NR Band n77 DoD	G	AG1		5.0	15			5.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	20.0
NR Band n77 DoD	D	AG0		5.0		15.0		5.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	17.5
NR Band n77	F	AG1		7.5	17			7.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	24.0
NR Band n77	E	AG1		7.0	17			7.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	23.0
NR Band n77	G	AG1		5.0	15			5.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	20.0
NR Band n77	D	AG0	15	5.0	15	5.0	1:	5.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	17.5

Table 3-4SAR Characterizations

Notes:

- 1. For all modes/bands, when Hotspot Mode (DSI=6/7) and Extremity sensor (DSI=2/3) are triggered at the same time, DSI=2/3 takes priority, thus the *P*_{limit} for DSI=2/3 is set to be less or equal to *P*_{limit} for DSI=6/7.
- 2. When $P_{max} < P_{limit}$, the DUT will operate at a power level up to P_{max} .
- 3. P_{limit} for DSI=2/8 and DSI =3/9 are the same.
- 4. For all bands when RCV is active, DSI=4/5 takes priority over all levels.

FCC ID: A3LSMF936B	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2204110052-30.A3L (Rev1)	DUT Type: Portable Handset	Page 10 of 12
		REV 1.1

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in v from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact cT.Info@Element.com.

4 EQUIPMENT LIST

For SAR measurements

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial A
Agilent	8753ES	S-Parameter Vector Network Analyzer	12/17/2021	Annual	12/17/2022	MY400008
Agilent Agilent	E4438C E4440A	ESG Vector Signal Generator PSA Series Spectrum Analyzer	1/18/2022 3/22/2022	Annual	1/18/2023 3/22/2023	MY42081
Agilent Agilent	E5515C	Wireless Communications Test Set MXG Vector Signal Generator	5/4/2021 6/21/2022	Biennial	5/4/2023 6/21/2023	GB414502 MY47420
Agilent	N9020A	MXA Vector Signal Analyzer	3/22/2022	Annual	3/22/2023	MY502005
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	343971
Anritsu	MA24106A	USB Power Sensor	8/10/2021	Annual	8/10/2022	
Anritsu	MA24106A	USB Power Sensor	8/10/2021	Annual	8/10/2022	123153
Anritsu	MA2411B	Pulse Power Sensor	8/10/2021	Annual	8/10/2022	120736
Anritsu	MA2411B	Pulse Power Sensor	4/29/2022	Annual	4/29/2023	
Anritsu	Microwace Peak Power Sensor	Microwace Peak Power Sensor	5/9/2022	Annual	5/9/2023	11678
Anritsu	ML2496A	Power Meter	2/11/2022	Annual	2/11/2023	140500
Anritsu	MS2028C	Vector Network Analyzer	5/4/2022	Annual	5/4/2023	120415
Anritsu	MT8000A	Radio Communication Test Station	3/30/2022	Annual	3/30/2023	62619142
Anritsu	MT8820C	Radio Communication Analyzer MT8820C	10/4/2021	Annual	10/4/2022	62012403
Anritsu	MT8821C	Radio Communication Analyzer MT8821C	7/18/2021	Annual	7/18/2022	62013817
Anritsu	MT8821C	Radio Communication Analyzer MT8821C	9/26/2021	Annual	9/26/2022	62015246
Anritsu	MT8821C	Radio Communication Analyzer MT8821C	3/31/2022	Annual	3/31/2023	62016647
Anritsu	MT8862A	Wireless Connectivity Test Set	10/27/2021	Annual	10/27/2022	62617823
Control Company	4040	Therm./ Clock/ Humidity Monitor	1/21/2022	Annual	1/21/2023	1605744
Control Company	4352	Ultra Long Stem Thermometer	1/21/2022	Annual	1/21/2023	1605080
eysight Technologies	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180
eysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	9/27/2021	Annual	9/27/2022	MY53401:
eysight Technologies	N9020A	MKA Signal Analyzer	4/14/2022	Annual	4/14/2023	MY480102
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB461704
Rohde & Schwarz	CMU200	Base Station Simulator	N/A	N/A	N/A	836371/0
MCL	BW-N10WS+	Attenuator	CBT	N/A	CBT	1507
MCL	BW-N3W5+	Attenuator	CBT	N/A	CBT	1608
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	BW-N10W5+	Attenuator		N/A	CBT	1350
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz		N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	PWR-4GHS	USB Power Sensor	CBT	N/A	CBT	11710030
Mini-Circuits	SLP-2400+	Low Pass Filter		N/A	CBT	R8979500
Mini-Circuits	UNAT-3+	Attenuator	CBT	N/A	CBT	UU891016
Mini-Circuits	VAT-10+	Attenuator	CBT	N/A	CBT	31618
Mini-Circuits	VAT-3+	Attenuator	CBT	N/A	CBT	31647
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	31634
Mini-Circuits	ZUDC10-83-S+	Directional Coupler		N/A	CBT	2050
Mitutoyo	500-196-30	CD-6*ASX 6Inch Digital Caliper	2/16/2022	Triennial	2/16/2025	A202384
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4772-3 BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	PE2209-10	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack		Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-6	Dual Directional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	1/11/2022	Annual	1/11/2023	101695
Seekonk	NC-100	Torque Wrench (8" lb)	8/5/2020	Biennial	8/5/2022	N/A
SPEAG	DAK-12	Dielectric Assessment Kit (10MHz - 3GHz)	3/21/2022	Annual	3/21/2023	1102
SPEAG	DAK-3.5	Dielectric Assessment Kit	10/20/2021	Annual	10/20/2022	1091
SPEAG	CLA-13	Confined Loop Antenna	9/16/2021	Annual	9/16/2022	1002
SPEAG	D1750V2	1750 MHz SAR Dipole	4/20/2022		4/20/2023	1051
SPEAG	D1750V2	1750 MHz SAR Dipole	9/9/2020	Biennial	9/9/2022	1104
SPEAG SPEAG	D1765V2 D1750V2	1750 MHz SAR Dipole 1750 MHz SAR Dipole	5/14/2021	Biennial Annual	5/14/2023 10/22/2022	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	10/22/2021	Annual	10/22/2022	5d080
SPEAG	D1900V2	1900 MHz SAR Dipole	4/14/2022	Annual	4/14/2023	5d141
SPEAG	D1900V2	1900 MHz SAR Dipole	9/21/2021		9/21/2022	5d149
SPEAG	D1900V2	1900 MHz SAR Dipole	8/10/2020	Biennial	8/10/2022	5d180
SPEAG	D1900V2	1900 MHz SAR Dipole	9/10/2020	Biennial	9/10/2022	5d181
SPEAG	D2450V2	2450 MHz SAR Dipole	8/18/2021	Annual	8/18/2022	719
SPEAG	D2450V2 D2450V2	2450 MHz SAR Dipole 2450 MHz SAR Dipole	9/9/2020 2/22/2022	Biennial Annual	9/9/2022 2/22/2023	797 882
SPEAG	D2450V2	2450 MHz SAR Dipole	11/9/2021	Annual	11/9/2022	921
SPEAG	D2450V2	2450 MHz SAR Dipole	11/25/2021	Annual	11/25/2022	981
SPEAG	D2600V2	2600 MHz SAR Dipole	4/14/2021	Biennial	4/14/2023	1004
SPEAG	D2600V2	2600 MHz SAR Dipole	9/9/2020	Biennial	9/9/2022	1069
	D2600V2	2600 MHz SAR Dipole	11/12/2019	Triennial	11/12/2022	1071
SPEAG	D2600V2	2600 MHz SAR Dipole	8/18/2021	Annual	8/18/2022	1126
SPEAG	D3500V2	3500 MHz SAR Dipole	8/16/2019	Triennial	8/16/2022	1055
	D3500V2	3500 MHz SAR Dipole	1/21/2020	Triennial	1/21/2023	1097
SPEAG	D3500V2	3500 MHz SAR Dipole	6/9/2021	Annual	6/9/2022	1126
SPEAG	D3700V2 D3700V2	3700 MHz SAR Dipole 3700 MHz SAR Dipole	10/17/2019 1/19/2021	Triennial Biennial	10/17/2022 1/19/2023	1002
SPEAG	D3900V2	3900 MHz SAR Dipole	11/13/2020	Biennial	11/13/2022	1062
SPEAG	D3900V2	3900 MHz SAR Dipole	6/10/2021	Biennial	6/10/2023	1073
SPEAG	D5GHzV2	5 GHz SAR Dipole	1/10/2022	Annual	1/10/2023	1057
SPEAG	D5GHzV2	5 GHz SAR Dipole	9/15/2021	Annual	9/15/2022	1191
SPEAG	D750V3	750 MHz SAR Dipole	2/14/2022		2/14/2023	1046
SPEAG	D750V3	750 MHz SAR Dipole	3/14/2022	Annual	3/14/2023	1054
SPEAG	D750V3	750 MHz SAR Dipole	10/19/2021	Annual	10/19/2022	1161
	D835V2	835 MHz SAR Dipole	4/14/2022	Annual	4/14/2023	4d119
SPEAG	D835V2	835 MHz SAR Dipole	1/21/2021	Biennial	1/21/2023	4d132
SPEAG	D835V2	835 MHz SAR Dipole	10/19/2021	Annual	10/19/2022	4d133
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2022	Annual	1/13/2023	793
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/16/2022	Annual	3/16/2023	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/10/2021	Annual	11/10/2022	1323
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/13/2021	Annual	9/13/2022	1364
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/14/2022	Annual	4/14/2023	1402
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/22/2022	Annual	2/22/2023	1403
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/13/2022	Annual	4/13/2023	1407
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/15/2021	Annual	6/15/2022	1532
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/14/2022	Annual	1/14/2023	1558
SPEAG SPEAG	DAE4 DAF4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	7/13/2021 2/21/2022	Annual Annual	7/13/2022 2/21/2023	1583 1645
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/11/2021	Annual	11/11/2022	1646
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/14/2022	Annual	3/14/2023	1652
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/21/2021	Annual	6/21/2022	1676
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/10/2022	Annual	5/10/2023	1678
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/4/2021	Annual	8/4/2022	1680
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/3/2021	Annual	8/3/2022	1681
SPEAG SPEAG	DAE4 FX3DV4	Dasy Data Acquisition Electronics	8/6/2021 1/19/2022	Annual	8/6/2022 1/19/2023	1683 3837
SPEAG	EX3DV4	SAR Probe	7/20/2021	Annual	7/20/2022	7406
SPEAG SPEAG	EX3DV4 EX3DV4	SAR Probe SAR Probe	7/20/2021 2/22/2022	Annual Annual	7/20/2022 2/22/2023	7410
SPEAG	EX3DV4	SAR Probe	6/21/2021 3/21/2022	Annual	6/21/2022	7491
SPEAG	EX3DV4	SAR Probe	3/21/2022	Annual	3/21/2023	7527
	EX3DV4	SAR Probe	11/16/2021	Annual	11/16/2022	7538
SPEAG	EX3DV4	SAR Probe	4/22/2022	Annual	4/22/2023	7546
SPEAG	EX3DV4	SAR Probe	9/20/2021	Annual	9/20/2022	7552
SPEAG	EX3DV4	SAR Probe	9/17/2021	Annual	9/17/2022	7558
SPEAG	EX3DV4	SAR Probe	1/19/2022	Annual	1/19/2023	7570
	EX3DV4	SAR Probe	3/22/2022	Annual	3/22/2023	7637
SPEAG	EX3DV4	SAR Probe	11/21/2021	Annual	11/21/2022	7639
SPEAG	EX3DV4	SAR Probe	2/24/2022	Annual	2/24/2023	7640
SPEAG	EX3DV4	SAR Probe	4/20/2022	Annual	4/20/2023	7659
SPEAG	EX3DV4 EX3DV4	SAR Probe SAR Probe	5/18/2022	Annual Annual	5/18/2023 8/5/2022	7660
SPEAG			8/5/2021			7670

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. Note: All equipment was used solely within its respective calibration period.

FCC ID: A3LSMF936B	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2204110052-30.A3L (Rev1)	DUT Type: Portable Handset	Page 11 of 12
		DEVIA

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission i from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@Element.com.

5 MEASUREMENT UNCERTAINTIES

For SAR Measurements

a	b	с	d	e=	f	g	h =	i =	k
				f(d,k)		_	c x f/e	c x g/e	
	IEEE	Tol.	Prob.		ci	C _i	1gm	10gms	
Uncertainty Component	1528	(± %)	Dist.	Div.	1gm	10 gms	0	0	vi
	Sec.	(± /0)	Dist.	Div.	igin	TO gills	u _i (± %)	u _i (± %)	vi
Measurement System	1 1		Į	1	<u>.</u>	4	(= /0)	(= 70)	I
Probe Calibration	E.2.1	7	Ν	1	1	1	7.0	7.0	∞
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E.2.3	2	R	1.732	1	1	1.2	1.2	∞
Linearity	E.2.4	0.3	Ν	1	1	1	0.3	0.3	∞
System Detection Limits	E.2.4	0.25	R	1.732	1	1	0.1	0.1	~
Modulation Response	E.2.5	4.8	R	1.732	1	1	2.8	2.8	∞
Readout Electronics	E.2.6	0.3	N	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	R	1.732	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.732	1	1	1.5	1.5	8
RF Ambient Conditions - Noise	E.6.1	3	R	1.732	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	3	R	1.732	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.732	1	1	0.5	0.5	8
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.732	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.732	1	1	2.3	2.3	8
Test Sample Related									
Test Sample Positioning	E.4.2	3.12	Ν	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	Ν	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.732	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.732	1	1	0.0	0.0	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	Ν	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	Ν	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	8
Liquid Permittivity - Temperature Unceritainty	E.3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)	1 1		RSS	1	<u>.</u>	1	12.2	12.0	191
Expanded Uncertainty			k=2				24.4	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: A3LSMF936B	PART 0 SAR CHAR REPORT	Approved by: Technical Manager
Document S/N: 1M2204110052-30.A3L (Rev1)	DUT Type: Portable Handset	Page 12 of 12
		REV 1.1 04/08/2022