

TEST REPORT

FCC Sub6 n48 Test for SM-F741U

Certification

APPLICANT SAMSUNG Electronics Co., Ltd.

REPORT NO. HCT-RF-2404-FC033-R1

DATE OF ISSUE May 3, 2024

Tested byJae Ryang Do

Technical ManagerJong Seok Lee

HCT CO., LTD.

Bongjai Huh / CEO

HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 645 6300 Fax. +82 31 645 6401

TEST REPORT

REPORT NO. HCT-RF-2404-FC033-R1

DATE OF ISSUE May 03, 2024

Additional Model SM-F741U1

Applicant	SAMSUNG Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Product Name	Mobile Phone
Model Name	SM-F741U
Date of Test	February 27, 2024 ~ April 22, 2024
FCC ID	A3LSMF741U
Location of Test	■ Permanent Testing Lab □ On Site Testing (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggido, 17383 Republic of Korea)
FCC Classification:	Citizens Band End User Devices (CBE)
FCC Rule Part(s):	§ 96

F-TP22-03 (Rev. 06) Page 2 of 202

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	April 26, 2024	Initial Release
1	May 03, 2024	Revised the date of test (Page 2.)

Notice

Content

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

The test results in this test report are not associated with the ((KS Q) ISO/IEC 17025) accreditation by KOLAS (Korea Laboratory Accreditation Scheme) / A2LA (American Association for Laboratory Accreditation) that are under the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA).

F-TP22-03 (Rev. 06) Page 3 of 202

CONTENTS

1. GENERAL INFORMATION	5
1.1. MAXIMUM OUTPUT POWER	6
2. INTRODUCTION	7
2.1. DESCRIPTION OF EUT	7
2.2. MEASURING INSTRUMENT CALIBRATION	7
2.3. TEST FACILITY	7
3. DESCRIPTION OF TESTS	8
3.1 TEST PROCEDURE	8
3.2 RADIATED POWER	9
3.3 RADIATED SPURIOUS EMISSIONS	10
3.4 PEAK- TO- AVERAGE RATIO	11
3.5 OCCUPIED BANDWIDTH	13
3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	14
3.7 CHANNEL EDGE	15
3.8 Adjacent Channel Leakage Ratio	16
3.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	17
3.10 End User Device Additional Requirement (CBSD Protocol)	18
3.11 WORST CASE(RADIATED TEST)	19
3.10 WORST CASE(CONDUCTED TEST)	20
4. LIST OF TEST EQUIPMENT	21
5. MEASUREMENT UNCERTAINTY	22
6. SUMMARY OF TEST RESULTS	23
7. SAMPLE CALCULATION	24
8. TEST DATA	26
8.1 EQUIVALENT ISOTROPIC RADIATED POWER	26
8.2 RADIATED SPURIOUS EMISSIONS	31
8.3 PEAK-TO-AVERAGE RATIO	36
8.4 OCCUPIED BANDWIDTH	
8.5 CONDUCTED SPURIOUS EMISSIONS	38
8.6 CHANNEL EDGE	39
8.7 Adjacent Channel Leakage Ratio(ACLR)	41
8.8 End User Device Additional Requirement (CBSD Protocol)	42
8.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	46
9. TEST PLOTS	
10 ANNEY A TEST SETUD DUOTO	202

MEASUREMENT REPORT

1. GENERAL INFORMATION

-	
Applicant Name:	SAMSUNG Electronics Co., Ltd.
Address:	129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep.
	of Korea
FCC ID:	A3LSMF741U
Application Type:	Certification
FCC Classification:	Citizens Band End User Devices (CBE)
FCC Rule Part(s):	§ 96
EUT Type:	Mobile phone
Model(s):	SM-F741U
Additional Model(s)	SM-F741U1
SCS(kHz):	30
Bandwidth(MHz):	10, 15, 20, 30, 40
Waveform:	CP-OFDM, DFT-S-OFDM
Madulata.	DFT-S-OFDM: PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM
Modulation:	CP-OFDM: QPSK, 16QAM, 64QAM, 256QAM
	3555.00 – 3694.98 : (Sub6 n48(10 MHz))
	3557.52 – 3692.49 : (Sub6 n48(15 MHz))
Tx Frequency:	3560.01 – 3690.00 : (Sub6 n48(20 MHz))
	3565.02 – 3684.99 : (Sub6 n48(30 MHz))
	3570.00 – 3679.98 : (Sub6 n48(40 MHz))
Date(s) of Tests:	February 27, 2024 ~ April 22, 2024
	Radiated : R3CX20KJSJW
Serial number:	Conducted: R3CX20KK2GZ
	CBSD Protocol : R3CX20KJSJW

F-TP22-03 (Rev. 06) Page 5 of 202

1.1. MAXIMUM OUTPUT POWER

Mada	Ty Fraguency	Fraissian		E	IRP
Mode (MHz)	Tx Frequency (MHz)	Emission Designator	Modulation	Max. Power (W/10 MHz)	Max. Power (dBm/10 MHz)
		8M68G7D	PI/2 BPSK	0.135	21.30
		8M64G7D	QPSK	0.134	21.26
Sub6 n48 (10)	3555.00 - 3694.98	8M64W7D	16QAM	0.106	20.27
		8M65W7D	64QAM	0.075	18.75
		8M64W7D	256QAM	0.046	16.64
		13M0G7D	PI/2 BPSK	0.139	21.44
		13M0G7D	QPSK	0.138	21.40
Sub6 n48 (15)	3557.52 - 3692.49	12M9W7D	16QAM	0.111	20.45
		12M9W7D	64QAM	0.077	18.84
		13M0W7D	256QAM	0.048	16.85
		17M9G7D	PI/2 BPSK	0.139	21.44
		18M0G7D	QPSK	0.135	21.30
Sub6 n48 (20)	3560.01 - 3690.00	18M0W7D	16QAM	0.107	20.30
		17M9W7D	64QAM	0.078	18.92
		17M9W7D	256QAM	0.046	16.63
		27M0G7D	PI/2 BPSK	0.141	21.49
		26M9G7D	QPSK	0.138	21.40
Sub6 n48 (30)	3565.02 - 3684.99	27M0W7D	16QAM	0.114	20.57
		26M9W7D	64QAM	0.079	18.99
		26M9W7D	256QAM	0.048	16.82
		35M9G7D	PI/2 BPSK	0.141	21.50
		35M9G7D	QPSK	0.137	21.35
Sub6 n48 (40)	3570.00 - 3679.98	35M9W7D	16QAM	0.110	20.41
		35M8W7D	64QAM	0.078	18.90
		35M8W7D	256QAM	0.047	16.70

F-TP22-03 (Rev. 06) Page 6 of 202

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT was a Mobile Phone with GSM/GPRS/EGPRS/UMTS and LTE, Sub 6, mmWave. It also supports IEEE 802.11 a/b/g/n/ac/ax (20/40/80/160 MHz), Bluetooth(iPA, ePA), BT LE(iPA, ePA), NFC, WPT, WIFI 6E.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

F-TP22-03 (Rev. 06) Page 7 of 202

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE

Test Description	Test Procedure Used
	- KDB 971168 D01 v03r01 – Section 4.3
Occupied Bandwidth	- ANSI C63.26-2015 – Section 5.4.4
	- KDB 940660 D01 v01
	- KDB 971168 D01 v03r01 – Section 6.0
Channel Edge	- ANSI C63.26-2015 – Section 5.7
	- KDB 940660 D01 v01
Spurious and Harmonic Emissions at	- KDB 971168 D01 v03r01 – Section 6.0
Spurious and Harmonic Emissions at Antenna Terminal	- ANSI C63.26-2015 – Section 5.7
	- KDB 940660 D01 v01
Conducted Output Power	- N/A (See SAR Report)
	- KDB 971168 D01 v03r01 – Section 5.7
Peak- to- Average Ratio	- ANSI C63.26-2015 – Section 5.2.3.4
	- KDB 940660 D01 v01
	- ANSI C63.26-2015 – Section 5.6
Frequency stability	- KDB 940660 D01 v01
	- KDB 971168 D01 v03r01 – Section 5.2 & 5.8
Effective Radiated Power/	- ANSI/TIA-603-E-2016 – Section 2.2.17
Effective Isotropic Radiated Power	- KDB 940660 D01 v01
B. I 16	- KDB 971168 D01 v03r01 – Section 6.2
Radiated Spurious and Harmonic	- ANSI/TIA-603-E-2016 – Section 2.2.12
Emissions	- KDB 940660 D01 v01
End User Device Additional	- KDB 940660 D01 v01
Requirement (CBSD Protocol)	- WINNF-18-IN-00178 v1.0.0.00

F-TP22-03 (Rev. 06) Page 8 of 202

3.2 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-E-2016 Clause 2.2.17.

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1 MHz
- $3.VBW \ge 3 \times RBW$
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

 $P_{d (dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$

Where: Pd is the dipole equivalent power and Pg is the generator output power into the substitution antenna.

- 3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.
 - These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

F-TP22-03 (Rev. 06) Page 9 of 202

3.3 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

Test Settings

- 1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

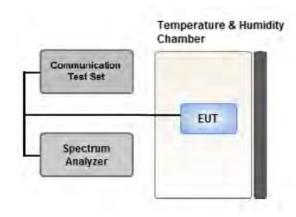
Test Note

- 1. Measurements value show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
 - The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
- For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

Result (dBm) = Pg(dBm) - cable loss(dB) + antenna gain(dBi)

Where: Pg is the generator output power into the substitution antenna.


If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

EIRP (dBm) = ERP (dBm) + 2.15

F-TP22-03 (Rev. 06) Page 10 of 202

3.4 PEAK- TO- AVERAGE RATIO

Test setup

① CCDF Procedure for PAPR

Test Settings

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Set the measurement interval as follows:
 - .- for continuous transmissions, set to 1 ms,
 - .- or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1 %.

2 Alternate Procedure for PAPR

Use one of the procedures presented in 5.2(ANSI C63.26-2015) to measure the total peak power and record as P_{Pk} .

Use one of the applicable procedures presented 5.2 (ANSI C63.26-2015) to measure the total average power and record as P_{Avg} . Determine the P.A.R. from:

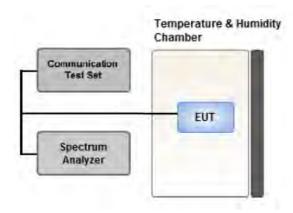
P.A.R $_{(dB)} = P_{Pk}$ $_{(dBm)} - P_{Avg(dBm)}$ ($P_{Avg} = Average Power + Duty cycle Factor)$

F-TP22-03 (Rev. 06) Page 11 of 202

Test Settings(Peak Power)

The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW $\geq 3 \times$ RBW.

- 1. Set the RBW \geq OBW.
- 2. Set VBW \geq 3 × RBW.
- 3. Set span $\geq 2 \times OBW$.
- 4. Sweep time $\geq 10 \times (\text{number of points in sweep}) \times (\text{transmission symbol period})$.
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the peak amplitude level.


Test Settings(Average Power)

- 1. Set span to $2 \times$ to $3 \times$ the OBW.
- 2. Set RBW \geq OBW.
- 3. Set VBW \geq 3 × RBW.
- 4. Set number of measurement points in sweep $\geq 2 \times \text{span} / \text{RBW}$.
- 5. Sweep time:
 - Set $\geq [10 \times (number of points in sweep) \times (transmission period)]$ for single sweep (automation-compatible) measurement. The transmission period is the (on + off) time.
- 6. Detector = power averaging (rms).
- 7. Set sweep trigger to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. Add [10 log (1/duty cycle)] to the measured maximum power level to compute the average power during continuous transmission. For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is a constant 25 %.

F-TP22-03 (Rev. 06) Page 12 of 202

3.5 OCCUPIED BANDWIDTH.

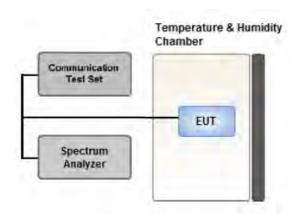
Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth


Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- $3. VBW \ge 3 \times RBW$
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99 % occupied bandwidth observed in Step 7

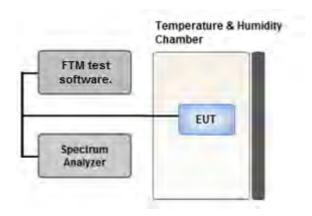
F-TP22-03 (Rev. 06) Page 13 of 202

3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test setup

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


Test Settings

- 1. RBW = 1 MHz
- $2. VBW \ge 3 MHz$
- 3. Detector = RMS
- 4. Trace Mode = trace average
- 5. Sweep time = auto
- 6. Number of points in sweep ≥ 2 x Span / RBW

F-TP22-03 (Rev. 06) Page 14 of 202

3.7 CHANNEL EDGE

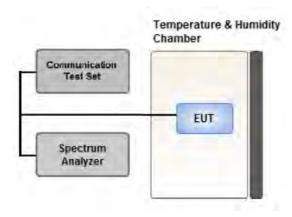
Test setup

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. Within 1 MHz of the channel edge the RBW should be 2% of EBW, then 1 MHz after that.
- $4. VBW > 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Notes

The conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0-10 megahertz above the upper SAS-assigned channel edge and within 0-10 megahertz below the lower SAS-assigned channel edge. At all frequencies greater than 10 megahertz above the upper SAS assigned channel edge and less than 10 MHz below the lower SAS assigned channel edge, the conducted power of any emission shall not exceed -25 dBm/MHz.


The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/Mhz

Where Margin < 1 dB the emission level is either corrected by $10 \log(1 \, \text{MHz/ RB})$ or the emission is integrated over a 1 MHz bandwidth to determine the final result. When using the integration method the integration window is either centered on the emission or, for emissions at the band edge, centered by an offset of 500 kHz from the block edge so that the integration window is the 1 MHz adjacent to the block edge.

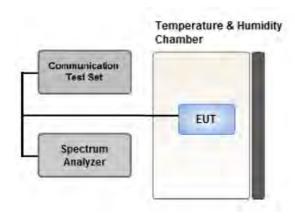
F-TP22-03 (Rev. 06) Page 15 of 202

3.8 Adjacent Channel Leakage Ratio

Test setup

Test Settings

- 1. Use ACP measurement function of Spectrum analyzer to measure adjacent channel leakage ratio
- 2. Integral BW = Assigned channel bandwidth
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = 1 s
- 9. The trace was allowed to stabilize


Test Notes

the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

F-TP22-03 (Rev. 06) Page 16 of 202

3.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

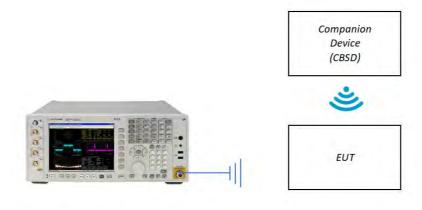
Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30 $\,^{\circ}\text{C}$ to +50 $\,^{\circ}\text{C}$ in 10 $\,^{\circ}\text{C}$ increments using an environmental chamber.

- 2. Primary Supply Voltage:
 - .- Unless otherwise specified, vary primary supply voltage from 85% to 115% of the nominal value for other than hand carried battery equipment.
 - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.


Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20 °C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter.
 - Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

F-TP22-03 (Rev. 06) Page 17 of 202

3.10 End User Device Additional Requirement (CBSD Protocol)

Test setup

Test Overview

End user device additional requirements (CBSD Protocol) are tested per the test procedures listed below. During testing, the EUT is connected to a certified CBSD (FCC ID: PIDAS2900) as a companion device to show compliance with Part 96.47.

End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation.

Test Channel & Power

- 1. Setup companion device with 3570 MHz 3590 MHz(BW 20MHz) and power level 5 dBm
- 2. Setup companion device with 3580 MHz 3620 MHz(BW 40MHz) and power level 20 dBm

Test Procedure

- 1. Enable AP service from companion device.
- 2. EUT is connected to a companion device.
- 3. Check EUT Tx frequency and power.
- 4. Disable AP service from companion device and check EUT stop transmission within 10 s.

F-TP22-03 (Rev. 06) Page 18 of 202

3.11 WORST CASE(RADIATED TEST)

- Waveform : All Waveform of operation were investigated and the worst case configuration results are reported.

(Worst case: DFT-S-OFDM)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.

- The EUT was tested in three modes(Open, Half-open, Closed), the worst case configuration results are reported. (Worst case: Open mode)

- All modes of operation were investigated and the worst case configuration results are reported.

Mode: SA, SRS Worst case: SA

Mode: Stand alone, Stand alone + External accessories (Earphone, AC adapter, etc)

Worst case: Stand alone

- We were performed the RSE test in condition of co-location.

Mode: Stand alone, Simultaneous transmission scenarios

Worst case: Stand alone

- All RB sizes, offsets of operation were investigated and the worst case configuration results are reported.

Please refer to the table below.

- SM-F741U & additional models were tested and the worst case results are reported.

(Worst case: SM-F741U)

[Worst case]

Test Description	Modulatio	RB size	RB offset	Axis
Test bescription	n	KD SIZE		
	PI/2 BPSK,	See Section 8.1		
	QPSK,			
Effective Isotropic Radiated Power	16QAM,			Z
	64QAM,			
	256QAM			
Radiated Spurious and Harmonic Emissions	PI/2 BPSK	See Se	ction 8.1	Υ

F-TP22-03 (Rev. 06) Page 19 of 202

3.10 WORST CASE(CONDUCTED TEST)

- Waveform : All Waveform of operation were investigated and the worst case configuration results are reported.

(Worst case: DFT-S-OFDM)

- Modulation : All Modulation of operation were investigated and the worst case configuration results are reported.

(Worst case: PI/2 BPSK)

- All modes of operation were investigated and the worst case configuration results are reported.

Mode: SA, SRS Worst case: SA

- All RB sizes, offsets of operation were investigated and the worst case configuration results are reported.

Please refer to the table below.

- SM-F741U & additional models were tested and the worst case results are reported.

(Worst case: SM-F741U)

[Worst case]

Test Description	Modulation	Bandwidth (MHz)	Frequency	RB size	RB offset
Occupied Bandwidth, Peak-To-Average Radio	PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM	10, 15, 20, 30, 40	Mid	Full RB	0
		10	Low	1	0
		10	High	1	23
		15	Low	1	0
	PI/2 BPSK	15	High	1	37
		20	Low	1	0
			High	1	50
Channel Edge		30 40	Low	1	0
			High	1	77
			Low	1	0
			High	1	105
		10, 15, 20,	Low,		
			Mid,	Full RB	0
		30, 40	High		
Spurious and Harmonic Emissions		10, 15, 20,	Low,		
at Antenna Terminal	PI/2 BPSK	30, 40	Mid,	1	1
actured ma reminat		30, 40	High		

F-TP22-03 (Rev. 06) Page 20 of 202

4. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacture	Serial No.	Due to Calibration	Calibration Interval
Precision Dipole Antenna	UHAP	Schwarzbeck	01273	03/10/2026	Biennial
Precision Dipole Antenna	UHAP	Schwarzbeck	01274	03/10/2026	Biennial
Horn Antenna(1~18 GHz)	BBHA 9120D	Schwarzbeck	02289	02/14/2026	Biennial
Horn Antenna(1~18 GHz)	BBHA 9120D	Schwarzbeck	9120D-1299	04/27/2025	Biennial
Horn Antenna(15~40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	09/29/2024	Biennial
Horn Antenna(15~40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial
Loop Antenna(9 kHz~30 MHz)	FMZB1513	Rohde & Schwarz	1513-175	01/16/2025	Biennial
Bilog Antenna	VULB9160	Schwarzbeck	3150	03/09/2025	Biennial
Hybrid Antenna	VULB9160	Schwarzbeck	760	02/24/2025	Biennial
RF Switching System	FBSR-06B (1G HPF + LNA)	T&M SYSTEM	F3L1	05/22/2024	Annual
RF Switching System	FBSR-06B (3G HPF + LNA)	T&M SYSTEM	F3L2	05/22/2024	Annual
RF Switching System	FBSR-06B (6G HPF + LNA)	T&M SYSTEM	F3L3	05/22/2024	Annual
RF Switching System	FBSR-06B (LNA)	T&M SYSTEM	F3L4	05/22/2024	Annual
Power Amplifier	CBL18265035	CERNEX	22966	11/17/2024	Annual
Power Amplifier	CBL26405040	CERNEX	25956	02/26/2025	Annual
DC Power Supply	E3632A	Hewlett Packard	MY40004427	08/25/2024	Annual
Power Splitter(DC~26.5 GHz)	11667B	Hewlett Packard	11275	02/29/2025	Annual
Chamber	SU-642	ESPEC	93008124	02/19/2025	Annual
Signal Analyzer(10 Hz~26.5 GHz)	N9020A	Agilent	MY51110063	04/04/2025	Annual
ATTENUATOR(20 dB)	8493C	Hewlett Packard	17280	04/17/2025	Annual
Spectrum Analyzer(10 Hz~40 GHz)	FSV40	REOHDE & SCHWARZ	101436	02/13/2025	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/10/2024	Annual
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6262287701	05/22/2024	Annual
Wideband Radio Communication Tester	MT8000A	Anritsu Corp.	6262302511	05/23/2024	Annual
SIGNAL GENERATOR (100 kHz~40 GHz)	SMB100A	REOHDE & SCHWARZ	177633	06/22/2024	Annual
Signal Analyzer(5 Hz~40.0 GHz)	N9030B	KEYSIGHT	MY55480167	05/24/2024	Annual
4-Way Divider	ZC4PD-K1844+	Mini-Circuits	942907	09/19/2024	Annual
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.,	-	-	-

Note:

- 1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 2. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

F-TP22-03 (Rev. 06) Page 21 of 202

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (\pm dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.98 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.66 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, <i>k</i> =2)

F-TP22-03 (Rev. 06) Page 22 of 202

6. SUMMARY OF TEST RESULTS

6.1 Test Condition: Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Occupied Bandwidth	§ 2.1049	N/A	PASS
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§ 2.1051, § 96.41(e)	 In -13 dBm/Mhz at frequencies within 0-10 MHz of channel edge In -25 dBm/MHz at frequencies greater than 10 MHz above and below channel edge In -40 dBm/MHz at frequencies below 3530 MHz and above 3720 MHz 	PASS
Adjacent Channel Leakage Ratio	§ 96.41(e)	At least 30 dB.	PASS
Conducted Output Power	§ 2.1046	N/A	See Note1
Peak- to- Average Ratio	§ 96.41(g)	< 13 dB	PASS
Frequency stability / variation of ambient temperature	§ 2.1055,	Emission must remain in band	PASS

Note:

- 1. See SAR Report
- 2. Conducted tests were tested using 5G Wireless Tester.

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Equivalent Isotropic Radiated Power	§ 96.41(b)	23 dBm/10 MHz	PASS
Radiated Spurious and Harmonic Emissions	§ 2.1053, § 96.41(e)	-40 dBm/MHz	PASS
End User Device Additional Requirements (CBSD Protocol)	§ 96.47	End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation. An End User Device must discontinue operations, change frequencies, or change its operational power level within 10 seconds of receiving instructions from its associated CBSD.	PASS

Note:

1. Radiated tests were tested using 5G Wireless Tester.

F-TP22-03 (Rev. 06) Page 23 of 202

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain			EF	RP
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBd)	C.L	Pol.	w	dBm
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84

ERP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain			EII	RP
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBi)	C.L	Pol.	w	dBm
20175	1,732.50	-15.75	18.45	9.90	1.76	Н	0.456	26.59

EIRP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

F-TP22-03 (Rev. 06) Page 24 of 202

7.3. Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW

GSM BW = 249 kHz G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W

WCDMA BW = 4.17 MHz
F = Frequency Modulation
9 = Composite Digital Info

W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev. 06) Page 25 of 202

8. TEST DATA

8.1 EQUIVALENT ISOTROPIC RADIATED POWER

Freq	Mod/		Measured	Substitute Level	Ant. Gain			EIRP	Limit	R	B
(MHz)	Bandwidth [SCS (kHz)]	Modulation	Level (dBm)	(dBm)	(dBi)	C.L	Pol	dBm/10 MHz		Size	Size
		PI/2 BPSK	-25.71	12.53	11.40	3.02	Н	20.91			
		QPSK	-25.73	12.51	11.40	3.02	Н	20.89			
3555.00		16-QAM	-26.78	11.46	11.40	3.02	Н	19.84		1	12
		64-QAM	-28.17	10.07	11.40	3.02	Н	18.45			
		256-QAM	-30.43	7.81	11.40	3.02	Н	16.19			
	Sub6 n48/	PI/2 BPSK	-25.83	12.83	11.50	3.03	Н	21.30			
		QPSK	-25.87	12.79	11.50	3.03	Н	21.26			
3624.99	10 MHz	16-QAM	-26.86	11.80	11.50	3.03	Н	20.27	23.0	1	22
	[30 kHz]	64-QAM	-28.38	10.28	11.50	3.03	Н	18.75			
		256-QAM	-30.49	8.17	11.50	3.03	Н	16.64			
		PI/2 BPSK	-27.01	11.47	11.45	3.06	Н	19.86			
		QPSK	-27.02	11.46	11.45	3.06	Н	19.85			
3694.98		16-QAM	-27.86	10.62	11.45	3.06	Н	19.01		1	22
		64-QAM	-29.52	8.96	11.45	3.06	Н	17.35			
		256-QAM	-31.70	6.78	11.45	3.06	Н	15.17			

F-TP22-03 (Rev. 06) Page 26 of 202

	Mod/		Measured	C. battanta I a al	And Cain			EIRP	Limit	R	RB
Freq (MHz)	Bandwidth [SCS (kHz)]	Modulation	Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBi)	C.L	Pol	dBm/1	0 MHz	Size	Size
		PI/2 BPSK	-25.63	12.61	11.40	3.02	Н	20.99			
		QPSK	-25.72	12.52	11.40	3.02	Н	20.90			
3557.52		16-QAM	-26.96	11.28	11.40	3.02	Н	19.66		1	1
		64-QAM	-28.18	10.06	11.40	3.02	Н	18.44			
		256-QAM	-30.46	7.78	11.40	3.02	Н	16.16			
	Sub6 n48/	PI/2 BPSK	-25.69	12.97	11.50	3.03	Н	21.44			
		QPSK	-25.73	12.93	11.50	3.03	Н	21.40	_		
3624.99	15 MHz	16-QAM	-26.68	11.98	11.50	3.03	Н	20.45	23.0	1	36
	[30 kHz]	64-QAM	-28.29	10.37	11.50	3.03	Н	18.84			
		256-QAM	-30.28	8.38	11.50	3.03	Н	16.85			
		PI/2 BPSK	-26.89	11.59	11.45	3.06	Н	19.98			
		QPSK	-26.97	11.51	11.45	3.06	Н	19.90			
3692.49		16-QAM	-27.93	10.55	11.45	3.06	Н	18.94		1	1
		64-QAM	-29.45	9.03	11.45	3.06	Н	17.42			
		256-QAM	-31.66	6.82	11.45	3.06	Н	15.21			

F-TP22-03 (Rev. 06) Page 27 of 202

	Mod/		Measured	Cubatituta I aval	Ant Cain			EIRP	Limit	R	RB
Freq (MHz)	Bandwidth [SCS (kHz)]	Modulation	Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBi)	C.L	Pol	dBm/1	0 MHz	Size	Size
		PI/2 BPSK	-25.81	12.47	11.40	3.01	Н	20.86			
		QPSK	-25.85	12.43	11.40	3.01	Н	20.82			
3560.01		16-QAM	-26.90	11.38	11.40	3.01	Н	19.77		1	25
		64-QAM	-28.50	9.78	11.40	3.01	Н	18.17			
		256-QAM	-30.53	7.75	11.40	3.01	Н	16.14			
	Sub6 n48/	PI/2 BPSK	-25.69	12.97	11.50	3.03	Н	21.44			
		QPSK	-25.83	12.83	11.50	3.03	Н	21.30	-		
3624.99	20 MHz	16-QAM	-26.83	11.83	11.50	3.03	Н	20.30	23.0	1	1
	[30 kHz]	64-QAM	-28.21	10.45	11.50	3.03	Н	18.92			
		256-QAM	-30.50	8.16	11.50	3.03	Н	16.63			
	=	PI/2 BPSK	-26.76	11.74	11.50	3.06	Н	20.18			
		QPSK	-26.82	11.68	11.50	3.06	Н	20.12			
3690.00		16-QAM	-27.96	10.54	11.50	3.06	Н	18.98		1	1
		64-QAM	-29.30	9.20	11.50	3.06	Н	17.64			
		256-QAM	-31.51	6.99	11.50	3.06	Н	15.43			

F-TP22-03 (Rev. 06) Page 28 of 202

(MHz)	Mod/		Measured	Cubatituta I aval	Ant Cain			EIRP	Limit	R	RB
•	Bandwidth [SCS (kHz)]	Modulation	Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBi)	C.L	Pol	dBm/1	0 MHz	Size	Size
		PI/2 BPSK	-25.82	12.41	11.40	3.00	Н	20.81			
		QPSK	-25.85	12.38	11.40	3.00	Н	20.78			
3565.02		16-QAM	-26.87	11.36	11.40	3.00	Н	19.76		1	1
		64-QAM	-28.21	10.02	11.40	3.00	Н	18.42			
		256-QAM	-30.41	7.82	11.40	3.00	Н	16.22			
	Sub6 n48/	PI/2 BPSK	-25.64	13.02	11.50	3.03	Н	21.49			
		QPSK	-25.73	12.93	11.50	3.03	Н	21.40	=		
3624.99	30 MHz	16-QAM	-26.56	12.10	11.50	3.03	Н	20.57	23.0	1	1
	[30 kHz]	64-QAM	-28.14	10.52	11.50	3.03	Н	18.99			
		256-QAM	-30.31	8.35	11.50	3.03	Н	16.82			
		PI/2 BPSK	-26.56	12.01	11.50	3.06	Н	20.45			
		QPSK	-26.57	12.00	11.50	3.06	Н	20.44			
3684.99		16-QAM	-27.63	10.94	11.50	3.06	Н	19.38		1	1
		64-QAM	-29.09	9.48	11.50	3.06	Н	17.92			
		256-QAM	-31.23	7.34	11.50	3.06	Н	15.78			

F-TP22-03 (Rev. 06) Page 29 of 202

(MHz)	Mod/		Measured	Cook atitude I avail	Ant Cain			EIRP	Limit	R	RB
-	Bandwidth [SCS (kHz)]	Modulation	Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBi)	C.L	Pol	dBm/1	0 MHz	Size	Size
		PI/2 BPSK	-25.75	12.43	11.40	2.99	Н	20.84			
		QPSK	-25.77	12.41	11.40	2.99	Н	20.82			
3570.00		16-QAM	-26.94	11.24	11.40	2.99	Н	19.65		1	1
		64-QAM	-28.33	9.85	11.40	2.99	Н	18.26			
		256-QAM	-30.41	7.77	11.40	2.99	Н	16.18			
	Sub6 n48/	PI/2 BPSK	-25.63	13.03	11.50	3.03	Н	21.50			
		QPSK	-25.78	12.88	11.50	3.03	Н	21.35			
3624.99	40 MHz	16-QAM	-26.72	11.94	11.50	3.03	Н	20.41	23.0	1	1
	[30 kHz]	64-QAM	-28.23	10.43	11.50	3.03	Н	18.90			
		256-QAM	-30.43	8.23	11.50	3.03	Н	16.70			
		PI/2 BPSK	-26.13	12.50	11.50	3.05	Н	20.95			
		QPSK	-26.39	12.24	11.50	3.05	Н	20.69			
3679.98		16-QAM	-27.43	11.20	11.50	3.05	Н	19.65		1	1
		64-QAM	-28.82	9.81	11.50	3.05	Н	18.26			
		256-QAM	-31.13	7.50	11.50	3.05	Н	15.95			

F-TP22-03 (Rev. 06) Page 30 of 202

8.2 RADIATED SPURIOUS EMISSIONS

■ NR Band: N48

■ Bandwidth: 10 MHz

■ Modulation: PI/2 BPSK

■ Distance: 1 meters

■ SCS: <u>30 kHz</u>

Ch	Freq (MHz)	Measured Level	Ant. Gain (dBi)	Substitute Level	C I PAI		Result	Result Limit (dBm)		F	RB
_		(dBm)	(45.)	(dBm)			(abiii)	(abiii)		Size	Offset
	7 110.00	-73.19	10.50	-66.12	4.35	V	-59.97	-40.00	Average		
637000 (3555.00)	10 665.00	-72.47	11.00	-60.87	5.48	V	-55.35	-40.00	Average	1	12
(3333.00)	14 220.00	-69.04	12.40	-59.81	6.44	V	-53.85	-40.00	Average		
	7 249.98	-72.62	10.10	-64.70	4.42	V	-59.02	-40.00	Average		
641666 (3624.99)	10 874.97	-73.28	11.20	-62.02	5.53	V	-56.35	-40.00	Average	1	22
(3024.33)	14 499.96	-65.80	12.90	-58.99	6.49	V	-52.58	-40.00	Average		
	7 389.96	-72.78	10.60	-65.20	4.46	V	-59.06	-40.00	Average		
646332 (3694.98)	11 084.94	-72.78	11.30	-61.64	5.59	V	-55.93	-40.00	Average	1	22
(3034.30)	14 779.92	-66.90	13.10	-60.80	6.56	V	-54.26	-40.00	Average		

F-TP22-03 (Rev. 06) Page 31 of 202

■ NR Band: <u>N48</u>

■ Bandwidth: <u>15 MHz</u>

■ Modulation: PI/2 BPSK

■ Distance: <u>1 meters</u>

■ SCS: <u>30 kHz</u>

Ch	Freq (MHz)	Measured Level	Ant. Gain (dBi)	Substitute Level	C.L	Pol	Result (dBm)	Limit (dBm)	Detector	F	RB
		(dBm)	(==,	(dBm)			(42111)	(3.21)		Size	Offset
	7 115.04	-73.20	10.50	-66.14	4.37	V	-60.01	-40.00	Average		
637168 (3557.52)	10 672.56	-72.48	11.10	-61.31	5.47	٧	-55.68	-40.00	Average	1	1
(5551.52)	14 230.08	-68.75	12.40	-59.95	6.44	٧	-53.99	-40.00	Average		
	7 249.98	-72.60	10.10	-64.68	4.42	٧	-59.00	-40.00	Average		
641666 (3624.99)	10 874.97	-73.24	11.20	-61.98	5.53	٧	-56.31	-40.00	Average	1	36
(3024.33)	14 499.96	-65.69	12.90	-58.88	6.49	٧	-52.47	-40.00	Average		
	7 384.98	-72.53	10.60	-64.87	4.45	٧	-58.72	-40.00	Average		
646166 (3692.49)	11 077.47	-73.85	11.30	-62.53	5.60	٧	-56.83	-40.00	Average	1	1
(5032.43)	14 769.96	-66.98	13.10	-60.88	6.58	٧	-54.36	-40.00	Average		

F-TP22-03 (Rev. 06) Page 32 of 202

■ NR Band: N48

■ Bandwidth: <u>20 MHz</u>

■ Modulation: PI/2 BPSK

■ Distance: <u>1 meters</u>

■ SCS: <u>30 kHz</u>

Ch	Freq (MHz)	Measured Level	Ant. Gain (dBi)	Substitute Level	C.L	Pol	Result (dBm)	Limit (dBm)	Detector	F	RB
		(dBm)	(4.2.)	(dBm)			(42)	(42)		Size	Offset
	7 120.02	-73.14	10.50	-66.03	4.39	V	-59.92	-40.00	Average		
637334 (3560.01)	10 680.03	-72.24	11.10	-60.77	5.46	V	-55.13	-40.00	Average	1	25
(5500.01)	14 240.04	-68.02	12.40	-59.16	6.44	V	-53.20	-40.00	Average		
	7 249.98	-72.33	10.10	-64.41	4.42	V	-58.73	-40.00	Average		
641666 (3624.99)	10 874.97	-73.19	11.20	-61.93	5.53	V	-56.26	-40.00	Average	1	1
(3024.33)	14 499.96	-65.71	12.90	-58.90	6.49	V	-52.49	-40.00	Average		
	7 380.00	-72.56	10.60	-64.80	4.45	V	-58.65	-40.00	Average		
646000 (3690.00)	11 070.00	-74.02	11.30	-62.30	5.61	V	-56.61	-40.00	Average	1	1
(3030.00)	14 760.00	-67.22	13.10	-61.25	6.58	V	-54.73	-40.00	Average		

F-TP22-03 (Rev. 06) Page 33 of 202

■ NR Band: N48

■ Bandwidth: <u>30 MHz</u>

■ Modulation: PI/2 BPSK

■ Distance: <u>1 meters</u>

■ SCS: <u>30 kHz</u>

Ch	Freq (MHz)	Measured Level	Ant. Gain (dBi)	Substitute Level	C.L	Pol	Result (dBm)	Limit (dBm)	Detector	F	RB
		(dBm)	(==.,	(dBm)			(02,	(4.2)		Size	Offset
	7 130.04	-73.29	10.50	-65.79	4.40	V	-59.69	-40.00	Average		
637668 (3565.02)	10 695.06	-72.82	11.10	-61.66	5.48	٧	-56.04	-40.00	Average	1	1
(5505.02)	14 260.08	-67.44	12.50	-59.00	6.44	٧	-52.94	-40.00	Average		
	7 249.98	-72.61	10.10	-64.69	4.42	٧	-59.01	-40.00	Average		
641666 (3624.99)	10 874.97	-72.99	11.20	-61.73	5.53	٧	-56.06	-40.00	Average	1	1
(3024.33)	14 499.96	-65.78	12.90	-58.97	6.49	٧	-52.56	-40.00	Average		
	7 369.98	-72.57	10.60	-64.69	4.44	٧	-58.53	-40.00	Average		
645666 (3684.99)	11 054.97	-74.15	11.30	-62.17	5.61	٧	-56.48	-40.00	Average	1	1
(5004.55)	14 739.96	-67.61	13.00	-60.95	6.59	V	-54.54	-40.00	Average		

F-TP22-03 (Rev. 06) Page 34 of 202

■ NR Band: N48

■ Bandwidth: <u>40 MHz</u>

■ Modulation: PI/2 BPSK

■ Distance: <u>1 meters</u>

■ SCS: <u>30 kHz</u>

Ch	Freq (MHz)	Measured Level	Ant. Gain (dBi)	Substitute Level	C.L	Pol	Result (dBm)	Limit (dBm)	Detector	F	RB
		(dBm)	(,	(dBm)			(3.2.1.7)	(3.2)		Size	Offset
	7 140.00	-72.62	10.50	-64.76	4.41	V	-58.67	-40.00	Average		
638000 (3570.00)	10 710.00	-73.02	11.10	-61.52	5.47	V	-55.89	-40.00	Average	1	1
(55.5.55)	14 280.00	-66.99	12.50	-58.71	6.43	V	-52.64	-40.00	Average		
	7 249.98	-72.44	10.10	-64.52	4.42	V	-58.84	-40.00	Average		
641666 (3624.99)	10 874.97	-72.82	11.20	-61.56	5.53	V	-55.89	-40.00	Average	1	1
(302 1.33)	14 499.96	-65.74	12.90	-58.93	6.49	V	-52.52	-40.00	Average		
	7 359.96	-72.45	10.60	-64.69	4.44	V	-58.53	-40.00	Average		
645332 (3679.98)	11 039.94	-74.20	11.30	-62.16	5.59	V	-56.45	-40.00	Average	1	1
(3013.30)	14 719.92	-67.55	13.00	-60.43	6.59	V	-54.02	-40.00	Average		

F-TP22-03 (Rev. 06) Page 35 of 202

8.3 PEAK-TO-AVERAGE RATIO

Band	Band Width	Frequenc y (MHz)	Modulatio n	Resource Block Size	Resource Block Offset	Data (dB)
Sub6 n48	10 MHz	3624.99	BPSK	24	0	4.45
			QPSK			5.67
			16-QAM			6.41
			64-QAM			6.66
			256-QAM			6.38
	15 MHz		BPSK	36		4.74
			QPSK			5.69
			16-QAM			6.49
			64-QAM			6.58
			256-QAM			6.64
	20 MHz		BPSK	50		4.87
			QPSK			5.74
			16-QAM			6.63
			64-QAM			6.59
			256-QAM			6.66
	30 MHz		BPSK	75		5.00
			QPSK			5.73
			16-QAM			6.43
			64-QAM			6.57
			256-QAM			6.53
	40 MHz		BPSK	100		4.50
			QPSK			5.57
			16-QAM			6.33
			64-QAM			6.55
			256-QAM			6.48

Note:

1. Plots of the EUT's Peak- to- Average Ratio are shown Page 77 \sim 101.

F-TP22-03 (Rev. 06) Page 36 of 202

8.4 OCCUPIED BANDWIDTH

Band	Band Width	Frequenc y (MHz)	Modulatio n	Resource Block Size	Resource Block Offset	Data (MHz)
			BPSK			8.6831
			QPSK			8.6367
	10 MHz		16-QAM	24		8.6345
			64-QAM			8.6453
			256-QAM			8.6415
			BPSK			12.978
			QPSK	36		12.977
	15 MHz		16-QAM			12.942
			64-QAM			12.942
			256-QAM			12.993
			BPSK	50		17.891
c. l. c		3624.99	QPSK			17.995
Sub6	20 MHz		16-QAM		0	18.013
n48			64-QAM			17.920
			256-QAM	-		17.926
			BPSK			26.959
			QPSK			26.901
	30 MHz		16-QAM	75		26.996
			64-QAM			26.903
			256-QAM			26.913
			BPSK			35.903
			QPSK			35.900
	40 MHz		16-QAM	100		35.851
			64-QAM			35.815
			256-QAM			35.811

Note:

1. Plots of the EUT's Occupied Bandwidth are shown Page 52 \sim 76.

F-TP22-03 (Rev. 06) Page 37 of 202

8.5 CONDUCTED SPURIOUS EMISSIONS

Band	Band Width (MHz)	Frequency (MHz)	Frequency of Maximum Harmonic (GHz)	Factor (dB)	Measurement Maximum Data (dBm)	Result (dBm)	Limit (dBm)
		3555.00	8.3764	30.815	-77.060	-46.245	
	10	3624.99	8.2214	30.815	-76.320	-45.505	
		3694.98	4.0464	30.200	-76.174	-45.974	
		3557.52	4.5634	30.200	-77.099	-46.899	
	15	3624.99	5.4871	30.815	-76.920	-46.105	
		3692.49	9.4437	30.815	-76.510	-45.695	
		3560.01	8.8430	30.815	-76.409	-45.594	
Sub6 n48	20	3624.99	4.0394	30.200	-76.665	-46.465	-40.00
		3690.00	3.7329	30.200	-76.879	-46.679	
		3565.02	5.1825	30.815	-76.519	-45.704	
	30	3624.99	4.5624	30.200	-76.607	-46.407	
		3684.99	3.7239	30.200	-74.343	-44.143	
		3570.00	9.9302	30.815	-76.685	-45.870	
	40	3624.99	9.6929	30.815	-76.706	-45.891	
		3679.98	4.0738	30.200	-76.605	-46.405	

Note:

- 1. Plots of the EUT's Conducted Spurious Emissions are shown Page 172 \sim 201.
- 2. Factor(dB) = Cable Loss + Ext. Attenuator + Power Splitter
 - Result(dBm) = Reading + Factor
- 3. Factor(dB)

Frequency Range (GHz)	Factor [dB]
0.03 - 1	27.494
1 - 5	30.200
5 - 10	30.815
10 - 15	31.340
15 - 20	31.713
Above 20	32.355

F-TP22-03 (Rev. 06) Page 38 of 202

8.6 CHANNEL EDGE

					Outside	of the auth	norized ban	d (dBm)		
BW	RB	Freq.	Lower Side(MHz)				Upper Side(MHz)			
(MHz)	(Size/ Offset)	(MHz)	Below 3530 MHz	-[B]MHz ~ 3530 MHz	-1 MHz ~ -[B]MHz	0 MHz ~ -1 MHz	0 MHz ~ +1 MHz	1 MHz ~ +[B]MHz	+[B]MHz ~ 3720 MHz	Above 3720 MHz
		3555.00	-52.60	-42.80	-32.18	-29.76	-29.15	-32.61	-44.02	_
10	24/0	3624.99	_	-41.53	-31.58	-28.57	-31.17	-33.42	-42.50	_
		3694.98	_	-40.45	-30.66	-28.97	-30.14	-30.36	-39.33	-49.12
		3557.52	-47.57	-41.87	-33.03	-28.19	-42.29	-36.88	-44.14	_
15	36/0	3624.99	_	-43.54	-32.93	-29.70	-41.11	-39.59	-44.99	_
		3692.49	_	-44.46	-30.64	-28.45	-41.18	-34.14	-38.64	-46.36
		3560.01	-45.96	-42.64	-35.78	-33.28	-36.92	-36.02	-46.81	_
20	50/0	3624.99	_	-40.74	-34.84	-30.96	-38.48	-36.81	-42.85	_
		3690.00	_	-47.55	-36.23	-30.95	-37.84	-36.25	-40.21	-46.53
		3565.02	-43.18	-36.84	-38.65	-33.12	-41.00	-41.03	-49.94	_
30	75/0	3624.99	_	-47.46	-35.66	-33.12	-39.80	-43.63	-46.16	_
		3684.99	_	-45.91	-35.60	-32.96	-42.90	-38.38	-36.25	-41.96
		3570.00	-42.00	-37.80	-37.85	-32.01	-46.49	-40.78	-47.03	_
40	100/0	3624.99	_	-46.27	-38.42	-31.98	-42.53	-40.38	-45.36	_
		3679.98	_	-46.56	-38.97	-33.17	-43.16	-41.07	-39.31	-41.12
	Limit (dBm)		-40.00	-25.00	-13.00	-13.00	-13.00	-13.00	-25.00	-40.00

Note:

- 1. C.E = Channel Edge
- 2. Plots of the EUT's Channel Edge are shown Page 117 $^{\sim}$ 171.
- 3. Duty Cycle factor already applied on the factor.
 - Duty Cycle Factor(dB) = 6.99
 - Factor(dB) = Duty Cycle factor + Cable Loss + Ext. Attenuator
 - Result(dBm) = Reading + Factor

F-TP22-03 (Rev. 06) Page 39 of 202

			Outside of the authorized band (dBm)							
BW	RB	Freq.	Lower Side(MHz)				Upper Side(MHz)			
(MHz)	(Size/ Offset)	ize/ Offset) (MHz)	Below 3530 MHz	-[B]MHz ~ 3530 MHz	-1 MHz ~ -[B]MHz	0 MHz ~ -1 MHz	0 MHz ~ +1 MHz	1 MHz ~ +[B]MHz	+[B]MHz ~ 3720 MHz	Above 3720 MHz
		3555.00	-53.41	-51.91	-28.43	-25.01	-25.56	-28.29	-52.10	_
10	Lower Side: 1/0	3624.99	_	-50.25	-27.12	-22.74	-25.66	-28.12	-51.10	_
Upper Side: 1/23	3694.98	_	-49.72	-26.24	-24.59	-24.34	-26.12	-48.48	-49.25	
		3557.52	-53.59	-49.01	-23.58	-20.88	-22.93	-24.29	-53.22	_
15	Lower Side: 1/0 Upper Side: 1/37	3624.99	_	-50.63	-22.63	-20.74	-23.43	-25.75	-51.42	_
		3692.49	_	-51.13	-23.82	-21.49	-21.71	-22.80	-47.21	-48.99
		3560.01	-53.69	-49.73	-28.94	-26.89	-24.93	-27.00	-50.30	_
20	Lower Side: 1/0	3624.99	_	-53.12	-26.25	-25.98	-25.52	-27.23	-51.73	_
	Upper Side: 1/50	3690.00	_	-52.11	-28.18	-26.07	-26.51	-26.97	-48.18	-49.14
		3565.02	-53.26	-51.74	-31.97	-31.81	-29.25	-31.91	-48.94	_
30	Lower Side: 1/0	3624.99	-	-53.92	-50.73	-30.40	-29.88	-32.54	-45.88	_
	Upper Side: 1/77	3684.99	_	-46.16	-29.99	-29.93	-32.24	-31.46	-47.58	-48.55
		3570.00	-48.80	-50.48	-31.83	-30.46	-29.48	-31.49	-46.08	_
40	Lower Side: 1/0	3624.99	_	-45.84	-26.49	-25.88	-28.01	-29.89	-44.47	_
	Upper Side: 1/105	3679.98	_	-44.88	-29.35	-26.52	-31.37	-31.39	-39.67	-46.24
	Limit (dBm)		-40.00	-25.00	-13.00	-13.00	-13.00	-13.00	-25.00	-40.00

Note:

- 1. C.E = Channel Edge
- 2. Plots of the EUT's Channel Edge are shown Page 117 ~ 171.
- 3. Duty Cycle factor already applied on the factor.
 - Duty Cycle Factor(dB) = 6.99
 - Factor(dB) = Duty Cycle factor + Cable Loss + Ext. Attenuator
 - Result(dBm) = Reading + Factor

F-TP22-03 (Rev. 06) Page 40 of 202

8.7 Adjacent Channel Leakage Ratio(ACLR)

Dand	RB	Frequenc	Adjacent Channel	Leakage Ratio(dB)
Band Width	(Size/ Offset)	y (MHz)	Lower Side	Upper Side
		3555.00	44.81	47.24
10 MHz	24/0	3624.99	46.16	47.03
		3694.98	45.48	46.59
		3557.52	46.61	53.12
15 MHz	36/0	3624.99	46.22	52.05
		3692.49	46.46	50.77
		3560.01	48.01	51.22
20 MHz	50/0	3624.99	47.34	50.60
		3690.00	47.67	49.73
		3565.02	46.13	51.72
30 MHz	75/0	3624.99	44.76	50.61
		3684.99	46.47	50.29
		3570.00	41.29	49.72
40 MHz	100/0	3624.99	37.83	51.02
		3679.98	37.92	48.38
	Limit (dE	3)	ACLR > 30dB	ACLR > 30dB

Note:


- 1. Duty Cycle factor already applied on the factor.
 - Factor(dB) = Duty Cycle factor + Cable Loss + Ext. Attenuator + Power Splitter
 - Result(dBm) = Reading + Factor
 - Duty Cycle Factor(dB) = 6.990
- 2. Plots of the EUT's Adjacent Channel Leakage Ratio(ACLR) are shown Page 102 ~ 116.

F-TP22-03 (Rev. 06) Page 41 of 202

8.8 End User Device Additional Requirement (CBSD Protocol)

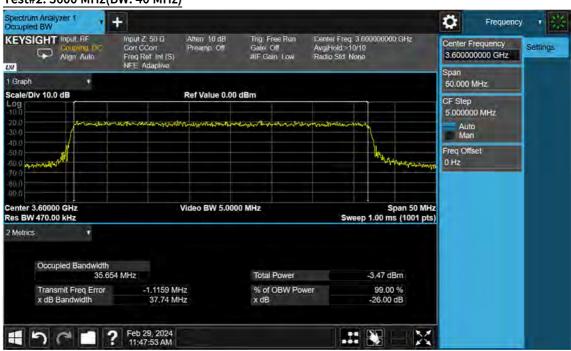
Test#1: 3580 MHz(BW: 20 MHz)

F-TP22-03 (Rev. 06) Page 42 of 202

Stop Operation Within 10 s

Note:

Marker 2: CBSD sends instructions to discontinue NR n48 operations.


Marker $1\triangle 2$: EUT discontinues operation. (0.27 s)

Marker 3△4: 10 seconds elapsed time from CBSD sending instructions to EUT.(10.0 s)

F-TP22-03 (Rev. 06) Page 43 of 202

Test#2: 3600 MHz(BW: 40 MHz)

F-TP22-03 (Rev. 06) Page 44 of 202

Note:

Marker 2: CBSD sends instructions to discontinue NR n48 operations.

Marker $1\triangle 2$: EUT discontinues operation. (0.15 s)

Marker $3\triangle 4$: 10 seconds elapsed time from CBSD sending instructions to EUT(10.0 s).

F-TP22-03 (Rev. 06) Page 45 of 202

8.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

■ BandWidth: 10 MHz

■ Voltage(100 %): 3.880 VDC

■ Batt. Endpoint: 3.300 VDC

■ LIMIT: <u>Emission must remain in band</u>

Test. Frequncy	Voltage	Temp.	Frequency	Frequency Error	Deviation	ppm	
(MHz)	(%)	(°C)	(Hz)	(Hz)	(%)		
	100 %	+20(Ref)	3554 999 998	0.0	0.000 000	0.000	
	100 %	-30	3554 999 996	-2.0	0.000 000	-0.001	
	100 %	-20	3554 999 987	-11.0	0.000 000	-0.003	
	100 %	-10	3554 999 995	-2.8	0.000 000	-0.001	
2555 000	100 %	0	3554 999 998	0.0	0.000 000	0.000	
3555.000	100 %	+10	3554 999 996	-1.3	0.000 000	0.000	
	100 %	+30	3554 999 996	-1.3	0.000 000	0.000	
	100 %	+40	3554 999 998	0.0	0.000 000	0.000	
	100 %	+50	3554 999 993	-4.7	0.000 000	-0.001	
	Batt. Endpoint	+20	3554 999 994	-3.2	0.000 000	-0.001	
	100 %	+20(Ref)	3694 979 998	0.0	0.000 000	0.000	
	100 %	-30	3694 979 995	-3.1	0.000 000	-0.001	
	100 %	-20	3694 979 994	-3.5	0.000 000	-0.001	
	100 %	-10	3694 979 994	-3.5	0.000 000	-0.001	
2604.000	100 %	0	3694 979 993	-4.4	0.000 000	-0.001	
3694.980	100 %	+10	3694 979 991	-6.5	0.000 000	-0.002	
	100 %	+30	3694 979 995	-2.5	0.000 000	-0.001	
	100 %	+40	3694 979 995	-2.6	0.000 000	-0.001	
	100 %	+50	3694 979 993	-5.0	0.000 000	-0.001	
	Batt. Endpoint	+20	3694 979 992	-6.2	0.000 000	-0.002	

F-TP22-03 (Rev. 06) Page 46 of 202

■ BandWidth: 15 MHz

■ Voltage(100 %): 3.880 VDC

■ Batt. Endpoint: 3.300 VDC

■ LIMIT: Emission must remain in band

Test. Frequncy	Voltage	Temp.	Frequency	Frequency Error	Deviation	ppm	
(MHz)	(%)	(°C)	(Hz)	(Hz)	(%)		
	100 %	+20(Ref)	3557 519 996	0.0	0.000 000	0.000	
	100 %	-30	3557 520 001	5.2	0.000 000	0.001	
	100 %	-20	3557 519 997	0.8	0.000 000	0.000	
	100 %	-10	3557 519 995	-0.9	0.000 000	0.000	
2557 520	100 %	0	3557 519 995	-1.7	0.000 000	0.000	
3557.520	100 %	+10	3557 519 995	-0.8	0.000 000	0.000	
	100 %	+30	3557 519 995	-1.7	0.000 000	0.000	
	100 %	+40	3557 519 993	-3.0	0.000 000	-0.001	
	100 %	+50	3557 519 999	2.3	0.000 000	0.001	
	Batt. Endpoint	+20	3557 519 991	-4.8	0.000 000	-0.001	
	100 %	+20(Ref)	3692 489 999	0.0	0.000 000	0.000	
	100 %	-30	3692 489 998	-1.5	0.000 000	0.000	
	100 %	-20	3692 489 995	-3.9	0.000 000	-0.001	
	100 %	-10	3692 490 003	3.7	0.000 000	0.001	
2002 400	100 %	0	3692 489 997	-2.2	0.000 000	-0.001	
3692.490	100 %	+10	3692 490 000	0.5	0.000 000	0.000	
	100 %	+30	3692 490 001	1.4	0.000 000	0.000	
	100 %	+40	3692 489 997	-2.1	0.000 000	-0.001	
	100 %	+50	3692 490 000	0.9	0.000 000	0.000	
	Batt. Endpoint	+20	3692 489 999	0.0	0.000 000	0.000	

F-TP22-03 (Rev. 06) Page 47 of 202

■ BandWidth: <u>20 MHz</u>

■ Voltage(100 %): 3.880 VDC

■ Batt. Endpoint: 3.300 VDC

■ LIMIT: Emission must remain in band

Test. Frequncy	Voltage	Temp.	Frequency	Frequency Error	Deviation	ppm	
(MHz)	(%)	(°C)	(Hz)	(Hz)	(%)		
	100 %	+20(Ref)	3560 009 999	0.0	0.000 000	0.000	
	100 %	-30	3560 009 993	-5.7	0.000 000	-0.002	
	100 %	-20	3560 009 996	-2.9	0.000 000	-0.001	
	100 %	-10	3560 009 995	-3.2	0.000 000	-0.001	
2500 010	100 %	0	3560 009 998	-0.7	0.000 000	0.000	
3560.010	100 %	+10	3560 010 004	5.3	0.000 000	0.001	
	100 %	+30	3560 009 997	-1.7	0.000 000	0.000	
	100 %	+40	3560 009 994	-4.5	0.000 000	-0.001	
	100 %	+50	3560 010 001	2.8	0.000 000	0.001	
	Batt. Endpoint	+20	3560 010 001	2.3	0.000 000	0.001	
	100 %	+20(Ref)	3689 999 998	0.0	0.000 000	0.000	
	100 %	-30	3689 999 997	-0.8	0.000 000	0.000	
	100 %	-20	3689 999 997	-1.3	0.000 000	0.000	
	100 %	-10	3689 999 995	-3.3	0.000 000	-0.001	
2000 000	100 %	0	3689 999 994	-3.9	0.000 000	-0.001	
3690.000	100 %	+10	3689 999 993	-5.0	0.000 000	-0.001	
	100 %	+30	3689 999 996	-1.9	0.000 000	-0.001	
	100 %	+40	3689 999 996	-2.0	0.000 000	-0.001	
	100 %	+50	3689 999 993	-4.9	0.000 000	-0.001	
	Batt. Endpoint	+20	3689 999 989	-8.9	0.000 000	-0.002	

F-TP22-03 (Rev. 06) Page 48 of 202

■ BandWidth: 30 MHz

■ Voltage(100 %): 3.880 VDC

■ Batt. Endpoint: 3.300 VDC

■ LIMIT: Emission must remain in band

Test. Frequncy	Voltage	Temp.	Frequency	Frequency Error	Deviation	ppm	
(MHz)	(%)	(°C)	(Hz)	(Hz)	(%)		
	100 %	+20(Ref)	3565 020 002	0.0	0.000 000	0.000	
	100 %	-30	3565 020 006	3.5	0.000 000	0.001	
	100 %	-20	3565 020 008	6.2	0.000 000	0.002	
	100 %	-10	3565 020 004	1.9	0.000 000	0.001	
2505 020	100 %	0	3565 020 009	7.1	0.000 000	0.002	
3565.020	100 %	+10	3565 020 006	4.3	0.000 000	0.001	
	100 %	+30	3565 020 011	9.3	0.000 000	0.003	
	100 %	+40	3565 020 011	9.0	0.000 000	0.003	
	100 %	+50	3565 020 015	12.5	0.000 000	0.004	
	Batt. Endpoint	+20	3565 020 008	5.8	0.000 000	0.002	
	100 %	+20(Ref)	3684 989 995	0.0	0.000 000	0.000	
	100 %	-30	3684 989 993	-2.1	0.000 000	-0.001	
	100 %	-20	3684 989 998	2.9	0.000 000	0.001	
	100 %	-10	3684 989 990	-5.2	0.000 000	-0.001	
2 200	100 %	0	3684 989 994	-1.6	0.000 000	0.000	
3.300	100 %	+10	3684 989 994	-1.5	0.000 000	0.000	
	100 %	+30	3684 989 994	-1.1	0.000 000	0.000	
	100 %	+40	3684 989 998	2.7	0.000 000	0.001	
	100 %	+50	3684 989 992	-3.5	0.000 000	-0.001	
	Batt. Endpoint	+20	3684 989 993	-2.1	0.000 000	-0.001	

F-TP22-03 (Rev. 06) Page 49 of 202

■ BandWidth: 40 MHz

■ Voltage(100 %): 3.880 VDC

■ Batt. Endpoint: 3.300 VDC

■ LIMIT: Emission must remain in band

Test. Frequncy	Voltage	Temp.	Frequency	Frequency Error	Deviation	ppm	
(MHz)	(%)	(°C)	(Hz)	(Hz)	(%)		
	100 %	+20(Ref)	3569 999 997	0.0	0.000 000	0.000	
	100 %	-30	3570 000 001	3.9	0.000 000	0.001	
	100 %	-20	3569 999 994	-3.2	0.000 000	-0.001	
	100 %	-10	3569 999 996	-1.3	0.000 000	0.000	
2570.000	100 %	0	3569 999 992	-5.2	0.000 000	-0.001	
3570.000	100 %	+10	3569 999 996	-0.9	0.000 000	0.000	
	100 %	+30	3570 000 000	2.9	0.000 000	0.001	
	100 %	+40	3569 999 995	-1.9	0.000 000	-0.001	
	100 %	+50	3569 999 996	-0.9	0.000 000	0.000	
	Batt. Endpoint	+20	3569 999 989	-7.5	0.000 000	-0.002	
	100 %	+20(Ref)	3679 979 995	0.0	0.000 000	0.000	
	100 %	-30	3679 979 990	-4.8	0.000 000	-0.001	
	100 %	-20	3679 979 989	-5.5	0.000 000	-0.002	
	100 %	-10	3679 979 989	-5.4	0.000 000	-0.001	
2670.000	100 %	0	3679 979 990	-4.4	0.000 000	-0.001	
3679.980	100 %	+10	3679 979 995	-0.1	0.000 000	0.000	
	100 %	+30	3679 979 988	-6.9	0.000 000	-0.002	
	100 %	+40	3679 979 986	-8.3	0.000 000	-0.002	
	100 %	+50	3679 979 991	-3.8	0.000 000	-0.001	
	Batt. Endpoint	+20	3679 979 989	-5.8	0.000 000	-0.002	

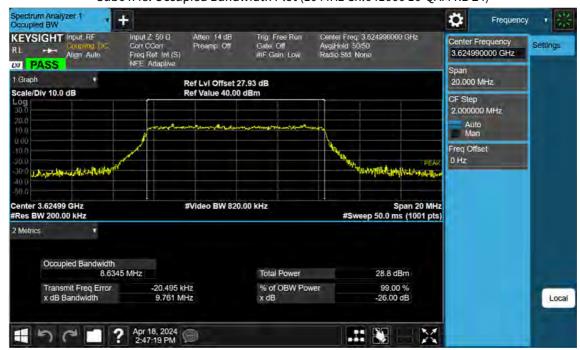
F-TP22-03 (Rev. 06) Page 50 of 202

9. TEST PLOTS

F-TP22-03 (Rev. 06) Page 51 of 202

Sub6 n48. Occupied Bandwidth Plot (10 MHz Ch. 641666 BPSK RB 24)

F-TP22-03 (Rev. 06) Page 52 of 202



Sub6 n48. Occupied Bandwidth Plot (10 MHz Ch. 641666 QPSK RB 24)

F-TP22-03 (Rev. 06) Page 53 of 202



Sub6 n48. Occupied Bandwidth Plot (10 MHz Ch.641666 16-QAM RB 24)

F-TP22-03 (Rev. 06) Page 54 of 202

Sub6 n48. Occupied Bandwidth Plot (10 MHz Ch.641666 64-QAM RB 24)

F-TP22-03 (Rev. 06) Page 55 of 202

Sub6 n48. Occupied Bandwidth Plot (10 MHz Ch.641666 256-QAM RB 24)

F-TP22-03 (Rev. 06) Page 56 of 202

Sub6 n48. Occupied Bandwidth Plot (15 MHz Ch. 641666 BPSK RB 36)

F-TP22-03 (Rev. 06) Page 57 of 202

Sub6 n48. Occupied Bandwidth Plot (15 MHz Ch. 641666 QPSK RB 36)

F-TP22-03 (Rev. 06) Page 58 of 202

Sub6 n48. Occupied Bandwidth Plot (15 MHz Ch.641666 16-QAM RB 36)

F-TP22-03 (Rev. 06) Page 59 of 202



Sub6 n48. Occupied Bandwidth Plot (15 MHz Ch.641666 64-QAM RB 36)

F-TP22-03 (Rev. 06) Page 60 of 202

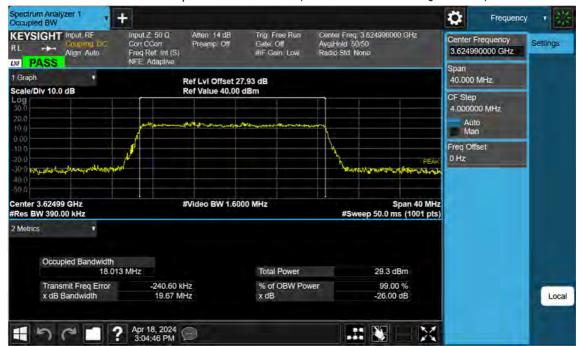


Sub6 n48. Occupied Bandwidth Plot (15 MHz Ch.641666 256-QAM RB 36)

F-TP22-03 (Rev. 06) Page 61 of 202

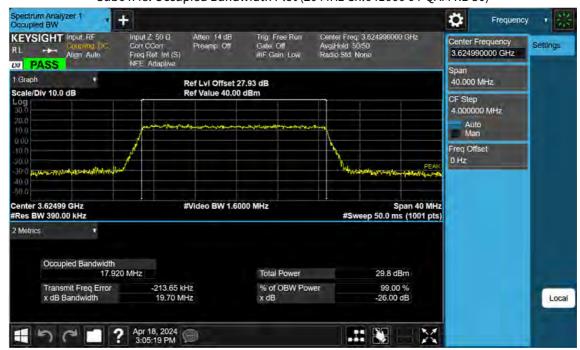
Sub6 n48. Occupied Bandwidth Plot (20 MHz Ch. 641666 BPSK RB 50)

F-TP22-03 (Rev. 06) Page 62 of 202



Sub6 n48. Occupied Bandwidth Plot (20 MHz Ch. 641666 QPSK RB 50)

F-TP22-03 (Rev. 06) Page 63 of 202



Sub6 n48. Occupied Bandwidth Plot (20 MHz Ch.641666 16-QAM RB 50)

F-TP22-03 (Rev. 06) Page 64 of 202



Sub6 n48. Occupied Bandwidth Plot (20 MHz Ch.641666 64-QAM RB 50)

F-TP22-03 (Rev. 06) Page 65 of 202

Sub6 n48. Occupied Bandwidth Plot (20 MHz Ch.641666 256-QAM RB 50)

F-TP22-03 (Rev. 06) Page 66 of 202

Sub6 n48. Occupied Bandwidth Plot (30 MHz Ch. 641666 BPSK RB 75)

F-TP22-03 (Rev. 06) Page 67 of 202

Sub6 n48. Occupied Bandwidth Plot (30 MHz Ch. 641666 QPSK RB 75)

F-TP22-03 (Rev. 06) Page 68 of 202

Sub6 n48. Occupied Bandwidth Plot (30 MHz Ch.641666 16-QAM RB 75)

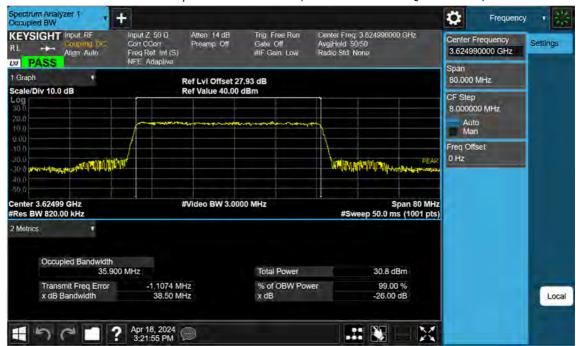
F-TP22-03 (Rev. 06) Page 69 of 202

Sub6 n48. Occupied Bandwidth Plot (30 MHz Ch.641666 64-QAM RB 75)

F-TP22-03 (Rev. 06) Page 70 of 202

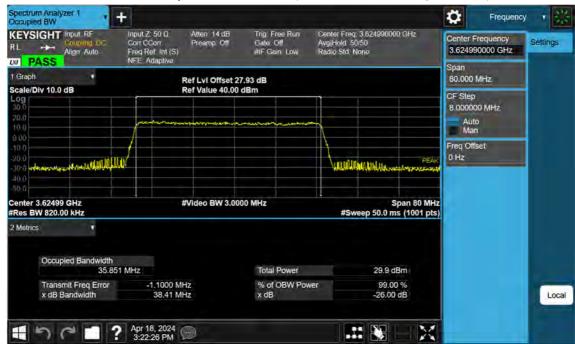
Sub6 n48. Occupied Bandwidth Plot (30 MHz Ch.641666 256-QAM RB 75)

F-TP22-03 (Rev. 06) Page 71 of 202



Sub6 n48. Occupied Bandwidth Plot (40 MHz Ch. 641666 BPSK RB 100)

F-TP22-03 (Rev. 06) Page 72 of 202

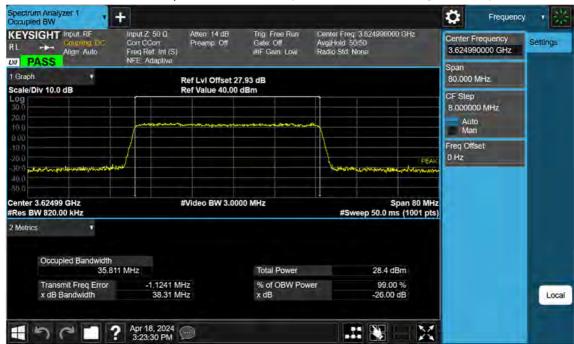


Sub6 n48. Occupied Bandwidth Plot (40 MHz Ch. 641666 QPSK RB 100)

F-TP22-03 (Rev. 06) Page 73 of 202

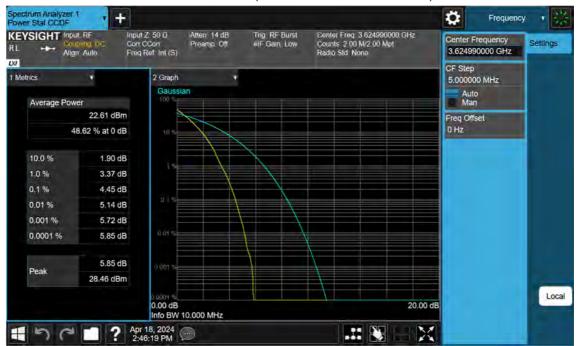
Sub6 n48. Occupied Bandwidth Plot (40 MHz Ch.641666 16-QAM RB 100)

F-TP22-03 (Rev. 06) Page 74 of 202



Sub6 n48. Occupied Bandwidth Plot (40 MHz Ch.641666 64-QAM RB 100)

F-TP22-03 (Rev. 06) Page 75 of 202



Sub6 n48. Occupied Bandwidth Plot (40 MHz Ch.641666 256-QAM RB 100)

F-TP22-03 (Rev. 06) Page 76 of 202

Sub6 n48. PAR Plot (10 MHz Ch. 641666 BPSK RB 24)

F-TP22-03 (Rev. 06) Page 77 of 202

Sub6 n48. PAR Plot (10 MHz Ch. 641666 QPSK RB 24)

F-TP22-03 (Rev. 06) Page 78 of 202

Sub6 n48. PAR Plot (10 MHz Ch.641666 16-QAM RB 24)

F-TP22-03 (Rev. 06) Page 79 of 202

Sub6 n48. PAR Plot (10 MHz Ch.641666 64-QAM RB 24)

F-TP22-03 (Rev. 06) Page 80 of 202

Sub6 n48. PAR Plot (10 MHz Ch.641666 256-QAM RB 24)

F-TP22-03 (Rev. 06) Page 81 of 202

Sub6 n48. PAR Plot (15 MHz Ch. 641666 BPSK RB 36)

F-TP22-03 (Rev. 06) Page 82 of 202

Sub6 n48. PAR Plot (15 MHz Ch. 641666 QPSK RB 36)

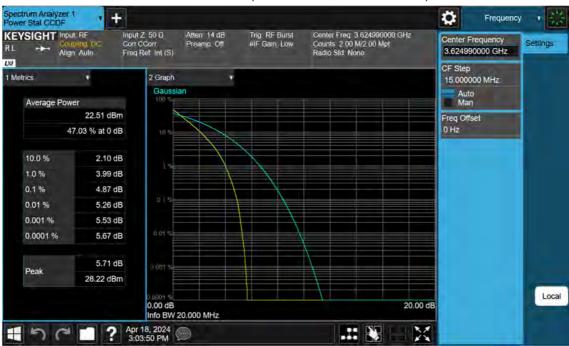
F-TP22-03 (Rev. 06) Page 83 of 202

Sub6 n48. PAR Plot (15 MHz Ch.641666 16-QAM RB 36)

F-TP22-03 (Rev. 06) Page 84 of 202

Sub6 n48. PAR Plot (15 MHz Ch.641666 64-QAM RB 36)

F-TP22-03 (Rev. 06) Page 85 of 202



Sub6 n48. PAR Plot (15 MHz Ch.641666 256-QAM RB 36)

F-TP22-03 (Rev. 06) Page 86 of 202



Sub6 n48. PAR Plot (20 MHz Ch. 641666 BPSK RB 50)

F-TP22-03 (Rev. 06) Page 87 of 202



Sub6 n48. PAR Plot (20 MHz Ch. 641666 QPSK RB 50)

F-TP22-03 (Rev. 06) Page 88 of 202

Sub6 n48. PAR Plot (20 MHz Ch.641666 16-QAM RB 50)

F-TP22-03 (Rev. 06) Page 89 of 202

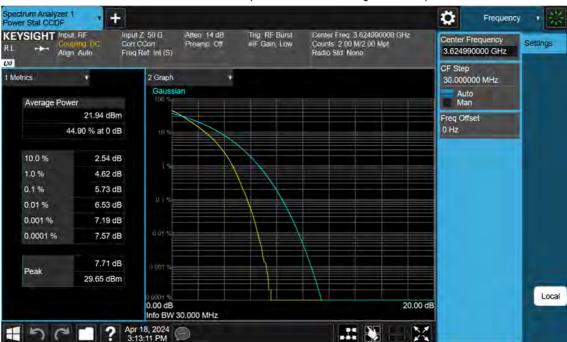
Sub6 n48. PAR Plot (20 MHz Ch.641666 64-QAM RB 50)

F-TP22-03 (Rev. 06) Page 90 of 202

Spectrum Analyzer 1 Power Stal CCDF + ø Frequency Input Z: 50 Q Corr CCorr Freq Ref: Int (S) Center Freq. 3 624990000 GHz Counts 2 00 M/2 00 Mpt Radio Std. None Atten 14 dB Preamo Off KEYSIGHT Input RF Trig. RF Burst #IF Gain: Low Center Frequency 3.624990000 GHz Alian Auto Da CF Step 20.000000 MHz Gauss Auto Man Average Power 19.58 dBm Freq Offset 0 Hz 43,30 % at 0 dB 10.0 % 3.14 dB 1.0 % 5.12 dB 6.66 dB 0.01 % 7.59 dB 0.001 % 8.19 dB 8.59 dB 0.0001 % 8.59 dB 28.17 dBm Local 0.00 dB Info BW 20.000 MHz 20.00 dB ? Apr 18, 2024 3:05:59 PM III 💸

Sub6 n48. PAR Plot (20 MHz Ch.641666 256-QAM RB 50)

F-TP22-03 (Rev. 06) Page 91 of 202



Sub6 n48. PAR Plot (30 MHz Ch. 641666 BPSK RB 75)

F-TP22-03 (Rev. 06) Page 92 of 202

Sub6 n48. PAR Plot (30 MHz Ch. 641666 QPSK RB 75)

F-TP22-03 (Rev. 06) Page 93 of 202

Sub6 n48. PAR Plot (30 MHz Ch.641666 16-QAM RB 75)

F-TP22-03 (Rev. 06) Page 94 of 202

Sub6 n48. PAR Plot (30 MHz Ch.641666 64-QAM RB 75)

F-TP22-03 (Rev. 06) Page 95 of 202

Sub6 n48. PAR Plot (30 MHz Ch.641666 256-QAM RB 75)

F-TP22-03 (Rev. 06) Page 96 of 202

Sub6 n48. PAR Plot (40 MHz Ch. 641666 BPSK RB 100)

F-TP22-03 (Rev. 06) Page 97 of 202

Sub6 n48. PAR Plot (40 MHz Ch. 641666 QPSK RB 100)

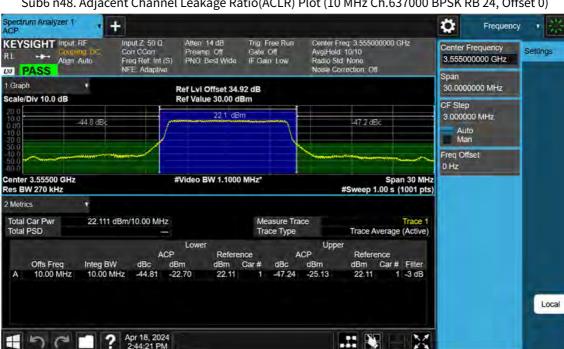
F-TP22-03 (Rev. 06) Page 98 of 202

Sub6 n48. PAR Plot (40 MHz Ch.641666 16-QAM RB 100)

F-TP22-03 (Rev. 06) Page 99 of 202

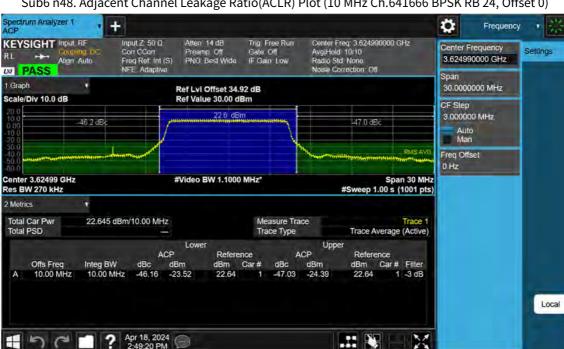
Sub6 n48. PAR Plot (40 MHz Ch.641666 64-QAM RB 100)

F-TP22-03 (Rev. 06) Page 100 of 202



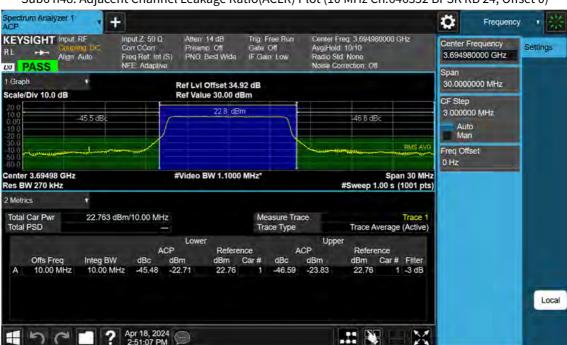
Sub6 n48. PAR Plot (40 MHz Ch.641666 256-QAM RB 100)

F-TP22-03 (Rev. 06) Page 101 of 202



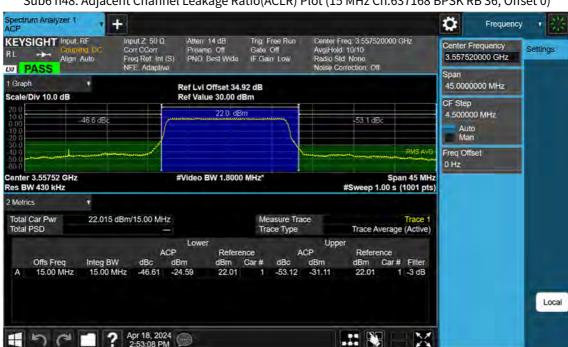
Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (10 MHz Ch.637000 BPSK RB 24, Offset 0)

F-TP22-03 (Rev. 06) Page 102 of 202



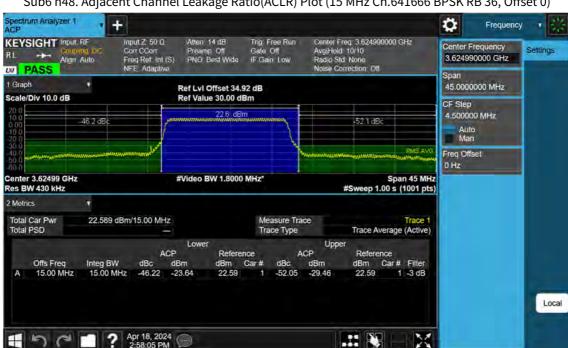
Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (10 MHz Ch.641666 BPSK RB 24, Offset 0)

F-TP22-03 (Rev. 06) Page 103 of 202



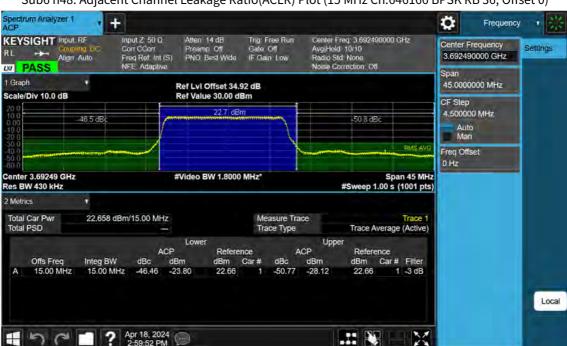
Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (10 MHz Ch.646332 BPSK RB 24, Offset 0)

F-TP22-03 (Rev. 06) Page 104 of 202



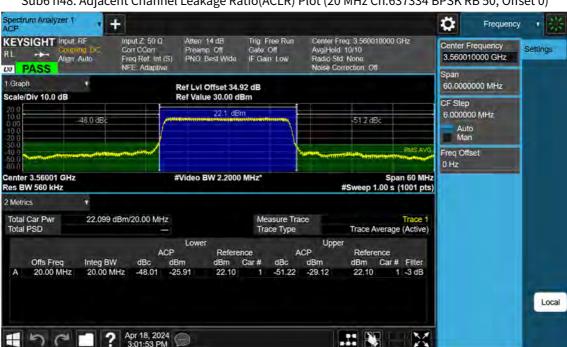
Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (15 MHz Ch.637168 BPSK RB 36, Offset 0)

F-TP22-03 (Rev. 06) Page 105 of 202



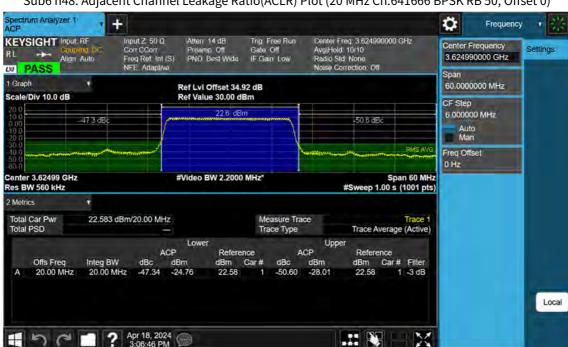
Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (15 MHz Ch.641666 BPSK RB 36, Offset 0)

F-TP22-03 (Rev. 06) Page 106 of 202



Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (15 MHz Ch.646166 BPSK RB 36, Offset 0)

F-TP22-03 (Rev. 06) Page 107 of 202



Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (20 MHz Ch.637334 BPSK RB 50, Offset 0)

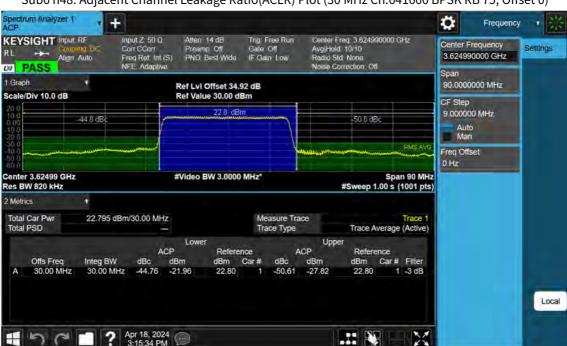
F-TP22-03 (Rev. 06) Page 108 of 202

Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (20 MHz Ch.641666 BPSK RB 50, Offset 0)

F-TP22-03 (Rev. 06) Page 109 of 202

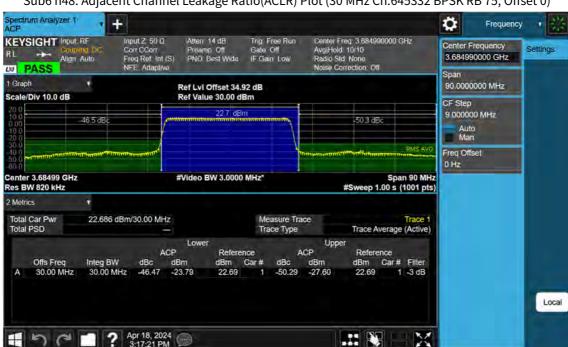
Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (20 MHz Ch.646000 BPSK RB 50, Offset 0)

F-TP22-03 (Rev. 06) Page 110 of 202



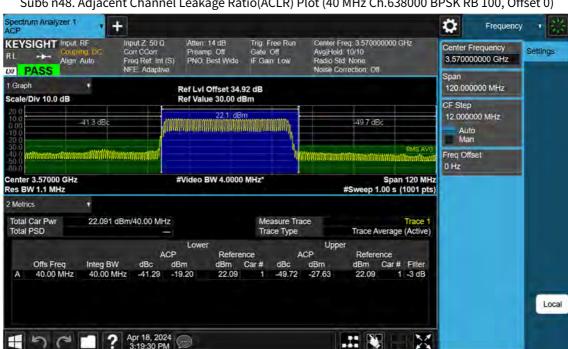
Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (30 MHz Ch.638000 BPSK RB 75, Offset 0)

F-TP22-03 (Rev. 06) Page 111 of 202



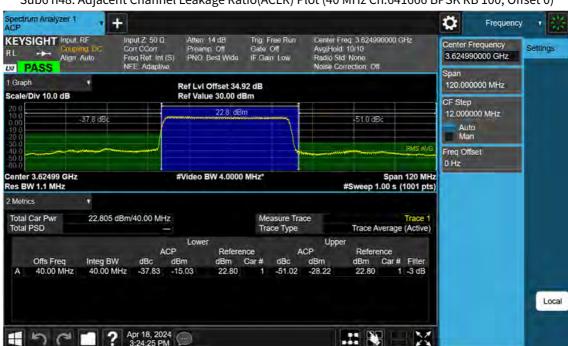
Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (30 MHz Ch.641666 BPSK RB 75, Offset 0)

F-TP22-03 (Rev. 06) Page 112 of 202



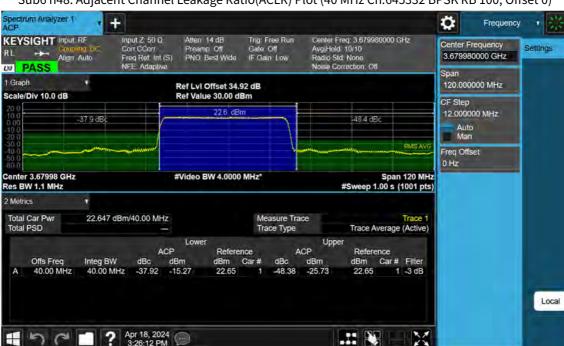
Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (30 MHz Ch.645332 BPSK RB 75, Offset 0)

F-TP22-03 (Rev. 06) Page 113 of 202



Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (40 MHz Ch.638000 BPSK RB 100, Offset 0)

F-TP22-03 (Rev. 06) Page 114 of 202



Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (40 MHz Ch.641666 BPSK RB 100, Offset 0)

F-TP22-03 (Rev. 06) Page 115 of 202

Sub6 n48. Adjacent Channel Leakage Ratio(ACLR) Plot (40 MHz Ch.645332 BPSK RB 100, Offset 0)

F-TP22-03 (Rev. 06) Page 116 of 202

Sub6 n48. 10 M BandEdge(Lower)_Low_3555.00 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 117 of 202

Sub6 n48. 10 M_BandEdge(Upper)_Low_ 3555.00 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 118 of 202

Sub6 n48. 10 M_BandEdge(Lower)_Low_ 3555.00 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 119 of 202

Sub6 n48. 10 M_BandEdge(Upper)_Low_ 3555.00 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 120 of 202

Sub6 n48. 10 M_BandEdge(Center)_Mid_3624.99 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 121 of 202

Sub6 n48. 10 M_BandEdge(Lower)_Mid_3624.99 MHz_BPSK_1RB

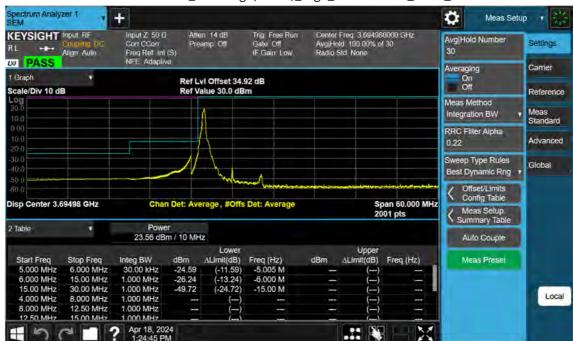
F-TP22-03 (Rev. 06) Page 122 of 202

Sub6 n48. 10 M_BandEdge(Upper)_Mid_3624.99 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 123 of 202

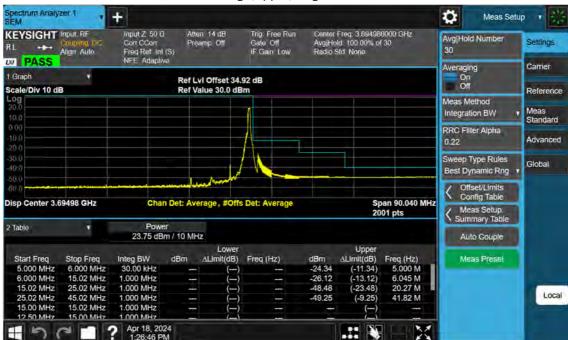
Sub6 n48. 10 M_BandEdge(Lower)_High_ 3694.98 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 124 of 202



Sub6 n48. 10 M_BandEdge(Upper)_High_ 3694.98 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 125 of 202



Sub6 n48. 10 M_BandEdge(Lower)_High_ 3694.98 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 126 of 202

Sub6 n48. 10 M_BandEdge(Upper)_High_ 3694.98 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 127 of 202

Sub6 n48. 15 M BandEdge(Lower)_Low_ 3557.52 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 128 of 202

Sub6 n48. 15 M_BandEdge(Upper)_Low_ 3557.52 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 129 of 202

Sub6 n48. 15 M_BandEdge(Lower)_Low_ 3557.52 MHz_BPSK_1RB

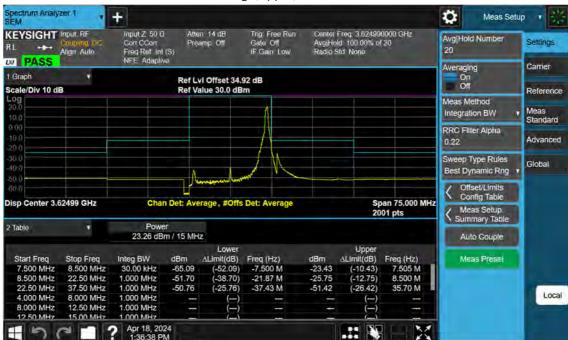
F-TP22-03 (Rev. 06) Page 130 of 202

Sub6 n48. 15 M_BandEdge(Upper)_Low_ 3557.52 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 131 of 202

Sub6 n48. 15 M_BandEdge(Center)_Mid_3624.99 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 132 of 202



Sub6 n48. 15 M_BandEdge(Lower)_Mid_3624.99 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 133 of 202

Sub6 n48. 15 M_BandEdge(Upper)_Mid_3624.99 MHz_BPSK_1RB

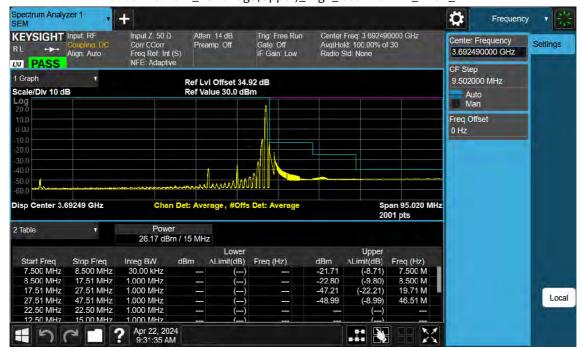
F-TP22-03 (Rev. 06) Page 134 of 202

Sub6 n48. 15 M_BandEdge(Lower)_High_ 3692.49 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 135 of 202

ub6 n48. 15 M_BandEdge(Upper)_High_ 3692.49 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 136 of 202



Sub6 n48. 15 M_BandEdge(Lower)_High_ 3692.49 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 137 of 202

Sub6 n48. 15 M_BandEdge(Upper)_High_ 3692.49 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 138 of 202

Sub6 n48. 20 M BandEdge(Lower)_Low_ 3560.01 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 139 of 202

Sub6 n48. 20 M_BandEdge(Upper)_Low_ 3560.01 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 140 of 202

Sub6 n48. 20 M_BandEdge(Lower)_Low_ 3560.01 MHz_BPSK_1RB

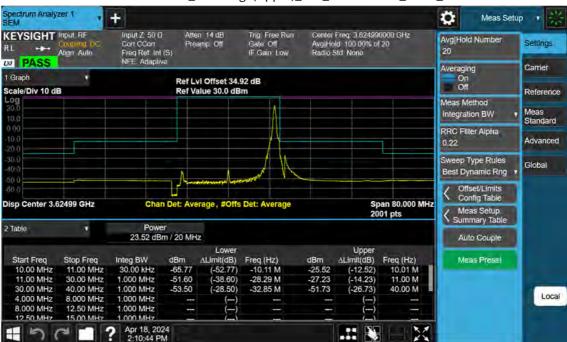
F-TP22-03 (Rev. 06) Page 141 of 202

Sub6 n48. 20 M_BandEdge(Upper)_Low_ 3560.01 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 142 of 202

Sub6 n48. 20 M_BandEdge(Center)_Mid_3624.99 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 143 of 202



Sub6 n48. 20 M_BandEdge(Lower)_Mid_3624.99 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 144 of 202

Sub6 n48. 20 M_BandEdge(Upper)_Mid_3624.99 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 145 of 202

Sub6 n48. 20 M_BandEdge(Lower)_High_ 3690.00 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 146 of 202

Sub6 n48. 20 M_BandEdge(Upper)_High_ 3690.00 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 147 of 202

Sub6 n48. 20 M_BandEdge(Lower)_High_ 3690.00 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 148 of 202

Sub6 n48. 20 M_BandEdge(Upper)_High_ 3690.00 MHz_BPSK_1RB

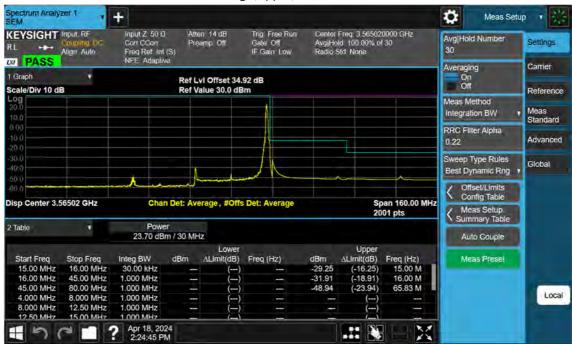
F-TP22-03 (Rev. 06) Page 149 of 202

Sub6 n48. 30 M BandEdge(Lower)_Low_3565.02 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 150 of 202

Sub6 n48. 30 M_BandEdge(Upper)_Low_ 3565.02 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 151 of 202



Sub6 n48. 30 M_BandEdge(Lower)_Low_ 3565.02 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 152 of 202

Sub6 n48. 30 M_BandEdge(Upper)_Low_ 3565.02 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 153 of 202

Sub6 n48. 30 M_BandEdge(Center)_Mid_3624.99 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 154 of 202

Sub6 n48. 30 M_BandEdge(Lower)_Mid_3624.99 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 155 of 202

Sub6 n48. 30 M_BandEdge(Upper)_Mid_3624.99 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 156 of 202

Sub6 n48. 30 M_BandEdge(Lower)_High_ 3684.99 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 157 of 202

Sub6 n48. 30 M_BandEdge(Upper)_High_ 3684.99 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 158 of 202

Sub6 n48. 30 M_BandEdge(Lower)_High_ 3684.99 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 159 of 202

Sub6 n48. 30 M_BandEdge(Upper)_High_ 3684.99 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 160 of 202

Sub6 n48. 40 M BandEdge(Lower)_Low_ 3570.00 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 161 of 202

Sub6 n48. 40 M_BandEdge(Upper)_Low_ 3570.00 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 162 of 202

Sub6 n48. 40 M_BandEdge(Lower)_Low_ 3570.00 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 163 of 202

Sub6 n48. 40 M_BandEdge(Upper)_Low_ 3570.00 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 164 of 202

Sub6 n48. 40 M_BandEdge(Center)_Mid_3624.99 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 165 of 202

Sub6 n48. 40 M_BandEdge(Lower)_Mid_3624.99 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 166 of 202

Sub6 n48. 40 M_BandEdge(Upper)_Mid_3624.99 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 167 of 202

Sub6 n48. 40 M_BandEdge(Lower)_High_ 3679.98 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 168 of 202

Sub6 n48. 40 M_BandEdge(Upper)_High_ 3679.98 MHz_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 169 of 202



Sub6 n48. 40 M_BandEdge(Lower)_High_ 3679.98 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 170 of 202

Sub6 n48. 40 M_BandEdge(Upper)_High_ 3679.98 MHz_BPSK_1RB

F-TP22-03 (Rev. 06) Page 171 of 202

Sub6 n48. Conducted Spurious Plot 1 (10 MHz Ch. 637000 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 172 of 202

Sub6 n48. Conducted Spurious Plot 2 (10 MHz Ch. 637000 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 173 of 202



Sub6 n48. Conducted Spurious Plot 1 (10 MHz Ch. 641666 BPSK RB 1, Offset 1)

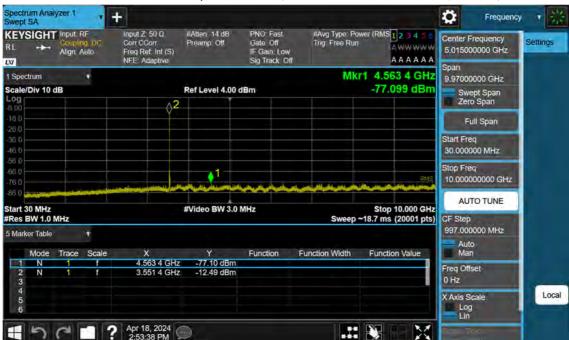
F-TP22-03 (Rev. 06) Page 174 of 202

Sub6 n48. Conducted Spurious Plot 2 (10 MHz Ch. 641666 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 175 of 202

Sub6 n48. Conducted Spurious Plot 1 (10 MHz Ch. 646332 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 176 of 202



Sub6 n48. Conducted Spurious Plot 2 (10 MHz Ch. 646332 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 177 of 202

Sub6 n48. Conducted Spurious Plot 1 (15 MHz Ch. 637168 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 178 of 202

Sub6 n48. Conducted Spurious Plot 2 (15 MHz Ch. 637168 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 179 of 202

Sub6 n48. Conducted Spurious Plot 1 (15 MHz Ch. 641666 BPSK RB 1, Offset 1)

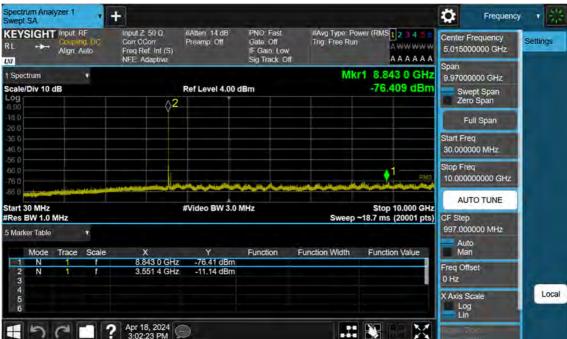
F-TP22-03 (Rev. 06) Page 180 of 202

Sub6 n48. Conducted Spurious Plot 2 (15 MHz Ch. 641666 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 181 of 202

Sub6 n48. Conducted Spurious Plot 1 (15 MHz Ch. 646166 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 182 of 202

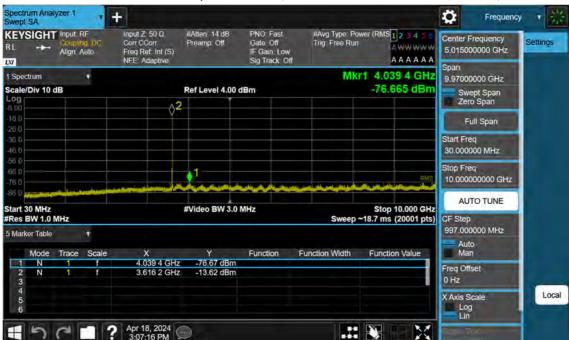


Sub6 n48. Conducted Spurious Plot 2 (15 MHz Ch. 646166 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 183 of 202

Sub6 n48. Conducted Spurious Plot 1 (20 MHz Ch. 637334 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 184 of 202



Sub6 n48. Conducted Spurious Plot 2 (20 MHz Ch. 637334 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 185 of 202

Sub6 n48. Conducted Spurious Plot 1 (20 MHz Ch. 641666 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 186 of 202

Sub6 n48. Conducted Spurious Plot 2 (20 MHz Ch. 641666 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 187 of 202

Sub6 n48. Conducted Spurious Plot 1 (20 MHz Ch. 646000 BPSK RB 1, Offset 1)

F-TP22-03 (Rev. 06) Page 188 of 202