

	50 Ω DO 2.5350000 NFE	00 GHz	Tr	SENSE:INT enter Freq: 2. ig: Free Run atten: 20 dB	535000000 GH	ALIGN AL 2 00.00% of	Radio 20	:33 PM Apr 17, 2024 Std: None Device: BTS	Frequency
) dB/div	Ref Offset 27.0 Ref 30.0 dB								
og 0.0 0.0			A					Residue Dira	Center Fre 2.535000000 GH
		1.						Absolute Limit	
0.0								Spectrum	
enter 2.535		9 dBm / 51	MHz				Spa	n 20.00 MHz	CF Step 2.000000 MH Auto Ma
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	< Freg (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	Freq Offse
2.500 MHz	3.500 MHz	100.0 kHz	-19,94	(-9.94)	-2.500 M	-20.82	(-10.82)	2.500 M	0 H
3.500 MHz	7.500 MHz	1.000 MHz	-21.71	(-11,71)	-3.500 M	-20.02	(-11.10)	3.500 M	
7.500 MHz	8.500 MHz	1.000 MHz	-36.88	(-23.88)	-7.515 M	-35.83	(-22.83)	7.500 M ■	
8.500 MHz	10.00 MHz	1.000 MHz	-39.60	(-14.60)	-8.500 M	-38.44	(-13.44)	8.500 M	
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz		-	()			()		
12.00 MHZ									

Sub6 n7. Mid Channel Edge Plot (5 MHz Ch.507000 BPSK)

	RF 50 Ω D			SENSE:INT		ALIGN A		:42 PM Apr17, 2024	Frequency
enter Freq ASS	2.5675000 NFE		-+- Tri	nter Freq: 2. g: Free Run tten: 20 dB	567500000 GH Avg: 1	z 00.00% of	20	Std: None Device: BTS	inequency
dB/div	Ref Offset 27. Ref 30.0 dE								
ja								Relative Lint	
					Λ				Center Fre
0,0									2.567500000 GH
00					{ } }				
					_/	_		Absolute Limit	
0.0									
1.0									
				at the second					
1.0				and a state of the second	h		and the second s		
0.0			- ALLAN	No. No. of Concession, Name			- marine	Spectrum	
0.0									
enter 2.567	750 GHz	~ <u>,</u>	- T				Spa	an 20.00 MHz	
		3 dBm / 5 l	MHz				Spa	an 20.00 MHz	CF Ste 2.000000 MH <u>Auto</u> Ma
enter 2.567 otal Power	Ref 23.9			Lower		Peak ->	Upper		2.000000 MH <u>Auto</u> Ma
enter 2.567 otal Power	Ref 23.9 Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	Upper ∆Lim(dB)	Freq (Hz)	2.000000 MH Auto Ma Freq Offse
enter 2.567 otal Power Start Freq 2.500 MHz	Ref 23.9 Stop Freq 3.500 MHz	Integ BW 30.00 kHz	dBm -61.79	∆Lim(dB) (-51.79)	Freq (Hz) -2.580 M	dBm -17.18	Upper ∆Lim(dB) (-7.18)	Freq (Hz) 2.500 M 🛃	2.000000 MH <u>Auto</u> Ma
enter 2.567 otal Power Start Freq 2.500 MHz 3.500 MHz	Ref 23.9 Stop Freq 3.500 MHz 7.500 MHz	Integ BW 30.00 kHz 1.000 MHz	dBm -61.79 -49.73	ΔLim(dB) (-51.79) (-39.73)	Freq (Hz) -2.580 M -3.500 M	dBm -17.18 -29.17	Upper ΔLim(dB) (-7.18) (-19.17)	Freq (Hz) 2.500 M 3.500 M	2.000000 MH Auto Ma
enter 2.567 otal Power Start Freq 2.500 MHz 3.500 MHz 7.500 MHz	Ref 23.9 Stop Freq 3.500 MHz 7.500 MHz 8.500 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz	dBm -61.79 -49.73 -53.29	ΔLim(dB) (-51.79) (-39.73) (-40.29)	Freq (Hz) -2.580 M -3.500 M -7.565 M	dBm -17.18 -29.17 -51.41	Upper ∆Lim(dB) (-7.18) (-19.17) (-38.41)	Freq (Hz) 2.500 M 3.500 M 7.580 M ■	2.000000 MH Auto Ma Freq Offs
enter 2.567 otal Power Start Freq 2.500 MHz 3.500 MHz 7.500 MHz 8.500 MHz	Ref 23.9 Stop Freq 3.500 MHz 7.500 MHz 8.500 MHz 10.00 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -61.79 -49.73	ΔLim(dB) (-51.79) (-39.73) (-40.29) (-28.79)	Freq (Hz) -2.580 M -3.500 M	dBm -17.18 -29.17	Upper ∆Lim(dB) (-7.18) (-19.17) (-38.41) (-27.82)	Freq (Hz) 2.500 M 3.500 M	2.000000 MH Auto Ma Freq Offs
enter 2.567 otal Power Start Freq 2.500 MHz 3.500 MHz 7.500 MHz 8.500 MHz 8.000 MHz	Ref 23.9 Stop Freq 3.500 MHz 7.500 MHz 8.500 MHz 10.00 MHz 12.50 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -61.79 -49.73 -53.29 -53.79 	ΔLim(dB) (-51.79) (-39.73) (-40.29) (-28.79) ()	Freq (Hz) -2.580 M -3.500 M -7.565 M	dBm -17.18 -29.17 -51.41	Upper ∆Lim(dB) (-7.18) (-19.17) (-38.41) (-27.82) ()	Freq (Hz) 2.500 M 3.500 M 7.580 M ■	2.000000 MH Auto Ma Freq Offs
enter 2.567 otal Power Start Freq 2.500 MHz 3.500 MHz 7.500 MHz 8.500 MHz	Ref 23.9 Stop Freq 3.500 MHz 7.500 MHz 8.500 MHz 10.00 MHz 12.50 MHz 15.00 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -61.79 -49.73 -53.29 -53.79	ΔLim(dB) (-51.79) (-39.73) (-40.29) (-28.79)	Freq (Hz) -2.580 M -3.500 M -7.565 M	dBm -17.18 -29.17 -51.41	Upper ∆Lim(dB) (-7.18) (-19.17) (-38.41) (-27.82)	Freq (Hz) 2.500 M 3.500 M 7.580 M ■	2.000000 MH Auto Ma

Sub6 n7. High Channel Edge Plot (5 MHz Ch.513500 BPSK RB 1)

100	RF 50 Ω DO 2.5675000 NFE	00 GHz	Tri	ig: Free Run	567500000 GH	ALIGN AI 00.00% of	Radio 20	:37 PM Apr 17, 2024 Std: None	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB		w #A	tten: 20 dB			Radio	Device: BTS	
og 0.0 0.0								Rentive Dire	Center Fre 2.567500000 GH
								Absolute Limit	
0.0								Spectrum	
enter 2.567		5 dBm / 51	MHz				Spa	in 20.00 MHz	CF St ej 2.000000 MH <u>Auto</u> Ma
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	< Freq (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	Freq Offse
2.500 MHz	3.500 MHz	100.0 kHz	-22.24	(-12.24)	-2.500 M	-19.83	(-9.83)	2.500 M	0 H
3.500 MHz	7.500 MHz	1.000 MHz	-23.76	(-13.76)	-3.500 M	-22.81	(-12.81)	3.500 M	
7.500 MHz	8.500 MHz	1.000 MHz	-39.60	(-26.60)	-7.980 M	-43.60	(-30.60)	7.500 M ≡	
8.500 MHz	10.00 MHz	1.000 MHz	-40.16	(-15.16)	-8.500 M	-45.44	(-20.44)	8.500 M	
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
10 50 1411-	15.00 MHz	1.000 MHz		()			()		
12.50 MHz		4.000.1411-		1 1			1		
12.50 MHz 12.50 MHz	15.00 MHz	1.000 MHz						-	

Sub6 n7. High Channel Edge Plot (5 MHz Ch.513500 BPSK)

	2.5050000				505000000 GH		Radio	:52 PM Apr 17, 2024 Std: None	Frequency
ASS	NFE	IFGain:Lo		g: Free Run tten: 20 dB	Avg: 1	00.00% of		Device: BTS	
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og								ASSISTATION	-
10.0 ·····			1						Center Fre
0.0									2.505000000 GH
0.0									
0.0									
0.0			1			_			
0.0				1		_			
0.0			1	h.,					
				and a second	-			Spectrum	
50.0					- malenner			Spectrum	
enter 2.505		4 dBm / 10 l	MHz				Spa	in 69.00 MHz	CF Ste 6.900000 MH <u>Auto</u> Ma
				Lower	<-	Peak ->	Upper		
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	ΔLim(dB)	Freq (Hz)	Freq Offse
5.000 MHz	6.000 MHz	30.00 kHz	-21.87	(-11.87)	-5.000 M		()		0 H
6.000 MHz	9.000 MHz	1.000 MHz	-29.72	(-19.72)	-6.000 M		()		
9.000 MHz	14.50 MHz	1.000 MHz	-49.31	(-36.31)	-9.028 M		()	a	
14.50 MHz	34.50 MHz	1.000 MHz	-54.69	(-29.69)	-15.10 M		()		
5.000 MHz	34.50 MHz	270.0 kHz		()		-58.28	(-108.28)	7.021 M	
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
10 50 544	15.00 MHz	1.000 MHz		()			()		
12.50 MHz	10.00 101.12	1.000 1111							

Sub6 n7. Low Channel Edge Plot (10 MHz Ch.501000 BPSK RB 1)-1

	n Analyzer - Spectrur RF 50 Ω D		-	SENSE:INT	d T	ALIGN AL	ITO 08:07	:34 PM Apr 17, 2024	
	2.5050000 NFE	00 GHz	Tri		505000000 GH		Radio 20	Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og	Iter oo.o al							ATCH AN IN	
20.0									Center Fre
0.0									2.505000000 GH
.00					7				
0.0									
0.0									
0.0			~ 1		7 0				
0.0					my	~		_	
0.0		~				12.0			
							win		
0,0							han	Spectrum	
enter 2.505							Spa	n 69.00 MHz	6.900000 MH
otal Power	Ref 23.4	7 dBm / 10	MHz	Lower	4	Peak ->	Upper		<u>Auto</u> Ma
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)		dBm	∆Lim(dB)	Freq (Hz)	Freq Offs
5.000 MHz	6.000 MHz	200.0 kHz	-22.63	(-12.63)	-5.000 M		()	· · · ·	0 H
6.000 MHz	9.000 MHz	1.000 MHz	-24.79	(-14.79)	-6.000 M		()		
9.000 MHz	14.50 MHz	1.000 MHz	-28.79	(-15.79)	-9.055 M		()		P
14.50 MHz	34.50 MHz	1.000 MHz	-44.05	(-19.05)	-15.20 M		()		
5.000 MHz	34.50 MHz	270.0 kHz		()		-24.29	(-74.29)	5.000 M	
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()	_		()		-

Sub6 n7. Low Channel Edge Plot (10 MHz Ch.501000 BPSK)-1

enter Fred	RF 50 Ω Di 2.5050000 NFE	00 GHz	Tri	SENSE:INT nter Freq: 2. g: Free Run tten: 20 dB	505000000 GH:	ALIGN AL 00.00% of 1	Radio 20	:33 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og 20.0			٨					Relative Link	Contra Free
10.0			- 11						Center Free
									2.50500000 GH
0.00									
0.0			+			-			
0.0			11					Absolute Limit	
0.0		-	1						
0.0		/	~ ~						
0.0		MAN		Adr.					
		and the second		Wild Lines	automation -	~		Spectrum	
0.0		and and							
enter 2.505 otal Power		4 dBm / 10 l	MHz				Spa	in 40.00 MHz	CF Step 4.000000 MH Auto Ma
				Lower	<-	Peak ->	Upper		Ener Offer
		Integ BW	dBm	$\Delta Lim(dB)$	Freq (Hz)	dBm	$\Delta Lim(dB)$	Freq (Hz)	Freq Offse
Start Freq	Stop Freq	integ bw	obiii	acim(00)					
5.000 MHz	6.000 MHz	30.00 kHz	-	()	-	-66.02	(-56.02)	5.020 M 🖆	UH
5.000 MHz 6.000 MHz	6.000 MHz 10.00 MHz	30.00 kHz 1.000 MHz		() ()		-54.56	(-44.56)	6.620 M	
5.000 MHz 6.000 MHz 10.00 MHz	6.000 MHz 10.00 MHz 15.00 MHz	30.00 kHz 1.000 MHz 1.000 MHz		() ()	-	-54.56 -55.03	(-44.56) (-42.03)	6.620 M 10.78 M [≡]	
5.000 MHz 6.000 MHz 10.00 MHz 15.00 MHz	6.000 MHz 10.00 MHz 15.00 MHz 20.00 MHz	30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz		() () ()		-54.56	(-44.56) (-42.03) (-30.31)	6.620 M	U.
5.000 MHz 6.000 MHz 10.00 MHz 15.00 MHz 5.000 MHz	6.000 MHz 10.00 MHz 15.00 MHz 20.00 MHz 20.00 MHz	30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 150.0 kHz		() () () (-63.52)	1.1.1	-54.56 -55.03	(-44.56) (-42.03) (-30.31) ()	6.620 M 10.78 M [≡]	
5.000 MHz 6.000 MHz 10.00 MHz 15.00 MHz	6.000 MHz 10.00 MHz 15.00 MHz 20.00 MHz 20.00 MHz 15.00 MHz	30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz		() () ()		-54.56 -55.03 -55.31	(-44.56) (-42.03) (-30.31)	6.620 M 10.78 M [≡]	

Sub6 n7. Low Channel Edge Plot (10 MHz Ch.501000 BPSK RB 1)-2

1.14	RF 50 Ω DI 2.5050000 NFE	00 GHz	Tr	sense:INT enter Freq: 2. ig: Free Run itten: 20 dB	505000000 GH	ALIGN A	Radio 20	:15 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og 20.0 10.0					~~~			Relative Lana	Center Free 2.505000000 GH
0.00 10.0									
0.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1			Absolute Limit	
50.0 0.0	\sim								
enter 2.505							Spa	n 40.00 MHz	CF Ste 4.000000 MH Auto Ma
otal Power	Ref 23.6	3 dBm / 10	MHz	Lower	4	Peak ->	Upper		
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	ΔLim(dB)	Freq (Hz)	Freq Offse
5.000 MHz	6.000 MHz	200.0 kHz		()	_	-24.94	(-14.94)	5.000 M 🗠	0 H
6.000 MHz	10.00 MHz	1.000 MHz		()		-23.18	(-13.18)	6.000 M	-
10.00 MHz	15.00 MHz	1.000 MHz		()		-29.29	(-16.29)	10.00 M 🗧	
15.00 MHz	20.00 MHz	1.000 MHz		()		-40.29	(-15.29)	15.00 M	
5.000 MHz	20.00 MHz	150.0 kHz	-23.85	(-73.85)	-5.000 M		()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
12.00 10112		1 0 0 0 0 10 1					1 1		
12.50 MHz	15.00 MHz	1.000 MHz	-	()				_	

Sub6 n7. Low Channel Edge Plot (10 MHz Ch.501000 BPSK)-2

100	2.5350000 NFE	00 GHz	Tri	SENSE:INT nter Freq: 2. ig: Free Run tten: 20 dB	535000000 GH	ALIGN AU 2 00.00% of 3	Radio 20	:58 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og 20.0 .0.0 .00								Relative Linit	Center Fre 2.535000000 GH
0.0 0.0								Absolute Limit	
								Spectrum	
enter 2.535	00 GHz						Spa	n 40.00 MHz	CF Ster
otal Power	Ref 24.12	2 dBm / 10 l	MHz						4.000000 MH Auto Ma
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	Freq (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	Freq Offse
5.000 MHz	6.000 MHz	200.0 kHz	-22.37	(-12.37)	-5.005 M	-28.19	(-18.19)	5.010 M 🖄	0 H
6.000 MHz	10.00 MHz	1.000 MHz	-23,91	(-13.91)	-6.500 M	-23.60	(-13.60)	6.420 M	
10.00 MHz	15.00 MHz	1.000 MHz	-28.27	(-15.27)	-10.00 M	-27.45	(-14.45)	10.00 M =	
15.00 MHz	20.00 MHz	1.000 MHz	-41.57	(-16.57)	-15.93 M	-39,36	(-14.36)	15.55 M	
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
	15 00 101	1.000 MHz		1)			()		
12.50 MHz	15.00 MHz	1.000 MHZ							

Sub6 n7. Mid Channel Edge Plot (10 MHz Ch.507000 BPSK)

	RF 50 Ω Di 2.5650000 NFE	00 GHz	-	SENSE:INT Inter Freq: 2. ig: Free Run Itten: 20 dB	565000000 GH	ALIGN AU 2 00.00% of 2	Radio 20	:14 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og 20.0 10.0 .00								Kellave unte	Center Free 2.565000000 GH:
0.0 0.0 0.0								Absolute Limit	
i0.0 i0.0				لليقدر	and D				
iq.a			and a second	- Aller and a second			****	Spectrum	
enter 2.565		1 dBm / 10 1	MHz				Spa	n 40.00 MHz	CF Step 4.000000 MH <u>Auto</u> Ma
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	< Freg (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freg (Hz)	Freq Offse
5.000 MHz	6.000 MHz	30.00 kHz	-63.73	(-53,73)	-5.055 M	-19.94	(-9,94)	5.000 M	OH
6.000 MHz	10.00 MHz	1.000 MHz	-53.87	(-43.87)	-6.100 M	-30.26	(-20.26)	6.000 M	
	15.00 MHz	1.000 MHz	-54.98	(-41.98)	-10.58 M	-51,90	(-38.90)	10.05 M ≡	
10.00 MHz		1.000 MHz	-55.34	(-30.34)	-15.03 M	-55.00	(-30.00)	15.18 M	
10.00 MHz 15.00 MHz	20.00 MHZ						()		
10.00 MHz 15.00 MHz 8.000 MHz	20.00 MHz 12.50 MHz	1.000 MHz		()					
15.00 MHz		1.000 MHz 1.000 MHz		() ()					
15.00 MHz 8.000 MHz	12.50 MHz 15.00 MHz			() ()	_	 	() ()		

Sub6 n7. High Channel Edge Plot (10 MHz Ch.513000 BPSK RB 1)

	RF 50 Ω D			SENSE:INT		ALIGN A		:06 PM Apr 17, 2024	Frequency
enter Freq ASS	2.5650000 NFE		Tri	nter Freq: 2. ig: Free Run tten: 20 dB	565000000 GH Avg: 1	z 00.00% of	20	Std: None Device: BTS	Frequency
0 d <u>B/div</u>	Ref Offset 27. Ref 30.0 dB								
og 0.0								Vesarive Lana	Center Fre 2.565000000 GH
0.00 0.0 0.0								Absolute Limit	
0.0									
0.0								Spectrum	
enter 2.565 otal Power		9.dBm / 10.1	MHz				Spa	n 40.00 MHz	CF Ster 4.000000 MH Auto Ma
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	< Freg (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	Freq Offse
5.000 MHz	6.000 MHz	200.0 kHz	-22.32	(-12.32)	-5.000 M	-29.24	(-19.24)	5,000 M	0 H
6.000 MHz	10.00 MHz	1.000 MHz	-22.52	(-12.32)	-6.000 M	-29.24	(-16.85)	6.000 M	
10.00 MHz	15.00 MHz	1.000 MHz	-27.11	(-14.11)	-10.00 M	-30.88	(-17.88)	10.00 M =	1
15.00 MHz	20.00 MHz	1.000 MHz	-42.49	(-17.49)	-16.78 M	-52.52	(-27.52)	15.03 M	
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
	15.00 MHz	1.000 MHz		()			()		
12.50 MHz									
12.50 MHz 12.50 MHz	15.00 MHz	1.000 MHz		()			()		A second s

Sub6 n7. High Channel Edge Plot (10 MHz Ch.513000 BPSK)

	RF 50 Ω DI 2.5075000 NFE	00 GHz	Tri	SENSE:INT Inter Freq: 2. ig: Free Run Itten: 20 dB	507500000 GH	ALIGN AL 2 100.00% of 1	Radio 20	20 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og								ACCIDATE	
20.0		1	1						Center Free
0.0									2.507500000 GH
.00									
ō.α									
0.0									
0.0			1 4				-		
0.0			11			_		_	
o.a.		/		h.,					
				and the second second	-			Spartour	
0.0					- manutaness				
enter 2.507		4 dBm / 15 l	MHz				Spa	an 74.00 MHz	CF Step 7.400000 MH <u>Auto</u> Ma
				Lower		Peak ->	Upper		Ence Office
Start Freq	Stop Freq	Integ BW	dBm	$\Delta Lim(dB)$	Freq (Hz)	dBm	$\Delta Lim(dB)$	Freq (Hz)	Freq Offse
7.500 MHz	8.500 MHz	30.00 kHz	-22.79	(-12.79)	-7.500 M		()	· · ·	0 H
8.500 MHz	11.50 MHz	1.000 MHz	-28.53	(-18.53)	-8.500 M		()		
11.50 MHz	17.00 MHz	1.000 MHz	-49.09	(-36.09)	-11.58 M		()		
17.00 MHz	37.00 MHz	1.000 MHz	-54.72	(-29.72)	-17.20 M		()		
7.500 MHz	37.00 MHz	270.0 kHz		()		-60.16	(-110.16)	12.21 M	
	15.00 MHz	1.000 MHz		()			()		
12.50 MHz									
12.50 MHz 12.50 MHz		1.000 MHz		()			()		

Sub6 n7. Low Channel Edge Plot (15 MHz Ch.501500 BPSK RB 1)-1

RL	RF 50 Ω D	c		SENSE:INT		ALIGN AL	JTO 08:14	:04 PM Apr 17, 2024	BARRIER.
enter Freq	2.5075000 NFE		Tri	nter Freq: 2. ig: Free Run tten: 20 dB	507500000 GH Avg: 1	z 100.00% of	20	Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dE								
og								ARGIN AND BUILD	
20.0									Center Fre
0.0									2.507500000 GH
ó.a					1				
10.0									
i0.0			11		_	_			
0.0						my			
0.0	1					~	1.0.	-	
	munt						am	Spectrum	
0.0						_		- holom	
tonton 0 507							0.0		
enter 2.507	SU GHZ						Spa	n 74.00 MHz	CF Ste
									7.400000 MH
otal Power	Ref 23.7	5 dBm / 15	MHz						<u>Auto</u> Ma
						D. IV.			
Start Freg	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	Freq (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	Freq Offse
7.500 MHz	8.500 MHz	300.0 kHz	-24.45	(-14.45)	-7.500 M	dom	()	1109 (112)	0 H
8.500 MHz	11.50 MHz	1.000 MHz	-24.45	(-14.45)	-8.500 M		()		1
11.50 MHz	17.00 MHz	1.000 MHz	-30.63	(-17.63)	-14.06 M		()	E	1
17.00 MHz	37.00 MHz	1.000 MHz	-32.64	(-7.64)	-17.00 M		()		
7.500 MHz	37.00 MHz	270.0 kHz	-02.04	()	-17.00 M	-32.37	(-82.37)	7.500 M	
a coordinate	15.00 MHz	1.000 MHz		()		01.01	(-02.01)		
12.50 MHz		LO CO CHINELE		1					
12.50 MHz 12.50 MHz		1.000 MHz		()			()		

Sub6 n7. Low Channel Edge Plot (15 MHz Ch.501500 BPSK)-1

Org Remark 2 Link Org Remark 2 Link Org Absolute Link Org Spectrum		2.5075000 NFE	00 GHz	Tri	SENSE:INT nter Freq: 2. g: Free Run tten: 20 dB	507500000 GH	ALIGN AU 2 100.00% of 2	Radio 20	:01 PM Apr17, 2024 Std: None Device: BTS	Frequency
Center Freq Control Contro	0 dB/div									
00 00 <td< th=""><th>0.0</th><th></th><th></th><th>٨</th><th></th><th></th><th></th><th></th><th>Relayerond</th><th>Center Free</th></td<>	0.0			٨					Relayerond	Center Free
Org Absolute Line Org Absolute Line Org Absolute Line Org Spectrue enter 2.50750 GHz Span 60.00 MHz Otal Power Ref 23.05 dBm / 15 MHz Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) 7.500 MHz 30.00 kHz 12.50 MHz 1.000 MHz 22.50 MHz 30.00 MHz 30.00 MHz 1.000 MHz 22.50 MHz 30.00 MHz 30.00 MHz 1.000 MHz 12.50 MHz 30.00 MHz 30.00 MHz 1.000 MHz 12.50 MHz 30.00 MHz 30.00 MHz 1.000 MHz 12.50 MHz 1.000 MHz 12.50 MHz 1.000 MHz 12.50 MHz 1.000 MHz 12.50 MHz 30.00 MHz 12.50 MHz 1.000 MHz 12.50 M										2.507500000 GH
Spectrum Spectrum center 2.50750 GHz Span 60.00 MHz center 2.50750 GHz Span 60.00 MHz cotal Power Ref 23.05 dBm / 15 MHz Start Freq Stop Freq 12.50 MHz 1000 MHz 22.50 MHz 1.000 MHz 22.50 MHz 1.000 MHz 22.50 MHz 1.000 MHz 22.50 MHz 1.000 MHz 12.50 MHz 1.000 MHz 22.50 MHz 1.000 MHz 12.50 MHz 1.000 MHz 12.50 MHz 1.000 MHz 22.50 MHz 1.000 MHz 12.50 MHz 1.000 MHz 10.00 MHz - - - 12.50 MHz 1.000 MHz - - - - - - - - 1.000 MHz <t< td=""><td>0.0 D.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0.0 D.0									
Spectrum Spectrum center 2.50750 GHz Span 60.00 MHz center 2.50750 GHz Span 60.00 MHz cotal Power Ref 23.05 dBm / 15 MHz Start Freq Stop Freq 12.50 MHz 30.00 kHz 12.50 MHz 1.000 MHz 22.50 MHz 30.00 kHz 12.50 MHz 1.000 MHz 12.50 MHz	0.0								Absolute Limit	
Spectrum Spectrum enter 2.50750 GHz Span 60.00 MHz otal Power Ref 23.05 dBm / 15 MHz Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) dBm ΔLim(dB) Freq (Hz) dBm J2.50 MHz 1.000 MHz 12.50 MHz 1.000 MHz J2.50 MHz 1.	0.0									
Spectrum	0.0		1							
Span 60.00 MHz center 2.50750 GHz Span 60.00 MHz otal Power Ref 23.05 dBm / 15 MHz Start Freq Stop Freq Integ BW dBm Lower < Peak > Upper Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) dBm ΔLim(dB) Freq (Hz) Freq (Hz) 7.500 MHz 8.500 MHz 30.00 KHz - () - -64.77 (-54.77) 8.375 M 0 H 8.500 MHz 12.50 MHz 1.000 MHz - () - -55.44 (-45.44) 8.500 M 12.90 M 12.50 MHz 1.000 MHz - () - -55.08 (-42.08) 12.90 M 12.90 MHz 1.000 MHz - () - -55.47 (-30.47) 24.68 M 12.50 MHz 1.000 MHz - () - - - -			- Aller		the second with				Spectrum	
Otal Power Ref 23.05 dBm / 15 MHz Lower < Peak > Upper Auto Mate Start Freq Stop Freq Integ BW dBm ∆Lim(dB) Freq (Hz) dBm ∆Lim(dB) Freq (Hz) Mate Freq (Hz) Freq (Hz) Freq (Hz) Freq (Hz) Mate 0 H 7.500 MHz 8.500 MHz 30.00 kHz - () - -64.77 (-54.77) 8.375 M 0 H 8.500 MHz 12.50 MHz 1.000 MHz - () - -55.44 (-45.44) 8.500 M 12.90 M 0 H 12.50 MHz 1.000 MHz - () - -55.08 (-42.08) 12.90 M 0 H 22.50 MHz 30.00 MHz 1.000 MHz - () - -55.47 (-30.47) 24.68 M 1 22.50 MHz 15.00 MHz 1.000 MHz - () - - - - - - - - - - - - -	0,0		- And and a second							
Start Freq Stop Freq Integ BW dBm ∆Lim(dB) Freq (Hz) Upper 7.500 MHz 8.500 MHz 30.00 kHz - () - -64.77 (-54.77) 8.375 M • 8.500 MHz 12.50 MHz 1.000 MHz - () - -55.44 (-45.44) 8.500 M •	enter 2.507	50 GHz						Spa	n 60.00 MHz	CF Ste 6.000000 MH
Start Freq Stop Freq Integ BW dBm ∆Lim(dB) Freq (Hz) dBm ∆Lim(dB) Freq (Hz) Freq (Hz) </td <td>otal Power</td> <td>Ref 23.0</td> <td>5 dBm / 15 l</td> <td>MHz</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Auto Ma</td>	otal Power	Ref 23.0	5 dBm / 15 l	MHz						Auto Ma
7.500 MHz 8.500 MHz 30.00 kHz () -64.77 (-54.77) 8.375 M ▲ 8.500 MHz 12.50 MHz 1.000 MHz () -55.44 (-45.44) 8.500 M 12.50 MHz 22.50 MHz 1.000 MHz () -55.08 (-2.08) 12.90 M 22.50 MHz 30.00 MHz 1.000 MHz () -55.47 (-30.47) 24.68 M 7.500 MHz 30.00 MHz -12.13 (-62.13) -7.500 M () 12.50 MHz 15.00 MHz 1.000 MHz () ()	Start Fred	Stop Freg	Integ BW	dBm					Freg (Hz)	Freq Offse
12.50 MHz 22.50 MHz 1.000 MHz () -55.08 (-42.08) 12.90 M □ 22.50 MHz 30.00 MHz 1.000 MHz () -55.47 (-30.47) 24.68 M □ 7.500 MHz 30.00 MHz 220.0 kHz -12.13 (-62.13) -7.500 M () 12.50 MHz 15.00 MHz 1.000 MHz () ()			5							0 H
22.50 MHz 30.00 MHz 1.000 MHz () -55.47 (-30.47) 24.68 M 7.500 MHz 30.00 MHz 220.0 kHz -12.13 (-62.13) -7.500 M () 12.50 MHz 15.00 MHz 1.000 MHz () ()	8.500 MHz	12.50 MHz	1.000 MHz				-55,44		8.500 M	
22.50 MHz 30.00 MHz 1.000 MHz () -55.47 (-30.47) 24.68 M 7.500 MHz 30.00 MHz 220.0 kHz -12.13 (-62.13) -7.500 M () 12.50 MHz 15.00 MHz 1.000 MHz () ()	12.50 MHz	22.50 MHz	1.000 MHz		()		-55.08	(-42.08)	12.90 M =	
7.500 MHz 30.00 MHz 220.0 kHz -12.13 (-62.13) -7.500 M () 12.50 MHz 15.00 MHz 1.000 MHz () ()	22.50 MHz	30.00 MHz	1.000 MHz		()		-55.47		24.68 M	
	7.500 MHz	30.00 MHz	220.0 kHz	-12.13	(-62.13)	-7.500 M		()		
12.50 MHz 15.00 MHz 1.000 MHz () () ()	12.50 MHz	15.00 MHz	1.000 MHz		()			()	***	
		15 00 MU	1 000 MHz		()			()		

Sub6 n7. Low Channel Edge Plot (15 MHz Ch.501500 BPSK_RB1)-2

Entref Freq 2.507500000 GH2 Radio Data Radio Device: BTS ASS NFE IFGain:Low Trig: Free Run Avg: 100.00% of 20 Radio Device: BTS Ref Offset 27.03 dB Center Free Center Free Center Free Center Free 000 diado da da diado da da diado da da diado da da Center Free 000 diado da diado da diado da diado da diado da Center Free 000 diado da diado da <thdiado da<="" th=""> diado da</thdiado>	1.00	RF 50 Ω D		-	SENSE:INT		ALIGN A		:45 PM Apr 17, 2024	Frequency
Bit div Ref 30.0 dBm 00 0	ASS			Tr	ig: Free Run	507500000 GH Avg: 1	z 00.00% of	20		requeries
Center Freq Center Freq 01 4 4 4 5 5 5 5 6	0 dB/div									
CF Stee CF	.og								Reithweitend	Conton Fra
00 00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
CF Ste span 60.00 MHz ord ord start Freq Stop Freq Iteg BW dBm ALim(dB) Freq (Hz) ord ord 7.500 MHz 300.0 kHz ord ord 22.50 MHz 1.000 MHz ord ord 12.50 MHz 30.00 MHz 12.00 MHz 1.000 MHz ord ord 12.50 MHz 1.000 MHz ord										2.507500000 GF
Grad Absolute Line Grad Absolute Line Grad Absolute Line Grad Absolute Line Grad Span 60.00 MHz Grad Span 60.00 MHz Grad Grad Grad	0.00									
Span 60.00 MHz CF Ste otal Power Ref 23.75 dBm / 15 MHz Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) Mathematical Stop MHz 7.500 MHz 8.500 MHz 300.0 kHz - () - -31.87 (-21.87) 7.500 M # 8.500 MHz 1250 MHz 1.000 MHz - () - -31.87 (-21.87) 7.500 M # 22.50 MHz 1.000 MHz - () - -28.39 (-18.39) 8.520 M # 22.50 MHz 1.000 MHz - () - -28.88 (-18.90) 23.89 M # 7.500 MHz 30.00 kHz -26.17 (-76.17) -7.500 M () <	0.0						-		-	
Spend Spend <t< td=""><td>10.0</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>Absolute Limit</td><td></td></t<>	10.0						_		Absolute Limit	
CF Ster Span 60.00 MHz enter 2.50750 GHz Span 60.00 MHz cotal Power Ref 23.75 dBm / 15 MHz Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) 7.500 MHz 8.500 MHz 8.500 MHz 1.000 MHz 12.50 MHz 1.000 MHz 12.50 MHz 1.000 MHz 22.50 MHz 30.00 MHz 22.50 MHz 1.000 MHz 12.50 MHz	0.0			1		LA				
CF Ster Span 60.00 MHz CF Ster enter 2.50750 GHz Span 60.00 MHz CF Ster otal Power Ref 23.75 dBm / 15 MHz Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) Max Freq (Hz) Max 7.500 MHz 8.500 MHz 300.0 kHz - () - -31.87 (-21.87) 7.500 M - 8.500 MHz 12.50 MHz 1.000 MHz - () - -28.39 (-18.39) 8.520 M 1 12.50 MHz 1.000 MHz - () - -28.88 (-15.88) 13.05 M 1 22.50 MHz 30.00 MHz - () - -28.39 (-18.90) 23.89 M 1 22.50 MHz 30.00 MHz - () - <td></td> <td>-</td> <td>m</td> <td>/</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-	m	/						
Image: Start Freq									Spectrum	
Enter 2.50750 GHz Span 60.00 MHz CF Ster otal Power Ref 23.75 dBm / 15 MHz Lower <-Peak > Upper Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) dBm ΔLim(dB) Freq (Hz) Materia 7.500 MHz 8.500 MHz 300.0 kHz - () - -31.87 (-21.87) 7.500 M Freq Offs 8.500 MHz 12.50 MHz 1.000 MHz - () - -28.89 (-18.39) 8.520 M 1 0.16 12.50 MHz 22.50 MHz 1.000 MHz - () - -43.90 (-18.90) 23.89 M 1 0.16 22.50 MHz 30.00 MHz 1.000 MHz - () - -43.90 (-18.90) 23.89 M 1 12.50 MHz 15.00 MHz 1.000 MHz - () - - - - - - - - - - - - - - - - <td>ki.u.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ki.u.									
Start Freq Stop Freq Integ BW dBm Lower <- Peak > Upper 7.500 MHz 8.500 MHz 300.0 kHz - () - -31.87 (-21.87) 7.500 M 6.000000 M 8.500 MHz 12.50 MHz 1.000 MHz - () - -31.87 (-21.87) 7.500 M 0 H 12.50 MHz 12.000 MHz 1.000 MHz - () - -28.88 (-15.88) 13.05 M 13.05 M 13.05 M 13.05 M 12.50 MHz 1.000 MHz - () - -43.90 (-18.90) 23.89 M 13.05 M 13.05 M 13.05 M 13.05 M 13.05 M 12.50 MHz 30.00 MHz -26.17 (-76.17) -7.500 M () -	0.0	mond								
6.000000 MH Start Freq Stop Freq Integ BW dBm △Lim(dB) Freq (Hz) Upper Jund BB Freq (Hz) Freq Offs 3.000 MHz 1.000 MHz - () - -28.88 (-15.88) 13.05 M I	enter 2.507	50 GHz						Spa	n 60.00 MHz	CESta
Lower <-Peak > Upper Start Freq Stop Freq Integ BW dBm $\Delta Lim(dB)$ Freq (Hz) dBm $\Delta Lim(dB)$ Freq (Hz)	otal Bower	Dof 22.7								6.000000 MH
Start Freq Stop Freq Integ BW dBm ∆Lim(dB) Freq (Hz) dBm ∆Lim(dB) Freq (Hz) Freq (Hz) </td <td>otarrower</td> <td>23.13</td> <td>300117 131</td> <td>VINZ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	otarrower	23.13	300117 131	VINZ						
7.500 MHz 8.500 MHz 300.0 kHz () -31.87 (-21.87) 7.500 M 12.50 MHz 1.000 MHz () -28.39 (-18.39) 8.520 M 12.50 MHz 12.50 MHz 1.000 MHz () -28.39 (-18.39) 8.520 M 12.50 MHz 12.50 MHz 1.000 MHz () -28.88 (-15.88) 13.05 M 13.05 M 13.05 M 13.05 M 12.50 MHz 30.00 MHz 1.000 MHz () -43.90 (-18.90) 23.89 M 12.50 MHz 12.50 MHz 1.000 MHz ()	Start Freg	Stop Freq	Integ BW	dBm					Freg (Hz)	Freq Offse
8.500 MHz 12.50 MHz 1.000 MHz () -28.39 (-18.39) 8.520 M 12.50 MHz 22.50 MHz 1.000 MHz () -28.88 (-15.88) 13.05 M 22.50 MHz 30.00 MHz 1.000 MHz () -28.88 (-18.90) 23.89 M 7.500 MHz 30.00 MHz 220.0 kHz -26.17 (-76.17) -7.500 M () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz										0 H
12.50 MHz 22.50 MHz 1.000 MHz () -28.88 (-15.88) 13.05 M 22.50 MHz 30.00 MHz 1.000 MHz () -43.90 (-18.90) 23.89 M 7.500 MHz 30.00 MHz 220.0 kHz -26.17 (-76.17) -7.500 M () 12.50 MHz 15.00 MHz 1.000 MHz () ()										
7.500 MHz 30.00 MHz 220.0 kHz -26.17 (-76.17) -7.500 M () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () ()	12.50 MHz				()					
12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () () ()	22.50 MHz	30.00 MHz	1.000 MHz		()		-43.90	(-18.90)	23.89 M	
12.50 MHz 15.00 MHz 1.000 MHz () ()	7.500 MHz	30.00 MHz	220.0 kHz	-26.17	(-76.17)	-7.500 M		()		
					()			()		
	12.50 MHz	15.00 MHz	1.000 MHz		()			()	-	

Sub6 n7. Low Channel Edge Plot (15 MHz Ch.501500 BPSK)-2

ASS	RF 50 Ω DO 2.5350000 NFE	00 GHz	Tr	SENSE:INT enter Freq: 2. ig: Free Run atten: 20 dB	535000000 GH:	ALIGN AU 2 00.00% of	Radio 20	:48 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27.0 Ref 30.0 dB								
og 20.0 .0,0 .00			,						Center Fred 2.535000000 GH:
0.0 0.0								Absolute Limit	
0.0		\sim	ν			\rightarrow		Spectrum	
0.0									
enter 2.535	600 GHz						Spa	n 60.00 MHz	CF Step 6.000000 MH Auto Ma
atal Bawar	Bof 04.00	D dDen / 4E1	ALL						
otal Power		9 dBm / 15 l	MHz	Lower	<-	Peak ->	Upper	at a star of the	
Start Freq	Ref 24.09 Stop Freq	9 dBm / 15 l	MHz dBm	Lower ∆Lim(dB)	<- Freq (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	Freq Offse
Start Freq 7.500 MHz	Stop Freq 8.500 MHz	Integ BW 300.0 kHz	dBm -23.77	ΔLim(dB) (-13.77)	Freq (Hz) -7.500 M	dBm -27.15	ΔLim(dB) (-17.15)	8.500 M 🗠	Freq Offse
Start Freq 7.500 MHz 8.500 MHz	Stop Freq 8.500 MHz 12.50 MHz	Integ BW 300.0 kHz 1.000 MHz	dBm -23.77 -23.24	∆Lim(dB)	Freq (Hz) -7.500 M -9.320 M	dBm -27.15 -21.98	ΔLim(dB) (-17.15) (-11.98)	8.500 M 🖆 8.680 M	FreqOffse
Start Freq 7.500 MHz 8.500 MHz 12.50 MHz	Stop Freq 8.500 MHz	Integ BW 300.0 kHz 1.000 MHz 1.000 MHz	dBm -23.77 -23.24 -27.32	ΔLim(dB) (-13.77)	Freq (Hz) -7.500 M	dBm -27.15 -21.98 -25.37	ΔLim(dB) (-17.15)	8.500 M ≦ 8,680 M 13.40 M ≡	FreqOffse
Start Freq 7.500 MHz 8.500 MHz	Stop Freq 8.500 MHz 12.50 MHz	Integ BW 300.0 kHz 1.000 MHz	dBm -23.77 -23.24	ΔLim(dB) (-13.77) (-13.24)	Freq (Hz) -7.500 M -9.320 M	dBm -27.15 -21.98	ΔLim(dB) (-17.15) (-11.98)	8.500 M 🖆 8.680 M	FreqOffse
Start Freq 7.500 MHz 8.500 MHz 12.50 MHz 22.50 MHz 8.000 MHz	Stop Freq 8.500 MHz 12.50 MHz 22.50 MHz 30.00 MHz 12.50 MHz	Integ BW 300.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -23.77 -23.24 -27.32	ΔLim(dB) (-13.77) (-13.24) (-14.32)	Freq (Hz) -7.500 M -9.320 M -13.95 M	dBm -27.15 -21.98 -25.37	ΔLim(dB) (-17.15) (-11.98) (-12.37)	8.500 M ≦ 8,680 M 13.40 M ≡	FreqOffse
Start Freq 7.500 MHz 8.500 MHz 12.50 MHz 22.50 MHz	Stop Freq 8.500 MHz 12.50 MHz 22.50 MHz 30.00 MHz 12.50 MHz 15.00 MHz	Integ BW 300.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -23.77 -23.24 -27.32 -40.79	ΔLim(dB) (-13.77) (-13.24) (-14.32) (-15.79)	Freq (Hz) -7.500 M -9.320 M -13.95 M -23.14 M	dBm -27.15 -21.98 -25.37	ΔLim(dB) (-17.15) (-11.98) (-12.37) (-13.71)	8.500 M ≦ 8,680 M 13.40 M ≡	Freq Offse

Sub6 n7. Mid Channel Edge Plot (15 MHz Ch.507000 BPSK)

	RF 50 Ω D 2.5625000 NFE	00 GHz	Tri	sense:INT inter Freq: 2. ig: Free Run itten: 20 dB	562500000 GH	ALIGN AL	Radio 20	:03 PM Apr17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og 20.0 .0.0 .00					A			Kesiniye Linin	Center Free 2.562500000 GH:
0.0 0.0								Absolute Limit	
0.0								Spectrum	
0,0			Landa and						
enter 2.562		6 dBm / 15 l	MHz				Spa	n 60.00 MHz	CF Step 6.000000 MH Auto Mar
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	< Freg (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	Freq Offse
7.500 MHz	8.500 MHz	30.00 kHz	-60.39	(-50.39)	-8.340 M	-22.14	(-12.14)	7.500 M	0 H
8.500 MHz	12.50 MHz	1.000 MHz	-53.85	(-43.85)	-8.580 M	-29.31	(-19.31)	8.520 M	
12.50 MHz	22.50 MHz	1.000 MHz	-54.67	(-41.67)	-12.75 M	-52.01	(-39.01)	12.50 M ■	
22.50 MHz	30.00 MHz	1.000 MHz	-55.43	(-30.43)	-25.91 M	-55,37	(-30.37)	29.44 M	
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
	15.00 MHz	1.000 MHz		()			()		
12.50 MHz									
12.50 MHz 12.50 MHz	15.00 MHz	1.000 MHz	_	()			()		

Sub6 n7. High Channel Edge Plot (15 MHz Ch.512500 BPSK RB 1)

1.00	RF 50 Ω DO 2.5625000 NFE	00 GHz	Tri	SENSE:INT nter Freq: 2. g: Free Run tten: 20 dB	562500000 GH	ALIGN AL 2 00.00% of	Radio 20	:56 PM Apr17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og 20.0 10.0								Kendwe Link	Center Free 2.562500000 GH
0.0 70.0 70.0			v					Absolute Linit	
								Spectrum	
enter 2.562		0 dBm / 15 l	MHz				Spa	n 60.00 MHz	CF Ste 6.000000 MH <u>Auto</u> Ma
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	< Freq (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	Freq Offse
7.500 MHz	8,500 MHz	300.0 kHz	-23.90	(-13.90)	-7.500 M	-30.70	(-20.70)	7.500 M	OH
8.500 MHz	12.50 MHz	1.000 MHz	-24.70	(-14.70)	-8.500 M	-28.61	(-18.61)	8,500 M	
12.50 MHz	22.50 MHz	1.000 MHz	-25.91	(-12.91)	-13.75 M	-33.41	(-20.41)	13.25 M ■	
22.50 MHz	30.00 MHz	1.000 MHz	-47.16	(-22.16)	-22.65 M	-55.21	(-30.21)	23.85 M	
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
		1 000 MHz		()			1		
12.50 MHz	15.00 MHz	1.000 MHZ							

Sub6 n7. High Channel Edge Plot (15 MHz Ch.512500 BPSK)

Freq 2.5100	NFE	Hz FGain:Low	Tri	SENSE:INT nter Freq: 2.5 g: Free Run tten: 20 dB	510000000 GH:	ALIGN AL 00.00% of :	Radio 20	:10 PM Apr 17, 2024 Std: None Device: BTS	Frequency
Ref Offse	et 27.03 dB 0 dBm								
								ARCHINE	100000000000000000000000000000000000000
			Λ						Center Free
									2.510000000 GH
						_			
		A	1						
			1						
		1	1	the interior				_	
					the second second	- manager		Spectrum	
								Spectrum	
2.51000 GHz							Spa	n 79.00 MHz	CF Ste
2.51000 GHz ower Ref	22.93 dBm	1/ 20 M	Hz				Spa	in 79.00 MHz	7.900000 MH
ower Ref	22.93 dBm	n/ 20 M	Hz	Lower		⊃eak ~	Spa	in 79.00 MHz	7.900000 MH <u>Auto</u> Ma
		n/ 20 M eg BW	Hz dBm			Peak -> dBm		in 79.00 MHz	7.900000 MH <u>Auto</u> Ma Freq Offse
req Stop MHz 11.00 M	Freq International Internation	eg BW 00 kHz	dBm -27.33	Lower ∆Lim(dB) (-17.33)	<-1 Freq (Hz) -10.00 M		Upper		7.900000 MH
req Stop MHz 11.00 M MHz 14.00 M	Freq Int MHz 30.0 MHz 1.00	eg BW 00 kHz 00 MHz	dBm -27.33 -30.02	Lower ∆Lim(dB) (-17.33) (-20.02)	<- I Freq (Hz) -10.00 M -11.03 M		Upper ∆Lim(dB)		7.900000 MH <u>Auto</u> Ma Freq Offse
req Stop MHz 11.00 M MHz 14.00 M MHz 19.50 M	Freq Inte MHz 30.0 MHz 1.00 MHz 1.00	eg BW 00 kHz 10 MHz 10 MHz	dBm -27.33 -30.02 -49.09	Lower ∆Lim(dB) (-17.33) (-20.02) (-36.09)	 Freq (Hz) -10.00 M -11.03 M -14.06 M 		Upper ∆Lim(dB) ()		7.900000 MH <u>Auto</u> Ma Freq Offse
req Slop MHz 11.00 M MHz 14.00 M MHz 19.50 M MHz 39.50 M	Freq Int MHz 30.0 MHz 1.00 MHz 1.00 MHz 1.00	eg BW 00 kHz 10 MHz 10 MHz 10 MHz	dBm -27.33 -30.02	Lower ∆Lim(dB) (-17.33) (-20.02) (-36.09) (-29.16)	<- I Freq (Hz) -10.00 M -11.03 M	dBm 	Upper ΔLim(dB) () () ()	Freq (Hz)	7.900000 MH <u>Auto</u> Ma Freq Offse
Fower Ref req Stop MHz 11.00 M MHz 14.00 M MHz 19.50 M MHz 39.50 M MHz 39.50 M	Freq Int MHz 30.0 MHz 1.00 MHz 1.00 MHz 1.00 MHz 270	eg BW 00 kHz 10 MHz 10 MHz 10 MHz 10 MHz 10 kHz	dBm -27.33 -30.02 -49.09	Lower ∆Lim(dB) (-17.33) (-20.02) (-36.09) (-29.16) ()	 Freq (Hz) -10.00 M -11.03 M -14.06 M 	dBm 	Upper ΔLim(dB) () () () () (-108.87)		7.900000 MH Auto Ma Freq Offse
Fower Ref req Slop MHz 11.00 M MHz 14.00 M MHz 19.50 M MHz 39.50 M	Freq Int MHz 30.0 MHz 1.00 MHz 1.00 MHz 1.00 MHz 270 MHz 1.00	eg BW 00 kHz 10 MHz 10 MHz 10 MHz	dBm -27.33 -30.02 -49.09 -54.16	Lower ∆Lim(dB) (-17.33) (-20.02) (-36.09) (-29.16)	<- T Freq (Hz) -10.00 M -11.03 M -14.06 M -19.60 M	dBm 	Upper ΔLim(dB) () () ()	Freq (Hz)	7.900000 MH <u>Auto</u> Ma Freq Offse

Sub6 n7. Low Channel Edge Plot (20 MHz Ch.502000 BPSK RB 1)-1

NFE Trig: Free Run #Atten: 20 dB Avg: 100.00% of 20 Radio Device: BTS Ref Offset 27.03 dB Ref 30.0 dBm Activation (2.510000000 G) Objective Context Ref 30.0 dBm Activation (2.510000000 G) Objective Context Stat Freq St		2 5100000		Ce	SENSE:INT enter Freg: 2.	510000000 GH	ALIGN AL		:54 PM Apr 17, 2024 Std: None	Frequency
Center Freq Stop Freq Integ BW dBm Center Freq Stop Freq Integ BW Center Freq Stop	ASS			Tr	ig: Free Run				Device: BTS	
Deg Automation 000 Automation 000 Sector 01 Stat Freq Stat Freq Stop Freq 1000 MHz 1000 MHz	0 dB/div									
CF ster Span 79.00 MHz Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) GBm ΔLim(dB) Freq (Hz) Treq Offs 10.00 MHz 11.00 MHz 1000 MHz -23.03 (13.03) -11.00 M -	og								And a local star limit.	
00 0										Center Fre
Start Freq Stop Freq Integ BW dBm ALIm(dB) Freq (Hz) GBm ALim(dB) Freq (Hz) M 11.00 MHz 11.00 MHz 1000 MHz -29.03 (-13.03) -11.00 M				r						2.51000000 GH
Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) CF ster 11.00 MHz 11.00 MHz 10.00 MHz 23.81 dBm / 20 MHz CF ster 01 11.00 MHz 11.00 MHz 10.00 MHz -24.00 (14.00) -11.00 MH -()										
000 0000 0000 000 000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
000				~		5				
CF Stee Span 79.00 MHz enter 2.51000 GHz Span 79.00 MHz otal Power Ref 23.81 dBm / 20 MHz Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) 10.00 MHz 11.00 MHz 11.00 MHz 14.00 MHz 19.50 MHz 20.00 MHz 19.50 MHz 39.50 MHz 10.00 MHz 10.00 MHz 19.50 MHz 10.00 MHz 12.50 MHz 10.00 MHz	0.0		\sim			J.	~~~~			
CF Start Span 79.00 MHz CF Start Start Freq	0.0			_			wit	m.		
Lower <-Peak > Upper Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) dBm ΔLim(dB) Freq (Hz) Muto Muto Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) dBm ΔLim(dB) Freq (Hz) freq (Hz) freq (Hz) freq (Hz) 0 freq (Hz) 0 freq (Hz) freq 0ffs fr	0.0						_	M	Spectrum	
Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) Integ BW GBm ALim(dB) Freq (Hz) Integ BW GBm ALim(dB) Freq (Hz) Integ BW GBm ALim(dB) Freq (Hz) Integ BW Integ	0.0								- Vur	
Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) Integ BW GBm ALim(dB) Freq (Hz) Integ BW GBm ALim(dB) Freq (Hz) Integ BW GBm ALim(dB) Freq (Hz) Integ BW Integ										
Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) Impact dBm Auto M 10.00 MHz 11.00 MHz 430.0 kHz -24.00 (-14.00) -10.00 M () 1<	enter 2.510	00 GHz						Spa	n 79.00 MHz	CF Ste
Lower <-Peak Upper Start Freq Stop Freq Integ BW dBm $\Delta Lim(dB)$ Freq (Hz) dBm $\Delta Lim(dB)$ Freq (Hz) Freq (Hz) Image:										7.900000 MH
Start Freq Stop Freq Integ BW dBm $\Delta Lim(dB)$ Freq (Hz) dBm $\Delta Lim(dB)$ Freq (Hz) Freq Offs Freq Offs O I 10.00 MHz 11.00 MHz 430.0 kHz -24.00 (-14.00) -10.00 M ()	otal Power	Ref 23.8	1 dBm / 20	MHz						<u>Auto</u> Ma
Start Freq Stop Freq Integ BW dBm $\Delta Lim(dB)$ Freq (Hz) dBm $\Delta Lim(dB)$ Freq (Hz) Freq Offs Freq Offs O I 10.00 MHz 11.00 MHz 430.0 kHz -24.00 (-14.00) -10.00 M ()					Lower	4	Peak ->	Upper		and the second second
10.00 MHz 11.00 MHz 430.0 KHz -24.00 (-14.00) -10.00 M () 1 11.00 MHz 14.00 MHz 1.000 MHz -23.03 (-13.03) -11.00 M () 1 14.00 MHz 19.50 MHz 1.000 MHz -29.67 (-16.67) -18.48 M () 1 19.50 MHz 39.50 MHz 1.000 MHz -30.37 (-5.37) -19.50 M () 1 10.00 MHz 39.50 MHz 270.0 KHz () -25.64 (-75.64) 10.00 M 12.50 MHz 15.00 MHz 1.000 MHz () () ()	Start Freq	Stop Freq	Integ BW	dBm					Freq (Hz)	
14.00 MHz 19.50 MHz 1.000 MHz -29.67 (-16.67) -18.48 M () 19.50 MHz 19.50 MHz 39.50 MHz 1.000 MHz -30.37 (-5.37) -19.50 M () 10.00 MHz 39.50 MHz 270.0 kHz () -25.64 (-75.64) 10.00 M 12.50 MHz 15.00 MHz 1.000 MHz () ()	10.00 MHz	11.00 MHz	430.0 kHz	-24.00	(-14.00)	-10.00 M		()	^	01
19.50 MHz 39.50 MHz 1.000 MHz -30.37 (-5.37) -19.50 M () 10.00 MHz 39.50 MHz 270.0 kHz () -25.64 (-75.64) 10.00 M 12.50 MHz 15.00 MHz 1.000 MHz ()	11.00 MHz	14.00 MHz	1.000 MHz	-23.03	(-13.03)	-11.00 M		()		-
10.00 MHz 39.50 MHz 270.0 kHz ()25.64 (-75.64) 10.00 M 12.50 MHz 15.00 MHz 1.000 MHz () ()	14.00 MHz	19.50 MHz	1.000 MHz	-29.67	(-16.67)	-18.48 M		()		
12.50 MHz 15.00 MHz 1.000 MHz () ()	19.50 MHz	39.50 MHz	1.000 MHz	-30.37	(-5.37)	-19.50 M		()		
	10.00 MHz	39.50 MHz	270.0 kHz		()		-25.64	(-75.64)	10.00 M	
12.50 MHz 15.00 MHz 1.000 MHz () () ()	12.50 MHz	15.00 MHz	1.000 MHz		()			()		
		15 00 MILL-	1 000 MHz		()			()		

Sub6 n7. Low Channel Edge Plot (20 MHz Ch.502000 BPSK)-1

ASS	RF 50 Ω D 2.5100000 NFE	00 GHz	Tri	SENSE:INT nter Freq: 2. g: Free Run tten: 20 dB	510000000 GH:	ALIGN AL 2 00.00% of 2	Radio 20	:50 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dE								
.og 20.0								Realbower Control	
10.0									Center Free 2.510000000 GH
.00									
0.0						-			
0.0			1					Absolute Limit	
0.0			1						
50.0		Ń	"he						
		- AND		mail and a second	more and more			Spectrum	
50.0									
	000 GHz						Spa	n 80.00 MHz	CF Ste
		1 dBm / 20	MH7						8.000000 MH Auto Ma
otal Power		1 dBm / 20 l	MHz	Louar		Dank S	Unoor		
		1 dBm / 20 l Integ BW	MHz dBm	Lower ∆Lim(dB)	<- I Freq (Hz)	^p eak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	Auto Ma Freq Offse
fotal Power	Ref 22.9							Freq (Hz) 10.94 M 🛃	Auto Ma Freq Offse
otal Power	Ref 22.9 Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)		Auto Ma Freq Offse
otal Power Start Freq 10.00 MHz	Ref 22.9 Stop Freq 11.00 MHz	Integ BW 30.00 kHz	dBm	∆Lim(dB) ()	Freq (Hz)	dBm -67.42	∆Lim(dB) (-57.42)	10.94 M 🗠	Auto Ma Freq Offse
otal Power Start Freq 10.00 MHz 11.00 MHz	Ref 22.9 Stop Freq 11.00 MHz 15.00 MHz	Integ BW 30.00 kHz 1.000 MHz	dBm	∆Lim(dB) () ()	Freq (Hz) 	dBm -67.42 -55.27	ΔLim(dB) (-57.42) (-45.27)	10.94 M 📤 13.62 M	Auto Ma Freq Offse
Start Freq 10.00 MHz 11.00 MHz 15.00 MHz	Ref 22.9 Stop Freq 11.00 MHz 15.00 MHz 30.00 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz	dBm 	ΔLim(dB) () ()	Freq (Hz) 	dBm -67.42 -55.27 -54.83	ΔLim(dB) (-57.42) (-45.27) (-41.83)	10.94 M ▲ 13.62 M 15.98 M ■	Auto Ma Freq Offse
Start Freq 10.00 MHz 11.00 MHz 15.00 MHz 30.00 MHz	Ref 22.9 Stop Freq 11.00 MHz 15.00 MHz 30.00 MHz 40.00 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm 	ΔLim(dB) () () ()	Freq (Hz) 	dBm -67.42 -55.27 -54.83 -54.93	ΔLim(dB) (-57.42) (-45.27) (-41.83) (-29.93)	10.94 M ▲ 13.62 M 15.98 M ■	

Sub6 n7. Low Channel Edge Plot (20 MHz Ch.502000 BPSK_RB1)-2

	50 Ω DI 2.5100000 NFE	00 GHz	Tr	SENSE:INT enter Freq: 2. ig: Free Run itten: 20 dB	510000000 GH	ALIGN AL 2 00.00% of	Radio 20	:35 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og 20.0 10.0								Kelitive Linit	Center Free 2.510000000 GH
0.00 10.0 20.0								Absolute Limi	
30.0 40.0		s-	_ لىر		~	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Spectrum	
50.0 50.0	\square							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Center 2.510		5 dBm / 20 l	MHz				Spa	n 80.00 MHz	CF Step 8.000000 MH Auto Ma
				Lower		Peak ->	Upper	4	
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	Freq Offse
10.00 MHz	11.00 MHz	430.0 kHz		()		-23.69	(-13.69)	10.00 M	UT OT
11.00 MHz 15.00 MHz	15.00 MHz 30.00 MHz	1.000 MHz 1.000 MHz		()		-22.93 -28.66	(-12.93)	11.02 M 17.33 M ■	1
30.00 MHz	40.00 MHz	1.000 MHz	-	() ()		-20.00	(-15.66) (-18.97)	30.00 M	
10.00 MHz	40.00 MHz	270.0 kHz	-26.88	(-76.88)	-10.00 M	-40.91	()	50.00 W	
12.50 MHz	15.00 MHz	1.000 MHz	-20.00	()			()		
12.50 MHz		1.000 MHz		()			()		_

Sub6 n7. Low Channel Edge Plot (20 MHz Ch.502000 BPSK)-2

1.00	2.5350000 NFE	00 GHz	Tri	SENSE:INT nter Freq: 2. g: Free Run tten: 20 dB	535000000 GH	ALIGN A	Radio 20	13 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
20.0								Relatives on th	Center Free
0.0									2.535000000 GH
0.00									
10.0									
0.0		~ /	N		5		~	Absolute Limit	
40.0				_			7	Spectrum	
0.0	~								
ip,a									
center 2.535	00 GHz						Spa	n 80.00 MHz	CF Ster 8.000000 MH
otal Power	Ref 24.2	3 dBm / 20 l	MHz						Auto Mar
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	<- Freq (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	Freq Offse
10.00 MHz	11.00 MHz	430.0 kHz	-24.35	(-14.35)	-10.00 M	-29.07	(-19.07)	10.03 M 🔶	0 H
11.00 MHz	15.00 MHz	1.000 MHz	-25.51	(-15.51)	-11.00 M	-27.07	(-17.07)	11.00 M	
15.00 MHz	30.00 MHz	1.000 MHz	-31.12	(-18.12)	-18.45 M	-28.27	(-15.27)	17.40 M 🗧	
30.00 MHz	40.00 MHz	1.000 MHz	-47.14	(-22.14)	-33.45 M	-44.86	(-19.86)	32.65 M	
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()	***	
12.50 MHz	15.00 MHz	1.000 MHz	_	()			()		
							TATUS		

Sub6 n7. Mid Channel Edge Plot (20 MHz Ch.507000 BPSK)

ASS	2.5600000 NFE		Tr	SENSE:INT enter Freq: 2.4 rig: Free Run Atten: 20 dB	560000000 GH	ALIGN AU 2 00.00% of 2	Radio 20	:28 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dE								
.og 20.0					٨			Reality versions	
									Center Fre
0.0									2.56000000 GH
0.00									1
10.0						-	_		
20.0								Absolute Limit	
0.0				-			- • •		
40.0									
50.0			1.0.00		de la companya de la	hanna	and and a state of the state of	Spectrum	
60,0			0.000	Memory of the second					
	1						0		
Antes O FOI									
							Spa	n 80.00 MHz	8.000000 MH
		3 dBm / 20 l	MHz					IN 80.00 WH2	8.000000 MH
		3 dBm / 20 l	MHz dBm	Lower ∆Lim(dB)	<ے Freq (Hz)	Peak -> dBm	Upper ALim(dB)	Freq (Hz)	CF Ste 8.000000 MH <u>Auto</u> Ma Freq Offse
Start Freq	Ref 23.7	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	Upper ∆Lim(dB)	Freq (Hz)	8.000000 MH <u>Auto</u> Ma
otal Power	Ref 23.7						Upper		8.000000 MH Auto Ma Freq Offse
Start Freq	Ref 23.7 Stop Freq 11.00 MHz	Integ BW 30.00 kHz	dBm -63.24	∆Lim(dB) (-53.24)	Freq (Hz) -10.78 M	dBm -27.76	Upper ΔLim(dB) (-17.76)	Freq (Hz) 10.00 M 😭	8.000000 MH Auto Ma Freq Offse
Start Freq 10.00 MHz 11.00 MHz	Ref 23.7 Stop Freq 11.00 MHz 15.00 MHz 15.00 MHz	Integ BW 30.00 kHz 1.000 MHz	dBm -63.24 -54.68	∆Lim(dB) (-53.24) (-44.68)	Freq (Hz) -10.78 M -11.02 M	dBm -27.76 -29.94	Upper ΔLim(dB) (-17.76) (-19.94)	Freq (Hz) 10.00 M 🖆 11.14 M	8.000000 MH Auto Ma Freq Offse
10.00 MHz 11.00 MHz 15.00 MHz	Ref 23.7 Stop Freq 11.00 MHz 15.00 MHz 30.00 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz	dBm -63.24 -54.68 -54.89	ΔLim(dB) (-53.24) (-44.68) (-41.89)	Freq (Hz) -10.78 M -11.02 M -15.60 M	dBm -27.76 -29.94 -51.27	Upper ΔLim(dB) (-17.76) (-19.94) (-38.27)	Freq (Hz) 10.00 M 11.14 M 15.00 M ■	8.000000 MH Auto Ma Freq Offse
Start Freq 10.00 MHz 11.00 MHz 15.00 MHz 30.00 MHz	Ref 23.7 Stop Freq 11.00 MHz 15.00 MHz 30.00 MHz 40.00 MHz 12.50 MHz 15.00 MHz 15.00 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -63.24 -54.68 -54.89 -55.05	ΔLim(dB) (-53.24) (-44.68) (-41.89) (-30.05)	Freq (Hz) -10.78 M -11.02 M -15.60 M	dBm -27.76 -29.94 -51.27	Upper ΔLim(dB) (-17.76) (-19.94) (-38.27) (-30.04)	Freq (Hz) 10.00 M 11.14 M 15.00 M ■	8.000000 MH Auto Ma Freq Offse

Sub6 n7. High Channel Edge Plot (20 MHz Ch.512000 BPSK RB 1)

	n Analyzer - Spectrur RF 50 Ω D			SENSE:INT		ALIGN A	UTO 08:34	:22 PM Apr 17, 2024	
	2.5600000 NFE	00 GHz	Tri		56000000 GH		Radio 20	Std: None Device: BTS	Frequency
) dB/div	Ref Offset 27. Ref 30.0 dB								
og								Reality we cannot	Contor Ero
0,0									Center Fre 2.560000000 GH
.00			_					_	-
ö.ö						-		-	
0.0		\sim 1	2		Lon			Absolute Limit	
0.0					-	\sim			
0.0	\sim								
							- Anno	Spectrum	
0,0									
enter 2.560	00 GHz						Spa	n 80.00 MHz	CF Ste 8.000000 MH
otal Power	Ref 24.1	7 dBm / 20	MHz						<u>Auto</u> Ma
01-15	01 F		10	Lower		Peak ->	Upper	E	Freq Offs
Start Freq 10.00 MHz	Stop Freq 11.00 MHz	Integ BW 430.0 kHz	dBm -20.74	ΔLim(dB)	Freq (Hz) -10.00 M	dBm -26.69	ΔLim(dB)	Freq (Hz) 10.46 M	01
10.00 MHz 11.00 MHz	11.00 MHz 15.00 MHz	430.0 KHZ 1.000 MHz	-20.74	(-10.74) (-11.95)	-10.00 M	-20.09	(-16.69) (-14.72)	10.46 M	
15.00 MHz	30.00 MHz	1.000 MHz	-21.95	(-11.95)	-18.90 M	-24.72	(-14.72)	15.00 M ≡	1
30.00 MHz	40.00 MHz	1.000 MHz	-45.06	(-20.06)	-30.00 M	-54.87	(-29.87)	31.35 M	
8.000 MHz	12.50 MHz	1.000 MHz	-40.00	(-20.00)	00.00 111	01.01	(-23.07)	01.00111	
	15.00 MHz	1.000 MHz		()	_		()		
12 50 MHz							()		
12.50 MHz 12.50 MHz		1.000 MHz		()			()		1.00

Sub6 n7. High Channel Edge Plot (20 MHz Ch.512000 BPSK)

	RF 50 Q D 2.5125000 NFE	00 GHz	-+- Tr	SENSE:INT enter Freq: 2. ig: Free Run atten: 20 dB	512500000 GH	ALIGN AU z 100.00% of	Radio 20	Std: None	Frequency
) dB/div	Ref Offset 27. Ref 30.0 dE								
og								ARTIGATE	1000 The Part of t
0.0									Center Fre 2.512500000 GH
.00							_		
ò.ä							_		
0.0									
0.0									
0.0									
0.0		14	W.,						
		- mark	a second	mound	une in and a			Spectrum	
0,0						manutan	*****	Spectrum	
enter 2.512 otal Power		0 dBm / 25	MHz				Spa	an 84.00 MHz	CF Ste 8.400000 MH <u>Auto</u> Ma
				Lower	4-	Peak ->	Upper		Eres Offer
Start Freq	Stop Freq	Integ BW	dBm	$\Delta Lim(dB)$	Freq (Hz)	dBm	$\Delta Lim(dB)$	Freq (Hz)	FreqOffse
12.50 MHz	13.50 MHz	30.00 kHz	-31.57	(-21.57)	-12.50 M		()	-	OH
13.50 MHz	16.50 MHz	1.000 MHz	-31.09	(-21.09)	-13.61 M		()		and the second se
16.50 MHz	22.00 MHz	1.000 MHz	-49.33	(-36.33)	-16.75 M		()		
22.00 MHz	42.00 MHz	1.000 MHz	-53.89	(-28.89)	-22.30 M		()		
12.50 MHz	42.00 MHz	270.0 kHz		()		-58.42	(-108.42)	18.83 M	
	15.00 MHz	1.000 MHz		()			()		
12.50 MHz 12.50 MHz	15.00 MHz	1.000 MHz							and the second

Sub6 n7. Low Channel Edge Plot (25 MHz Ch.502500 BPSK RB 1)-1

		C		SENSE:INT		ALIGN A		:20 PM Apr 17, 2024	Frequency
enter Fred ASS	2.5125000 NFE		Tr	ig: Free Run tten: 20 dB	512500000 GH Avg: 1	z 100.00% of	20	Std: None Device: BTS	inequency
) dB/div	Ref Offset 27. Ref 30.0 dB								
pg								ACCESSION OF BUILD	
j.a		15-1							Center Fre
0,0				and the second second second					2.512500000 GH
.00									
i.a									
		(/)							
0.0									
0.0		N					_		
0.0						Yar	m	Spectrum	
a								~	
								mm	
0.0									
enter 2.512 otal Power		1 dBm / 25	MHz				Spa	in 84.00 MHz	CF Ste 8.400000 MH <u>Auto</u> Ma
enter 2.512 otal Power	Ref 24.0			Lower		Peak ->	Upper		8.400000 MH <u>Auto</u> Ma
enter 2.512 otal Power	Ref 24.0 Stop Freq	Integ BW	dBm	$\Delta Lim(dB)$	Freq (Hz)	Peak -> dBm		n 84.00 MHz	8.400000 MH <u>Auto</u> Ma Freq Offse
enter 2.512 otal Power Start Freq 12.50 MHz	Ref 24.0 Stop Freq 13.50 MHz	Integ BW 510.0 kHz	dBm -26.32	ΔLim(dB) (-16.32)	Freq (Hz) -12.50 M		Upper		8.400000 MH <u>Auto</u> Ma
enter 2.512 otal Power Start Freq 12.50 MHz 13.50 MHz	Ref 24.0 Stop Freq 13.50 MHz 16.50 MHz	Integ BW 510.0 kHz 1.000 MHz	dBm -26.32 -27.92	ΔLim(dB) (-16.32) (-17.92)	Freq (Hz) -12.50 M -13.50 M		Upper ∆Lim(dB)		8.400000 MH <u>Auto</u> Ma Freq Offse
enter 2.512 otal Power Start Freq 12.50 MHz 13.50 MHz 16.50 MHz	Ref 24.0 Stop Freq 13.50 MHz 16.50 MHz 22.00 MHz	Integ BW 510.0 kHz 1.000 MHz 1.000 MHz	dBm -26.32 -27.92 -32.50	ΔLim(dB) (-16.32) (-17.92) (-19.50)	Freq (Hz) -12.50 M -13.50 M -22.00 M		Upper ∆Lim(dB) ()		8.400000 MH <u>Auto</u> Ma Freq Offs
enter 2.512 otal Power Start Freq 12.50 MHz 13.50 MHz 16.50 MHz 22.00 MHz	Ref 24.0 Stop Freq 13.50 MHz 16.50 MHz 22.00 MHz 42.00 MHz	Integ BW 510.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -26.32 -27.92	ΔLim(dB) (-16.32) (-17.92) (-19.50) (-6.55)	Freq (Hz) -12.50 M -13.50 M	dBm 	Upper ∆Lim(dB) () () ()	Freq (Hz)	8.400000 MH <u>Auto</u> Ma Freq Offs
enter 2.512 otal Power Start Freq 12.50 MHz 13.50 MHz 16.50 MHz 22.00 MHz 12.50 MHz	Ref 24.0 Stop Freq 13.50 MHz 16.50 MHz 22.00 MHz 42.00 MHz 42.00 MHz	Integ BW 510.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz 270.0 kHz	dBm -26.32 -27.92 -32.50	ΔLim(dB) (-16.32) (-17.92) (-19.50) (-6.55) ()	Freq (Hz) -12.50 M -13.50 M -22.00 M	dBm 	Upper ∆Lim(dB) () () () () (-82.57)		8.400000 MH <u>Auto</u> Ma Freq Offs
enter 2.512 otal Power Start Freq 12.50 MHz 13.50 MHz 16.50 MHz 22.00 MHz	Ref 24.0 Stop Freq 13.50 MHz 16.50 MHz 22.00 MHz 42.00 MHz 42.00 MHz 15.00 MHz	Integ BW 510.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -26.32 -27.92 -32.50 -31.55	ΔLim(dB) (-16.32) (-17.92) (-19.50) (-6.55)	Freq (Hz) -12.50 M -13.50 M -22.00 M -22.90 M	dBm 	Upper ∆Lim(dB) () () ()	Freq (Hz)	8.400000 MH <u>Auto</u> Ma Freq Offs

Sub6 n7. Low Channel Edge Plot (25 MHz Ch.502500 BPSK)-1

enter Freq ASS	RF 50 Ω DO 2.5125000 NFE	00 GHz	Tri	sense:INT nter Freq: 2. ig: Free Run tten: 20 dB	512500000 GH	ALIGN AI	Radio 20	:14 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27.0 Ref 30.0 dB								
og 20.0			'n					Relatives since	Contra Fre
0.0									Center Fre 2.512500000 GH
.00									
0.0						u			
0.0								Absolute Limit	
0.0									
0.0									
0.0		لو	314	When we we we we we we we		~		Spectrum	
0.0									
enter 2.512	250 GHz						Spa	n 100.0 MHz	
									CF Ste 10.000000 MH
otal Power	Ref 22.98	B dBm / 25	MHz						Auto Ma
otarrower					2	Peak ->	Upper		Freq Offse
				Lower					
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	Freq (Hz)	dBm	$\Delta Lim(dB)$	Freq (Hz)	
Start Freq 12.50 MHz	13.50 MHz	30.00 kHz	dBm —	∆Lim(dB) ()		dBm -68.33	(-58.33)	12.58 M 🗠	0+
Start Freq 12.50 MHz 13.50 MHz	13.50 MHz 17.50 MHz	30.00 kHz 1.000 MHz		ΔLim(dB) () ()	Freq (Hz)	dBm -68.33 -55.45	(-58.33) (-45.45)	12.58 M 🔶 14.52 M	
Start Freq 12.50 MHz 13.50 MHz 17.50 MHz	13.50 MHz 17.50 MHz 37.50 MHz	30.00 kHz 1.000 MHz 1.000 MHz		ΔLim(dB) () ()	Freq (Hz)	dBm -68.33 -55.45 -53.13	(-58.33) (-45.45) (-40.13)	12.58 M 14.52 M 18.70 M ■	
Start Freq 12.50 MHz 13.50 MHz 17.50 MHz 37.50 MHz	13.50 MHz 17.50 MHz 37.50 MHz 50.00 MHz	30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz		ΔLim(dB) () () ()	Freq (Hz) 	dBm -68.33 -55.45	(-58.33) (-45.45) (-40.13) (-29.93)	12.58 M 🔶 14.52 M	
Start Freq 12.50 MHz 13.50 MHz 17.50 MHz 37.50 MHz 12.50 MHz	13.50 MHz 17.50 MHz 37.50 MHz 50.00 MHz 50.00 MHz	30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz 360.0 kHz		ΔLim(dB) () ()	Freq (Hz) 	dBm -68.33 -55.45 -53.13	(-58.33) (-45.45) (-40.13) (-29.93) ()	12.58 M 14.52 M 18.70 M ■	
Start Freq 12.50 MHz 13.50 MHz 17.50 MHz 37.50 MHz	13.50 MHz 17.50 MHz 37.50 MHz 50.00 MHz 50.00 MHz 15.00 MHz	30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz		ΔLim(dB) () () ()	Freq (Hz) 	dBm -68.33 -55.45 -53.13 -54.93	(-58.33) (-45.45) (-40.13) (-29.93)	12.58 M 14.52 M 18.70 M ■	

Sub6 n7. Low Channel Edge Plot (25 MHz Ch.502500 BPSK_RB1)-2

	RF 50 Q D 2.5125000 NFE	00 GHz	Tr	SENSE:INT enter Freq: 2. ig: Free Run atten: 20 dB	512500000 GH	Z 100.00% of	Radio 20	:59 PM Apr17, 2024 Std: None Device: BTS	Frequency
) dB/div	Ref Offset 27. Ref 30.0 dE								
og 0.0 0.0								Relative Linna	Center Free 2.512500000 GH
00 0.0 0.0								Absolute Limit	
0.0 0.0 0.0	Ņ	m			×		~~~~	Spectrum	
enter 2.512		6 dBm / 25	MHz				Spa	n 100.0 MHz	CF Stej 10.000000 MH Auto Ma
				Lower		Peak ->	Upper		Eren Offer
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	$\Delta Lim(dB)$	Freq (Hz)	Freq Offse
12.50 MHz	13.50 MHz	510.0 kHz		()		-30.00	(-20.00)	12.50 M	UH
13.50 MHz	17.50 MHz	1.000 MHz		()		-30.18	(-20.18)	13.50 M	
17.50 MHz	37.50 MHz	1.000 MHz		()		-31.15	(-18.15)	22.30 M ■	
	50.00 MHz	1.000 MHz 360.0 kHz	20 50	()	12 EO M	-46.91	(-21.91)	41.56 M	
37.50 MHz	50.00 MHz		-29.50	(-79.50) ()	-12.50 M		()		
12.50 MHz	45 00 MILI-	1 000 MU-					()		
	15.00 MHz 15.00 MHz	1.000 MHz 1.000 MHz		()			()		

Sub6 n7. Low Channel Edge Plot (25 MHz Ch.502500 BPSK)-2

100	2.5350000 NFE	00 GHz	Tri	SENSE:INT Inter Freq: 2. ig: Free Run Itten: 20 dB	535000000 GH	ALIGN AL 00.00% of 3	Radio 20	36 PM Apr17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og 10.0								Reinivertind	Center Free
0.0									2.535000000 GH
.00									
ò.ù									
0.0			_					Absolute Limit	
0.0		~ 1	N		La la		~		
0.0	\sim						5		
0.0							~	Spectrum	
0.0									
enter 2.535	00 GHz						Spa	n 100.0 MHz	CF Ste 10.000000 MH
otal Power	Ref 24.1	3 dBm / 25	MHz						<u>Auto</u> Ma
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)		Peak -> dBm	Upper ∆Lim(dB)	Frog (Ha)	Freq Offse
12.50 MHz	13.50 MHz	510.0 kHz	-24.50	(-14.50)	Freq (Hz)	-28.12	(-18.12)	Freq (Hz)	0 H
13.50 MHz	17.50 MHz	1.000 MHz	-25.43	(-14.30)	-13.50 M	-27.20	(-17.20)	13.50 M	
17.50 MHz	37.50 MHz	1.000 MHz	-31.58	(-18.58)	-25.00 M	-29.16	(-16.16)	22.60 M	
37.50 MHz	50.00 MHz	1.000 MHz	-47.80	(-22.80)	-40.38 M	-46.82	(-21.82)	37.56 M	
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		

Sub6 n7. Mid Channel Edge Plot (25 MHz Ch.507000 BPSK)

Center Fre 2.55750000 GH 2.55750000 GH 2.557500000 GH 2.55750000 GH 2.55750 GHz 2.55750 GHZ 2.55		RF 50 Ω DO 2.5575000 NFE	00 GHz	Tr	sense:INT enter Freq: 2. ig: Free Run atten: 20 dB	557500000 GH:	ALIGN AL 2 00.00% of 3	Radio 20	:45 PM Apr17, 2024 Std: None Device: BTS	Frequency
000 0	0 dB/div									
00 Abject/JE 00 Abject/JE 00 Abject/JE 00 Spectrum 01 Spectrum 02 Spectrum 03 Spectrum 04 Spectrum 05 Spectrum 04 Spectrum 05 Spectrum 04 Spectrum 05 Spectrum 1250 MHz	og 20.0 10.0					A				Center Fre 2.557500000 GH
Spectrum Spectrum Stenter 2.55750 GHz Span 100.0 MHz CF Ste Span 100.0 MHz Otal Power Ref 23.80 dBm / 25 MHz Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) 13.50 MHz 13.50 MHz 13.50 MHz 13.50 MHz 13.50 MHz 1000 MHz 17.50 MHz 1000 MHz 12.50 MHz 1000 MHz 10.000 MHz -54.34 (40.19) -18.70 M 12.50 MHz 1000 MHz 1000 MHz -54.95 () - 12.50 MHz 1000 MHz 1000 MHz -54.95 (-0) - 12.50 MHz 1000 MHz 1000 MHz - 12.50 MHz 1000 MHz 1000 MHz - 12.50 MHz <	0.0 0.0 0.0								Absolute Limit	
Span 100.0 MHz Span 100.0 MHz Stenter 2.55750 GHz Span 100.0 MHz Total Power Ref 23.80 dBm / 25 MHz Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) GBm ALim(dB) Freq (Hz) Matter 12.50 MHz 13.50 MHz 30.00 kHz -60.88 (-50.88) -13.09 M -32.18 (-22.18) 12.50 M 12.50 MHz 1000 MHz -54.34 (-44.34) -13.56 M -29.52 (-19.52) 13.62 M 13.50 M+z 1000 MHz -54.34 (-44.34) -13.76 M 50.58 17.50 M 1000 MHz -54.34 (-40.19) -18.70 M -50.58 (-37.58) 17.50 M 1 0 H 37.50 MHz 1.000 MHz -54.95 (-29.95) -37.94 M -54.87 (-29.87) 48.06 M Matter 37.50 MHz 1000 MHz 1.000 MHz -54.95 (-29.95) -37.94 M -54.87 (-29.87) 48.06 M Matter 30.000 MHz 12.50 MHz 1.000 MHz -0 -	30.0 10.0 30.0								Spectrum	
Criste Criste Total Power Ref 23.80 dBm / 25 MHz Lower <- Peak > Upper Start Freq Stop Freq Integ BW dBm ∆Lim(dB) Freq (Hz) dBm ∆Lim(dB) Freq (Hz) dBm ∆Lim(dB) Freq (Hz) Integ BW dBm ∆Lim(dB) Freq (Hz) dBm ∆Lim(dB) Freq (Hz) Integ BW dBm ∆Lim(dB) Freq (Hz) dBm ∆Lim(dB) Freq (Hz) Integ BW dBm ∆Lim(dB) Freq (Hz) Integ BW Integ BW dBm ∆Lim(dB) Freq (Hz) Integ BW	50.0			- Marin	and all and a start of the star					
Start Freq Stop Freq Integ BW dBm ∆Lim(dB) Freq (Hz) dBm ∆Lim(dB) Freq (Hz) dBm ∆Lim(dB) Freq (Hz) 12.50 MHz 13.50 MHz 30.00 kHz -60.88 (-50.88) -13.09 M -32.18 (-22.18) 12.50 M 12.50 M 13.50 MHz 17.50 MHz 1.000 MHz -54.34 (-44.34) -13.56 M -29.52 (-19.52) 13.62 M 13.62 M 13.50 MHz 10.00 MHz -53.19 (-40.19) -18.70 M -50.58 (-37.58) 17.50 M 17.50 M 17.50 MHz 1.000 MHz -54.95 (-29.95) -37.94 M -54.87 (-29.87) 48.06 M 14.06 M 12.50 MHz 1.000 MHz -54.95 (-29.95) -37.94 M -54.87 (-29.87) 48.06 M 12.50 MHz 1.000 MHz - () () () () () () ())dBm / 251	MHz				Spa	n 100.0 MHz	CF Ste 10.000000 MH <u>Auto</u> Ma
12:50 MHz 13:50 MHz 30:00 KHz -50:86 (-30:86) -13:50 M -22:18 (-22:16) 12:30 M 12:30 M 13:50 MHz 17:50 MHz 1.000 MHz -54:34 (-44:34) -13:56 M -29:52 (-19:52) 13:62 M 17:50 MHz 37:50 MHz 1.000 MHz -53:19 (-40:19) -18:70 M -50:58 (-37:58) 17:50 M = 37:50 MHz 50:00 MHz 1.000 MHz -54:95 (-29:95) -37:94 M -56:87 (-29:87) 48:06 M = 8.000 MHz 12:50 MHz 1.000 MHz () () () () () () () () () () () () () () () () () <t< td=""><td>Start Freq</td><td>Stop Freq</td><td>Integ BW</td><td>dBm</td><td></td><td></td><td></td><td></td><td>Freq (Hz)</td><td>Freq Offse</td></t<>	Start Freq	Stop Freq	Integ BW	dBm					Freq (Hz)	Freq Offse
17.50 MHz 37.50 MHz 1.000 MHz -53.19 (-40.19) -18.70 M -50.58 (-37.58) 17.50 M 50.00 MHz 37.50 MHz 50.00 MHz 1.000 MHz -54.95 (-29.95) -37.94 M -54.87 (-29.87) 48.06 M 8.000 MHz 12.50 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () ()	12.50 MHz	13.50 MHz	30.00 kHz	-60.88	(-50.88)	-13.09 M	-32.18	(-22.18)	12.50 M	0 H
37.50 MHz 50.00 MHz 1.000 MHz -54.95 (-29.95) -37.94 M -54.87 (-29.87) 48.06 M 8.000 MHz 12.50 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () ()	13.50 MHz	17.50 MHz	1.000 MHz	-54.34	(-44.34)	-13.56 M	-29.52	(-19.52)	13.62 M	
8.000 MHz 12.50 MHz 1.000 MHz () () 12.50 MHz 15.00 MHz 1.000 MHz () () ()	17.50 MHz	37.50 MHz	1.000 MHz	-53.19	(-40.19)	-18.70 M	-50.58	(-37.58)	17.50 M 🗉	
12.50 MHz 15.00 MHz 1.000 MHz () () ()	37.50 MHz	50.00 MHz	1.000 MHz	-54.95	(-29.95)	-37.94 M	-54.87	(-29.87)	48.06 M	
	8.000 MHz	12.50 MHz	1.000 MHz		()			()		
12.50 MHz 15.00 MHz 1.000 MHz () () ()	12.50 MHz	15.00 MHz	1.000 MHz		()			()		
	12.50 MHz	15.00 MHz	1.000 MHz		()			()		

Sub6 n7. High Channel Edge Plot (25 MHz Ch.511500 BPSK RB 1)

	n Analyzer - Spectrui								
	35 Ω D 2.5575000 NFE	00 GHz	Tri	SENSE:INT Inter Freq: 2. ig: Free Run Itten: 20 dB	557500000 GH	ALIGN A 2 00.00% of	Radio 20	:41 PM Apr17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dE								
og								Relative circle	
0.0									Center Fre
			1						2.557500000 GH
0.00									
0.0		5.00				L			
0.0		~ /	~					Absolute Limit	
0.0					N				
0.0						-			
0.0								Spectrum	
sip.a									
Center 2.557		4 dBm / 25	MHz				Spa	n 100.0 MHz	CF Ste 10.000000 MH <u>Auto</u> Ma
				Lower		Peak ->	Upper		
Start Freq	Stop Freq	Integ BW	dBm	ΔLim(dB)	Freq (Hz)	dBm	ΔLim(dB)	Freq (Hz)	Freq Offse
12.50 MHz	13.50 MHz	510.0 kHz	-23.27	(-13.27)	-12.50 M	-28.78	(-18.78)	12.50 M 🗠	0 H
13.50 MHz	17.50 MHz	1.000 MHz	-24.28	(-14.28)	-13.50 M	-27.91	(-17.91)	13.52 M	
17.50 MHz	37.50 MHz	1.000 MHz	-26.73	(-13.73)	-24.90 M	-34.99	(-21.99)	17.50 M ⁼	
37.50 MHz	50.00 MHz	1.000 MHz	-47.14	(-22.14)	-37.50 M	-54.87	(-29.87)	44.38 M	
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()		_	()		
G						S	TATUS		

Sub6 n7. High Channel Edge Plot (25 MHz Ch.511500 BPSK)

515000000 NFE) GHz		SENSE:INT		ALIGN AL		:53 PM Apr 17, 2024	Frequency
	IFGain:Lov	Tr	enter Freq: 2.8 rig: Free Run Atten: 20 dB	515000000 GH: Avg: 1	00.00% of :	20	Std: None Device: BTS	Frequency
Offset 27.03 5 30.0 dBm								
							Associate limit	
	A I							Center Fre
								2.515000000 GH
	ا ا اند							
	1							
		and the second second	-	and a second second	-			
					Marrows		Spectrum	
GHZ						spa	n 89.00 MHz	CF Ste
								8.900000 MH
23.15 d	Bm/ 30 M	MHz						<u>Auto</u> Ma
			Louise	21	linely >	Unner		
Stop Freq	Integ BW	dBm			dBm	ΔLim(dB)	Freq (Hz)	Freq Offs
6.00 MHz 3	30.00 kHz	-35.65	(-25.65)	-15.00 M		()	*	0 H
	.000 MHz	-32.06	(-22.06)	-16.00 M		()		
9.00 MHz 1	000.000	-49.51	(-36.51)	-19.00 M		()		
	.000 MHz			00.00.11		()		
4.50 MHz 1	.000 MHz .000 MHz	-53.21	(-28.21)	-25.00 M				
4.50 MHz 1 4.50 MHz 1 4.50 MHz 2	.000 MHz 270.0 kHz	-53.21	(-28.21) ()	-25.00 M	-59.39	(-109.39)	16.48 M	
4.50 MHz 1 4.50 MHz 1 4.50 MHz 2 5.00 MHz 1	.000 MHz		()				16.48 M	
	GHz 23.15 d Stop Freq	f 23.15 dBm / 30 M Stop Freq Integ BW	GHz 23.15 dBm / 30 MHz Stop Freq Integ BW dBm	GHz 23.15 dBm / 30 MHz Stop Freq Integ BW dBm ΔLim(dB)	GHz 23.15 dBm / 30 MHz Stop Freq Integ BW dBm ∆Lim(dB) Freq (Hz)	GHz 23.15 dBm / 30 MHz Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) dBm	GHz Spa 23.15 dBm / 30 MHz Lower Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) dBm	Associate Line Associate Line Associate Line Associate Line GHz Span 89.00 MHz 23.15 dBm / 30 MHz Stop Freq Integ BW Lower <-Peak -> Upper Stop Freq Integ BW ALim(dB) Freq (Hz) dBm

Sub6 n7. Low Channel Edge Plot (30 MHz Ch.503000 BPSK RB 1)-1

enter Freq	RF 50 Ω D 2.5150000 NFE	00 GHz	Tr	SENSE:INT enter Freq: 2. ig: Free Run Atten: 20 dB	515000000 GH	ALIGN AL 2 00.00% of	Radio 20	Std: None	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dE								
.09 20.0 10.0								AND STOLEN LIVE	Center Fre 2.515000000 GH
0.00 0.0 0.0									
0.0		\sim				~~~	n	Spectrum	
50.0									
					-	-			
							Spa	an 89.00 MHz	CF Ste 8.900000 MH
		5 dBm / 30	MHz	Lower	<u> </u>	Peak ->	Upper	in 89.00 MHz	8.900000 MH <u>Auto</u> Ma
		5 dBm / 30 Integ BW	MHz dBm	Lower ∆Lim(dB)	Freq (Hz)	Peak -> dBm		Freq (Hz)	8.900000 MH Auto Ma Freq Offse
otal Power Start Freq 15.00 MHz	Ref 24.0	Integ BW 620.0 kHz	dBm -25.58		Freq (Hz) -15.00 M		Upper		8.900000 MH Auto Ma Freq Offse
otal Power Start Freq 15.00 MHz 16.00 MHz	Ref 24.0	Integ BW 620.0 kHz 1.000 MHz	dBm	$\Delta Lim(dB)$	Freq (Hz)	dBm	Upper ∆Lim(dB)		8.900000 MH Auto Ma Freq Offse
otal Power Start Freq 15.00 MHz 16.00 MHz 19.00 MHz	Ref 24.0 Stop Freq 16.00 MHz 19.00 MHz 24.50 MHz	Integ BW 620.0 kHz 1.000 MHz 1.000 MHz	dBm -25.58 -28.90 -32.41	∆Lim(dB) (-15.58) (-18.90) (-19.41)	Freq (Hz) -15.00 M -16.00 M -23.51 M	dBm	Upper ∆Lim(dB) ()		8.900000 MH Auto Ma Freq Offse
Start Freq 15.00 MHz 16.00 MHz 19.00 MHz 24.50 MHz	Ref 24.0 Stop Freq 16.00 MHz 19.00 MHz 24.50 MHz 44.50 MHz	Integ BW 620.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -25.58 -28.90	ΔLim(dB) (-15.58) (-18.90) (-19.41) (-8.39)	Freq (Hz) -15.00 M -16.00 M	dBm 	Upper ΔLim(dB) () () ()	Freq (Hz)	8.900000 MH Auto Ma Freq Offse
15.00 MHz 16.00 MHz 19.00 MHz 24.50 MHz 15.00 MHz	Ref 24.0 Stop Freq 16.00 MHz 19.00 MHz 24.50 MHz 44.50 MHz 44.50 MHz	Integ BW 620.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz 270.0 kHz	dBm -25.58 -28.90 -32.41	ΔLim(dB) (-15.58) (-18.90) (-19.41) (-8.39) ()	Freq (Hz) -15.00 M -16.00 M -23.51 M	dBm 	Upper ΔLim(dB) () () () (-81.00)		8.900000 MH Auto Ma Freq Offse
Start Freq 15.00 MHz 16.00 MHz 19.00 MHz 24.50 MHz	Ref 24.0 Stop Freq 16.00 MHz 19.00 MHz 24.50 MHz 44.50 MHz 44.50 MHz 15.00 MHz	Integ BW 620.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -25.58 -28.90 -32.41 -33.39	ΔLim(dB) (-15.58) (-18.90) (-19.41) (-8.39)	Freq (Hz) -15.00 M -16.00 M -23.51 M -28.20 M	dBm 	Upper ΔLim(dB) () () ()	Freq (Hz)	8.900000 MH

Sub6 n7. Low Channel Edge Plot (30 MHz Ch.503000 BPSK)-1

ss	RF 50 Ω D 2.5150000 NFE	00 GHz	Tri	SENSE:INT enter Freq: 2. ig: Free Run itten: 20 dB	515000000 GH	ALIGN AU 2 00.00% of 2	Radio 20	:32 PM Apr 17, 2024 Std: None Device: BTS	Frequency
dB/div	Ref Offset 27. Ref 30.0 dB								
								Reliniver	1000000000
0 0			1						Center Free 2.515000000 GH
0									
1			11			_			
								Absolute Limit	
								Absolute Linit	
		وها العط	11						
1									
		- when a start of the start of			manning pro-			Spectrum	
]									
nter 2.515		3 dBm / 30 l	MHz				Spa	n 120.0 MHz	CF Ste 12.000000 MH <u>Auto</u> Ma
tal Power		3 dBm / 30 l	MHz	Lours		Deale >		in 120.0 MHz	12.000000 MH
		3 dBm / 30 f Integ BW	MHz dBm	Lower ∆Lim(dB)	< Freq (Hz)	Peak -> dBm	Spa ^{Upper} ∆Lim(dB)	in 120.0 MHz Freq (Hz)	12.000000 MH <u>Auto</u> Ma Freq Offse
tal Power	Ref 23.1						Upper		12.000000 MH
tal Power Start Freq 15.00 MHz 16.00 MHz	Ref 23.13 Stop Freq 16.00 MHz 20.00 MHz	Integ BW 30.00 kHz 1.000 MHz	dBm	∆Lim(dB)	Freq (Hz)	dBm -67.57 -54.89	Upper ∆Lim(dB) (-57.57) (-44.89)	Freq (Hz) 15.90 M 🖆 16.38 M	12.000000 MH <u>Auto</u> Ma Freq Offse
tal Power Start Freq 15.00 MHz 16.00 MHz 20.00 MHz	Ref 23.13 Stop Freq 16.00 MHz 20.00 MHz 45.00 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz	dBm	∆Lim(dB) ()	Freq (Hz)	dBm -67.57 -54.89 -54.37	Upper ΔLim(dB) (-57.57) (-44.89) (-41.37)	Freq (Hz) 15.90 M ▲ 16.38 M 24.13 M ■	12.000000 MH <u>Auto</u> Ma Freq Offse
tal Power start Freq 5.00 MHz 6.00 MHz 20.00 MHz 15.00 MHz	Ref 23.13 Stop Freq 16.00 MHz 20.00 MHz 45.00 MHz 60.00 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm 	ΔLim(dB) () () ()	Freq (Hz) 	dBm -67.57 -54.89	Upper ∆Lim(dB) (-57.57) (-44.89)	Freq (Hz) 15.90 M 🖆 16.38 M	12.000000 MH Auto Ma Freq Offse
tal Power Start Freq 5.00 MHz 6.00 MHz 20.00 MHz 15.00 MHz 15.00 MHz	Ref 23.13 Stop Freq 16.00 MHz 20.00 MHz 45.00 MHz 60.00 MHz 60.00 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz 430.0 kHz	dBm 	ΔLim(dB) () ()	Freq (Hz) 	dBm -67.57 -54.89 -54.37	Upper ΔLim(dB) (-57.57) (-44.89) (-41.37)	Freq (Hz) 15.90 M ▲ 16.38 M 24.13 M ■	12.000000 MH <u>Auto</u> Ma Freq Offse
tal Power start Freq 5.00 MHz 6.00 MHz 20.00 MHz 15.00 MHz	Ref 23.13 Stop Freq 16.00 MHz 20.00 MHz 45.00 MHz 60.00 MHz 15.00 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm 	ΔLim(dB) () () ()	Freq (Hz) 	dBm -67.57 -54.89 -54.37 -54.80	Upper ∆Lim(dB) (-57.57) (-44.89) (-41.37) (-29.80)	Freq (Hz) 15.90 M ▲ 16.38 M 24.13 M ■	12.000000 MH <u>Auto</u> Ma Freq Offse

Sub6 n7. Low Channel Edge Plot (30 MHz Ch.503000 BPSK_RB1)-2

egg remove Line 000 remove Line <td< th=""><th>1.00</th><th>RF 50 Ω DO 2.5150000 NFE</th><th>00 GHz</th><th> Tr</th><th>SENSE:INT Inter Freq: 2. ig: Free Run Itten: 20 dB</th><th>515000000 GH</th><th>ALIGN A 2 00.00% of</th><th>Radio 20</th><th>18 PM Apr 17, 2024 Std: None Device: BTS</th><th>Frequency</th></td<>	1.00	RF 50 Ω DO 2.5150000 NFE	00 GHz	Tr	SENSE:INT Inter Freq: 2. ig: Free Run Itten: 20 dB	515000000 GH	ALIGN A 2 00.00% of	Radio 20	18 PM Apr 17, 2024 Std: None Device: BTS	Frequency
Center Freq Control Contro	0 dB/div									
CF Ste Span 120.0 MHz Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) Masc Freq (Hz) Other Freq Offse 15.00 MHz 16.00 MHz 620.0 KHz - - - -24.96 (-14.96) 15.00 M 44.00 Masc 15.00 MHz 16.00 MHz 620.0 KHz - () - -28.15 (-18.15) 16.00 M 15.00 M 0H 15.00 MHz 10.00 MHz 1.000 MHz - () - -30.14 (-17.14) 28.63 M 0H 15.00 MHz 60.00 MHz 1.000 MHz - () - - - - - - - - - - - - - - - - - - 0H 0H 0H 0H 0H 0H 0H - - -	20.0 10.0			· · · ·					Relative Land	Center Fre 2.515000000 GH
CF Ster CF Ster Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) Mathematical Start Stop	0.0					_				
Span 120.0 GHz Span 120.0 MHz CF Ste Span 120.0 MHz Fotal Power Ref 24.04 dBm / 30 MHz Span 120.0 MHz Start Freq Stop Freq Integ BW dBm Lower CF Ste Upper 15.00 MHz 16.00 MHz 620.0 kHz - () - -24.96 (-14.96) 15.00 M 15.00 M 16.00 MHz 20.00 MHz 1.000 MHz - () - -28.15 (-18.15) 16.00 M 0 H 20.00 MHz 45.00 MHz 1.000 MHz - () - -30.14 (-17.14) 28.63 M 1 15.00 MHz 60.00 MHz 1.000 MHz - () - -44.11 (-19.11) 52.35 M 1 15.00 MHz 60.00 MHz 430.0 kHz -29.26 (-79.26) -15.00 M -	0.0		mar			6	\sim	~	Absolute Limi	
Span 120.0 GHz Span 120.0 MHz CF Ster Total Power Ref 24.04 dBm / 30 MHz Lower <-Peak > Upper dBm ΔLim(dB) Freq (Hz) GBm ΔLim(dB) Freq (Hz) Matter Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) dBm ΔLim(dB) Freq (Hz) Freq (Hz) Freq Offss 15.00 MHz 16.00 MHz 620.0 KHz - () - -24.96 (-14.96) 15.00 M ≦ 0 H 20.00 MHz 1000 MHz - () - -28.15 (-18.15) 16.00 M ≦ 0 H 20.00 MHz 45.00 MHz 1.000 MHz - () - -30.14 (-17.14) 28.63 M = 15.00 MHz 60.00 MHz 1.000 MHz - () - <t< td=""><td>ia.a</td><td>~</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Spectrum</td><td></td></t<>	ia.a	~							Spectrum	
Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) Upper Jund Freq Offset 15.00 MHz 16.00 MHz 620.0 kHz - () - -24.96 (-14.96) 15.00 M 15.00 M 15.00 MHz 1000 MHz - () - -28.15 (-18.15) 16.00 M 16.00 M 15.00 M 15.00 M 15.00 M 15.00 M 16.00 MHz - () - -28.15 (-18.15) 16.00 M 16.00 M 16.00 MHz 1.000 MHz - () - -30.14 (-17.14) 28.63 M 16.00 M 15.00 M 15.00 M 15.00 M 16.00 M 15.00 M 16.00 M 15.00 M 16.00 M 15.00 M 16.00 M 16.00 M 16.00 MHz 1.000 MHz - () - -30.14 (-17.14) 28.63 M 15.00 M 15.00 M 1.000 MHz -29.26 (-79.26) -15.00 M		00 GHz						Spa	n 120.0 MHz	CE Ste
Start Freq Stop Freq Integ BW dBm ∆Lim(dB) Freq (Hz) dEm ∆Lim(dB) Teq (Hz) DEm DEm DEm DEm DEm	otal Power	Ref 24.04	4 dBm / 30 l	MHz						12.000000 MH
15.00 MHz 16.00 MHz 620.0 kHz () -24.96 (-14.96) 15.00 M - 16.00 MHz 20.00 MHz 1.000 MHz () -28.15 (-18.15) 16.00 M - 20.00 MHz 45.00 MHz 1.000 MHz () -30.14 (-17.14) 28.63 M - - - - -30.14 (-17.14) 28.63 M -<	Start Freg	Stop Freg	Integ BW	dBm					Freg (Hz)	Freq Offse
16.00 MHz 20.00 MHz 1.000 MHz () -28.15 (-18.15) 16.00 M 20.00 MHz 45.00 MHz 1.000 MHz () -30.14 (-17.14) 28.63 M ■ 45.00 MHz 60.00 MHz 1.000 MHz () -44.11 (-19.11) 52.35 M 15.00 MHz 60.00 MHz 430.0 kHz -29.26 (-79.26) -15.00 M () 12.50 MHz 15.00 MHz 1.000 MHz () ()	15.00 MHz						-24.96			0 H
20.00 MHz 45.00 MHz 1.000 MHz () -30.14 (-17.14) 28.63 M ■ 45.00 MHz 60.00 MHz 1.000 MHz () -44.11 (-19.11) 52.35 M ■ 15.00 MHz 60.00 MHz 430.0 kHz -29.26 (-79.26) -15.00 M () 12.50 MHz 15.00 MHz 1.000 MHz () ()	16.00 MHz	20.00 MHz	1.000 MHz		()		-28.15		16.00 M	
45.00 MHz 60.00 MHz 1.000 MHz - () - -44.11 (-19.11) 52.35 M 15.00 MHz 60.00 MHz 430.0 kHz -29.26 (-79.26) -15.00 M () 12.50 MHz 15.00 MHz 1.000 MHz () ()	20.00 MHz	45.00 MHz	1.000 MHz		()		-30.14	(-17.14)	28.63 M =	1
12.50 MHz 15.00 MHz 1.000 MHz () ()	45.00 MHz	60.00 MHz	1.000 MHz		()		-44.11		52.35 M	
	15.00 MHz	60.00 MHz	430.0 kHz	-29.26	(-79.26)	-15.00 M		()		
12.50 MHz 15.00 MHz 1.000 MHz () () ()	12.50 MHz	15.00 MHz	1.000 MHz		()			()		
	12.50 MHz	15.00 MHz	1.000 MHz	-	()			()		

Sub6 n7. Low Channel Edge Plot (30 MHz Ch.503000 BPSK)-2

	RF 50 Ω D			SENSE:INT		ALIGN AL		:52 PM Apr 17, 2024	Frequency
enter Freq ASS	2.5350000 NFE		TI	enter Freq: 2. rig: Free Run Atten: 20 dB	535000000 GH Avg: 1	z 100.00% of :	20	Std: None Device: BTS	inequency
) dB/div	Ref Offset 27. Ref 30.0 dE								
og 0.0								Relative can	
									Center Fre
0.0			~~~						2.535000000 GH
.00						_			
0.0			_			_		-	
0.0								Absolute Linit	
0.0			n		5		2	Ausonate Enni	
0.0	~	\sim					~		
0.0								Spectrum	
0.0							-		
enter 2.535	00 GHz						Spa	n 120.0 MHz	CF Ste 12.000000 MH
otal Power	Ref 24.24	4 dBm / 30 l	MHz						<u>Auto</u> Ma
				Lower		Peak ->	Upper		Freq Offse
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	$\Delta Lim(dB)$	Freq (Hz)	0 H
15.00 MHz	16.00 MHz	620.0 kHz	-24.84	(-14.84)	-15.00 M	-25.08	(-15.08)	15.00 M 📤	0 H
16.00 MHz	20.00 MHz	1.000 MHz	-26.03	(-16.03)	-16.00 M	-26.14	(-16.14)	16.02 M	
20.00 MHz 45.00 MHz	45.00 MHz	1.000 MHz	-33.07	(-20.07)	-20.00 M	-30.64	(-17.64)	28.63 M ■	
APS III MHZ	60.00 MHz	1.000 MHz	-50.56	(-25.56)	-45.15 M	-52.82	(-27.82)	45.08 M	
	12.50 MHz	1.000 MHz		() ()			()		
8.000 MHz	15 00 MIL						()		
	15.00 MHz 15.00 MHz	1.000 MHz 1.000 MHz					()		

Sub6 n7. Mid Channel Edge Plot (30 MHz Ch.507000 BPSK)

	RF 50 Ω Di 2.55550000 NFE	00 GHz	Tr	SENSE:INT enter Freq: 2. ig: Free Run Atten: 20 dB	555000000 GH	ALIGN AU 2 100.00% of 2	Radio	:58 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og 20.0					Λ			Reliniversion	Conton Engl
10,0,									Center Free 2.555000000 GH
0.00									1
0.0							_	-	
10.0								Absolute Limit	
0.0									
0.0								_	
.0.0					. · · ·	_		Spectrum	
0.0			- plane	- white and a second				Spectrum	
enter 2.555		4 dBm / 30 l	MHz				Spa	n 120.0 MHz	CF Ste 12.000000 MH <u>Auto</u> Ma
				Lower	<-	Peak ->	Upper		Ence Office
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	$\Delta Lim(dB)$	Freq (Hz)	Freq Offse
15.00 MHz	16.00 MHz	30.00 kHz	-66.39	(-56.39)	-15.40 M	-37.44	(-27.44)	15.00 M 🗠	0 H
16.00 MHz	20.00 MHz	1.000 MHz	-54,55	(-44.55)	-16.38 M	-29.63	(-19.63)	16.12 M	
20.00 MHz	45.00 MHz	1.000 MHz	-54.08	(-41.08)	-21.13 M	-50.19	(-37.19)	20.00 M ■	
45.00 MHz	60.00 MHz	1.000 MHz	-54.97	(-29.97)	-48.68 M	-54.84	(-29.84)	49.13 M	
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
12.50 MHz 12.50 MHz	15.00 MHz 15.00 MHz	1.000 MHz 1.000 MHz		()			()		
							()		

Sub6 n7. High Channel Edge Plot (30 MHz Ch.511000 BPSK RB 1)

	Analyzer - Spectrur								
RL R	50 Ω D		Ce	SENSE:INT	555000000 GH	ALIGN AL		:56 PM Apr 17, 2024 Std: None	Frequency
SS S	2.5550000 NFE		Tri	ig: Free Run tten: 20 dB		00.00% of	20	Device: BTS	
	Ref Offset 27. Ref 30.0 dB								
g								Reality was a made	
Q									Center Fre
0									2.555000000 GH
0									-
a						_			
0									
		nad	~		m			Absolute Limit	
0									
0	r					NA.			
\sim	~						and the second s	Spectrum	
0									
nter 2.5550	00 GHz						Spa	n 120.0 MHz	
		8 dBm / 30	MHz				Spa	in 120.0 MHz	12.000000 MH
nter 2.5550 Ital Power F	Ref 24.28			Lower		Peak ->	Upper		
enter 2.5550 Ital Power P	Ref 24.24 Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	Upper ∆Lim(dB)	Freq (Hz)	12.000000 MH <u>Auto</u> Ma Freq Offse
enter 2.5550 stal Power P Start Freq 15.00 MHz	Ref 24.24 Stop Freq 16.00 MHz	Integ BW 620.0 kHz	dBm -21.66	ΔLim(dB) (-11.66)	Freq (Hz) -15.00 M	dBm -23.77	Upper ΔLim(dB) (-13.77)	Freq (Hz) 15.00 M 술	12.000000 MH <u>Auto</u> Ma
enter 2.5550 Ital Power P Start Freq 15.00 MHz 16.00 MHz	Ref 24.24 Stop Freq 16.00 MHz 20.00 MHz	Integ BW 620.0 kHz 1.000 MHz	dBm -21.66 -24.17	ΔLim(dB) (-11.66) (-14.17)	Freq (Hz) -15.00 M -16.00 M	dBm -23.77 -25.82	Upper ∆Lim(dB) (-13.77) (-15.82)	Freq (Hz) 15.00 M 16.00 M	12.000000 MH <u>Auto</u> Ma Freq Offse
tal Power I Start Freq 15.00 MHz 16.00 MHz 20.00 MHz	Ref 24.24 Stop Freq 16.00 MHz 20.00 MHz 45.00 MHz	Integ BW 620.0 kHz 1.000 MHz 1.000 MHz	dBm -21.66 -24.17 -26.24	ΔLim(dB) (-11.66) (-14.17) (-13.24)	Freq (Hz) -15.00 M -16.00 M -28.75 M	dBm -23.77 -25.82 -30.76	Upper ΔLim(dB) (-13.77) (-15.82) (-17.76)	Freq (Hz) 15.00 M ▲ 16.00 M 20.00 M ■	12.000000 MH Auto Ma Freq Offse
tal Power I Start Freq 15.00 MHz 16.00 MHz 20.00 MHz 45.00 MHz	Ref 24.26 Stop Freq 16.00 MHz 20.00 MHz 45.00 MHz 60.00 MHz 60.00 MHz	Integ BW 620.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -21.66 -24.17 -26.24 -46.17	ΔLim(dB) (-11.66) (-14.17) (-13.24) (-21.17)	Freq (Hz) -15.00 M -16.00 M	dBm -23.77 -25.82	Upper ∆Lim(dB) (-13.77) (-15.82) (-17.76) (-29.78)	Freq (Hz) 15.00 M 16.00 M	12.000000 MH <u>Auto</u> Ma Freq Offse
tal Power I Start Freq 15.00 MHz 16.00 MHz 20.00 MHz 45.00 MHz 8.000 MHz	Ref 24.24 Stop Freq 16.00 MHz 20.00 MHz 45.00 MHz 60.00 MHz 12.50 MHz	Integ BW 620.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -21.66 -24.17 -26.24 -46.17	ΔLim(dB) (-11.66) (-14.17) (-13.24) (-21.17) ()	Freq (Hz) -15.00 M -16.00 M -28.75 M	dBm -23.77 -25.82 -30.76	Upper △Lim(dB) (-13.77) (-15.82) (-17.76) (-29.78) ()	Freq (Hz) 15.00 M ▲ 16.00 M 20.00 M ■	12.000000 MH Auto Ma Freq Offse
tal Power I Start Freq 15.00 MHz 16.00 MHz 20.00 MHz 45.00 MHz	Ref 24.24 Stop Freq 16.00 MHz 20.00 MHz 45.00 MHz 60.00 MHz 12.50 MHz 15.00 MHz	Integ BW 620.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -21.66 -24.17 -26.24 -46.17	ΔLim(dB) (-11.66) (-14.17) (-13.24) (-21.17)	Freq (Hz) -15.00 M -16.00 M -28.75 M	dBm -23.77 -25.82 -30.76	Upper ∆Lim(dB) (-13.77) (-15.82) (-17.76) (-29.78)	Freq (Hz) 15.00 M ▲ 16.00 M 20.00 M ■	12.000000 MH <u>Auto</u> Ma Freq Offse

Sub6 n7. High Channel Edge Plot (30 MHz Ch.511000 BPSK)

RL	RF 50 Ω D	c		SENSE:INT		ALIGN AL	ло 09:01	:03 PM Apr 17, 2024	E Barrada
enter Freq ASS	2.5175000 NFE		Tr	enter Freq: 2. ig: Free Run Atten: 20 dB	517500000 GH: Avg: 1	z 00.00% of	20	Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og								ARGINARED	
0.0		Λ							Center Fre
0.0			_						2.517500000 GH
.00									
ο.α									
0.0									
0.0		A 1							
0.0						_			
0.0		/N	A Sheer and a state			_			
0.0				nit in the product of the	A.B. + W. Later Marine Barris	- 1		- Spectrum	
Q,0						h	-humber		
enter 2.517 otal Power		9 dBm / 35 l	MHz				Spa	an 94.00 MHz	CF Ste 9.400000 MH Auto Ma
				Lower		Peak ->	Upper		
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	$\Delta Lim(dB)$	Freq (Hz)	Freq Offs
17.50 MHz	18.50 MHz	30.00 kHz	-36.38	(-26.38)	-17.50 M		()	A	01
18.50 MHz	21.50 MHz	1.000 MHz	-31.27	(-21.27)	-18.58 M		()		
21.50 MHz	27.00 MHz	1.000 MHz	-48.28	(-35.28)	-21.58 M		()		
27.00 MHz	47.00 MHz	1.000 MHz	-53.30	(-28.30)	-27.20 M		()		
17.50 MHz	47.00 MHz	270.0 kHz		()		-60.32	(-110.32)	25.45 M	
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz	-	()			()	-	
12.50 MHZ									

Sub6 n7. Low Channel Edge Plot (35 MHz Ch.503500 BPSK RB 1)-1

ASS	2.5175000 NFE		Tri	sense:INT enter Freq: 2. ig: Free Run atten: 20 dB	517500000 GH	Z 200.00% of	Radio 20	Std: None Device: BTS	Frequency
) dB/div	Ref Offset 27. Ref 30.0 dB								
og 0.0								ARGUNAL AND REAL	
									Center Fre
0.0		~							2.517500000 GH
.00									
0.0									
0.0									
0.0						4			
0.0		\sim				my	m	Spectrum	
0.0								m	
0,0									
enter 2.517	50 GHz						Spa	n 94.00 MHz	CF Ste
enter 2.517 otal Power		3 dBm / 35 l	MHz				Spa	in 94.00 MHz	9.400000 MH
		3 dBm / 35 l	MHz	Lower	¢	Peak ->	Spa	in 94.00 MHz	9.400000 MH <u>Auto</u> Ma
		3 dBm / 35 l Integ BW	MHz dBm	Lower ∆Lim(dB)	< Freq (Hz)	Peak -> dBm		in 94.00 MHz Freq (Hz)	9.400000 MH <u>Auto</u> Ma Freq Offse
otal Power	Ref 24.1						Upper		9.400000 MH <u>Auto</u> Ma
otal Power Start Freq 17.50 MHz 18.50 MHz	Ref 24.13 Stop Freq 18.50 MHz 21.50 MHz	Integ BW 680.0 kHz 1.000 MHz	dBm -23.79 -28.40	ΔLim(dB) (-13.79) (-18.40)	Freq (Hz) -17.50 M -18.50 M		Upper ∆Lim(dB)		9.400000 MH Auto Ma Freq Offse
otal Power Start Freq 17.50 MHz 18.50 MHz 21.50 MHz	Ref 24.13 Stop Freq 18.50 MHz 21.50 MHz 27.00 MHz	Integ BW 680.0 kHz 1.000 MHz 1.000 MHz	dBm -23.79	ΔLim(dB) (-13.79)	Freq (Hz) -17.50 M -18.50 M -21.50 M		Upper ΔLim(dB) ()		9.400000 MH Auto Ma Freq Offse
otal Power Start Freq 17.50 MHz 18.50 MHz 21.50 MHz 27.00 MHz	Ref 24.13 Stop Freq 18.50 MHz 21.50 MHz 27.00 MHz 47.00 MHz	Integ BW 680.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -23.79 -28.40	ΔLim(dB) (-13.79) (-18.40) (-18.59) (-7.04)	Freq (Hz) -17.50 M -18.50 M	dBm 	Upper ∆Lim(dB) () () ()	Freq (Hz)	9.400000 MH Auto Ma Freq Offse
otal Power Start Freq 17.50 MHz 18.50 MHz 21.50 MHz 27.00 MHz 17.50 MHz	Ref 24.13 Stop Freq 18.50 MHz 21.50 MHz 27.00 MHz 47.00 MHz 47.00 MHz	Integ BW 680.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz 270.0 kHz	dBm -23.79 -28.40 -31.59	ΔLim(dB) (-13.79) (-18.40) (-18.59) (-7.04) ()	Freq (Hz) -17.50 M -18.50 M -21.50 M	dBm 	Upper ∆Lim(dB) () () () (3)		9.400000 MH Auto Ma Freq Offs
otal Power Start Freq 17.50 MHz 18.50 MHz 21.50 MHz 27.00 MHz	Ref 24.13 Stop Freq 18.50 MHz 21.50 MHz 27.00 MHz 47.00 MHz 15.00 MHz	Integ BW 680.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm -23.79 -28.40 -31.59 -32.04	ΔLim(dB) (-13.79) (-18.40) (-18.59) (-7.04)	Freq (Hz) -17.50 M -18.50 M -21.50 M -28.70 M	dBm 	Upper ∆Lim(dB) () () ()	Freq (Hz)	9.400000 MH Auto Ma Freq Offse

Sub6 n7. Low Channel Edge Plot (35 MHz Ch.503500 BPSK)-1

100	2.5175000 NFE	00 GHz	Tr	SENSE:INT enter Freq: 2. ig: Free Run atten: 20 dB	517500000 GH	ALIGN AU 2 00.00% of 2	Radio 20	:40 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
. 0 9 20.0 10.0 .00			Ą					Kelative Linte	Center Fre 2.517500000 GH
10.0 20.0 30.0								Absolute Limit	
40.0 50.0			4	ut an Anglating Marker Lack				Spectrum	
center 2.517		8 dBm / 35 l	MHz				Spa	n 140.0 MHz	CF Stej 14.000000 MH <u>Auto</u> Ma
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	< Freg (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freg (Hz)	Freq Offse
17.50 MHz	18.50 MHz	30.00 kHz	00111	()		-65.96	(-55.96)	17.72 M	0 H
18.50 MHz	22.50 MHz	1.000 MHz		()		-55.21	(-45.21)	21.24 M	
22.50 MHz	52.50 MHz	1.000 MHz		()		-54.33	(-41.33)	22.80 M	
52.50 MHz	70.00 MHz	1.000 MHz		()		-54.66	(-29.66)	55.39 M	
17.50 MHz	70.00 MHz	510.0 kHz	-9.675	(-59.67)	-17.50 M		()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
		1 000 MHz		()	_		()		
12.50 MHz	15.00 MHZ	1.000 WILLZ							

Sub6 n7. Low Channel Edge Plot (35 MHz Ch.503500 BPSK_RB1)-2

	RF 50 Ω D			SENSE:INT		ALIGN AL		27 PM Apr 17, 2024	Frequency
ASS	2.5175000 NFE		Tri	ig: Free Run tten: 20 dB	517500000 GH Avg: 1	2 00.00% of	20	Std: None Device: BTS	
0 dB/div	Ref Offset 27. Ref 30.0 dE								
.og 20.0								Relatives and	
									Center Fre
10.0			m						2.517500000 GH
0.00						-			
0.0									
0.0								Absolute Limit	
0.0								Absolute Limit	
		nn	~		~~~	m	~		
40.0		1						Spectrum	
50.0	1		_					~~~~	
50.0	man								
enter 2.517							Spa	n 140.0 MHz	CF Ste 14.000000 MH
otal Power	Ref 24.1	0 dBm / 35	MHz						<u>Auto</u> Ma
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	Freq (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	Freq Offse
17.50 MHz	18.50 MHz	680.0 kHz	_	()		-30.43	(-20.43)	17.54 M	0 H
18.50 MHz	22.50 MHz	1.000 MHz		()		-29.06	(-19.06)	19.44 M	
22.50 MHz	52.50 MHz	1.000 MHz		()		-29.41	(-16.41)	22.95 M ■	
52.50 MHz	70.00 MHz	1.000 MHz		()		-45.86	(-20.86)	55.13 M	
17.50 MHz	70.00 MHz	510.0 kHz	-26.34	(-76.34)	-17.50 M		()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
	15.00 MHz	1.000 MHz		(-)			()		
12.50 MHz	10.00 WHZ	1.000 10112							

Sub6 n7. Low Channel Edge Plot (35 MHz Ch.503500 BPSK)-2

	RF 50 Ω D 2.5350000 NFE	00 GHz	++ Tri	SENSE:INT Inter Freq: 2. ig: Free Run Itten: 20 dB	535000000 GH	ALIGN A	Radio 20	:03 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og								Relative cink	
20.0									Center Fre
10.0									2.535000000 GH
0.00								_	-
0.0									
0.0									
-								Absolute Limit	
20.0		~/			x		~		
0.0									
						_		Spectrum	
0.0							_		
enter 2.535	00 GHz						Spa	n 140.0 MHz	CF Ste 14.000000 MH
otal Power	Ref 24.2	3 dBm / 35	MHz						<u>Auto</u> Ma
Start Freg	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)		Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	Freq Offse
17.50 MHz	18.50 MHz	680.0 kHz	-24.83	(-14.83)	-17,50 M	-29.23	(-19.23)	17.50 M	0 H
18.50 MHz	22.50 MHz	1.000 MHz	-24.65	(-14.65)	-18.50 M	-29.23	(-19.23)	18.52 M	1
22.50 MHz	52.50 MHz	1.000 MHz	-32.81	(-19.81)	-22.50 M	-32.62	(-19.62)	31.80 M ■	1
52.50 MHz	70.00 MHz	1.000 MHz	-54.85	(-29.85)	-52.59 M	-54.60	(-29.60)	57.14 M	
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz	-	()			()		

Sub6 n7. Mid Channel Edge Plot (35 MHz Ch.507000 BPSK)

	RF 50 Ω DO 2.5525000 NFE	00 GHz	Tr	sense:INT enter Freq: 2.4 ig: Free Run atten: 20 dB	552500000 GH	ALIGN AL 2 100.00% of 1	Radio 20	:10 PM Apr17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27.0 Ref 30.0 dB								
.og 20.0 10.0									Center Free 2.552500000 GH
10.0 20.0 20.0		_						Absolute Limit	
40.0 50.0			A		\mathbb{A}			Spectrum	
center 2.552	250 GHz						Spa	n 140.0 MHz	CF Step 14.000000 MH
otal Power	Ref 23.67	dBm / 35 l	MHz						<u>Auto</u> Ma
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	Freq (Hz)	Peak -> dBm	Upper ΔLim(dB)	Freq (Hz)	Freq Offse
17.50 MHz	18.50 MHz	30.00 kHz	-67.97	(-57.97)	-17.93 M	-33.27	(-23.27)	17.50 M 🗠	0 H
18.50 MHz	22.50 MHz	1.000 MHz	-55.41	(-45.41)	-18.98 M	-31.20	(-21.20)	18.52 M	
22.50 MHz	52.50 MHz	1.000 MHz	-54.29	(-41.29)	-22.65 M	-51.90	(-38.90)	22.50 M =	
52.50 MHz	70.00 MHz	1.000 MHz	-54.92	(-29.92)	-65.89 M	-54.77	(-29.77)	60.46 M	
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
the second s		and the second second					TATUS		

Sub6 n7. High Channel Edge Plot (35 MHz Ch.510500 BPSK RB 1)

	2.5525000 NFE	00 GHz	++ Tri	SENSE:INT enter Freq: 2. ig: Free Run atten: 20 dB	552500000 GH	ALIGN AL 2 00.00% of	Radio 20	:07 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
.og								Reality was block	
									Center Free
10.0			r						2.552500000 GH
0.00									
0.0								1	
20.0							_	Absolute Limit	
30.0		\sim	~~)		hy				
0.0						2	_		
0.0	\sim					m			
0.0							Marine .	Spectrum	
90.0									
enter 2.552 otal Power		5 dBm / 35 l	MHz				Spa	n 140.0 MHz	CF Ste 14.000000 MH Auto Ma
otal Fower	Rei 24.23	5 GDII / 55 I	MITIZ						
Start Freg	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)		Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	Freq Offse
17.50 MHz	18.50 MHz	680.0 kHz	-22.60	(-12.60)	-17.50 M	-27.58	(-17.58)	17.52 M	0 H
18,50 MHz	22.50 MHz	1.000 MHz	-25,46	(-15.46)	-18.88 M	-25.88	(-15.88)	18.66 M	
22.50 MHz	52.50 MHz	1.000 MHz	-27.67	(-14.67)	-22.50 M	-34.36	(-21.36)	22.50 M =	
52.50 MHz	70.00 MHz	1.000 MHz	-44.16	(-19.16)	-54.78 M	-54.78	(-29.78)	66.59 M	
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		

Sub6 n7. High Channel Edge Plot (35 MHz Ch.510500 BPSK)

Center Fre 2.52000000 GH 2.52000000 GH		RF 50 Ω DO 2.5200000 NFE	00 GHz	-+- Tr	SENSE:INT enter Freq: 2. ig: Free Run atten: 20 dB	520000000 GH	ALIGN AL 2 100.00% of	Radio 20	:18 PM Apr 17, 2024 Std: None Device: BTS	Frequency
Org Acta Statute	0 dB/div									
CF Step Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) Freq (Hz) 20.00 MHz 21.00 MHz 30.00 kHz 31.75 (-21.75) -20.00 M	og								AGENTAL	
00 00 <td< td=""><td>0.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Center Fre 2.520000000 GH</td></td<>	0.0									Center Fre 2.520000000 GH
Spectrum Spectrum center 2.52000 GHz Span 99.00 MHz center 2.52000 GHz Span 99.00 MHz cotal Power Ref 22.92 dBm / 40 MHz Start Freq Stop Freq 1.100 MHz 21.00 MHz 24.00 MHz 1.000 MHz 29.50 MHz 1.000 MHz 20.00 MHz 270.0 kHz 20.00 MHz 1.000 MHz 49.50 MHz 1.000 MHz 20.00 MHz 1.000 MHz 29.50 MHz 1.000 MHz 29.50 MHz 1.000 MHz 20.00 MHz 1.000 MHz 112.50 MHz 1.000 MHz 12.50 MHz 1.000 MHz 12.50 MHz 1.000 MHz 1000 MHz - 1000 MHz - 1000 MHz - 1000 MHz -	.00						_	_		
Spectrum Spectrum CF Ster Span 99.00 MHz rotal Power Ref 22.92 dBm / 40 MHz Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) Freq (Hz) 20.00 MHz 21.00 MHz 30.00 kHz -31.75 (-21.75) -20.00 M	ó.a			_				_		
Spectrum Spectrum Senter 2.52000 GHz Span 99.00 MHz renter 2.52000 GHz Span 99.00 MHz Start Freq Stop Freq Integ BW dBm ALIm(dB) Freq (Hz) 20.00 MHz 21.00 MHz 21.00 MHz 24.00 MHz 29.50 MHz 1.000 MHz 29.50 MHz 1.000 MHz 29.50 MHz 1.000 MHz 29.50 MHz 1.000 MHz 20.00 MHz 270.0 KHz 20.00 MHz 1.000 MHz 29.50 MHz 1.000 MHz 20.00 MHz 270.0 KHz 29.50 MHz 1.000 MHz 20.00 MHz 270.0 KHz 20.00 MHz 49.50 MHz 12.50 MHz 15.00 MHz 12.50 MHz 15.00 MHz	0.0						_			
Spectrum Spectrum Start Freq Stop Freq Integ BW dBm Lower < Peak > Upper 20.00 MHz 21.00 MHz 30.00 kHz -31.75 (-21.75) -20.00 M	0.0						_			
Spectrum Spectrum Sectrum Spectrum Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) Upper Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) Upper 20.00 MHz 21.00 MHz 30.00 kHz -31.75 (-21.75) -20.00 M	0.0		-A					_		
Spectrum Spectrum Sectrum Spectrum Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) Upper Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) Upper 20.00 MHz 21.00 MHz 30.00 kHz -31.75 (-21.75) -20.00 M	na			-						
Span 99.00 GHz Span 99.00 MHz otal Power Ref 22.92 dBm / 40 MHz Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) Upper 20.00 MHz 21.00 MHz 30.00 KHz -31.75 (-21.75) -20.00 M ()	-					All and a second se	Marrie .		Spectrum	
Start Freq Stop Freq Integ BW dBm Lower <-Peak > Upper 20.00 MHz 21.00 MHz 30.00 kHz -31.75 (-21.75) -20.00 M	0,0									
Start Freq Stop Freq Integ BW dBm ALim(dB) Freq (Hz) dBm ALim(dB) Freq (Hz) Freq (Hz) <td>enter 2.520</td> <td>00 GHz</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Spa</td> <td>in 99.00 MHz</td> <td>CF Ster 9.900000 MH</td>	enter 2.520	00 GHz						Spa	in 99.00 MHz	CF Ster 9.900000 MH
Start Freq Stop Freq Integ BW dBm $\Delta Lim(dB)$ Freq (Hz) dBm $\Delta Lim(dB)$ Freq (Hz) freq (Hz) $\Delta Lim(dB)$ Freq (Hz) Freq	otal Power	Ref 22.92	2 dBm / 40	MHz						<u>Auto</u> Ma
Other Other <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>Fred Offer</td></th<>									-	Fred Offer
20.00 MHz 21.00 MHz 30.00 KHz -31.75 (-21.75) -20.00 M () 1 21.00 MHz 24.00 MHz 1.000 MHz -30.96 (-20.96) -21.00 M () 1 24.00 MHz 29.50 MHz 1.000 MHz -49.39 (-36.39) -24.08 M () 1			5				dBm		Freq (Hz)	
24.00 MHz 29.50 MHz 1.000 MHz -49.39 (-36.39) -24.08 M () E 29.50 MHz 49.50 MHz 1.000 MHz -53.42 (-28.42) -29.90 M () E 20.00 MHz 49.50 MHz 270.0 kHz () -60.00 (-110.00) 22.83 M 12.50 MHz 15.00 MHz 1.000 MHz () ()										UH
29.50 MHz 49.50 MHz 1.000 MHz -53.42 (-28.42) -29.90 M ()										
20.00 MHz 49.50 MHz 270.0 kHz ()60.00 (-110.00) 22.83 M 12.50 MHz 15.00 MHz 1.000 MHz () ()										
12.50 MHz 15.00 MHz 1.000 MHz () ()									22.83 M	
									22.001	
					()			()		

Sub6 n7. Low Channel Edge Plot (40 MHz Ch.504000 BPSK RB 1)-1

STATE OF TAXABLE PARTY.	RF 50 Ω D			SENSE:INT		ALIGN AL		:02 PM Apr 17, 2024	Frequency
enter Fred ASS	2.5200000 NFE		Tr	ig: Free Run tten: 20 dB	520000000 GH: Avg: 1	z 00.00% of	20	Std: None Device: BTS	ricquency
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og								AGGIN AND BUR	
0.0									Center Fre
0.0									2.52000000 GH
.00									
ο.α							_		
0.0									
0.0						m		Spectrum	
0.0							mont	m	
0.0						_	_		
0.0									
enter 2.520	000 GHz						Spa	in 99.00 MHz	CF Ste 9.900000 MH
otal Power	Ref 24.23	3 dBm / 40 l	MHz						Auto Ma
orall official				Lower	4	Peak ->	Upper		Freq Offs
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	
Start Freq 20.00 MHz	21.00 MHz	820.0 kHz	-15.25	∆Lim(dB) (-5.25)	Freq (Hz) -20.00 M		∆Lim(dB) ()	Freq (Hz)	OF
Start Freq 20.00 MHz 21.00 MHz	21.00 MHz 24.00 MHz	820.0 kHz 1.000 MHz	-15.25 -27.42	ΔLim(dB) (-5.25) (-17.42)	Freq (Hz) -20.00 M -21.03 M			Freq (Hz)	
Start Freq 20.00 MHz 21.00 MHz 24.00 MHz	21.00 MHz 24.00 MHz 29.50 MHz	820.0 kHz 1.000 MHz 1.000 MHz	-15.25 -27.42 -30.26	ΔLim(dB) (-5.25) (-17.42) (-17.26)	Freq (Hz) -20.00 M -21.03 M -24.00 M		()	Freq (Hz)	
Start Freq 20.00 MHz 21.00 MHz 24.00 MHz 29.50 MHz	21.00 MHz 24.00 MHz 29.50 MHz 49.50 MHz	820.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	-15.25 -27.42	ΔLim(dB) (-5.25) (-17.42) (-17.26) (-10.94)	Freq (Hz) -20.00 M -21.03 M	dBm 	() () ()		
Start Freq 20.00 MHz 21.00 MHz 24.00 MHz 29.50 MHz 20.00 MHz	21.00 MHz 24.00 MHz 29.50 MHz 49.50 MHz 49.50 MHz	820.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz 270.0 kHz	-15.25 -27.42 -30.26 -35.94	ΔLim(dB) (-5.25) (-17.42) (-17.26) (-10.94) ()	Freq (Hz) -20.00 M -21.03 M -24.00 M	dBm 	() () () () (-79.91)	Freq (Hz)	
Start Freq 20.00 MHz 21.00 MHz 24.00 MHz 29.50 MHz	21.00 MHz 24.00 MHz 29.50 MHz 49.50 MHz 49.50 MHz 15.00 MHz	820.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	-15.25 -27.42 -30.26 -35.94	ΔLim(dB) (-5.25) (-17.42) (-17.26) (-10.94)	Freq (Hz) -20.00 M -21.03 M -24.00 M -30.50 M	dBm 	() () ()		

Sub6 n7. Low Channel Edge Plot (40 MHz Ch.504000 BPSK)-1

ASS	RF 50 Ω DO Q 2.5200000 NFE	00 GHz	+++ Tri	sense:INT inter Freq: 2.8 ig: Free Run tten: 20 dB	520000000 GH	ALIGN AL 2 00.00% of	Radio 20	Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27.0 Ref 30.0 dB								
. 09 20.0 10.0			1					Relitive Linte	Center Free 2.520000000 GH
0.00 10.0 20.0								Absolute Limit	
i0.0 i0.0			\bigwedge						
50.0. 50.0					- The second			Spectrum	
enter 2.52	000 GHz						Spa	an 160.0 MHz	CF Ste 16.000000 MH <u>Auto</u> Ma
otal Power	Ref 22.90	0 dBm / 40 l	MHz						
Total Power	Stop Freq	0 dBm / 40 M	MHz dBm	Lower ∆Lim(dB)	< Freq (Hz)	^P eak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	
								Freq (Hz) 20.52 M 🛃	Freq Offse 0 H
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	$\Delta Lim(dB)$		
Start Freq 20.00 MHz	Stop Freq 21.00 MHz	Integ BW 30.00 kHz	dBm	∆Lim(dB) ()	Freq (Hz)	dBm -68.06	ΔLim(dB) (-58.06)	20.52 M 🖄	
Start Freq 20.00 MHz 21.00 MHz	Stop Freq 21.00 MHz 25.00 MHz	Integ BW 30.00 kHz 1.000 MHz	dBm	ΔLim(dB) () ()	Freq (Hz)	dBm -68.06 -55.30	∆Lim(dB) (-58.06) (-45.30)	20.52 M 🗠 23.14 M	
Start Freq 20.00 MHz 21.00 MHz 25.00 MHz	Stop Freq 21.00 MHz 25.00 MHz 60.00 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz	dBm 	ΔLim(dB) () ()	Freq (Hz) 	dBm -68.06 -55.30 -54.36	ΔLim(dB) (-58.06) (-45.30) (-41.36)	20.52 M 23.14 M 26.75 M ■	
Start Freq 20.00 MHz 21.00 MHz 25.00 MHz 60.00 MHz	Stop Freq 21.00 MHz 25.00 MHz 60.00 MHz 80.00 MHz	Integ BW 30.00 kHz 1.000 MHz 1.000 MHz 1.000 MHz	dBm 	ΔLim(dB) () () ()	Freq (Hz) 	dBm -68.06 -55.30 -54.36 -54.75	ΔLim(dB) (-58.06) (-45.30) (-41.36) (-29.75)	20.52 M 23.14 M 26.75 M ■	

Sub6 n7. Low Channel Edge Plot (40 MHz Ch.504000 BPSK_RB1)-2

	RF 50 Ω D 2.5200000 NFE	00 GHz	Tri	SENSE:INT Inter Freq: 2. ig: Free Run tten: 20 dB	520000000 GH	ALIGN AL 2 00.00% of :	Radio 20	:43 PM Apr 17, 2024 Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dE								
. 0g 20.0 10.0								Kelenve une	Center Free 2.520000000 GH
0.00 10.0 20.0								Absolute Limit	
10.0 40.0		~			m		m.	Absolute Linit	
50.0 50.0								Spectrum	
Center 2.520		1 dBm / 40 l	MHz				Spa	n 160.0 MHz	CF Ste 16.000000 MH Auto Ma
				Lower		Peak ->	Upper		Freq Offse
Start Freq	Stop Freq	Integ BW	dBm	ΔLim(dB)	Freq (Hz)	dBm	ΔLim(dB)	Freq (Hz)	0 H
20.00 MHz 21.00 MHz	21.00 MHz 25.00 MHz	820.0 kHz 1.000 MHz		() ()		-14.66 -26.00	(-4.66) (-16.00)	20.00 M 🔶 21.02 M	11
25.00 MHz	60.00 MHz	1.000 MHz	_	() ()	_	-20.00	(-16.54)	25.00 M ■	1
60.00 MHz	80.00 MHz	1.000 MHz		()		-53.46	(-28.46)	60.00 M	
20.00 MHz	80.00 MHz	560.0 kHz	-26.15	(-76.15)	-20.00 M	-00.40	()		
12.50 MHz	15.00 MHz	1.000 MHz		()			()		
12.50 MHz	15.00 MHz	1.000 MHz		()	-		()	-	
12.00 MHZ									

Sub6 n7. Low Channel Edge Plot (40 MHz Ch.504000 BPSK)-2

RL enter Fred	RF 50 Ω D		Ce	SENSE:INT Inter Freq: 2.	535000000 GH	ALIGN A		:21 PM Apr 17, 2024 Std: None	Frequency
ASS	NFE			ig: Free Run tten: 20 dB	Avg: 1	00.00% of		Device: BTS	
0 dB/div	Ref Offset 27. Ref 30.0 dB								
og								Relative Link	1000000000
0.0									Center Fre
0,0									2.535000000 GH
.00			_						
0.0								-	
0.0									
					6			Absolute Limit	
0.0									
0.0	~								
0.0								Spectrum	
0.0							- Contraction of the Contraction		
enter 2.535	500 GHz						Spa	n 160.0 MHz	CF Ste 16.000000 MH
	Ref 24.3	2 dBm / 40	MHz						<u>Auto</u> Ma
otal Power									
				Lower		Peak ->	Upper		Frag Offer
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	$\Delta Lim(dB)$	Freq (Hz)	Freq Offse
Start Freq 20.00 MHz	Stop Freq 21.00 MHz	820.0 kHz	-15.67	ΔLim(dB) (-5.67)	Freq (Hz) -20.00 M	dBm -15.59	ΔLim(dB) (-5.59)	20.00 M 🖄	Freq Offse 0 H
Start Freq 20.00 MHz 21.00 MHz	Stop Freq 21.00 MHz 25.00 MHz	820.0 kHz 1.000 MHz	-15.67 -28.66	ΔLim(dB) (-5.67) (-18.66)	Freq (Hz) -20.00 M -21.02 M	dBm -15.59 -27.36	ΔLim(dB) (-5.59) (-17.36)	20.00 M ^ 21.08 M	
Start Freq 20.00 MHz 21.00 MHz 25.00 MHz	Stop Freq 21.00 MHz 25.00 MHz 60.00 MHz	820.0 kHz 1.000 MHz 1.000 MHz	-15.67 -28.66 -32.47	ΔLim(dB) (-5.67) (-18.66) (-19.47)	Freq (Hz) -20.00 M -21.02 M -25.00 M	dBm -15.59 -27.36 -31.17	ΔLim(dB) (-5.59) (-17.36) (-18.17)	20.00 M 21.08 M 25.00 M	
Start Freq 20.00 MHz 21.00 MHz 25.00 MHz 60.00 MHz	Stop Freq 21.00 MHz 25.00 MHz 60.00 MHz 80.00 MHz	820.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	-15.67 -28.66 -32.47 -55.04	ΔLim(dB) (-5.67) (-18.66) (-19.47) (-30.04)	Freq (Hz) -20.00 M -21.02 M -25.00 M -67.60 M	dBm -15.59 -27.36	ΔLim(dB) (-5.59) (-17.36) (-18.17) (-29.73)	20.00 M ^ 21.08 M	
Start Freq 20.00 MHz 21.00 MHz 25.00 MHz 60.00 MHz 8.000 MHz	Stop Freq 21.00 MHz 25.00 MHz 60.00 MHz 80.00 MHz 12.50 MHz	820.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	-15.67 -28.66 -32.47 -55.04	ΔLim(dB) (-5.67) (-18.66) (-19.47) (-30.04) ()	Freq (Hz) -20.00 M -21.02 M -25.00 M	dBm -15.59 -27.36 -31.17	ΔLim(dB) (-5.59) (-17.36) (-18.17) (-29.73) ()	20.00 M 21.08 M 25.00 M	
Start Freq 20.00 MHz 21.00 MHz 25.00 MHz 60.00 MHz	Stop Freq 21.00 MHz 25.00 MHz 60.00 MHz 80.00 MHz 12.50 MHz 15.00 MHz	820.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	-15.67 -28.66 -32.47 -55.04	ΔLim(dB) (-5.67) (-18.66) (-19.47) (-30.04)	Freq (Hz) -20.00 M -21.02 M -25.00 M -67.60 M	dBm -15.59 -27.36 -31.17	ΔLim(dB) (-5.59) (-17.36) (-18.17) (-29.73)	20.00 M 21.08 M 25.00 M	

Sub6 n7. Mid Channel Edge Plot (40 MHz Ch.507000 BPSK)

10.0 2.55000000 10.0 4.0 20.0 4.0 20.0 4.0 20.0 4.0 20.0 5.0 20.0 5.0 20.0 5.0 20.0 5.0 20.0 5.0 20.0 5.0 20.0 5.0 20.0 5.0 20.0 5.0 20.0 5.0 20.0 5.0 20.00 5.0 20.00 5.0 20.00 5.0 20.00 5.0 20.00 5.0 20.00 5.0 20.00 5.0 20.00 5.0 21.00 MHz 30.00 KHz 4.00 4.00 25.00 MHz 25.00 MHz 20.00 MHz 20.00 MHz 20.00 MHz 20.00 MHz 20.00 MHz 20.00			2.550000000 GHz NFE IFGain:Low		SENSE:INT ALIGN AUTO Center Freq: 2.550000000 GHz Trig: Free Run Avg: 100.00% of 20 #Atten: 20 dB		Radio 20	:34 PM Apr 17, 2024 Std: None Device: BTS	Frequency	
Center Center 200 4	0 dB/div									
Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) Upper Upper Lower Freq (Hz) Attraction Attract						6			Restories a mor	0
10.0 Absolve Line 20.0 Absolve Line 20.0 Absolve Line 20.0 Spectrum 50.0 Spectrum Center 2.55000 GHz Spectrum Start Freq Stop Freq 10.0 MHz 20.00 MHz 21.00 MHz 21.00 MHz 30.00 kHz 4.000 MHz 53.66 25.00 MHz 1.000 MHz 25.00 MHz 1.000 MHz 53.66 (-41.56) 27.28 M -51.91 4.000 MHz 1.000 MHz 50.00 MHz										Center Fre 2.55000000 GH
20.0 Absolvé Lind 20.0 Absolvé Lind 20.0 Spectrut 20.00 GHz Start Freq Stop Freq 1.00 MHz 20.00 MHz 21.00 MHz 25.00	0.00									
Start Freq Stop Freq Integ BW Start Freq Span 160.0 MHz CF Start Freq Stop Freq Integ BW Bm ALim(dB) Freq (Hz) ABM Auto Start Freq Stop Freq Integ BW Bm ALim(dB) Freq (Hz) dBm ALim(dB) Freq (Hz) Auto 20.00 MHz 21.00 MHz 30.00 kHz -68.19 (-58.19) -20.34 M -30.03 (-20.03) 20.00 M Auto 21.00 MHz 25.00 MHz 1.000 MHz -55.36 (-45.36) -27.28 M -51.91 (-38.91) 25.00 M 66.60 M -54.77 (-29.77) 62.80 M M 8.000 MHz 12.50 MHz 1.000 MHz -54.96 (-29.96) -66.60 M -54.77 (-29.77) 62.80 M M	0.0		r							
40.0 40.0 50.0	0.0								Absolute Limit	
50.0	30.0									
Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) dBm ΔLim(dB) Freq (Hz) Freq (Hz) </td <td>10.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	10.0									
Span 160.0 GHz Span 160.0 MHz CF 16.00000 Contal Power Ref 23.71 dBm / 40 MHz Lower <- Peak -> dBm dLim(dB) Upper Freq (Hz) GF dBm dLim(dB) Freq (Hz) Auto Start Freq Stop Freq Integ BW dBm dLim(dB) Freq (Hz) dBm dLim(dB) Freq (Hz) Auto 20.00 MHz 21.00 MHz 30.00 kHz -68.19 (-58.19) -20.34 M -30.03 (-20.03) 20.00 M Freq (Hz) 21.00 MHz 25.00 MHz 1.000 MHz -55.36 (-45.36) -23.00 M -30.49 (-20.49) 21.02 M Freq (Hz) 25.00 MHz 60.00 MHz 1.000 MHz -54.56 (-41.56) -27.28 M -51.91 (-38.91) 25.00 M Freq (Hz) 60.00 MHz 10.00 MHz -54.96 (-29.96) -66.60 M -54.77 (-29.77) 62.80 M Freq (Hz)	.0.0			٨		man 1			Spectrum	
Freq Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) Comparison Freq (Hz) Freq (Hz) Auto Freq (Hz)	50.0			- Commenter				4. Ny ar U ar		
Freq Start Freq Stop Freq Integ BW dBm ΔLim(dB) Freq (Hz) Comparison Freq (Hz) Freq (Hz) Auto Freq (Hz)										
Start Freq Stop Freq Integ BW dBm ∆Lim(dB) Freq (Hz) Freq (Hz) <th< td=""><td>center 2.550</td><td>000 GHz</td><td></td><td></td><td></td><td></td><td></td><td>Spa</td><td>n 160.0 MHz</td><td>CF Ste 16.000000 MH</td></th<>	center 2.550	000 GHz						Spa	n 160.0 MHz	CF Ste 16.000000 MH
Start Freq Stop Freq Integ BW dBm \DeltaLim(dB) Freq (Hz) dBm \DeltaLim(dB) Freq (Hz) Freq (Hz) <td>otal Power</td> <td>Ref 23.71</td> <td>dBm / 40</td> <td>MHz</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>Auto</u> Ma</td>	otal Power	Ref 23.71	dBm / 40	MHz						<u>Auto</u> Ma
20.00 MHz 21.00 MHz 30.00 kHz -68.19 (-58.19) -20.34 M -30.03 (-20.03) 20.00 M 21.00 MHz 25.00 MHz 1.000 MHz -55.36 (-45.36) -23.00 M -30.49 (-20.49) 21.02 M 25.00 MHz 60.00 MHz 1.000 MHz -54.56 (-41.56) -27.28 M -51.91 (-38.91) 25.00 M 60.00 MHz 80.00 MHz 1.000 MHz -54.96 (-29.96) -66.60 M -54.77 (-29.77) 62.80 M 8.000 MHz 12.50 MHz 1.000 MHz - () - - () -	Start Freq	Stop Freg	Integ BW	dBm					Freg (Hz)	Freq Offse
21.00 MHz 25.00 MHz 1.000 MHz -55.36 (-45.36) -23.00 M -30.49 (-20.49) 21.02 M 25.00 MHz 60.00 MHz 1.000 MHz -54.56 (-41.56) -27.28 M -51.91 (-38.91) 25.00 M 60.00 MHz 80.00 MHz 1.000 MHz -54.96 (-29.96) -66.60 M -54.77 (-29.77) 62.80 M 8.000 MHz 12.50 MHz 1.000 MHz - () ()			5							0 H
25.00 MHz 60.00 MHz 1.000 MHz -54.56 (-41.56) -27.28 M -51.91 (-38.91) 25.00 M 60.00 MHz 80.00 MHz 1.000 MHz -54.96 (-29.96) -66.60 M -54.77 (-29.77) 62.80 M 8.000 MHz 12.50 MHz 1.000 MHz - () ()										
8.000 MHz 12.50 MHz 1.000 MHz () ()	25.00 MHz	60.00 MHz	1.000 MHz	-54.56	(-41.56)	-27.28 M	-51.91	(-38.91)	25.00 M ■	
	60.00 MHz	80.00 MHz	1.000 MHz	-54.96		-66.60 M	-54.77		62.80 M	
12 50 MHz 15 00 MHz 1 000 MHz ()	8.000 MHz	12.50 MHz	1.000 MHz		()			()		
	12.50 MHz	15.00 MHz	1.000 MHz		()			()		
12.50 MHz 15.00 MHz 1.000 MHz — () ()	12.50 MHz	15.00 MHz	1.000 MHz	_	()			()		

Sub6 n7. High Channel Edge Plot (40 MHz Ch.510000 BPSK RB 1)

RL	RF 50 Ω D	C	-	SENSE:INT		ALIGN A	UTO 09:19	:28 PM Apr 17, 2024	Elements.
enter Fred ASS	2.5500000 NFE		Tr	ig: Free Run tten: 20 dB	550000000 GH Avg: 1	z 00.00% of	20	Std: None Device: BTS	Frequency
0 dB/div	Ref Offset 27. Ref 30.0 dE								
og 20.0								Reithweitend	Contra Fra
0.0									Center Fre 2.55000000 GH
					7				2.55000000 GH
).00									
0.0	_				L	_		-	
0.0			-			-	_	Absolute Limit	
0.0	_		1			_			
0.0	- M								
0.0	5					X			
-	1							Spectrum	
0,0									
enter 2.550		6 dBm / 40	MHz				Spa	ın 160.0 MHz	CF Ste 16.000000 MH <u>Auto</u> Ma
				Lower		Peak ->	Upper		Erea Offer
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	$\Delta Lim(dB)$	Freq (Hz)	FreqOffse
20.00 MHz	21.00 MHz	820.0 kHz	-14.34	(-4.34)	-20.00 M	-15.80	(-5.80)	20.00 M 🗠	0 +
24 00 MILL-	25.00 MHz	1.000 MHz	-28.60	(-18.60)	-21.04 M	-29.69	(-19.69)	21.00 M	-
21.00 MHz	60.00 MHz	1.000 MHz	-31.30	(-18.30)	-38.48 M	-35.46	(-22.46)	25.00 M ≡	
25.00 MHz			E0 27	(-25.27)	-60.60 M	-54.63	(-29.63)	66.80 M	
25.00 MHz 60.00 MHz	80.00 MHz	1.000 MHz	-50.27						
25.00 MHz 60.00 MHz 8.000 MHz	80.00 MHz 12.50 MHz	1.000 MHz		()			()		
25.00 MHz 60.00 MHz	80.00 MHz 12.50 MHz 15.00 MHz						() ()		

Sub6 n7. High Channel Edge Plot (40 MHz Ch.510000 BPSK)

	Swept SA					
enter Freq 5.0150	000000 GHz	ast Trig: Free	Run	ALIGN AUTO	07:53:17 PM Apr 17, TRACE 2 3 TYPE A WW DET A A A	4 5 Frequency
10 dB/div Ref 10.00) dBm			Mk	r1 3.796 2 G -67.029 d	
.og 0.00 10.0 20.0	²					Center Fre 5.015000000 GH
30.0 40.0 50.0						Start Fre 30.000000 MH
60.0 70.0 80.0			mm			Stop Fre 10.000000000 GH
Start 30 MHz #Res BW 1.0 MHz		#VBW 3.0 MHz	FUNCTION	and the second second	Stop 10.000 G .33 ms (20001)	ots) 997.000000 MH
#Res BW 1.0 MHz MKR MODE TRC SCL 1 1 2 1 4 5	X 3,796 2 GH 2,500 6 GH	Y Hz67.029 dB		Sweep 17		ots) 997.000000 MH Auto Ma Freq Offse
KR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 4 4	× 3.796 2 GH	Y Hz67.029 dB	3m	and the second second	.33 ms (20001	ots) 997.000000 MH

Sub6 n7. Conducted Spurious_1 (500500ch_5 MHz_BPSK_RB 1)

- 6 -				and the second sec	ectrum Analyzer - Swep	
Frequency	07:53:43 PM Apr 17, 2024 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A A A A A A	#Avg Type: RMS	SENSE:INT	00000 GHz	RF 50 Ω req 18.50000	Center F
Auto Tune	1 25.847 8 GHz -84.765 dBm	Mkı	#Atten: 0 dB	IFGain:High	Ref -20.00 d	10 dB/div
Center Fred 18.500000000 GH:						30.0
Start Free 10.000000000 GH:						40.0 50.0
Stop Free 27.00000000 GH						60.0 70.0
CF Step 1.700000000 GH: Auto Mar	1 - 1-	tern		tote add		-80.0
Freq Offse 0 H					Alden Beker A.	-100
Scale Type Log <u>Lir</u>	Stop 27.000 GHz 0.33 ms (40000 pts)	Sween 2	3.0 MHz	#VBW	000 GHz 1.0 MHz	Start 10.0
		STATU				ISG

Sub6 n7. Conducted Spurious_2 (500500ch_5 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer - S	and a state of the		-						
RL RF 50 Center Freq 5.0150	NFE	PNO: Fast			#Avg Type	RMS	TRAC	M Apr 17, 2024 CE 1 2 3 4 5 6 PE A 4 4 A A A A A ET A A A A A A A	Frequency
o dB/div Ref 10.00						Mk		7 7 GHz 20 dBm	Auto Tun
.og 0.00 10.0 20.0	²								Center Fre 5.015000000 GH
30.0 40.0 50.0									Start Fre 30.000000 MH
50.0 -70.0	and the state of the state			AAA	Tel Prostage 1			RMS	Stop Fre 10.000000000 GH
80.0 Were Here 100 000	and the second second	and the second division of the second divisio			and the state of the		Carling and the self	din	1
Start 30 MHz #Res BW 1.0 MHz		#VB	W 3.0 MHz		Sv	veep 17	.33 ms (2	.000 GHz 0001 pts)	CF Ste 997.000000 MH <u>Auto</u> Ma
30.0 Image: Control of the second secon		#VB\ 7 7 GHz 3 0 GHz		FUNC	Sv		.33 ms (2		997.000000 MH <u>Auto</u> Ma Freq Offse
Start 30 MHz #Res BW 1.0 MHz MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4	3.79	7 7 GHz	W 3.0 MHz Y -66.620 dB	FUNC	Sv	veep 17	.33 ms (2	0001 pts)	997.000000 MH

Sub6 n7. Conducted Spurious_1 (507000ch_5 MHz_BPSK_RB 1)

					ectrum Analyzer - Swept SA	and the second second second
Frequency	07:58:21 PM Apr17, 2024 TRACE 1 2 3 4 5 0 TYPE A WWWWW DET A A A A A A A	ALIGN AUTO #Avg Type: RMS	SENSE:INT Trig: Free Run #Atten: 0 dB	PNO: Fast	req 18.5000000 NFE	Center I
Auto Tune	1 25.874 1 GHz -84.577 dBm	Mk			Ref -20.00 dBm	10 dB/div
Center Fred 18.500000000 GHz						-30.0
Start Free 10.000000000 GH:						-40.0
Stop Free 27.00000000 GH:						-60,0
CF Step 1.700000000 GH: <u>Auto</u> Mar	1 RMS	a <u>ti iku</u> lamadi a	A Des with the second second	r se chiles		90.0
Freq Offse 0 H				ander für sind sind die Gesternen der Staten von die Staten von die Staten von die Staten von die Staten von di		+100
Scale Type	Stop 27.000 GHz 0.33 ms (40000 pts)	Sweep 2	3.0 MHz	#VBW	000 GHz 1.0 MHz	Start 10. #Res BW
		STATU				ISG

Sub6 n7. Conducted Spurious_2 (507000ch_5 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer -	Swept SA 0 Ω DC	-	SE	NSEIINT	4	LIGN AUTO	08:01:04 P	M Apr 17, 2024	
enter Freq 5.015		PNO: Fast IFGain:Low		Run	#Avg Type		TRA	CE 1 2 3 4 5 6 PE A 34 A A A A A	
0 dB/div Ref 10.0						M	(r1 3.80 -66.8	1 2 GHz 21 dBm	Auto Tur
	\diamond	2							Center Fre 5.015000000 GH
30.0 40.0 50.0									Start Fre 30.000000 M⊦
50.0			1						-
the second	A CONTRACTOR OF THE OWNER	and a state of the		~~	America		سالله	-BMS	and the second second second second second
50.0 Start 30 MHz Res BW 1.0 MHz		#VE	SW 3.0 MHz		Sv	veep 17	Stop 10 7.33 ms (2	0.000 GHz 20001 pts)	Stop Fre 10.00000000 GH CF Ste 997.000000 MH Auto Ma
30.0 1		#VE 301 2 GHz 565 4 GHz		FUT	Sv		Stop 10 7.33 ms (2	.000 GHz	10.00000000 GH CF Ste 997.000000 MH <u>Auto</u> Ma Freq Offse
300 0 0 <td>3.8</td> <td>801 2 GHz</td> <td>3.0 MHz -66.821 dt</td> <td>FUT</td> <td>Sv</td> <td>veep 17</td> <td>Stop 10 7.33 ms (2</td> <td>0.000 GHz 20001 pts)</td> <td>10.00000000 GH CF Ste 997.000000 MH</td>	3.8	801 2 GHz	3.0 MHz -66.821 dt	FUT	Sv	veep 17	Stop 10 7.33 ms (2	0.000 GHz 20001 pts)	10.00000000 GH CF Ste 997.000000 MH

Sub6 n7. Conducted Spurious_1 (513500ch_5 MHz_BPSK_RB 1)

- 6 -			1		ectrum Analyzer - Swept SA	
Frequency	08:01:31 PM Apr 17, 2024 TRACE 1 2 3 4 5 0 TYPE A WHITE DET A A A A A A A	ALIGN AUTO #Avg Type: RMS	SENSE:INT Trig: Free Run #Atten: 0 dB	0000 GHz	req 18.5000000 NFE	Center I
Auto Tun	1 25.585 1 GHz -84.187 dBm	Mk			Ref -20.00 dBm	10 dB/div
Center Free 18.500000000 GH						-30.0
Start Free 10.000000000 GH						40.0 50.0
Stop Free 27.00000000 GH						60,0 -70.0
CF Step 1.700000000 GH <u>Auto</u> Ma	I RMS	1		t wel		80.0
Freq Offse 0 H				n an trainin Alfrid Anna Antonio.		-100
Scale Type	Stop 27.000 GHz .33 ms (40000 pts)	Sweep 2	(3.0 MHz	#VBM	00 GHz 1.0 MHz	Start 10.
		STAT				ASG

Sub6 n7. Conducted Spurious_2 (513500ch_5 MHz_BPSK_RB 1)

RL RF 50	DQ DC		SEI	NSE:INT	A	LIGN AUTO	08:04:56 P	M Apr 17, 2024	0
enter Freq 5.015	000000 0 NFE	PNO: Fast - IFGain:Low	Trig: Free #Atten: 2		#Avg Type	RMS	TRAI TY D	CE 1 2 3 4 5 0 PE A AAAAAA	and the second sec
0 dB/div Ref 10.00	0 dBm					Mk		9 2 GHz 18 dBm	Auto T
0.00 10.0 20.0	\$ ²								Center F 5.015000000
30.0 40.0 50.0									Start F 30.000000
50.0			1						
70.0 80.0		مردمة المقالية المراجع ال			A.		المراجع المحاط	FIMS	Stop F 10.000000000
70.0 Hand State State Start 30 MHz Res BW 1.0 MHz	×	#VB	W 3.0 MHz		Sw	veep 17	Stop 10 .33 ms (2	.000 GHz 0001 pts)	10.00000000 CF S
70.0 50.0 51.0		#VB 89 2 GHz 00 6 GHz	W 3.0 MHz	FUN	Sw		Stop 10 .33 ms (2	.000 GHz	10.00000000 CF S 997.000000
70.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 9.0 8.0 9.0 <td>3.7</td> <td>89 2 GHz</td> <td>W 3.0 MHz -66.818 dB</td> <td>FUN</td> <td>Sw</td> <td>veep 17</td> <td>Stop 10 .33 ms (2</td> <td>.000 GHz 0001 pts)</td> <td>10.00000000 CF S 997.000000 <u>Auto</u> Freq Of</td>	3.7	89 2 GHz	W 3.0 MHz -66.818 dB	FUN	Sw	veep 17	Stop 10 .33 ms (2	.000 GHz 0001 pts)	10.00000000 CF S 997.000000 <u>Auto</u> Freq Of

Sub6 n7. Conducted Spurious_1 (501000ch_10 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer - Swept SA				0 0 8
RL RF 50Ω DC Center Freq 18.50000000 NFE	SENSE:JNT OO GHZ PNO: Fast +++ IFGain:High #Atten: 0 dB	ALIGN AUTO #Avg Type: RMS	08:05:22 PM Apr17, 2024 TRACE 2 3 4 5 0 TYPE A WANNEY DET A A A A A A	Frequency
0 dB/div Ref -20.00 dBm		Mkr	1 26.437 7 GHz -84.475 dBm	Auto Tune
30.0				Center Fred 18.500000000 GH
50.0				Start Free 10.000000000 GH
70.0				Stop Free 27.000000000 GH
80.0	and and a second se	ر وارور اللغور ويور	avelde at the second	CF Step 1.700000000 GH <u>Auto</u> Ma
100				Freq Offse 0 H
Start 10.000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 29	Stop 27.000 GHz 33 ms (40000 pts)	Scale Type Log <u>Li</u> r
SG		STATUS		

Sub6 n7. Conducted Spurious_2 (501000ch_10 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer - S RL RF 50			SEN	SE:INT	4	LIGN AUTO	08:09:21 P	M Apr 17, 2024	-	- 6 X
enter Freq 5.0150	NFE P	NO: Fast ↔ Gain:Low	Trig: Free #Atten: 20		#Avg Type		TRA	CE 1 2 3 4 5 PE A A A A A A		equency
0 dB/div Ref 10.00						Mk	r1 3.79 -67.1	6 2 GHz 24 dBm		Auto Tun
0.00 10.0 20.0	\diamond^2									enter Fre
30.0 40.0 50.0									30	Start Fre
									and the second se	
70.0		distance be		AAA	ار ارتباط ا	<u>.</u>		RMS	10.000	and the second second second
50.0 January 1990 (January 1990) 50.0 January 1990 (January 1990) 51art 30 MHz FRes BW 1.0 MHz			V 3.0 MHz		Sv	weep 17	Stop 10 .33 ms (2	0.000 GHz	997	Stop Fre 0000000 GF CF Ste .000000 MF Ma
70.0 0	× 3.796			FUN	Sv	and the second sec	Stop 10 .33 ms (2		997 <u>Auto</u>	CF Ste CF Ste .000000 MH Ma
70.0 Used with the first state is a second s	× 3.796	#VBV 2 GHz	N 3.0 MHz -67.124 dB	FUN	Sv	weep 17	Stop 10 .33 ms (2	20001 pts)	997 <u>Auto</u>	CF Ste

Sub6 n7. Conducted Spurious_1 (507000ch_10 MHz_BPSK_RB 1)

					ctrum Analyzer - Swept SA	
Frequency	08:09:47 PM Apr 17, 2024 TRACE 2 3 4 5 6 TYPE A WARKING DET A A A A A A	ALIGN AUTO #Avg Type: RMS	Trig: Free Run #Atten: 0 dB	0000 GHz	RF 50 Q DC req 18.5000000 NFE	Center F
Auto Tune	1 25.927 7 GHz -84.660 dBm	Mkı		m	Ref -20.00 dBm	0 dB/div
Center Free 18.500000000 GH						30.0
Start Free 10.000000000 GH						-40.0
Stop Free 27.000000000 GH						60.0 -70.0
CF Step 1.700000000 GH Auto Mar	1 RMS		and the second			-80.0
Freq Offse 0 H			Provide the second s			+100
Scale Type	Stop 27.000 GHZ	Sweep 29	3.0 MHz	#VBW		Start 10.0
	.33 ms (40000 pts)	Sweep 29	3.0 MHz	#VBW	1.0 MHz	#Res BW

Sub6 n7. Conducted Spurious_2 (507000ch_10 MHz_BPSK_RB 1)

RL RF 5	DΩ DC	-	SEN	SE:INT	Δ	LIGN AUTO	08:12:36 Pf	M Apr 17, 2024	
enter Freq 5.015	000000 NFE	PNO: Fast • IFGain:Low	Trig: Free #Atten: 20		#Avg Type	RMS	TRAC	E 1 2 3 4 5 0 E A WAAAAAA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 dB/div Ref 10.0						Mk	r1 3.803 -66.9	31GHz 07dBm	Auto Ti
0.00 10.0 20.0	\$	2							Center F 5.015000000 0
30.0 40.0 50.0									Start F 30.000000 M
50.0			1						
70.0 30.0		in the second	· ·		Autoria de la			RMS	Stop F 10.000000000
tart 30 MHz Res BW 1.0 MHz			W 3.0 MHz		Sv	veep 17	Stop 10 .33 ms (2	.000 GHz 0001 pts)	and the second se
300 0 0 <td>× 3.8</td> <td></td> <td></td> <td>FUN</td> <td>Sv</td> <td></td> <td>Stop 10 .33 ms (2</td> <td>.000 GHz</td> <td>10.000000000 CF S 997.000000 f</td>	× 3.8			FUN	Sv		Stop 10 .33 ms (2	.000 GHz	10.000000000 CF S 997.000000 f
30 0 0	× 3.8	#VB	W 3.0 MHz -66.907 dB	FUN	Sv	veep 17	Stop 10 .33 ms (2	.000 GHz 0001 pts)	10.000000000 (CF S 997.000000 (<u>Auto</u> Freq Off

Sub6 n7. Conducted Spurious_1 (513000ch_10 MHz_BPSK_RB 1)

					Analyzer - Swept SA		
Frequency	08:13:02 PM Apr 17, 2024 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A A A A A A	#Avg Type: RMS	SENSE:INT Trig: Free Run #Atten: 0 dB	0 GHz PNO: Fast	50 Q DC 18.500000000 NFE		Cent
Auto Tune	1 26.152 1 GHz -83.865 dBm	Mki		in Guintingh	f -20.00 dBm	3/div	0 dB
Center Fred 18.500000000 GH							-30,0
Start Free 10.000000000 GH							40.0 50.0 -
Stop Fre 27.000000000 GH							60.0 70.0
CF Step 1.700000000 GH Auto Ma	T - L - H - L- Co- Market - Ch - H	. I Januar					80.0 - 90.0 -
Freq Offse 0 H							-100
Scale Type	Stop 27.000 GHz 0.33 ms (40000 pts)	Sweep 20	3.0 MHz	#VBW		t 10.000 s BW 1.1	
		STATU					SG

Sub6 n7. Conducted Spurious_2 (513000ch_10 MHz_BPSK_RB 1)

RL RF 50	DQ DC	- 1	SET	NSE:INT	A	LIGN AUTO	08:16:23 P	M Apr 17, 2024		_
enter Freq 5.0150	000000 0 NFE	PNO: Fast - IFGain:Low	Trig: Free #Atten: 2		#Avg Type	RMS	TRA	CE 1 2 3 4 5 0 PE A AAAAA		
0 dB/div Ref 10.00	0 dBm					Mk	r1 3.78 -66.6	3 2 GHz 30 dBm	2000	Tun
	\$ ²								Cente 5.0150000	
30.0 40.0 50.0									Star 30.0000	nt Fre
50.0			1							
	in the day of			MAA		***	مردند. الرواني	FIMS	Sto 10.0000000	And a state of the
80.0 Start 30 MHz #Res BW 1.0 MHz			W 3.0 MHz		Sv	veep 17	Stop 10 .33 ms (2	.000 GHz 20001 pts)	10.0000000 C	F Ste
70.0 Start 30 MHz fRes BW 1.0 MHz MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 5	× 3.7			FUP	Sv	all all is also a	Stop 10 .33 ms (2	.000 GHz	10.0000000 C 997.0000	OO GH F Ste OO MH Ma Offs(
Bit and the second se	× 3.7	#VB 83 2 GHz	W 3.0 MHz -66.630 dB	FUP	Sv	veep 17	Stop 10 .33 ms (2	.000 GHz 20001 pts)	10.0000000 C 997.0000 <u>Auto</u>	OO GH F Ste OO MH Ma Offs(0 H

Sub6 n7. Conducted Spurious_1 (501500ch_15 MHz_BPSK_RB 1)

					opectrum Analyzer - Swe	
Frequency	08:16:50 PM Apr 17, 2024 TRACE 1 2 3 4 5 0 TYPE A WARNAW DET A A A A A A	ALIGN AUTO #Avg Type: RMS	SENSE:INT Trig: Free Run #Atten: 0 dB		RF 50 Ω Freq 18.5000	Center
Auto Tune	1 25.863 1 GHz -84.292 dBm	Mki			Ref -20.00	0 dB/div
Center Freq 18.50000000 GHz						30.0
Start Fred 10.000000000 GH2						40.0 50.0
Stop Fred 27.00000000 GH;						60.0
CF Step 1.700000000 GH2 Auto Mar	T First					90.0
Freq Offse 0 H						+100
Scale Type	Stop 27.000 GHz 0.33 ms (40000 pts)	Sweep 29	3.0 MHz	#VBW	000 GHz V 1.0 MHz	
		STATU				ASG

Sub6 n7. Conducted Spurious_2 (501500ch_15 MHz_BPSK_RB 1)

RL RF 50		-	SEI	NSE:INT	4	LIGN AUTO	08:21:11 F	M Apr 17, 2024	-	0 8 🗙
enter Freq 5.0150	NFE	PNO: Fast - IFGain:Low	Trig: Free #Atten: 2		#Avg Type		TRA	CE 1 2 3 4 5 PE A WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		equency
0 dB/div Ref 10.00	dBm					Mk	(r1 3.81 -66.7	2 1 GHz 62 dBm		Auto Tun
.og 0.00 10.0 20.0										enter Fre
30.0 40.0 50.0									30	Start Fre
									-	
70.0	alter a		· · · · · · · · · · · · · · · · · · ·		اليندية اليو ا لز		a.	RMS	10.000	and the second second second
Start 30 MHz Res BW 1.0 MHz			W 3.0 MHz		Sv	weep 17	Stop 10 7.33 ms (2	0.000 GHz 20001 pts)		CF Ste
70.0 Start 30 MHz FRes BW 1.0 MHz MKP MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 5	× 3.8			FUP	Sv	, alda, 4884, alba, a	Stop 10 7.33 ms (2	0.000 GHz	997 <u>Auto</u>	CF Ste CF Ste .000000 MH Ma
70.0 50.0 <th< td=""><td>× 3.8</td><td>#VB</td><td>W 3.0 MHz -66.762 df</td><td>FUP</td><td>Sv</td><td>weep 17</td><td>Stop 10 7.33 ms (2</td><td>0.000 GHz 20001 pts)</td><td>997 <u>Auto</u></td><td>Stop Fre DODODOO GH CF Ste DODODO MH Ma Freq Offse 0 H Scale Typ</td></th<>	× 3.8	#VB	W 3.0 MHz -66.762 df	FUP	Sv	weep 17	Stop 10 7.33 ms (2	0.000 GHz 20001 pts)	997 <u>Auto</u>	Stop Fre DODODOO GH CF Ste DODODO MH Ma Freq Offse 0 H Scale Typ

Sub6 n7. Conducted Spurious_1 (507000ch_15 MHz_BPSK_RB 1)

			- 6 - 8
Fast +++ Trig: Free Run High #Atten: 0 dB	#Avg Type: RMS	08:21:38 PM Apr17, 2024 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A A A A A A A	Frequency
angn	Mkr	1 26.426 7 GHz -83.819 dBm	Auto Tune
			Center Fred 18.500000000 GH2
			Start Free 10.000000000 GH
			Stop Free 27.00000000 GH
		And Annual Annual Print	CF Step 1.700000000 GH <u>Auto</u> Mar
			Freq Offse 0 H
#VBW 3.0 MHz	Sweep 29	Stop 27.000 GHZ	Scale Type Log <u>Lir</u>
	#VBW 3.0 MHz		Stop 27.000 GHz

Sub6 n7. Conducted Spurious_2 (507000ch_15 MHz_BPSK_RB 1)

RL RF 50	O Ω DC	-	CE4	SE:INT		IGN AUTO	09:24:25.0	M Apr 17, 2024	
enter Freq 5.015		CHZ PNO: Fast IFGain:Low		Run	#Avg Type:		TRAC		
0 dB/div Ref 10.0						Mk		6 7 GHz 52 dBm	Auto Tun
0.00 10.0 20.0		2							Center Fre 5.015000000 GH
30.0 40.0 50.0									Start Fre 30.000000 M⊦
50.0			1						-
and the second second second		a las de litera de	Anna	MAA			الدعر المجا	RMS Left, this state	and the second
70.0 80.0 Start 30 MHz FRes BW 1.0 MHz			SW 3.0 MHz		Sw	reep 17	Stop 10 .33 ms (2	.000 GHz 0001 pts)	Stop Fre 10.00000000 GH CF Ste 997.000000 MH Auto Ma
80.0 Interference Interference Start 30 MHz Res BW 1.0 MHz Res BW 1.0 MHz Interference MKR MODE TRC SCI Interference 1 1 f 2 1 f 3 1 f 4 5 Interference	× 3.7			FUN	Sw	dita alibuwa ili w	Stop 10 .33 ms (2	.000 GHz	10.00000000 GF CF Ste 997.000000 MF <u>Auto</u> Ma Freq Offse
30 0 International Instance Start 30 MHz Res BW 1.0 MHz Res BW 1.0 MHz International Instance IKR MODE TRC SCL International Instance 1 N 1 2 N 1 3 4	× 3.7	#VB	W 3.0 MHz -67.152 de	FUN	Sw	reep 17	Stop 10 .33 ms (2	.000 GHz 0001 pts)	10.00000000 GH CF Ste 997.000000 MH

Sub6 n7. Conducted Spurious_1 (512500ch_15 MHz_BPSK_RB 1)

					rum Analyzer - Swept SA	
Frequency	08:24:51 PM Apr17, 2024 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A A A A A A A	#Avg Type: RMS	SENSE:INT Trig: Free Run #Atten: 0 dB	00 GHz PNO: Fast ↔ IFGain:High	RF 50 Ω DC 2q 18.50000000 NFE	RL Center Fr
Auto Tune	1 25.920 5 GHz -85.214 dBm	Mk		5	Ref -20.00 dBm	0 dB/div
Center Fred 18.500000000 GH						30.0
Start Free 10.000000000 GH						40.0 50.0
Stop Free 27.00000000 GH						70.0
CF Step 1.700000000 GH <u>Auto</u> Ma	1 RMS		ا ، بروانتينانية بين			30.0
Freq Offse 0 H						100
Scale Type	Stop 27.000 GHz 0.33 ms (40000 pts)	Sweep 2	3.0 MHz	#VBW		tart 10.0
		STATU				SG

Sub6 n7. Conducted Spurious_2 (512500ch_15 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer - Sw RL RF 50 Ω		SENSE:INT	ALIGN AUTO	08:28:12 PM Apr 17, 2024	
enter Freq 5.01500		++ Trig: Free Run	#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A A A A A A	
0 dB/div Ref 10.00	dBm		MI	kr1 3.769 2 GHz -66.356 dBm	Auto Tun
0.00 10.0 20.0					Center Fre 5.015000000 GH
30.0 40.0 50.0					Start Fre 30.000000 MH
50.0 70.0 80.0 a.e. Ministerija - Statu		human	Auna	RMS	Stop Fre 10.00000000 GH
Res BW 1.0 MHz	#V ×	BW 3.0 MHz	Sweep 17	Stop 10.000 GHz 7.33 ms (20001 pts)	CF Ste 997.000000 MH Auto Ma
1 N 1 f 2 N 1 f 3 4 5	3.769 2 GHz 2.500 6 GHz	-66.356 dBm -4.245 dBm		=	Freq Offs 0 F
6 7 8 9 10					Scale Typ
	- to	tit -			

Sub6 n7. Conducted Spurious_1 (502000ch_20 MHz_BPSK_RB 1)

- 6 -					ctrum Analyzer - Swept SA	
Frequency	08:28:39 PM Apr 17, 2024 TRACE 2 3 4 5 0 TYPE A WARNAW DET A A A A A A	ALIGN AUTO #Avg Type: RMS	SENSE:INT Trig: Free Run #Atten: 0 dB	00 GHz PNO: Fast ↔ IFGain:High	eq 18.50000000 NFE	Center F
Auto Tune	1 25.877 5 GHz -84.407 dBm	Mki			Ref -20.00 dBm	0 dB/div
Center Free 18.500000000 GH						-99 -30.0
Start Free 10.000000000 GH						40.0 50.0
Stop Free 27.000000000 GH						60.0 70.0
CF Stej 1.700000000 GH <u>Auto</u> Ma	1- PANS AND AND AND AND AND AND AND AND AND AND	1-d by mathematic	AMARAN DIN PARTICIPAL			80:0
Freq Offse 0 H						•100
Scale Type Log <u>Li</u> r	Stop 27.000 GHz .33 ms (40000 pts)	Sweep 20	3.0 MHz	#VBW		Start 10.
_		STATU				ASG

Sub6 n7. Conducted Spurious_2 (502000ch_20 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer - S RL RF 50				SENSE:INT	4	LIGN AUTO	08:32:37 P	M Apr 17, 2024	-	
enter Freq 5.0150	NFE	PNO: Fast IFGain:Low	Trig: Fi #Atten:	ree Run 20 dB	#Avg Type	RMS	TRA TY D	CE 1 2 3 4 5 (PE A WARKING ET A A A A A A		equency
0 dB/div Ref 10.00						Mk	r1 3.78 -66.8	4 2 GHz 44 dBm		Auto Tun
0.00 10.0 20.0	²									Center Fre 5000000 GH
30.0 40.0 50.0									30	Start Fre
									and the second s	
70.0			1 V Lanation		Automation		i in the second s	RMS	10.00	and the second second second
60.0 50.0 Start 30 MHz #Res BW 1.0 MHz	the second se		3.0 MH			aller aller aller i	Stop 10 .33 ms (2).000 GHz 20001 pts)	997	Stop Fre 0000000 GH CF Ste 000000 MH Ma
70.0 80.0	× 3.7			iz dBm	Sv	aller aller aller i	Stop 10 .33 ms (2	0.000 GHz	997 Auto	CF Ste
70.0 10.0 <th< td=""><td>× 3.7</td><td>#VE</td><td>SW 3.0 MH -66.844</td><td>iz dBm</td><td>Sv</td><td>weep 17</td><td>Stop 10 .33 ms (2</td><td>).000 GHz 20001 pts)</td><td>997 <u>Auto</u></td><td>CF Ste</td></th<>	× 3.7	#VE	SW 3.0 MH -66.844	iz dBm	Sv	weep 17	Stop 10 .33 ms (2).000 GHz 20001 pts)	997 <u>Auto</u>	CF Ste

Sub6 n7. Conducted Spurious_1 (507000ch_20 MHz_BPSK_RB 1)

				- 6 ×
NFE PNO: Fast	SENSE:INT Trig: Free Run #Atten: 0 dB	ALIGN AUTO #Avg Type: RMS	08:33:04 PM Apr17, 2024 TRACE 2 3 4 5 0 TYPE A WARNA A A A	Frequency
		Mkr	1 25.819 7 GHz -85.008 dBm	Auto Tune
				Center Free 18.50000000 GH
				Start Free 10.000000000 GH
				Stop Free 27.00000000 GH
La telluter			1 RMS	CF Step 1.700000000 GH Auto Mar
				Freq Offse 0 H
#VBW	3.0 MHz	Sweep 29	Stop 27.000 GHZ	Scale Type
	000000 GHz NFE PNO: Fast IFGain:High dBm	ODOODOO GHZ Trig: Free Run NFE PNO: Fast IFGain:High #Atten: 0 dB dBm	000000 GHz #Avg Type: RMS NFE PN0: Fast → IFGain:High Trig: Free Run #Atten: 0 dB Mkr dBm	ODOLOGOU GHz NFE Trig: Free Run IFGain:High Trig: Free Run #Atten: 0 dB #Avg Type: RMS TRACE 2.34 30 TUPE dBm

Sub6 n7. Conducted Spurious_2 (507000ch_20 MHz_BPSK_RB 1)

RL RF 50 S		_	SEN	SE:INT	A	LIGN AUTO	08:35:50 Pf	M Apr 17, 2024		_
enter Freq 5.0150	00000 0	PNO: Fast - IFGain:Low		Run	#Avg Type:		TRAC	E 1 2 3 4 5 6 E A MANAAAAA T A A A A A A A		
0 dB/div Ref 10.00	dBm					Mk	r1 3.803 -66.63	3 1 GHz 32 dBm	Auto	Tun
og 0.00 10.0 20.0	\$ ²								Center 5.01500000	
30.0 40.0 50.0									Star 30.00000	
60.0			1							
70.0		na sectore de la companya de la comp	V Lanadari	MA			-	RMS	Stop 10.00000000	
70.0 80.0 Start 30 MHz #Res BW 1.0 MHz			W 3.0 MHz		Sw	veep 17	Stop 10 .33 ms (2	.000 GHz 0001 pts)	10.00000000 CF 997.00000	O GH
70.0 80.0 Start 30 MHz FRes BW 1.0 MHz MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 5	× 3.8(FUN	Sw		Stop 10 .33 ms (2	.000 GHz	10.00000000 CF	O GH Ste O MH Ma
70.0 80.0 Start 30 MHz FRes BW 1.0 MHz MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4	× 3.8(#VB	W 3.0 MHz -66.632 dE	FUN	Sw	veep 17	Stop 10 .33 ms (2	.000 GHz 0001 pts)	10.0000000 CF 997.00000 <u>Auto</u>	O GH Ste O MH Ma Offse O H

Sub6 n7. Conducted Spurious_1 (512000ch_20 MHz_BPSK_RB 1)

- 6 🐱						ectrum Analyzer - 1	
Frequency	08:36:17 PM Apr 17, 2024 TRACE 1 2 3 4 5 6 TYPE A ***********************************	ALIGN AUTO #Avg Type: RMS	SENSE:INT Trig: Free Run #Atten: 0 dB	GHZ PNO: Fast ↔	50 Ω DC 000000000 NFE		enter F
Auto Tune	1 25.288 1 GHz -84.458 dBm	Mki	Mitelli V GB	IFGain:nign		Ref -20.0	dB/div
Center Fred 18.500000000 GH:).0
Start Free 10.000000000 GH							9.0 9.a
Stop Free 27.00000000 GH							0.0 0.0
CF Step 1.700000000 GH Auto Mar	1 RMS	an takan si kabuta dika kas).0).0
Freq Offse 0 H			Restanting for				00
Scale Type						000 GHz	
	0.33 ms (40000 pts)	Sweep 2	3.0 MHz	#VBW		1.0 MHz	kes BW

Sub6 n7. Conducted Spurious_2 (512000ch_20 MHz_BPSK_RB 1)

the second second second second	08:39:37 PM Apr 17, 2024	ALIGN AUTO	SE:INT	SE	-	50 Ω DC	RF S	RL
Frequency	TRACE 1 2 3 4 5 6 TYPE A MANANA DET A A A A A A	g Type: RMS	Run	-	NO: Fast	000000 G		
Auto Tun	1 3.809 1 GHz -66.660 dBm	Mk				0 dBm	Ref 10.0	0 dB/div
Center Fre 5.015000000 GH								og 0.00
Start Fre 30.000000 MH								30.0 40.0 50.0
Stop Fre	RMS							50.0 70.0
and the second	والمستغيرة والمساهي المقا		MAM	A statement		Calver Party Party (10)	and the latter of the latter of	30.0
10.00000000 GH CF Ste 997.000000 MH	Stop 10.000 GHz 33 ms (20001 pts)	Sweep 17		3.0 MHz			1.0 MHz	tart 30 Res BV
10.00000000 GH CF Ste 997.000000 MH Auto Ma Freq Offse	Stop 10.000 GHz		FUNCT	Constanting of the		× 3.80	1.0 MHz	tart 30 Res BV KR MODE 1 N 2 N 3 4
10.00000000 GH CF Ste 997.000000 MH	Stop 10.000 GHz 33 ms (20001 pts)	Sweep 17	FUNCT	1 3.0 MHz -66.660 d	#VBW	× 3.80	TRC SCL	tart 30 Res BV

Sub6 n7. Conducted Spurious_1 (502500ch_25 MHz_BPSK_RB 1)

- 6 ×					ectrum Analyzer - Swept SA	
Frequency	08:40:04 PM Apr 17, 2024 TRACE 1 2 3 4 5 6 TYPE A WATHAN DET A A A A A A	ALIGN AUTO #Avg Type: RMS	SENSE:INT Trig: Free Run #Atten: 0 dB	0000 GHz	RF 50 Ω DC req 18.5000000 NFE	Center F
Auto Tune	1 25.550 7 GHz -84.497 dBm	Mk			Ref -20.00 dBn	0 dB/div
Center Fred 18.500000000 GHz						30.0
Start Fred 10.000000000 GH:						40.0 50.0
Stop Free 27.000000000 GH:						60.0 70.0
CF Step 1.700000000 GH: <u>Auto</u> Mar	1 RANS	1	and to the state of the			80.0
Freq Offse 0 H;						+100
Scale Type Log <u>Lin</u>	Stop 27.000 GHz .33 ms (40000 pts)	Sweep 2	3.0 MHz	#VBW		Start 10.0
		STATU				ISG

Sub6 n7. Conducted Spurious_2 (502500ch_25 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer - S RL RF 50	the state of the second st		SEN	SE:INT	A	LIGN AUTO	08:43:58 P	M Apr 17, 2024	-0-16	_
enter Freq 5.0150	NFE	PNO: Fast - IFGain:Low	Trig: Free #Atten: 20		#Avg Type	RMS	TRAI TY D	CE 1 2 3 4 5 0 PE A WARAAAA ET A A A A A A A		
o dB/div Ref 10.00						Mk	r1 3.77 -67.0	5 2 GHz 56 dBm	Auto	Tun
og 0.00 10.0 20.0	\$ ²								Center 5.01500000	
30.0 40.0 50.0									Start 30.00000	
60.0			1							-
and the second se					البرين المراكم الم		الإراقية	RMS	Stop 10.00000000	
500 automotive California Start 30 MHz FRes BW 1.0 MHz		and the state of the	W 3.0 MHz		Sw	veep 17	Stop 10 .33 ms (2	.000 GHz 0001 pts)	10.00000000	Ste
60.0 0	× 3.7	and the state of the		FUN	Sw	aller aller aller	Stop 10 .33 ms (2	.000 GHz	10.00000000 CF 997.00000	Ste MF Ma
300 0 attack of the deliver of the delive	× 3.7	#VB	W 3.0 MHz -67.056 dE	FUN	Sw	veep 17	Stop 10 .33 ms (2	.000 GHz 0001 pts)	10.0000000 CF 997.00000 <u>Auto</u>	Ste MH Ma

Sub6 n7. Conducted Spurious_1 (507000ch_25 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer - Swept SA				
RL RF 50 Ω DC enter Freq 18.500000000 NFE	GHZ PNO: Fast ++- IFGain:High #Atten: 0 dB	ALIGN AUTO #Avg Type: RMS	08:44:25 PM Apr17, 2024 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A A A A A A	Frequency
dB/div Ref -20.00 dBm	ouningn	Mkr1	25.916 6 GHz -83.047 dBm	Auto Tune
.0				Center Fred 18.500000000 GHz
.0				Start Free 10.000000000 GH
.0				Stop Free 27.00000000 GH
0		, da		CF Step 1.700000000 GH Auto Mar
				Freq Offse 0 H
art 10.000 GHz es BW 1.0 MHz	#VBW 3.0 MHz	Sweep 29.3	Stop 27.000 GHz 3 ms (40000 pts)	Scale Type Log <u>Li</u> r
		STATUS		_

Sub6 n7. Conducted Spurious_2 (507000ch_25 MHz_BPSK_RB 1)

RL RF 50		-	SE	NSE:INT	1.0	ALIGN AUTO	08:47:07 P	M Apr 17, 2024	-	- 6 💌
enter Freq 5.0150	NFE	PNO: Fast + IFGain:Low	Trig: Fre #Atten: 2		#Avg Type	e: RMS	TRA TY D	CE 1 2 3 4 5 0 PE A AAAAA ET AAAAAA		quency
0 dB/div Ref 10.00						M	(r1 3.76 -66.8	8 8 GHz 88 dBm		Auto Tun
0.00 10.0 20.0	²									enter Fre D00000 GH
30.0 40.0 50.0										Start Fre
									and the second division of the second divisio	
70.0					Autour		n i	FMS		the second second second
500 Delementaria del			1 W 3.0 MHz		SI	weep 17	Stop 10 2.33 ms (2	.000 GHz 20001 pts)	10.000	Stop Fre 000000 GH CF Ste 000000 MH Ma
No. No. <td>× 3.76</td> <td></td> <td></td> <td>r Fur Bm</td> <td>SI</td> <td></td> <td>Stop 10 2.33 ms (2</td> <td>.000 GHz</td> <td>10.000 997.1 <u>Auto</u></td> <td>CF Ste</td>	× 3.76			r Fur Bm	SI		Stop 10 2.33 ms (2	.000 GHz	10.000 997.1 <u>Auto</u>	CF Ste
N I	× 3.76	#VB1	W 3.0 MHz Y -66.888 d	r Fur Bm	SI	weep 17	Stop 10 2.33 ms (2	.000 GHz 20001 pts)	10.000 997.1 <u>Auto</u> F	CF Ste CF Ste 000000 MH Ma

Sub6 n7. Conducted Spurious_1 (511500ch_25 MHz_BPSK_RB 1)

	SENSE:INT Frig: Free Run (Atten: 0 dB	ALIGN AUTO #Avg Type: RMS	08:47:33 PM Apr17, 2024 TRACE 1 2 3 4 5 6 TVPE A MANAAAA DET A A A A A A A 1 25.629 3 GHz -84.498 dBm	Frequency Auto Tune
		Mki	1 25.629 3 GHz	Auto Tune
			-64.496 uBm	
				Center Fred 18.500000000 GH
				Start Free 10.000000000 GH
				Stop Free 27.00000000 GH
	i adag si puba tika a ad	المراجع		CF Step 1.700000000 GH <u>Auto</u> Ma
				Freq Offse 0 H
#VBW 3	0 MHz	Sween 2	Stop 27.000 GHZ	Scale Type Log <u>Li</u> i
		#VBW 3.0 MHz	#VBW 3.0 MHz Sweep 29	Stop 27.000 GHz

Sub6 n7. Conducted Spurious_2 (511500ch_25 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer -	DQ DC	- 1	SEN	SE:INT	1.00	ALIGN AUTO	08:50:54 F	M Apr 17, 2024		di 🗙
enter Freq 5.015	000000 NFE	PNO: Fast - IFGain:Low	Trig: Free #Atten: 20		#Avg Type	e: RMS	TRA TY D	CE 12345 PE A WARAAAA		-
0 dB/div Ref 10.00						M	(r1 3.77 -66.5	2 7 GHz 02 dBm	Auto	Tun
0.00 10.0 20.0	²								Cente 5.0150000	
30.0 40.0 50.0									Star 30.0000	tFre
50.0			1							
70.0		in a fillen set	V	ŴÅ	All Mariles	<u>in an</u>	فيلايانها	FMS	Stop 10.0000000	
70.0 Start 30 MHz Res BW 1.0 MHz					SI	weep 17	Stop 10 .33 ms (2	0.000 GHz 20001 pts	10.0000000 CI	• Ste
70.0 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	× 3.7		and an and a start of the	FUN	SI	and the states	Stop 10 .33 ms (2	0.000 GHz	10.0000000 Cl 997.0000	Ste Ste Ma
N 1 f 3 4	× 3.7	#VB	W 3.0 MHz -66.502 dE	FUN	SI	weep 17	Stop 10 .33 ms (2	0.000 GHz 20001 pts	10.0000000 Cl 997.0000 <u>Auto</u>	Ste DO MH Ma Offso 0 H

Sub6 n7. Conducted Spurious_1 (503000ch_30 MHz_BPSK_RB 1)

			- 6 🐱
Trig: Free Run #Atten: 0 dB	ALIGN AUTO #Avg Type: RMS	08:51:22 PM Apr 17, 2024 TRACE 2 3 4 5 6 TYPE A WARNING DET A A A A A A	Frequency
	Mkr	1 26.425 4 GHz -83.148 dBm	Auto Tune
			Center Fred 18.50000000 GH
			Start Free 10.000000000 GH
			Stop Free 27.00000000 GH
		norsh pergerikali se redu linaki	CF Step 1.700000000 GH <u>Auto</u> Ma
			Freq Offse 0 H
(3.0 MHz	Sweep 29	Stop 27.000 GHZ	Scale Type Log <u>Li</u> i
	7 3.0 MHz		Stop 27.000 GH2

Sub6 n7. Conducted Spurious_2 (503000ch_30 MHz_BPSK_RB 1)

	16 PM Apr 17, 2024	0 08:55:16	ALIGN AUTO	SE:INT	SEI			n Analyzer - Sv		RL
Frequency	TYPE A WWWW DET A A A A A A	TR/ T	Avg Type: RMS		Trig: Free #Atten: 2	NO: Fast		5.0150	r Fred	ente
Auto Tun	770 2 GHz .714 dBm	/kr1 3.77 -66.7	M					ef 10.00	liv R) dB/d
Center Fre 5.015000000 GH							\$2			0.00
Start Fre 30.000000 M⊦										0.0 0.0
and the second second second second second	RMS			w						0.0 0.0 0.0
10.00000000 GH CF Ste 997.000000 MH	10.000 GHz (20001 pts)	Stop 1 17.33 ms (;	Sweep 17		3.0 MHz			MHz	30 MH 3W 1.0	ant 3 Res E
10.00000000 GH CF Ste 997.000000 MH Auto Ma Freq Offse	10.000 GHz	Stop 1 17.33 ms (;	Sweep 17	FUNCT			× 3.77	MHz al	30 MH	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Stop Fre 10.000000000 GH CF Ste 997.000000 MH Auto Freq Offse 0 H Scale Typ Log Li	10.000 GHz (20001 pts) NCTION VALUE	Stop 1 17.33 ms (;	Sweep 17	FUNCT	3.0 MHz -66.714 dE	#VBW	× 3.77	MHz al	BO MH BW 1.0 DE TRC S	tart 3 Res E

Sub6 n7. Conducted Spurious_1 (507000ch_30 MHz_BPSK_RB 1)

DC DOODOO GHZ IFE PNO: Fast +++ IFGain:High	SENSE:INT Trig: Free Run #Atten: 0 dB	ALIGN AUTO #Avg Type: RMS	08:55:42 PM Apr 17, 2024 TRACE 1 2 3 4 5 6 TYPE A WANNEY DET A A A A A A	Frequency
			ULI Inteletetete	
IBm		Mkı	1 26.449 6 GHz -84.397 dBm	Auto Tune
				Center Fred 18.500000000 GH
				Start Free 10.000000000 GH
				Stop Free 27.00000000 GH
		li, ", ", ", and and a state of a	1. And I designed the state West Lange	CF Step 1.700000000 GH <u>Auto</u> Ma
		And a sheet the design of the		Freq Offse 0 H
#VBW	3.0 MHz	Sweep 29	Stop 27.000 GHZ	Scale Type Log <u>Li</u> i
		#VBW 3.0 MHz	#VBW 3.0 MHz Sweep 29	Stop 27.000 GHz

Sub6 n7. Conducted Spurious_2 (507000ch_30 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer - RL RF 50	0 Ω DC	_	SEN	SE:INT	A	IGN AUTO	08:58:20 P	M Apr 17, 2024	
enter Freq 5.015	000000 0	PNO: Fast - IFGain:Low		Run	#Avg Type:		TRA	CE 1 2 3 4 5 6 PE A WAAAAA ET A A A A A A	
0 dB/div Ref 10.0						Mk	r1 3.79 -66.6	9 2 GHz 86 dBm	Auto Tun
0.00 	\$ ²								Center Fre 5.015000000 GH
30.0 40.0									Start Fre 30.000000 MH
50.0			1						
70.0 30.0			Vuun	m			البند. الب ا	RMS	and the second second second second
itart 30 MHz Res BW 1.0 MHz			W 3.0 MHz		Sw	eep 17	Stop 10 .33 ms (2	.000 GHz 20001 pts)	Stop Fre 10.00000000 GH CF Ste 997.00000 MH <u>Auto</u> Ma
300 0 and an and a standard andard and a standard andard andard andard andard and a st	× 3.74			FUN	Sw		Stop 10 .33 ms (2	.000 GHz	10.00000000 GH CF Ste 997.000000 MH
300 and an and a structure	× 3.74	#VB	W 3.0 MHz -66.686 dB	FUN	Sw	eep 17	Stop 10 .33 ms (2	.000 GHz 20001 pts)	10.00000000 GH CF Ste 997.000000 MH <u>Auto</u> Ma Freq Offse

Sub6 n7. Conducted Spurious_1 (511000ch_30 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer - Swept SA				×
RL RF 50 Q DC enter Freq 18.500000000 NFE	BHZ PNO: Fast ↔ IFGain:High #Atten: 0 dB	ALIGN AUTO #Avg Type: RMS	08:58:47 PM Apr17, 2024 TRACE 1 2 3 4 5 0 TYPE A WWWWW DET A A A A A A A	Frequency
0 dB/div Ref -20.00 dBm	, samma	Mkr	1 25.923 9 GHz -84.083 dBm	Auto Tune
i00				Center Freq 18.50000000 GHz
10.0 50.0				Start Fred 10.000000000 GH2
10.0				Stop Fred 27.00000000 GH2
100		ر بد با منابع من م	1 RMS	CF Step 1.700000000 GHz <u>Auto</u> Man
				Freq Offset 0 Hz
tart 10.000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sween 20	Stop 27.000 GHz 0.33 ms (40000 pts)	Scale Type
să		STATUS		

Sub6 n7. Conducted Spurious_2 (511000ch_30 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer - S RL RF 50	the state of the s	_	SE	NSE:INT	4	LIGN AUTO	09:02:03 P	M Apr17, 2024	00
enter Freq 5.0150	000000 G	PNO: Fast		e Run	#Avg Type		TRA	CE 1 2 3 4 5 0 PE A	
0 dB/div Ref 10.00) dBm					Mk	r1 3.75 -66.7	0 8 GHz 53 dBm	Auto T
	²								Center F 5.015000000
0.0									Start F 30.000000
60.0			1						
and the second second			V. Juniti	ww	A			RMS Constant of the	Stop F 10.000000000
tart 30 MHz Res BW 1.0 MHz		and the second s	W 3.0 MHz		Sv	weep 17	Stop 10 .33 ms (2	0.000 GHz 20001 pts)	10.000000000 CF S
MOD MOD <td>× 3.75</td> <td>and the second s</td> <td></td> <td>FUP</td> <td>Sv</td> <td></td> <td>Stop 10 .33 ms (2</td> <td>.000 GHz</td> <td>10.00000000 CF S 997.000000</td>	× 3.75	and the second s		FUP	Sv		Stop 10 .33 ms (2	.000 GHz	10.00000000 CF S 997.000000
tart 30 MHz Res BW 1.0 MHz Res NOT 1.0 MHz Res NOT 1.0 MHz R MODE TRC SCL 1 N 1 f 3 4	× 3.75	#VB	W 3.0 MHz -66.753 dl	FUP	Sv	weep 17	Stop 10 .33 ms (2	0.000 GHz 20001 pts)	10.00000000 CF S 997.000000 <u>Auto</u> Freq Of

Sub6 n7. Conducted Spurious_1 (503500ch_35 MHz_BPSK_RB 1)

- 6 -					the state of the s	pectrum Analyzer	
Frequency	09:02:31 PM Apr 17, 2024 TRACE 1 2 3 4 5 6 TYPE A WARNAW DET A A A A A A	#Avg Type: RMS	SENSE:INT Trig: Free Run #Atten: 0 dB	O GHz PNO: Fast ↔	50 Ω DC 500000000 NFE		enter I
Auto Tune	1 25.602 1 GHz -84.411 dBm	Mkr			20.00 dBm	Ref -20.	0 dB/div
Center Free 18.500000000 GH							30.0
Start Free 10.000000000 GH							40.0 50.0
Stop Free 27.000000000 GH							50.0 70.0
CF Step 1.700000000 GH Auto Mar	1 - RANS	the state of the s	a da ar dation an				90.0
Freq Offse 0 H							100
Scale Type Log <u>Li</u> r	Stop 27.000 GHz .33 ms (40000 pts)	Sweep 29	3.0 MHz	#VBW		000 GHz / 1.0 MHz	
		STATUS					SG

Sub6 n7. Conducted Spurious_2 (503500ch_35 MHz_BPSK_RB 1)

	:06:26 PM Apr 17, 2024	GN AUTO 09		NSE:INT	SE			m Analyzer - S RF 50		RL
Frequency	TRACE 1 2 3 4 5 0 TYPE A WANNY DET A A A A A A	RMS	#Avg Ty		- Trig: Fre #Atten: 2	HZ PNO: Fast ↔ FGain:Low	000000 NFE	q 5.0150	r Free	ente
Auto Tun	3.772 7 GHz 66.840 dBm	Mkr1						ef 10.00	div) dB/d
Center Fre 5.015000000 GH							\diamond^2			ng 1.00
Start Fre 30.000000 MH										0.0 0.0 0.0
and the second	RMS	www		w				A contract t	- Almand	0.0 0.0 0.0
10.00000000 GH CF Ste 997.000000 MH	op 10.000 GHz ms (20001 pts)	Sto eep 17.33			/ 3.0 MHz	Losidin, Land) MHz	30 MH BW 1.	tart 3
10.00000000 GH CF Ste 997.000000 MH Auto Ma Freq Offse	op 10.000 GHz	Ste		FU		Losidin, Land	× 3.7		30 MH BW 1. DE TRC 1	1.0 tart 3 Res E KR MOD 1 N 2 N 3 4
Stop Fre 10.000000000 GH CF Ste 997.000000 MH Auto Freq Offse 0 H Scale Typ Log Li	pp 10.000 GHz ms (20001 pts)	Sto eep 17.33		FU	/ 3.0 MHz -66.840 d	#VBW	× 3.7	D MHz	30 MH BW 1. DE TRC 1	tart 3 Res E Res E R MOD 1 N 2 N 3

Sub6 n7. Conducted Spurious_1 (507000ch_35 MHz_BPSK_RB 1)

DC 00000 GHz PNO: Fast ++ IFGain:High Bm	SENSE:INT Trig: Free Run #Atten: 0 dB	ALIGN AUTO #Avg Type: RMS	09:06:52 PM Apr17, 2024 TRACE 1 2 3 4 5 0 TYPE A MANAAAA DET A AAAAAAA 11 26.248 6 GHz -84.378 dBm	Frequency Auto Tune
	Ĭ.	Mk	r1 26.248 6 GHz -84.378 dBm	Auto Tune
				Center Fred 18.500000000 GH
				Start Free 10.000000000 GH
				Stop Free 27.000000000 GH
			T FAME	CF Step 1.700000000 GH <u>Auto</u> Mar
				Freq Offse 0 H
#VBW 3	0.0 MHz	Sweep 2	OLOD LI 1000 OILL	Scale Type Log <u>Li</u> i
		#VBW 3.0 MHz	#VBW 3.0 MHz Sweep 29	Stop 27.000 GHz

Sub6 n7. Conducted Spurious_2 (507000ch_35 MHz_BPSK_RB 1)

RL RF 5	0 Ω DC	_	SEN	SE:INT	A	IGN AUTO	09-09-34 P	M Apr 17, 2024	
enter Freq 5.015	000000 0	GHZ PNO: Fast - IFGain:Low		Run	#Avg Type:		TRAC	CE 1 2 3 4 5 6 PE A WARAAAA	
0 dB/div Ref 10.0						Mk		1 2 GHz 92 dBm	Auto Tun
	\$ ²								Center Fre 5.015000000 GH
10.0 10.0									Start Fre 30.000000 MH
50.0	-		1						Oton Fre
and the second se		-	V Louisian	AAA				FMS	
50.0 0000000000000000000000000000000000		Trank and the part of the	W 3.0 MHz		Sw	eep 17	Stop 10 .33 ms (2	.000 GHz 0001 pts)	Stop Fre 10.00000000 GH CF Ste 997.000000 MH <u>Auto</u> Ma
30.0 1	× 3.77	Trank and the part of the		FUN	Sw		Stop 10 .33 ms (2	.000 GHz	10.00000000 GH CF Ste 997.000000 MH
Image: Second	× 3.77	#VB	W 3.0 MHz -66.292 dB	FUN	Sw	eep 17	Stop 10 .33 ms (2	.000 GHz 0001 pts)	10.00000000 GF CF Ste 997.000000 MF <u>Auto</u> Ma Freq Offs

Sub6 n7. Conducted Spurious_1 (510500ch_35 MHz_BPSK_RB 1)

- 6 -					rum Analyzer - Swept SA	
Frequency	09:09:59 PM Apr 17, 2024 TRACE 1 2 3 4 5 6 TYPE A WATHANK DET A A A A A A	#Avg Type: RMS	SENSE:INT Trig: Free Run #Atten: 0 dB	000 GHz	RF 50 Ω DC cq 18.500000000 NFE	Center F
Auto Tune	1 25.908 1 GHz -84.438 dBm	Mki			Ref -20.00 dBm	0 dB/div
Center Fred 18.500000000 GH						30.0
Start Free 10.000000000 GH						40.0 50.0
Stop Free 27.000000000 GH						60.0 70.0
CF Step 1.700000000 GH Auto Mar	1 TON LOOK ALL PLANE	a a a a a a a bar di casa ing ta a la gar				90.0
Freq Offse 0 H		an an an an Anna an Ann	THE PARTY AND			+100
Scale Type	Stop 27.000 GHZ					Start 10.0
	.33 ms (40000 pts)	Sweep 29	3.0 MHz	#VBW	U MH2	Res BW

Sub6 n7. Conducted Spurious_2 (510500ch_35 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer - S RL RF 50		SENSE:INT	ALIGN AUTO	09:13:21 PM Apr 17, 2024	
enter Freq 5.0150		+++ Trig: Free Run	#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A A A A A A	Frequency
dB/div Ref 10.00) dBm		MI	kr1 3.777 7 GHz -66.707 dBm	Auto Tune
99 .00 .00					Center Fre 5.015000000 GH
0.0 0.0 0.0					Start Fre 30.000000 MH
0.0		A common	man	RMS	Stop Fre 10.000000000 GH
REALE THE THE THE THE THE THE THE THE THE TH	#V	BW 3.0 MHz	Sweep 17	Stop 10.000 GHz 7.33 ms (20001 pts)	CF Ste 997.000000 M⊢ Auto Ma
1 N 1 f 2 N 1 f 3 4 5	3.777 7 GHz 2.500 6 GHz	-66.707 dBm -4.546 dBm		=	Freq Offse 0 H
6 7 8 9 9 0 1					Scale Typ
3		m	STATU	is is	-

Sub6 n7. Conducted Spurious_1 (504000ch_40 MHz_BPSK_RB 1)

Keysight Spectrum Analyzer - Sw					- 6 ×
Center Freq 18.5000		Trig: Free Run #Atten: 0 dB	ALIGN AUTO #Avg Type: RMS	09:13:48 PM Apr 17, 2024 TRACE 1 2 3 4 5 0 TYPE A WARNING DET A A A A A A	Frequency
0 dB/div Ref -20.00			Mkr	1 26.195 5 GHz -82.923 dBm	Auto Tune
30.0					Center Free 18.500000000 GH
50.0					Start Free 10.000000000 GH
60.0					Stop Free 27.000000000 GH
90.0		ور والمرافقة أسترور	a ta ang ang ang ang ang ang ang ang ang an	A LANS	CF Step 1.700000000 GH <u>Auto</u> Mar
100					Freq Offse 0 H
Start 10.000 GHz	#VBM	(3.0 MHz	Sweep 29	Stop 27.000 GHz .33 ms (40000 pts)	Scale Type Log <u>Lir</u>
ISG			STATUS		

Sub6 n7. Conducted Spurious_2 (504000ch_40 MHz_BPSK_RB 1)