

APPENDIX C: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε' can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho' \cos \phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures Description: Aqueous solution with surfactants and inhibitors Declarable, or hazardous components:

Deerarabie, er nazaraeae eenpen		
CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

Additional information: For the wording of the listed risk phrases refer to section 16.

Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential.

The specific chemical identity and/or exact percentage concentration of proprietary components is withheld as a trade secret.

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID A3LSMF936B	SAR EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Portable Handset		APPENDIX C: Page 1 of 4

e <u>a g</u> S Schmid & Partner Engineering AG Ø

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MBBL600-6000V6)
Product No.	SL AAM U16 BC (Batch: 210621-3)
Manufacturer	SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the KDB 865664 compliance standard.

Test Condition Ambient Condition 22°C ; 30% humidity TSL Temperature 22°C Test Date 23-Jun-21 Operator WM Additional Information

TSL Density TSL Heat-capacity

Results

	Measu	red	- (11)	Targe	et	Diff.to Targ	get [%]	15.0	-	-			in the second		_
f [MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	10.0			10 10 11			6.1	
600	55.7	26.7	0.89	56.1	0.95	-0.7	-6.3	× 5.0							
750	55.3	22.5	0.94	55.5	0.96	-0.4	-2.1	Permittivity 0.0 2.5		-					
800	55.1	21.5	0.96	55.3	0.97	-0.4	-1.0	ill 0.0				100			-
825	55.1	21.1	0.97	55.2	0.98	-0.3	-1.0								
835	55.1	20.8	0.97	55.1	0.99	0.0	-1.5	9 -10.0	1		214				
850	55.0	20.6	0.97	55.2	0.99	-0.3	-2.0	-15.0	500	1500	2500	3500	4500	550	0
900	54.9	19.9	0.99	55.0	1.05	-0.2	-5.7			1000	Frequ	3500 ency MHz			-
1400	54.1	15.9	1.24	54.1	1.28	0.0	-3.1	15.0						1 1 2 1	_
1450	54.0	15.7	1.27	54.0	1.30	0.0	-2.3	10.0							_
1600	53.8	15.3	1.36	53.8	1.39	0.0	-2.2	≈ 5.0	-	1					-
1625	53.8	15.2	1.38	53.8	1.41	0.1	-2.1	0.0 0.0 0.2- 0.5-		/	1				
1640	53.8	15.2	1.39	53.7	1.42	0.1	-2.1	npuo -5.0	Λ.	~	1				
1650	53.7	15.1	1.39	53.7	1.43	0.0	-2.8	0.00	10				100		
1700	53.7	15.0	1.42	53.6	1.46	0.3	-2.7	à-10.0			11 221	1.1.2.1.5			
1750	53.6	14.9	1.45	53.4	1.49	0.3	-2.7	-15.0	500	1500	2500	3500 ancy MHz	4500	550	0
1800	53.5	14.9	1.49	53.3	1.52	0.4	-2.0				Freque	ency MHz			
1810	53.5	14.9	1.50	53.3	1.52	0.4	-1.3	3500	50.9	15.9	3.10	51.3	3.31	-0.9	-6.
1825	53.5	14.8	1.51	53.3	1.52	0.4	-0.7	3700	50.6	16.2	3.33	51.1	3.55	-1.0	-6.
1850	53.5	14.8	1.52	53.3	1.52	0.4	0.0	5200	47.7	18.6	5.39	49.0	5.30	-2.6	1.3
1900	53.4	14.8	1.56	53.3	1.52	0.2	2.6	5250	47.6	18.7	5.46	49.0	5.36	-2.7	1.9
1950	53.4	14.7	1.60	53.3	1.52	0.2	5.3	5300	47.5	18.8	5.54	48.9	5.42	-2.8	2.3
2000	53.3	14.7	1.63	53.3	1.52	0.0	7.2	5500	47.1	19.1	5.83	48.6	5.65	-3.0	3.2
2050	53.3	14.7	1.67	53.2	1.57	0.1	6.4	5600	46.9	19.2	5.98	48.5	5.77	-3.2	3.
2100	53.2	14.7	1.71	53.2	1.62	0.1	5.6	5700	46.7	19.3	6.13	48.3	5.88	-3.3	4.
2150	53.1	14.7	1.75	53.1	1.66	0.0	5.4	5800	46.5	19.4	6.27	48.2	6.00	-3.5	4.6
2200	53.1	14.7	1.80	53.0	1.71	0.1	5.3	6000	46.1	19.7	6.57	47.9	6.23	-3.7	5.
2250	53.0	14.7	1.84	53.0	1.76	0.1	4.5	6500	156						
2300	52.9	14.7	1.88	52.9	1.81	0.0	3.9	7000			1.1				
2350	52.9	14.8	1.93	52.8	1.85	0.1	4.3	7500	-22						
2400	52.8	14.8	1.98	52.8	1.90	0.1	4.2	8000			120	8			
2450	52.7	14.8	2.02	52.7	1.95	0.0	3.6	8500							
2500	52.6	14.9	2.07	52.6	2.02	-0.1	2.5	9000							
2550	52.5	14.9	2.12	52.6	2.09	-0.1	1.4	9500							
2600	52.5	15.0	2.16	52.5	2.16	0.0	0.0	10000							

Figure C-2 600 – 6000 MHz Body Tissue Equivalent Matter

FCC ID A3LSMF936B	SAR EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Portable Handset		APPENDIX C: Page 2 of 4

Schmid & Partner Engineering AG S D C a G

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HBBL600-10000V6)	
Product No.	SL AAH U16 BC (Batch: 210629-3)	
Manufacturer	SPEAG	

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

reat oonunion		
Ambient Condition	22°C ; 30% humidity	
TSL Temperature	22°C	
Test Date	1-Jul-21	
Operator	WM	
Additional Inform	ation	
TSL Density		
TSL Heat-capacity		

Results

	Measu	ired	23.3	Targe	et	Diff.to Targ	jet [%]	15.0							
f [MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	10.0	all.			2011	1 Sale		
600	44.7	25.5	0.85	42.7	0.88	4.6	-3.6	* 5.0			12.03		R DE	2305	
750	44.1	21.6	0.90	41.9	0.89	5.1	0.7				-	-			
800	44.0	20.6	0.92	41.7	0.90	5.6	2.5	Permittivity -5.0							1
825	44.0	20.2	0.93	41.6	0.91	5.8	2.6	Lia -5.0	1000						-
835	44.0	20.0	0.93	41.5	0.91	5.9	2.0	3-10.0 -15.0	-			Duran Law	4		
850	43.9	19.8	0.93	41.5	0.92	5.8	1.5								
900	43.8	19.0	0.95	41.5	0.97	5.5	-2.1		500 150	0 2500	Frequer	00 5500 6 ncy MHz	500 7500	8500 9	500
1400	42.8	15.1	1.18	40.6	1.18	5.4	0.0	15.0				-			_
1450	42.7	14.9	1.20	40.5	1.20	5.4	0.0	10.0			100		157812	8130	I. T
1600	42.4	14.4	1.28	40.3	1.28	5.2	-0.3	*		A				14.5	
1625	42.4	14.3	1.30	40.3	1.30	5.3	0.1	6 5.0 Conductivity 9	A	1		-	1		
1640	42.4	14.3	1.31	40.3	1.31	5.3	0.3	0.0	N	1	_				
1650	42.3	14.3	1.31	40.2	1.31	5.1	-0.2	0-5.0			~				
1700	42.3	14.2	1.34	40.2	1.34	5.3	-0.2	Q10.0		100		1. The Proj.	1000		1
1750	42.2	14.1	1.37	40.1	1.37	5.3	-0.1		00 150	0 2500 3	3500 450	00 5500 6	500 7500	8500 95	500
1800	42.1	14.0	1.40	40.0	1.40	5.3	0.0					ncy MHz			
1810	42.1	13.9	1.41	40.0	1.40	5.3	0.7	3500	39.4	14.2	2.77	37.9	2.91	3.8	-4.
1825	42.1	13.9	1.42	40.0	1.40	5.3	1.4	3700	39.0	14.4	2.96	37.7	3.12	3.6	-5.
1850	42.0	13.9	1.43	40.0	1.40	5.0	2.1	5200	36.4	16.0	4.62	36.0	4.66	1.2	-0.
1900	42.0	13.8	1.46	40.0	1.40	5.0	4.3	5250	36.3	16.0	4.68	35.9	4.71	1.1	-0.
1950	41.9	13.8	1.49	40.0	1.40	4.7	6.4	5300	36.2	16.1	4.73	35.9	4.76	1.0	-0.
2000	41.8	13.7	1.53	40.0	1.40	4.5	9.3	5500	35.9	16.2	4.96	35.6	4.96	0.6	0.
2050	41.8	13.7	1.56	39.9	1.44	4.7	8.0	5600	35.7	16.3	5.08	35.5	5.07	0.4	0.3
2100	41.7	13.7	1.59	39.8	1.49	4.7	6.8	5700	35.5	16.4	5.20	35.4	5.17	0.2	0.6
2150	41.6	13.6	1.63	39.7	1.53	4.7	6.3	5800	35.3	16.5	5.31	35.3	5.27	0.0	0.8
2200	41.6	13.6	1.67	39.6	1.58	4.9	5.8	6000	34.9	16.6	5.55	35.1	5.48	-0.4	1.4
2250	41.5	13.6	1.70	39.6	1.62	4.9	4.8	6500	34.0	17.1	6.17	34.5	6.07	-1.3	1.0
2300	41.4	13.6	1.74	39.5	1.67	4.9	4.4	7000	33.1	17.4	6.78	33.9	6.65	-2.2	2.
2350	41.3	13.6	1.78	39.4	1.71	4.9	4.0	7500	32.3	17.7	7.40	33.3	7.24	-3.1	2.
2400	41.3	13.6	1.82	39.3	1.76	5.1	3.7	8000	31.4	18.0	8.01	32.7	7.84	-4.1	2.
2450	41.2	13.6	1.86	39.2	1.80	5.1	3.3	8500	30.5	18.2	8.62	32.1	8.45	-5.0	2.
2500	41.1	13.6	1.90	39.1	1.85	5.0	2.5	9000	29.7	18.4	9.22	31.5	9.08	-5.9	1.
2550	41.0	13.7	1.94	39.1	1.91	4.9	1.6	9500	28.9	18.6	9.82	31.0	9.71	-6.7	1.3

Figure C-3 600 – 1000 MHz Head Tissue Equivalent Matter

FCC ID A3LSMF936B	SAR EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Portable Handset		APPENDIX C: Page 3 of 4

chmid & Partner Engineering AG	S	p	e	a	<u>g</u>
Schmid & Partner Engineering AG	440			OCCUPATION OF THE OWNER.	and the second se
the second s					

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

Measurement Certificate / Material Test

item Name	Head Tissue Simulating Liquid (HBBL4-250V3)
Product No.	SL AAH 005 AD (Batch: 210601-1)
Manufacturer	SPEAG

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Setup Validation Validation results were within $\pm 2.5\%$ towards the target values of Methanol.

Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition	
Ambient	Environment temperatur (22 ± 3)°C and humidity < 70%.
TSL Temperature	22°C
Test Date	3-Jun-21

Test Date WM Operator

TSL Density	1.042 g/cm3
TSL Heat-capacity	3.574 kJ/(kg*K)

	Aeasun	ed	disali	Target			arget (%)
[MHz]	e	0"	smgla	eps		∆-ops	<u>A</u> -sigma
5	53.0	2603.50	0.72	55.0	0.75	-3.6	-4.0
10	52.9	1301.62	0.72	55.0	0.75	-3.8	-4.0
15	52.9	858.41	0.72	55.0	0.75	-3.8	-4.0
20	52.8	651.83	0.73	55.0	0.75	-4.0	-2.7 -2.7
25	52.8	521.90	0.73	55.0	0,75	-4.0	-2.7
30	52.7	435.32	0.73	55.0	0.75	-4.2 -4.2	-2.7
35	52.6	373.51	0.73	54.9	0.75 0.75	-4.2	-2.7
40	52.5	327.19	0.73	54.8 54.7	0.75	-4.1	-2.7
45	52.4	291.20	0.73	54.7 54.6	0.75	-4.1	-2.7
50	52.3	262.44 238.95	0.73	54.0	0.75	-4.1	-2.8
55	52.2	219.39	0.73	54.3	0.75	-4.1	-2.9
60	52.1 51.9	219.39	0.73	54.2	0.75	-4.3	-2.9
65 70	51.9	188.72	0.73	54.1	0.75	-4.3	-3.0
70 75	51,6	176.48	0.74	54.0	0.75	-4,4	-1.7
80	51.5	165.78	0.74	53.9	0.75	-4.4	-1.7
85	51.5	156.34	0.74	53.8	0.75	-4.2	-1.8
90	51.4	147.97	0.74	53.7	0.75	-4.2	-1.9
95	51.3	140.49	0.74	53.5	0.75	-4.2	-1.9
100	51.2	133.76	0.74	53,4	0.75	-4,2	-2.0
105	51.1	127.68	0.75	53.3	0,76	-4.1	-0.7
110	51.0	122.16	0.75	53.2	0.76	-4.1	-0.7
115	50.9	117.13	0.75	53,1	0.76	-4.1	-0.8
120	50.8	112.52	0,75	53.0	0,76	-4.1	-0.9
125	50.7	108.28	0.75	52.9	0.76	-4.1	-0.9
130	50.6	104.37	0.75	52.8			-1.0
135	50.5	100.76	0.76	52.6	0,76	-4.1	
140	50.4	97.41	0.76	52.5	0.76	-4.1	
145	50.3	94,30	0.75	S			
150	50.2	91.39	0.76				
155	50.1	88.68	0.76	52.1			
160	50.0	86.14	0.77				
165	50.0	V3	0.7.	26			
170	49.9	25	0.7	78			
175	49.8	13	10088	69			
180	49.7	56 E		22			
185	49.6	33) 	- 1949A	231			
190	49.5	8.1	0.007	2.9			
195	49.4		6.000	36		ļ	
200	49.3	28 - C	0.63	26			
205	49.2	34 C	10.060	223		ļ	
210	48 YANG	22	1043	8 C			
215	See 192,5555	66	1,568	99		1	-
220	12 1.50		(S)(R)	282			
225			33.92	252		1	
230	888 824 A	398	1128	328		32 1.	
235	88 E973	68	1993	600		1	.2 -3.0
240	1021	28 S	- 83b	266			.5 -3.4
24			· 972	-255		-	.8 -2.7
25	48.	5 58.0	5 0.	n 4/	.0 0.		.0

Pana 1 of 1

Figure C-4 5 – 250 MHz Head Tissue Equivalent Matter

FCC ID A3LSMF936B	SAR EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Portable Handset		APPENDIX C: Page 4 of 4