

TEST REPORT

FCC LTE B48 Test for SM-F741U

Certification

APPLICANT SAMSUNG Electronics Co., Ltd.

REPORT NO. HCT-RF-2404-FC021

DATE OF ISSUE April 26, 2024

Tested by Jae Mun Do

Technical ManagerJong Seok Lee

EMEZ.

HCT CO., LTD.

Bongjai Huh

CEO

HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 645 6300 Fax. +82 31 645 6401

TEST REPORT

REPORT NO. HCT-RF-2404-FC021

DATE OF ISSUE April 26, 2024

Additional Model SM-F741U1

Applicant	SAMSUNG Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Product Name	Mobile Phone
Model Name	SM-F741U
Date of Test	February 22, 2024 ~ April 23, 2024
FCC ID	A3LSMF741U
Location of Test	■ Permanent Testing Lab □ On Site Testing (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggido, 17383 Republic of Korea)
FCC Classification:	Citizens Band End User Devices (CBE)
FCC Rule Part(s):	§ 96

F-TP22-03 (Rev. 06) Page 2 of 166

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	April 26, 2024	Initial Release

Notice

Content

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

The test results in this test report are not associated with the ((KS Q) ISO/IEC 17025) accreditation by KOLAS (Korea Laboratory Accreditation Scheme) / A2LA (American Association for Laboratory Accreditation) that are under the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA).

F-TP22-03 (Rev. 06) Page 3 of 166

CONTENTS

1. GENERAL INFORMATION	5
1.1. MAXIMUM OUTPUT POWER	6
2. INTRODUCTION	7
2.1. DESCRIPTION OF EUT	7
2.2. MEASURING INSTRUMENT CALIBRATION	7
2.3. TEST FACILITY	7
3. DESCRIPTION OF TESTS	8
3.1 TEST PROCEDURE	8
3.2 RADIATED POWER	9
3.3 RADIATED SPURIOUS EMISSIONS	10
3.4 PEAK- TO- AVERAGE RATIO	11
3.5 OCCUPIED BANDWIDTH	13
3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	14
3.7 CHANNEL EDGE	15
3.8 Adjacent Channel Leakage Ratio	16
3.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	
3.10 End User Device Additional Requirement (CBSD Protocol)	
3.8 WORST CASE(RADIATED TEST)	19
3.9 WORST CASE(CONDUCTED TEST)	20
4. LIST OF TEST EQUIPMENT	21
5. MEASUREMENT UNCERTAINTY	22
6. SUMMARY OF TEST RESULTS	23
7. SAMPLE CALCULATION	25
8. TEST DATA	27
8.1 EQUIVALENT ISOTROPIC RADIATED POWER	27
8.2 RADIATED SPURIOUS EMISSIONS	29
8.3 PEAK-TO-AVERAGE RATIO	33
8.4 OCCUPIED BANDWIDTH	34
8.5 CONDUCTED SPURIOUS EMISSIONS	35
8.6 CHANNEL EDGE	36
8.7 Adjacent Channel Leakage Ratio(ACLR)	38
8.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	39
8.9 End User Device Additional Requirements (CBSD Protocol)	51
9. TEST PLOTS	53
10 ANNEY A TEST SETUD BHOTO	166

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	SAMSUNG Electronics Co., Ltd.
Address:	129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
FCC ID:	A3LSMF741U
Application Type:	Certification
FCC Classification:	Citizens Band End User Devices (CBE)
FCC Rule Part(s):	§ 96
EUT Type:	Mobile phone
Model(s):	SM-F741U
Additional Model(s)	SM-F741U1
Tx Frequency:	3552.5 - 3697.5 : 5 MHz 3555.0 - 3695.0 : 10 MHz 3557.5 - 3692.5 : 15 MHz 3560.0 - 3690.0 : 20 MHz
Date(s) of Tests:	February 22, 2024 ~ April 23, 2024
Serial number:	Radiated: R3CX20KJT0F Conducted: 7b5599bdac507ece

F-TP22-03 (Rev. 06) Page 5 of 166

1.1. MAXIMUM OUTPUT POWER

		Emission Designator	Modulation	EIRP	
Mode (MHz)	Tx Frequency (MHz)			Max. Power (W)	Max. Power (dBm/10 MHz)
		4M48G7D	QPSK	0.145	21.60
LTE Dand 40 (E)	2552 5 2007 5	4M50W7D	16QAM	0.119	20.77
LTE – Band 48 (5)	3552.5 – 3697.5	4M48W7D	64QAM	0.093	19.70
		4M51W7D	256QAM	0.048	16.81
		8M96G7D	QPSK	0.139	21.43
LTC Dand 40 (10)	2555 0 2005 0	8M97W7D	16QAM	0.113	20.54
LTE – Band 48 (10)	3555.0 – 3695.0	8M88W7D	64QAM	0.088	19.45
		8M88W7D	256QAM	0.044	16.42
		13M5G7D	QPSK	0.136	21.34
LTE David 40 /15\	2557.5 2602.5	13M4W7D	16QAM	0.120	20.78
LTE – Band 48 (15)	3557.5 – 3692.5	13M5W7D	64QAM	0.087	19.40
		13M4W7D	256QAM	0.047	16.76
		17M9G7D	QPSK	0.138	21.41
LTE – Band 48 (20)	2500 0 2000 0	17M9W7D	16QAM	0.116	20.65
	3560.0 – 3690.0	17M9W7D	64QAM	0.089	19.49
		17M9W7D	256QAM	0.046	16.63

F-TP22-03 (Rev. 06) Page 6 of 166

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT was a Mobile Phone with GSM/GPRS/EGPRS/UMTS and LTE, Sub 6, mmWave. It also supports IEEE 802.11 a/b/g/n/ac/ax (20/40/80/160 MHz), Bluetooth(iPA, ePA), BT LE(iPA, ePA), NFC, WPT, WIFI 6E.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

F-TP22-03 (Rev. 06) Page 7 of 166

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE

Test Description	Test Procedure Used
	- KDB 971168 D01 v03r01 – Section 4.3
Occupied Bandwidth	- ANSI C63.26-2015 – Section 5.4.4
	- KDB 940660 D01 v01
	- KDB 971168 D01 v03r01 – Section 6.0
Channel Edge/ ACLR	- ANSI C63.26-2015 – Section 5.7
	- KDB 940660 D01 v01
Spurious and Harmonic Emissions at	- KDB 971168 D01 v03r01 – Section 6.0
Antenna Terminal	- ANSI C63.26-2015 – Section 5.7
	- KDB 940660 D01 v01
Conducted Output Power	- N/A (See SAR Report)
	- KDB 971168 D01 v03r01 – Section 5.7
Peak- to- Average Ratio	- ANSI C63.26-2015 – Section 5.2.3.4
	- KDB 940660 D01 v01
. 199	- ANSI C63.26-2015 – Section 5.6
Frequency stability	- KDB 940660 D01 v01
	- KDB 971168 D01 v03r01 – Section 5.2 & 5.8
Effective Radiated Power/	- ANSI/TIA-603-E-2016 – Section 2.2.17
Effective Isotropic Radiated Power	- KDB 940660 D01 v01
De dieted Couriers and Harrasia	- KDB 971168 D01 v03r01 – Section 6.2
Radiated Spurious and Harmonic Emissions	- ANSI/TIA-603-E-2016 – Section 2.2.12
EIIIISSIONS	- KDB 940660 D01 v01
End User Device Additional	- KDB 940660 D01 v01
Requirement	- WINNF-TS-0122 V1.0.2
(CBSD Protocol)	- VVIIVINI - I 3-O1ZZ V1.U.Z

F-TP22-03 (Rev. 06) Page 8 of 166

3.2 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-E-2016 Clause 2.2.17.

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1 MHz
- $3.VBW \ge 3 \times RBW$
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

 $P_{d (dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$

Where: P_d is the dipole equivalent power and P_g is the generator output power into the substitution antenna.

- 3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.
 - These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

F-TP22-03 (Rev. 06) Page 9 of 166

3.3 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

Test Settings

- 1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
- $2. VBW \ge 3 \times RBW$
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

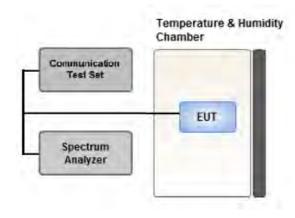
Test Note

- 1. Measurements value show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
 - The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
- 3. For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

Result (dBm) = Pg (dBm) - cable loss (dB) + antenna gain (dBi)

Where: Pg is the generator output power into the substitution antenna.


If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

EIRP (dBm) = ERP (dBm) + 2.15

F-TP22-03 (Rev. 06) Page 10 of 166

3.4 PEAK- TO- AVERAGE RATIO

Test setup

① CCDF Procedure for PAPR

Test Settings

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Set the measurement interval as follows:
 - .- for continuous transmissions, set to 1 ms,
 - .- or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1 %.

2 Alternate Procedure for PAPR

Use one of the procedures presented in 5.2(ANSI C63.26-2015) to measure the total peak power and record as as P_{Pk} .

Use one of the applicable procedures presented 5.2(ANSI C63.26-2015) to measure the total average power and record as P $_{\text{Avg}}$. Determine the P.A.R. from:

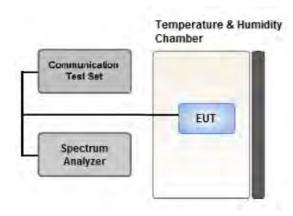
 $P.A.R_{(dB)} = P_{Pk(dBm)} - P_{Avg(dBm)}$ ($P_{Avg} = Average Power + Duty cycle Factor)$

F-TP22-03 (Rev. 06) Page 11 of 166

Test Settings(Peak Power)

The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW \geq 3 × RBW.

- 1. Set the RBW \geq OBW.
- 2. Set VBW \geq 3 × RBW.
- 3. Set span \geq 2 × OBW.
- 4. Sweep time $\geq 10 \times (\text{number of points in sweep}) \times (\text{transmission symbol period})$.
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the peak amplitude level.


Test Settings(Average Power)

- 1. Set span to $2 \times$ to $3 \times$ the OBW.
- 2. Set RBW \geq OBW.
- 3. Set VBW \geq 3 × RBW.
- 4. Set number of measurement points in sweep $\geq 2 \times \text{span} / \text{RBW}$.
- 5. Sweep time:
 - Set \geq [10 × (number of points in sweep) × (transmission period)] for single sweep (automation-compatible) measurement. The transmission period is the (on + off) time.
- 6. Detector = power averaging (rms).
- 7. Set sweep trigger to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. Add [10 log (1/duty cycle)] to the measured maximum power level to compute the average power during continuous transmission. For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is a constant 25 %.

F-TP22-03 (Rev. 06) Page 12 of 166

3.5 OCCUPIED BANDWIDTH.

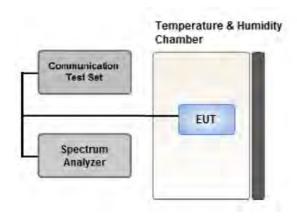
Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth


Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5 % of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99 % occupied bandwidth observed in Step 7

F-TP22-03 (Rev. 06) Page 13 of 166

3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

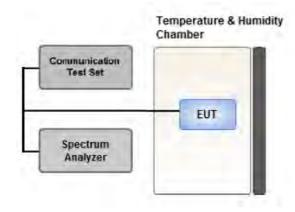
Test setup

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


Test Settings

- 1. RBW = 1 MHz
- 2. VBW \geq 3 MHz
- 3. Detector = RMS
- 4. Trace Mode = trace average
- 5. Sweep time = auto
- 6. Number of points in sweep ≥ 2 x Span / RBW

F-TP22-03 (Rev. 06) Page 14 of 166

3.7 CHANNEL EDGE

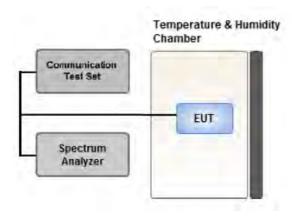
Test setup

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. Within 1 MHz of the channel edge the RBW should be 2 % of EBW, then 1 MHz after that.
- $4. VBW > 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Notes

The conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0-10 megahertz above the upper SAS-assigned channel edge and within 0-10 megahertz below the lower SAS-assigned channel edge. At all frequencies greater than 10 megahertz above the upper SAS assigned channel edge and less than 10 MHz below the lower SAS assigned channel edge, the conducted power of any emission shall not exceed -25 dBm/MHz.


The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/Mhz

Where Margin < 1 dB the emission level is either corrected by $10 \log(1 \text{ MHz/ RB})$ or the emission is integrated over a 1 MHz bandwidth to determine the final result. When using the integration method the integration window is either centered on the emission or, for emissions at the band edge, centered by an offset of 500 kHz from the block edge so that the integration window is the 1 MHz adjacent to the block edge.

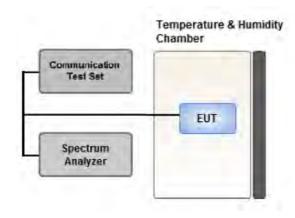
F-TP22-03 (Rev. 06) Page 15 of 166

3.8 Adjacent Channel Leakage Ratio

Test setup

Test Settings

- 1. Use ACP measurement function of Spectrum analyzer to measure adjacent channel leakage ratio
- 2. Integ BW = Assigned channel bandwidth
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = 1 s
- 9. The trace was allowed to stabilize


Test Notes

the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

F-TP22-03 (Rev. 06) Page 16 of 166

3.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

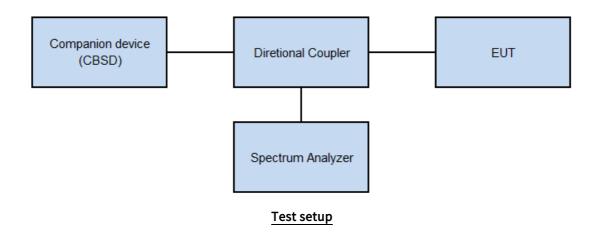
Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30 $^{\circ}$ C to +50 $^{\circ}$ C in 10 $^{\circ}$ C increments using an environmental chamber.

- 2. Primary Supply Voltage:
 - .- Unless otherwise specified, vary primary supply voltage from 85 % to 115 % of the nominal value for other than hand carried battery equipment.
 - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.


Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20 °C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

F-TP22-03 (Rev. 06) Page 17 of 166

3.10 End User Device Additional Requirement (CBSD Protocol)

Test Overview

End user device additional requirements (CBSD Protocol) are tested per the test procedures listed below. During testing, the EUT is connected to a certified CBSD (FCC ID: 2AS48SC-220) as a companion device to show compliance with Part 96.47.

End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation.

Test Settings

- a. Setup companion device with 3570 MHz & 3610 MHz.
- b. Enable AP service from companion device.
- c. EUT is connected to a companion device.
- c. Check EUT Tx frequency and power.
- d. Disable AP service from companion device and check EUT stop transmission within 10 s.

F-TP22-03 (Rev. 06) Page 18 of 166

3.8 WORST CASE(RADIATED TEST)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.

- All modes of operation were investigated and the worst case configuration results are reported.

Mode: Stand alone, Stand alone + External accessories (Earphone, AC adapter, etc)

Worst case: Stand alone

- We were performed the RSE test in condition of co-location.

Mode: Stand alone, Simultaneous transmission scenarios

Worst case: Stand alone

- The worst case is reported with the EUT positioning, modulations, and paging service configurations shown in the test data
- The EUT was tested in three modes(Open, Half-open, Closed), the worst case configuration results are reported.

Worst case: Closed mode.

- Please refer to the table below.
- SM-F741U & additional models were tested and the worst case results are reported.

(Worst case: SM-F741U)

[Worst case]

Test Description	Modulation	RB size	RB offset	Axis
	QPSK,	QPSK, 16QAM, 64QAM, See Section 8.1 256QAM		
Effective Isotropic Radiated Power	16QAM,			Z
	64QAM,			
	256QAM			
Radiated Spurious and Harmonic Emissions	QPSK	See Se	ction 8.2	Z

F-TP22-03 (Rev. 06) Page 19 of 166

3.9 WORST CASE(CONDUCTED TEST)

- All modes of operation were investigated and the worst case configuration results are reported.
- SM-F741U & additional models were tested and the worst case results are reported.

(Worst case: SM-F741U)

[Worst case]

Test Description	Modulation	Bandwidth (MHz)	Frequency	RB size	RB offset
Occupied Bandwidth	QPSK, 16QAM, 64QAM, 256QAM	5, 10, 15, 20	Mid	Full RB	0
Peak-To-Average Radio	QPSK, 16QAM, 64QAM, 256QAM	5, 10, 15, 20	Mid	Full RB	0
Channel Edge	QPSK	5 10 15 20 5, 10, 15, 20	Low High Low High Low High Low How High Low High Low High Low Low,	1 1 1 1 1 1 1 1 1 1 Full RB	0 24 0 49 0 74 0 99
Spurious and Harmonic Emissions at Antenna Terminal	QPSK	5, 10, 15, 20	High Low, Mid, High	1	0

F-TP22-03 (Rev. 06) Page 20 of 166

4. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
RF Switching System	FBSR-02B(1.2G HPF+LNA)	T&M SYSTEM	F1L1	12/11/2024	Annual
RF Switching System	FBSR-02B(3.3G HPF+LNA)	T&M SYSTEM	F1L2	12/11/2024	Annual
Power Splitter(DC ~ 26.5 GHz)	11667B	Hewlett Packard	5001	04/17/2025	Annual
DC Power Supply	E3632A	Agilent	MY40010147	06/23/2024	Annual
Dipole Antenna	UHAP	Schwarzbeck	557	03/09/2025	Biennial
Dipole Antenna	UHAP	Schwarzbeck	558	03/09/2025	Biennial
Chamber	SU-642	ESPEC	93008124	02/19/2025	Annual
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	147	08/17/2025	Biennial
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	9120D-1298	09/11/2025	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	09/29/2024	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial
Signal Analyzer(10 Hz ~ 26.5 GHz)	N9020A	Agilent	MY52090906	04/19/2025	Annual
ATTENUATOR(20 dB)	8493C	Hewlett Packard	17280	04/17/2025	Annual
Spectrum Analyzer(10 Hz ~ 40 GHz)	FSV40	REOHDE & SCHWARZ	100931	08/17/2024	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/10/2024	Annual
Loop Antenna(9 kHz ~ 30 MHz)	FMZB1513	Schwarzbeck	1513-333	03/07/2026	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	895	09/16/2024	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	1135	09/16/2024	Biennial
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6262094331	11/17/2024	Annual
Wideband Radio Communication Tester	MT8820C	Anritsu Corp.	6201026545	12/11/2024	Annual
SIGNAL GENERATOR (100 kHz ~ 40 GHz)	SMB100A	REOHDE & SCHWARZ	177633	06/22/2024	Annual
Signal Analyzer(5 Hz ~ 40.0 GHz)	N9030B	KEYSIGHT	MY55480167	05/24/2024	Annual
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.,	-	-	-

Note:

- 1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 2. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

F-TP22-03 (Rev. 06) Page 21 of 166

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.98 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.66 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, <i>k</i> =2)

F-TP22-03 (Rev. 06) Page 22 of 166

6. SUMMARY OF TEST RESULTS

6.1 Test Condition: Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Occupied Bandwidth	§ 2.1049	N/A	PASS
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	than 10 MHz abo		PASS
Adjacent Channel Leakage Ratio	§ 96.41(e)	At least 30 dB.	PASS
Conducted Output Power	§ 2.1046	N/A	See Note1
Frequency stability / variation of ambient temperature	§ 2.1055,	Emission must remain in band	PASS
End User Device Additional Requirements § 96.47 (CBSD Protocol)		End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation. An End User Device must discontinue operations, change frequencies, or change its operational power level within 10 seconds of receiving instructions from its associated CBSD.	PASS

Note:

- 1. See SAR Report
- 2. The EUT is an End User Device

F-TP22-03 (Rev. 06) Page 23 of 166

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Equivalent Isotropic Radiated Power	§ 96.41(b)	23 dBm/10 MHz	PASS
Radiated Spurious and	§ 2.1053,	40 dD/MII	DACC
Harmonic Emissions	§ 96.41(e)	-40 dBm/MHz	PASS

F-TP22-03 (Rev. 06) Page 24 of 166

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain			EF	RP
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBd)	C.L	Pol.	w	dBm
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84

ERP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain			EII	RP
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBi)	C.L	Pol.	w	dBm
20175	1,732.50	-15.75	18.45	9.90	1.76	Н	0.456	26.59

EIRP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

F-TP22-03 (Rev. 06) Page 25 of 166

7.3. Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW

GSM BW = 249 kHzG = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W

WCDMA BW = 4.17 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev. 06) Page 26 of 166

8. TEST DATA

8.1 EQUIVALENT ISOTROPIC RADIATED POWER

Eroa			Measured	Substitute	Ant			EIRP	Limit		RB
Freq (MHz)	Bandwidth	Modulation	Level (dBm)	Level (dBm)	Ant. Gain(dBi)	C.L	Pol	dBm/	L0 MHz	Size	Offset
		QPSK	-26.98	11.72	12.34	3.23	Н	20.83			
2552.5		16-QAM	-27.91	10.79	12.34	3.23	Н	19.90		1	2.4
3552.5		64-QAM	-28.88	9.82	12.34	3.23	Н	18.93		1	24
		256-QAM	-32.14	6.56	12.34	3.23	Н	15.67			
		QPSK	-26.06	12.50	12.32	3.22	Н	21.60			
2025.0	LTE B48/	16-QAM	-26.89	11.67	12.32	3.22	Н	20.77	22.0	1	12
3625.0	5 MHz	64-QAM	-27.96	10.60	12.32	3.22	Н	19.70	23.0	1	13
		256-QAM	-30.85	7.71	12.32	3.22	Н	16.81			
		QPSK	-26.84	11.89	12.29	3.13	Н	21.05			
2007 F		16-QAM	-27.78	10.95	12.29	3.13	Н	20.11		1	0
3697.5		64-QAM	-28.83	9.90	12.29	3.13	Н	19.06		1	0
		256-QAM	-32.05	6.68	12.29	3.13	Н	15.84			

			Measured	Substitute	A t			EIRP	Limit		RB
Freq (MHz)	Bandwidth	Modulation	Level (dBm)	Level (dBm)	Ant. Gain(dBi)	C.L	Pol	dBm/:	10 MHz	Size	Offset
		QPSK	-26.54	11.99	12.34	3.24	Н	21.09			
2555.0		16-QAM	-27.60	10.93	12.34	3.24	Н	20.03			40
3555.0		64-QAM	-28.66	9.87	12.34	3.24	Н	18.97		1	49
		256-QAM	-31.88	6.65	12.34	3.24	Н	15.75			
		QPSK	-26.23	12.33	12.32	3.22	Н	21.43			
2625.0	LTE B48/	16-QAM	-27.12	11.44	12.32	3.22	Н	20.54	22.0		25
3625.0	10 MHz	64-QAM	-28.21	10.35	12.32	3.22	Н	19.45	23.0	1	25
		256-QAM	-31.24	7.32	12.32	3.22	Н	16.42			
		QPSK	-26.99	11.93	12.29	3.13	Н	21.09			
3C0F 0		16-QAM	-27.94	10.98	12.29	3.13	Н	20.14			0
3695.0		64-QAM	-28.98	9.94	12.29	3.13	Н	19.10		1	0
		256-QAM	-32.06	6.86	12.29	3.13	Н	16.02			

F-TP22-03 (Rev. 06) Page 27 of 166

F			Measured	Substitute	A L			EIRP	Limit		RB
Freq (MHz)	Bandwidth	Modulation	Level (dBm)	Level (dBm)	Ant. Gain(dBi)	C.L	Pol	dBm/:	10 MHz	Size	Offset
		QPSK	-26.69	11.67	12.34	3.24	Н	20.77			
2557.5		16-QAM	-27.63	10.73	12.34	3.24	Н	19.83			7.4
3557.5		64-QAM	-28.70	9.66	12.34	3.24	Н	18.76		1	74
		256-QAM	-31.87	6.49	12.34	3.24	Н	15.59			
	-	QPSK	-26.32	12.24	12.32	3.22	Н	21.34			
2625.0	LTE B48/	16-QAM	-26.88	11.68	12.32	3.22	Н	20.78	22.0		20
3625.0	15 MHz	64-QAM	-28.26	10.30	12.32	3.22	Н	19.40	23.0	1	38
		256-QAM	-30.90	7.66	12.32	3.22	Н	16.76			
		QPSK	-26.94	12.17	12.29	3.13	Н	21.33			
2602.5		16-QAM	-27.90	11.21	12.29	3.13	Н	20.37			
3692.5		64-QAM	-28.91	10.20	12.29	3.13	Н	19.36		1	0
		256-QAM	-32.26	6.85	12.29	3.13	Н	16.01			

Freq			Measured	Substitute	Ant.			EIRP	Limit		RB
(MHz)	Bandwidth	Modulation	Level (dBm)	Level (dBm)	Gain(dBi)	C.L	Pol	dBm/:	L0 MHz	Size	Offset
		QPSK	-26.60	11.76	12.34	3.24	Н	20.86			
2560.0		16-QAM	-27.26	11.10	12.34	3.24	Н	20.20			00
3560.0		64-QAM	-28.63	9.73	12.34	3.24	Н	18.83		1	99
		256-QAM	-31.70	6.66	12.34	3.24	Н	15.76			
		QPSK	-26.25	12.31	12.32	3.22	Н	21.41			
2625.0	LTE B48/	16-QAM	-27.01	11.55	12.32	3.22	Н	20.65	22.0		F0
3625.0	20 MHz	64-QAM	-28.17	10.39	12.32	3.22	Н	19.49	23.0	1	50
		256-QAM	-31.03	7.53	12.32	3.22	Н	16.63			
		QPSK	-26.90	12.21	12.29	3.13	Н	21.37			
2600.0		16-QAM	-27.67	11.44	12.29	3.13	Н	20.60			_
3690.0		64-QAM	-28.88	10.23	12.29	3.13	Н	19.39		1	0
		256-QAM	-32.04	7.07	12.29	3.13	Н	16.23			

F-TP22-03 (Rev. 06) Page 28 of 166

8.2 RADIATED SPURIOUS EMISSIONS

■ MODE: LTE B48

■ MODULATION SIGNAL: 5 MHz QPSK

■ DISTANCE: <u>1 meters</u>

Ch	From (MIII-)	Measured	Ant.	Substitute	6.1	Del	Result	Limit	Datasta	F	RB
Ch	Freq (MHz)	Level (dBm)	Gain (dBd)	Level (dBm)	C.L	Pol	(dBm)	(dBm)	Detector	Size	Offset
	7 105.00	-69.22	10.87	-69.46	4.59	Н	-63.17	-40.00	Average		
55265 (3552.5)	10 657.50	-70.75	11.32	-66.21	5.62	Н	-60.51	-40.00	Average	1	24
(5552.5)	14 210.00	-73.18	11.88	-62.22	6.76	Н	-57.10	-40.00	Average		
	7 250.00	-69.17	10.74	-71.10	4.64	Н	-65.00	-40.00	Average		
55990 (3625.0)	10 875.00	-71.87	11.04	-64.92	5.72	Н	-59.60	-40.00	Average	1	13
(3023.0)	14 500.00	-73.24	11.45	-62.05	6.81	Н	-57.41	-40.00	Average		
	7 395.00	-69.48	10.81	-69.45	4.68	Н	-63.32	-40.00	Average		
56715 (3697.5)	11 092.50	-70.82	11.06	-66.18	5.92	Н	-61.04	-40.00	Average	1	0
(3031.3)	14 790.00	-72.99	11.30	-61.88	6.89	Н	-57.47	-40.00	Average		

F-TP22-03 (Rev. 06) Page 29 of 166

■ MODE: <u>LTE B48</u>

■ MODULATION SIGNAL: <u>10 MHz QPSK</u>

■ DISTANCE: <u>1 meters</u>

Ch	From (MIII-)	Measured	Ant.	Substitute	6.1	Dal	Result	Limit	Datastan	F	RB
Ch	Freq (MHz)	Level (dBm)	Gain (dBd)	Level (dBm)	C.L	Pol	(dBm)	(dBm)	Detector	Size	Offset
	7 110.00	-68.03	10.86	-68.12	4.58	Н	-61.84	-40.00	Average		
55290 (3555.0)	10 665.00	-70.88	11.33	-66.55	5.65	Н	-60.87	-40.00	Average	1	49
(3333.0)	14 220.00	-73.35	11.86	-62.37	6.75	Н	-57.26	-40.00	Average		
	7 250.00	-68.85	10.74	-70.78	4.64	Н	-64.68	-40.00	Average		
55990 (3625.0)	10 875.00	-71.62	11.04	-64.67	5.72	Н	-59.35	-40.00	Average	1	25
(3023.0)	14 500.00	-72.66	11.45	-61.47	6.81	Н	-56.83	-40.00	Average		
	7 390.00	-69.17	10.81	-69.13	4.67	Н	-62.99	-40.00	Average		
56690 (3695.0)	11 085.00	-71.48	11.05	-66.84	5.90	Н	-61.68	-40.00	Average	1	0
(3033.0)	14 780.00	-73.12	11.30	-61.85	6.88	Н	-57.43	-40.00	Average		

F-TP22-03 (Rev. 06) Page 30 of 166

■ MODE: <u>LTE B48</u>

■ MODULATION SIGNAL: <u>15 MHz QPSK</u>

■ DISTANCE: <u>1 meters</u>

Ch	Fro 7 (1411-)	Measured	Ant.	Substitute	6.1	Del	Result	Limit	Datasta	F	RB
Ch	Freq (MHz)	Level (dBm)	Gain (dBd)	Level (dBm)	C.L	Pol	(dBm)	(dBm)	Detector	Size	Offset
	7 115.00	-68.15	10.85	-68.31	4.58	Н	-62.04	-40.00	Average		
55315 (3557.5)	10 672.50	-70.94	11.33	-66.83	5.67	Н	-61.17	-40.00	Average	1	74
(3331.3)	14 230.00	-73.38	11.84	-62.30	6.75	Н	-57.21	-40.00	Average		
	7 250.00	-69.24	10.74	-71.17	4.64	Н	-65.07	-40.00	Average		
55990 (3625.0)	10 875.00	-71.68	11.04	-64.73	5.72	Н	-59.41	-40.00	Average	1	38
(3023.0)	14 500.00	-72.92	11.45	-61.73	6.81	Н	-57.09	-40.00	Average		
	7 385.00	-69.45	10.81	-69.44	4.67	Н	-63.30	-40.00	Average		
56665 (3692.5)	11 077.50	-71.15	11.04	-66.50	5.87	Н	-61.33	-40.00	Average	1	0
(3032.3)	14 770.00	-73.65	11.30	-62.29	6.86	Н	-57.85	-40.00	Average		

F-TP22-03 (Rev. 06) Page 31 of 166

■ MODE: <u>LTE B48</u>

■ MODULATION SIGNAL: <u>20 MHz QPSK</u>

■ DISTANCE: <u>1 meters</u>

Ch	Frog (MUT)	Measured	Ant. Gain	Substitute	C.L	Pol	Result	Limit	Detector	F	RB
CII	Freq (MHz)	Level (dBm)	(dBd)	Level (dBm)	C.L	POI	(dBm)	(dBm)	Detector	Size	Offset
	7 120.00	-68.34	10.84	-68.57	4.57	Н	-62.30	-40.00	Average		
55340 (3560.0)	10 680.00	-71.24	11.34	-67.39	5.72	Н	-61.77	-40.00	Average	1	99
(3300.0)	14 240.00	-73.62	11.82	-62.57	6.75	Н	-57.50	-40.00	Average		
	7 250.00	-69.08	10.74	-71.01	4.64	Н	-64.91	-40.00	Average		
55990 (3625.0)	10 875.00	-71.89	11.04	-64.94	5.72	Н	-59.62	-40.00	Average	1	50
(3023.0)	14 500.00	-73.06	11.45	-61.87	6.81	Н	-57.23	-40.00	Average		
	7 380.00	-69.11	10.81	-69.13	4.67	Н	-62.99	-40.00	Average		
56640 (3690.0)	11 070.00	-71.36	11.03	-66.65	5.81	Н	-61.43	-40.00	Average	1	0
(5050.0)	14 760.00	-73.32	11.30	-62.05	6.87	Н	-57.62	-40.00	Average		

F-TP22-03 (Rev. 06) Page 32 of 166

8.3 PEAK-TO-AVERAGE RATIO

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (dB)	
			QPSK			4.61	
	5 MH-		16-QAM	25		5.72	
	5 MHz		64-QAM	25		6.67	
			256-QAM			7.23	
			QPSK			4.64	
	10 141		16-QAM	50		5.74	
	10 MHz		64-QAM	50		6.51	
40		2625.0	256-QAM		0		7.04
48		3625.0	QPSK		0	4.58	
	15.441		16-QAM			5.70	
	15 MHz		64-QAM	75		6.58	
			256-QAM			7.01	
			QPSK			4.64	
	20.141) MHz	16-QAM	100		5.73	
	20 MHz		64-QAM	100		6.57	
				256-QAM			6.92

Note:

1. Plots of the EUT's Peak- to- Average Ratio are shown Page 70 \sim 85.

F-TP22-03 (Rev. 06) Page 33 of 166

8.4 OCCUPIED BANDWIDTH

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)			
			QPSK			4.4839			
	5 MII-		16-QAM	25		4.5023			
	5 MHz		64-QAM	25		4.4749			
			256-QAM			4.5051			
			QPSK			8.9595			
	10 MII		16-QAM	50		8.9695			
	10 MHz		64-QAM	50		8.8836			
40		2005.0	256-QAM			8.8825			
48		3625.0	QPSK		0	13.528			
			16-QAM			13.391			
	15 MHz		64-QAM	75		13.480			
			256-QAM			13.381			
					QPSK	QPSK			17.936
	20.1411	Hz -	16-QAM	100		17.897			
	20 MHz		64-QAM	100		17.916			
			256-QAM			17.926			

Note:

1. Plots of the EUT's Occupied Bandwidth are shown Page 54 ~ 69.

F-TP22-03 (Rev. 06) Page 34 of 166

8.5 CONDUCTED SPURIOUS EMISSIONS

Band	Band Width (MHz)	Frequency (MHz)	Frequency of Maximum Harmonic (GHz)	Factor (dB)	Measurement Maximum Data (dBm)	Result (dBm)	Limit (dBm)	
48	5	3552.5	36.1600	30.131	-78.687	-48.556	-	
		3625.0	36.1770	30.131	-78.670	-48.539		
		3697.5	36.3665	30.131	-79.534	-49.403		
	10	3555.0	36.6145 30.131 -79.296		-79.296	-49.165		
		3625.0	36.1875	30.131	-79.149	-49.018		
		3695.0	36.1920	30.131	-78.847	-48.716	40.00	
	15	3557.5	36.1815	30.131	30.131 -78.933 30.131 -78.965		-40.00	
		3625.0	36.1095	30.131				
		3692.5	35.9335	30.131	-78.918	-48.787		
	20	3560.0	35.9225	30.131	-78.652	-48.521		
		3625.0	36.4755	30.131	-78.775	-48.644		
			3690.0	36.3770	30.131	-78.628	-48.497	

Note:

- 1. Plots of the EUT's Conducted Spurious Emissions are shown Page 142 \sim 165.
- ${\tt 2. \ Conducted \ Spurious \ Emissions \ was \ Tested \ QPSK \ Modulation, \ Resource \ Block \ Size \ 1 \ and \ Resource \ Block \ Offset \ 0}}$
- 3. Result (dBm) = Measurement Maximum Data (dBm) + Factor (dB)
- 4. Factor (dB) = Cable Loss + Attenuator + Power Splitter

Frequency Range (GHz)	Factor [dB]
0.03 - 1	25.270
1 - 5	27.976
5 - 10	28.591
10 - 15	29.116
15 - 20	29.489
Above 20(26.5)	30.131

F-TP22-03 (Rev. 06) Page 35 of 166

8.6 CHANNEL EDGE

BW (MHz)	RB (Size/ Offset)	Freq. (MHz)	Outside of the authorized band (dBm)							
			Lower Side(MHz)			Upper Side(MHz)				
			Below 3530 MHz	-[B]MHz ~ 3530 MHz	-1 MHz ~ -[B]MHz	0 MHz ~ -1 MHz	0 MHz ~ +1 MHz	1 MHz ~ +[B]MHz	+[B]MHz ~ 3720 MHz	Above 3720 MHz
5	25/0	3552.5	-48.46	-37.97	-24.42	-27.43	-26.82	-24.50	-37.51	-
		3625.0	-	-36.62	-23.44	-25.53	-25.80	-23.07	-36.78	-
		3697.5	-	-34.52	-20.40	-26.90	-26.01	-19.69	-33.42	-46.86
10	50/0	3555.0	-47.40	-41.69	-26.61	-31.63	-32.39	-26.66	-41.47	-
		3625.0	-	-40.17	-22.98	-29.06	-28.50	-23.12	-39.92	-
		3695.0	-	-39.70	-22.90	-28.86	-29.04	-23.61	-40.17	-45.01
15	75/0	3557.5	-43.97	-41.75	-25.48	-30.88	-30.67	-25.69	-42.95	-
		3625.0	-	-40.94	-24.59	-29.40	-29.66	-24.14	-42.22	-
		3692.5	-	-41.32	-24.81	-29.42	-30.09	-24.43	-40.07	-42.79
20	100/0	3560.0	-41.75	-37.94	-26.19	-31.20	-31.31	-26.06	-41.92	-
		3625.0	-	-40.39	-25.43	-30.41	-30.36	-25.81	-41.09	-
		3690.0	-	-40.82	-25.09	-30.46	-30.54	-25.68	-36.69	-41.59
Limit (dBm)		-40.00	-25.00	-13.00	-13.00	-13.00	-13.00	-25.00	-40.00	

Note:

- 1. C.E = Channel Edge
- 2. Plots of the EUT's Channel Edge are shown Page 98 $^{\sim}$ 141.

F-TP22-03 (Rev. 06) Page 36 of 166

	BW RB (MHz) (Size/ Offset)	Freq. (MHz)	Outside of the authorized band (dBm)							
			Lower Side(MHz)				Upper Side(MHz)			
BW (MHz)			Below 3530 MHz	-[B]MHz ~ 3530 MHz	-1 MHz ~ -[B]MHz	0 MHz ~ -1 MHz	0 MHz ~ +1 MHz	1 MHz ~ +[B]MHz	+[B]MHz ~ 3720 MHz	Above 3720 MHz
	Lower Side: 1/0 5 Upper Side:	3552.5	-48.37	-40.71	-26.86	-21.85	-22.04	-26.18	-40.66	-
5		3625.0	-	-39.30	-25.48	-21.39	-20.33	-24.60	-39.33	-
1/24	3697.5	-	-40.21	-25.22	-21.71	-20.63	-24.81	-39.86	-46.70	
	Lower Side: 1/0	3555.0	-48.03	-45.22	-26.95	-28.75	-27.52	-26.98	-44.98	-
10	Upper Side:	3625.0	-	-45.13	-25.84	-27.64	-27.23	-25.54	-44.46	-
	1/49	3695.0	-	-44.21	-26.17	-27.82	-27.77	-26.07	-44.35	-46.64
	Lower Side: 1/0	3557.5	-47.95	-44.98	-29.29	-27.52	-26.86	-29.23	-46.63	-
15	Upper Side:	3625.0	-	-46.67	-28.04	-26.08	-25.63	-27.50	-45.78	-
	1/74	3692.5	-	-45.33	-27.73	-26.42	-26.52	-27.71	-43.70	-46.43
	Lower Side: 1/0	3560.0	-48.03	-44.89	-30.80	-27.32	-26.25	-29.65	-47.45	-
20	Upper Side:	3625.0	-	-47.35	-29.74	-26.34	-25.07	-29.26	-46.57	-
	1/99	3690.0	-	-46.22	-29.13	-26.47	-26.12	-29.06	-43.79	-46.26
	Limit (dBm)		-40.00	-25.00	-13.00	-13.00	-13.00	-13.00	-25.00	-40.00

Note:

2. Plots of the EUT's Channel Edge are shown Page 98 ~ 141.

F-TP22-03 (Rev. 06) Page 37 of 166

^{1.} C.E = Channel Edge

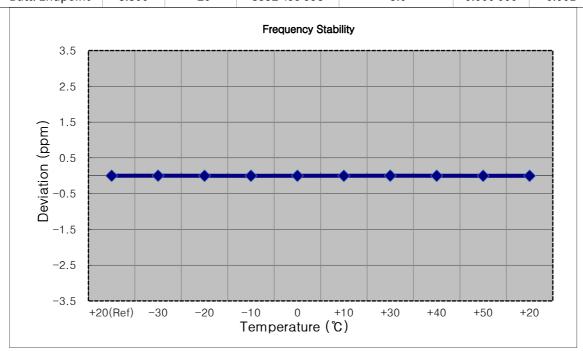
8.7 Adjacent Channel Leakage Ratio(ACLR)

Band	RB	Frequency	Adjacent Channel	Leakage Ratio(dB)
Width	(Size/ Offset)	(MHz)	Lower Side	Upper Side
		3552.5	39.36	39.04
5 MHz	MHz 25/0	3625.0	38.31	38.22
		3697.5	37.60	37.37
		3555.0	39.88	39.49
10 MHz	50/0	3625.0	39.12	38.98
		3695.0	38.06	37.84
		3557.5	39.96	39.64
15 MHz	75/0	3625.0	38.68	38.60
		3692.5	37.42	37.16
		3560.0	39.51	39.29
20 MHz	100/0	3625.0	38.29	38.43
		3690.0	37.90	37.74
	Limit (dE	3)	ACLR > 30 dB	ACLR > 30 dB

Note:

- 1. Duty Cycle factor already applied on the factor.
- Duty Cycle factor(dB) = 3.979
- Factor(dB) = Duty Cycle factor + Cable Loss + Ext. Attenuator + Power Splitter
- 2. Plots of the EUT's Adjacent Channel Leakage Ratio(ACLR) are shown Page $86 \sim 97$.

F-TP22-03 (Rev. 06) Page 38 of 166


8.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

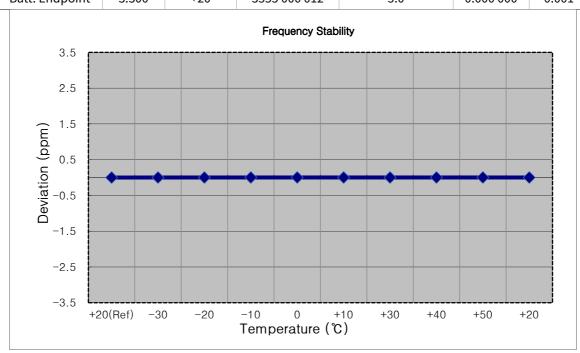
■ OPERATING FREQUENCY: 3,552,500,000 Hz

■ BANDWIDTH: <u>5 MHz</u> ■ REFERENCE VOLTAGE: <u>3.880 VDC</u>

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3552 500 003	0.0	0.000 000	0.000
100 %		-30	3552 500 007	3.9	0.000 000	0.001
100 %		-20	3552 499 998	-5.4	0.000 000	-0.002
100 %		-10	3552 499 998	-5.3	0.000 000	-0.001
100 %	3.880	0	3552 500 000	-3.3	0.000 000	-0.001
100 %		+10	3552 499 998	-5.3	0.000 000	-0.001
100 %		+30	3552 500 008	5.1	0.000 000	0.001
100 %		+40	3552 500 000	-3.1	0.000 000	-0.001
100 %		+50	3552 499 996	-6.5	0.000 000	-0.002
Batt. Endpoint	3.300	+20	3552 499 998	-5.0	0.000 000	-0.001

F-TP22-03 (Rev. 06) Page 39 of 166



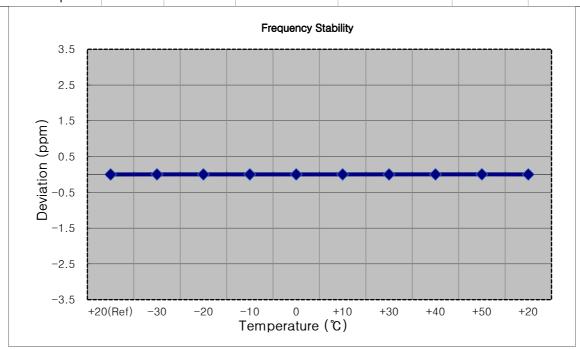
■ BANDWIDTH: <u>10 MHz</u>

■ REFERENCE VOLTAGE: 3.880 VDC

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	ppm
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	
100 %		+20(Ref)	3555 000 007	0.0	0.000 000	0.000
100 %		-30	3555 000 010	3.9	0.000 000	0.001
100 %		-20	3555 000 010	3.5	0.000 000	0.001
100 %		-10	3555 000 015	8.6	0.000 000	0.002
100 %	3.880	0	3555 000 014	7.5	0.000 000	0.002
100 %		+10	3555 000 013	6.6	0.000 000	0.002
100 %		+30	3555 000 013	6.1	0.000 000	0.002
100 %		+40	3555 000 015	8.5	0.000 000	0.002
100 %		+50	3555 000 015	8.6	0.000 000	0.002
Batt. Endpoint	3.300	+20	3555 000 012	5.0	0.000 000	0.001

F-TP22-03 (Rev. 06) Page 40 of 166



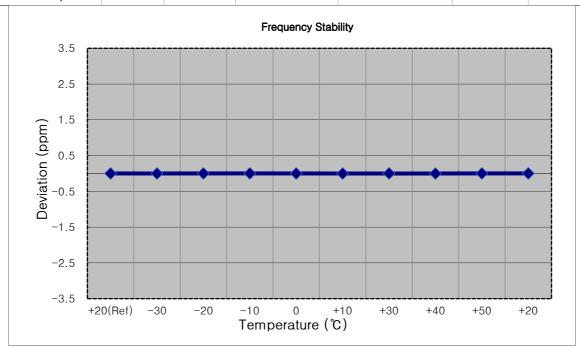
■ BANDWIDTH: <u>15 MHz</u>

■ REFERENCE VOLTAGE: 3.880 VDC

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3557 500 005	0.0	0.000 000	0.000
100 %		-30	3557 500 013	8.1	0.000 000	0.002
100 %		-20	3557 500 013	7.5	0.000 000	0.002
100 %		-10	3557 500 013	7.4	0.000 000	0.002
100 %	3.880	0	3557 500 011	5.8	0.000 000	0.002
100 %		+10	3557 500 013	7.2	0.000 000	0.002
100 %		+30	3557 500 010	4.9	0.000 000	0.001
100 %		+40	3557 500 012	6.5	0.000 000	0.002
100 %		+50	3557 500 017	11.3	0.000 000	0.003
Batt. Endpoint	3.300	+20	3557 500 009	3.7	0.000 000	0.001

F-TP22-03 (Rev. 06) Page 41 of 166



■ BANDWIDTH: <u>20 MHz</u>

■ REFERENCE VOLTAGE: 3.880 VDC

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3560 000 007	0.0	0.000 000	0.000
100 %		-30	3560 000 003	-3.5	0.000 000	-0.001
100 %		-20	3560 000 010	3.6	0.000 000	0.001
100 %		-10	3560 000 011	4.1	0.000 000	0.001
100 %	3.880	0	3560 000 002	-4.8	0.000 000	-0.001
100 %		+10	3560 000 000	-6.6	0.000 000	-0.002
100 %		+30	3560 000 010	3.3	0.000 000	0.001
100 %		+40	3559 999 998	-8.6	0.000 000	-0.002
100 %		+50	3560 000 011	4.7	0.000 000	0.001
Batt. Endpoint	3.300	+20	3560 000 011	4.2	0.000 000	0.001

F-TP22-03 (Rev. 06) Page 42 of 166

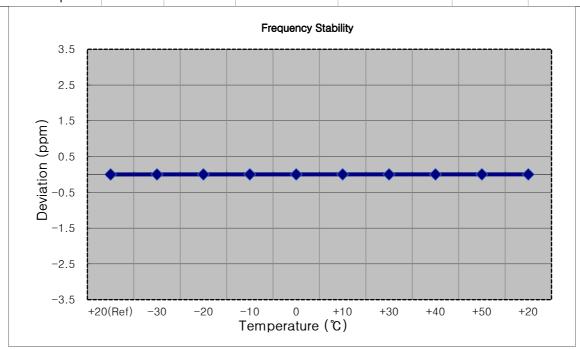
■ BANDWIDTH: 5 MHz

■ REFERENCE VOLTAGE: 3.880 VDC

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	nnm	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm	
100 %		+20(Ref)	3625 000 003	0.0	0.000 000	0.000	
100 %		-30	3625 000 010	6.7	0.000 000	0.002	
100 %		-20	3625 000 008	5.2	0.000 000	0.001	
100 %		-10	3625 000 010	7.2	0.000 000	0.002	
100 %	3.880	0	3625 000 006	3.0	0.000 000	0.001	
100 %		+10	3625 000 010	6.6	0.000 000	0.002	
100 %		+30	3625 000 006	3.4	0.000 000	0.001	
100 %		+40	3624 999 999	-3.9	0.000 000	-0.001	
100 %		+50	3625 000 011	7.7	0.000 000	0.002	
Batt. Endpoint	3.300	+20	3625 000 010	7.1	0.000 000	0.002	

F-TP22-03 (Rev. 06) Page 43 of 166



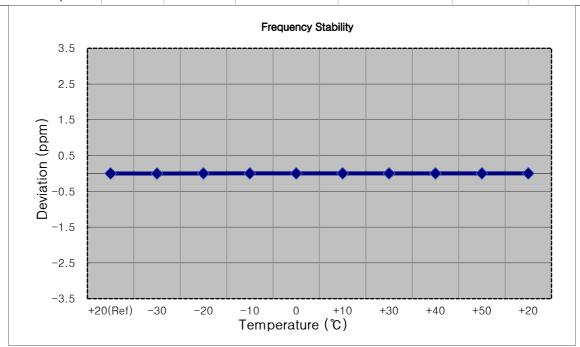
■ BANDWIDTH: <u>10 MHz</u>

■ REFERENCE VOLTAGE: 3.880 VDC

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3625 000 009	0.0	0.000 000	0.000
100 %		-30	3625 000 013	4.3	0.000 000	0.001
100 %		-20	3625 000 017	8.0	0.000 000	0.002
100 %		-10	3625 000 019	9.9	0.000 000	0.003
100 %	3.880	0	3625 000 015	6.3	0.000 000	0.002
100 %		+10	3625 000 017	8.6	0.000 000	0.002
100 %		+30	3625 000 014	5.7	0.000 000	0.002
100 %		+40	3625 000 016	7.0	0.000 000	0.002
100 %		+50	3625 000 017	8.7	0.000 000	0.002
Batt. Endpoint	3.300	+20	3625 000 016	7.1	0.000 000	0.002

F-TP22-03 (Rev. 06) Page 44 of 166



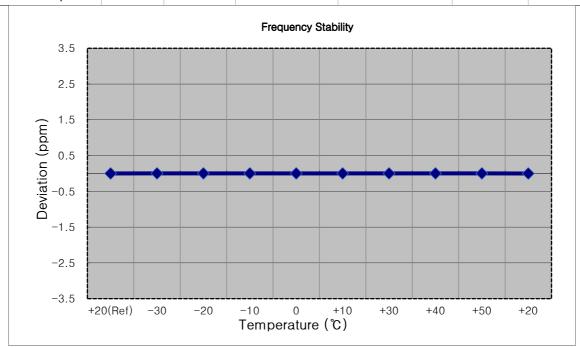
■ BANDWIDTH: <u>15 MHz</u>

■ REFERENCE VOLTAGE: 3.880 VDC

■ DEVIATION LIMIT: Emission must remain in band

			7	7		
Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3625 000 006	0.0	0.000 000	0.000
100 %		-30	3624 999 999	-6.7	0.000 000	-0.002
100 %		-20	3625 000 015	9.1	0.000 000	0.003
100 %		-10	3625 000 014	7.9	0.000 000	0.002
100 %	3.880	0	3625 000 013	6.9	0.000 000	0.002
100 %		+10	3625 000 015	9.4	0.000 000	0.003
100 %		+30	3625 000 012	5.9	0.000 000	0.002
100 %		+40	3625 000 011	5.3	0.000 000	0.001
100 %		+50	3625 000 011	5.4	0.000 000	0.001
Batt. Endpoint	3.300	+20	3625 000 013	7.1	0.000 000	0.002

F-TP22-03 (Rev. 06) Page 45 of 166



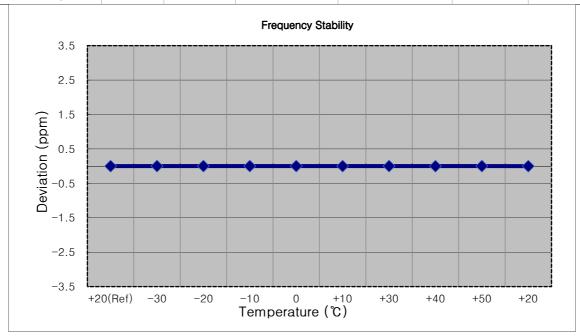
■ BANDWIDTH: <u>20 MHz</u>

■ REFERENCE VOLTAGE: 3.880 VDC

■ DEVIATION LIMIT: Emission must remain in band

			7	7		
Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3625 000 005	0.0	0.000 000	0.000
100 %		-30	3625 000 013	8.2	0.000 000	0.002
100 %		-20	3625 000 014	8.7	0.000 000	0.002
100 %		-10	3625 000 011	6.5	0.000 000	0.002
100 %	3.880	0	3625 000 011	6.5	0.000 000	0.002
100 %		+10	3625 000 008	2.7	0.000 000	0.001
100 %		+30	3625 000 010	5.6	0.000 000	0.002
100 %		+40	3625 000 012	7.6	0.000 000	0.002
100 %		+50	3625 000 013	7.7	0.000 000	0.002
Batt. Endpoint	3.300	+20	3625 000 000	-5.1	0.000 000	-0.001

F-TP22-03 (Rev. 06) Page 46 of 166



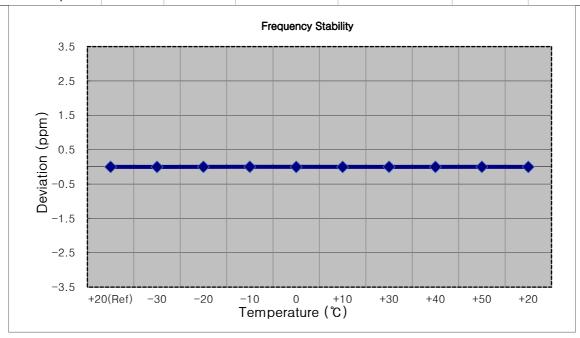
■ BANDWIDTH: 5 MHz

■ REFERENCE VOLTAGE: 3.880 VDC

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3697 500 004	0.0	0.000 000	0.000
100 %		-30	3697 500 009	4.7	0.000 000	0.001
100 %		-20	3697 500 010	6.2	0.000 000	0.002
100 %		-10	3697 500 009	4.8	0.000 000	0.001
100 %	3.880	0	3697 500 010	6.0	0.000 000	0.002
100 %		+10	3697 500 008	4.3	0.000 000	0.001
100 %		+30	3697 500 009	4.9	0.000 000	0.001
100 %		+40	3697 499 997	-6.5	0.000 000	-0.002
100 %		+50	3697 500 009	4.9	0.000 000	0.001
Batt. Endpoint	3.300	+20	3697 500 000	-3.9	0.000 000	-0.001

F-TP22-03 (Rev. 06) Page 47 of 166



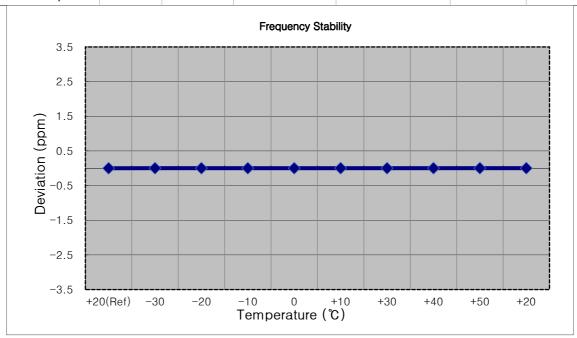
■ BANDWIDTH: <u>10 MHz</u>

■ REFERENCE VOLTAGE: 3.880 VDC

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3695 000 004	0.0	0.000 000	0.000
100 %		-30	3694 999 998	-6.6	0.000 000	-0.002
100 %		-20	3695 000 011	6.1	0.000 000	0.002
100 %		-10	3695 000 012	8.0	0.000 000	0.002
100 %	3.880	0	3695 000 000	-4.9	0.000 000	-0.001
100 %		+10	3695 000 001	-3.9	0.000 000	-0.001
100 %		+30	3695 000 010	5.7	0.000 000	0.002
100 %		+40	3695 000 002	-2.5	0.000 000	-0.001
100 %		+50	3695 000 008	3.1	0.000 000	0.001
Batt. Endpoint	3.300	+20	3695 000 000	-4.0	0.000 000	-0.001

F-TP22-03 (Rev. 06) Page 48 of 166



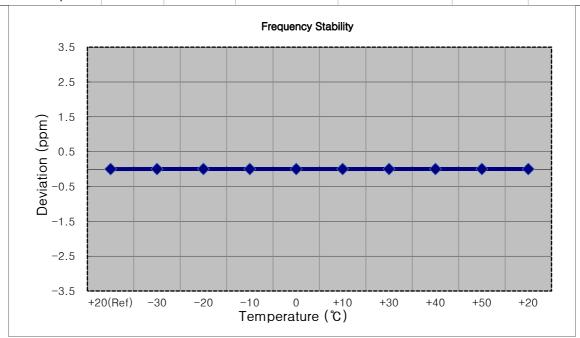
■ BANDWIDTH: <u>15 MHz</u>

■ REFERENCE VOLTAGE: 3.880 VDC

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	ppm
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	
100 %	3.880	+20(Ref)	3692 500 009	0.0	0.000 000	0.000
100 %		-30	3692 500 016	7.8	0.000 000	0.002
100 %		-20	3692 500 016	7.3	0.000 000	0.002
100 %		-10	3692 500 014	5.6	0.000 000	0.002
100 %		0	3692 500 014	5.7	0.000 000	0.002
100 %		+10	3692 500 016	7.9	0.000 000	0.002
100 %		+30	3692 500 013	4.7	0.000 000	0.001
100 %		+40	3692 500 016	7.7	0.000 000	0.002
100 %		+50	3692 500 016	7.5	0.000 000	0.002
Batt. Endpoint	3.300	+20	3692 500 017	8.0	0.000 000	0.002

F-TP22-03 (Rev. 06) Page 49 of 166

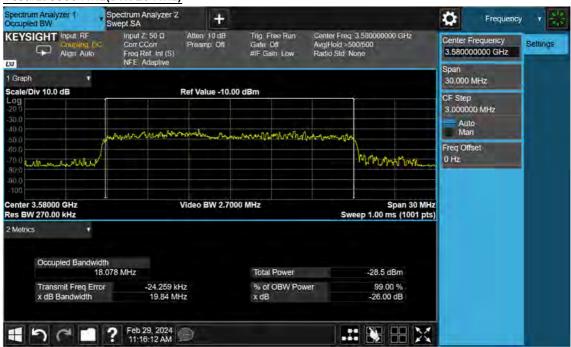


■ BANDWIDTH: <u>20 MHz</u>

■ REFERENCE VOLTAGE: 3.880 VDC

■ DEVIATION LIMIT: Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	ppm
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	
100 %	3.880	+20(Ref)	3690 000 004	0.0	0.000 000	0.000
100 %		-30	3690 000 011	6.8	0.000 000	0.002
100 %		-20	3690 000 011	7.6	0.000 000	0.002
100 %		-10	3690 000 011	7.1	0.000 000	0.002
100 %		0	3690 000 009	5.3	0.000 000	0.001
100 %		+10	3690 000 008	4.6	0.000 000	0.001
100 %		+30	3690 000 010	6.3	0.000 000	0.002
100 %		+40	3690 000 009	4.8	0.000 000	0.001
100 %		+50	3690 000 011	7.2	0.000 000	0.002
Batt. Endpoint	3.300	+20	3690 000 007	3.3	0.000 000	0.001



F-TP22-03 (Rev. 06) Page 50 of 166

8.9 End User Device Additional Requirements (CBSD Protocol)

Test#1: 3580 MHz(BW: 20 MHz)

Operation Mode

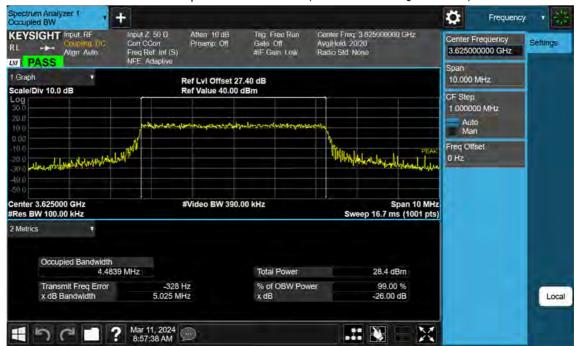
F-TP22-03 (Rev. 06) Page 51 of 166

Note:

Marker 2: CBSD sends instructions to discontinue LTE operations.

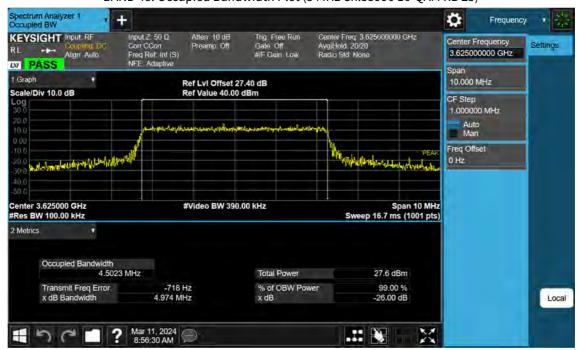
Marker $1\triangle 2$: EUT discontinues operation. (2.7 s)

Marker 3△4: 10 seconds elapsed time from CBSD sending instructions to EUT.(10.0 s)


F-TP22-03 (Rev. 06) Page 52 of 166

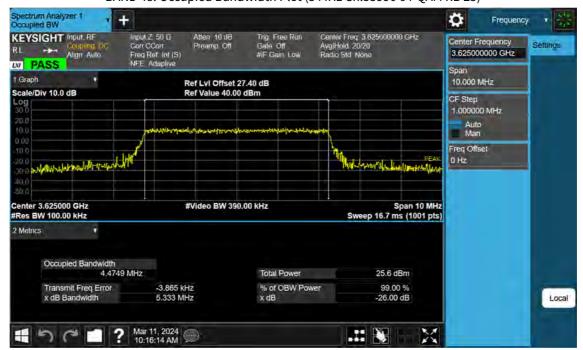
9. TEST PLOTS

F-TP22-03 (Rev. 06) Page 53 of 166



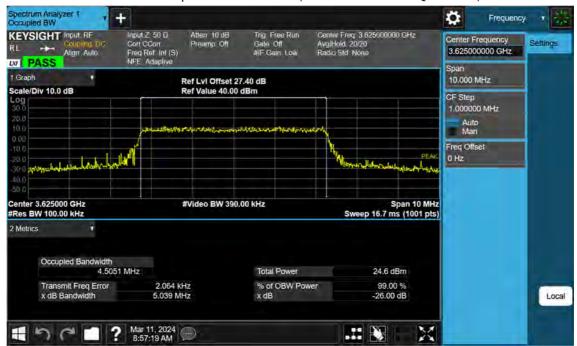
BAND 48. Occupied Bandwidth Plot (5 MHz Ch.55990 QPSK RB 25)

F-TP22-03 (Rev. 06) Page 54 of 166



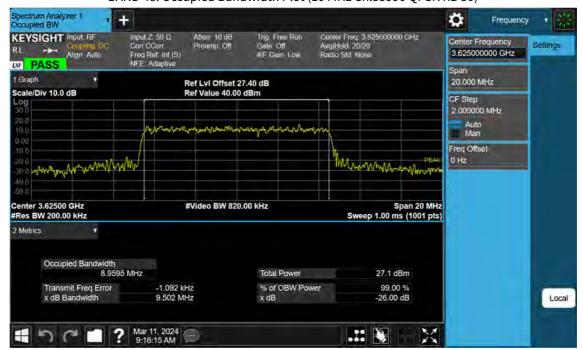
BAND 48. Occupied Bandwidth Plot (5 MHz Ch.55990 16-QAM RB 25)

F-TP22-03 (Rev. 06) Page 55 of 166



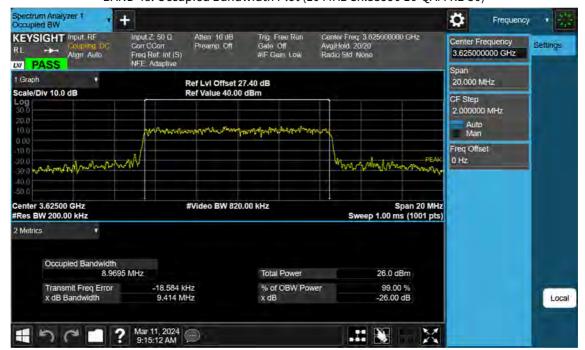
BAND 48. Occupied Bandwidth Plot (5 MHz Ch.55990 64-QAM RB 25)

F-TP22-03 (Rev. 06) Page 56 of 166



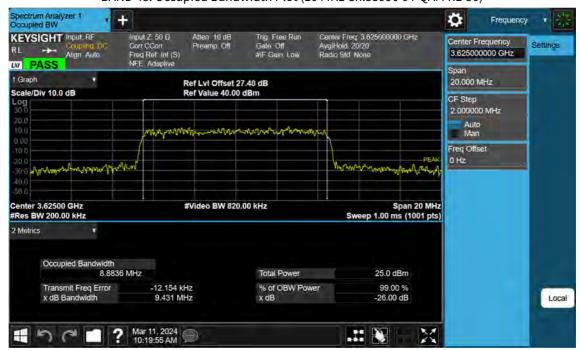
BAND 48. Occupied Bandwidth Plot (5 MHz Ch.55990 256-QAM RB 25)

F-TP22-03 (Rev. 06) Page 57 of 166



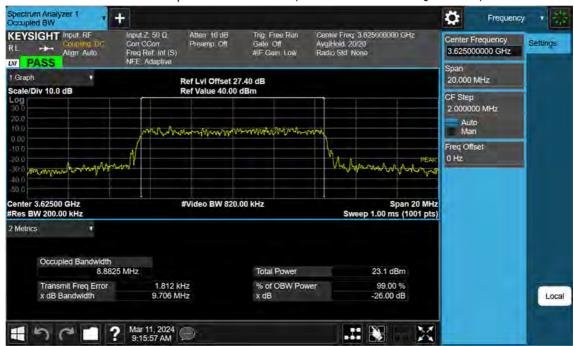
BAND 48. Occupied Bandwidth Plot (10 MHz Ch.55990 QPSK RB 50)

F-TP22-03 (Rev. 06) Page 58 of 166



BAND 48. Occupied Bandwidth Plot (10 MHz Ch.55990 16-QAM RB 50)

F-TP22-03 (Rev. 06) Page 59 of 166



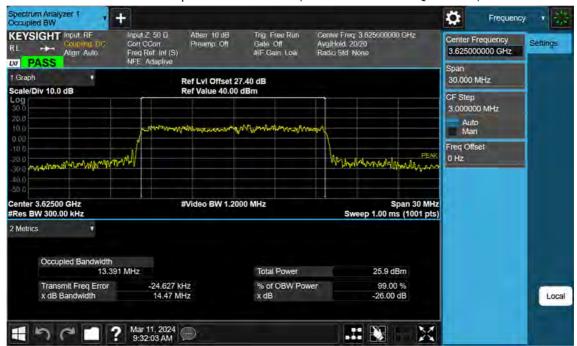
BAND 48. Occupied Bandwidth Plot (10 MHz Ch.55990 64-QAM RB 50)

F-TP22-03 (Rev. 06) Page 60 of 166



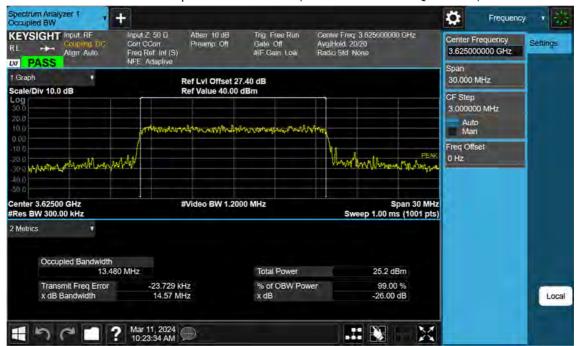
BAND 48. Occupied Bandwidth Plot (10 MHz Ch.55990 256-QAM RB 50)

F-TP22-03 (Rev. 06) Page 61 of 166



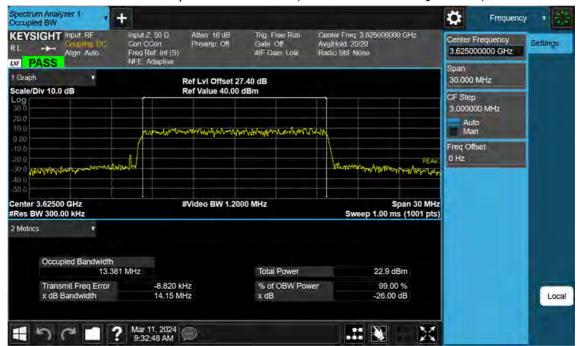
BAND 48. Occupied Bandwidth Plot (15 MHz Ch.55990 QPSK RB 75)

F-TP22-03 (Rev. 06) Page 62 of 166



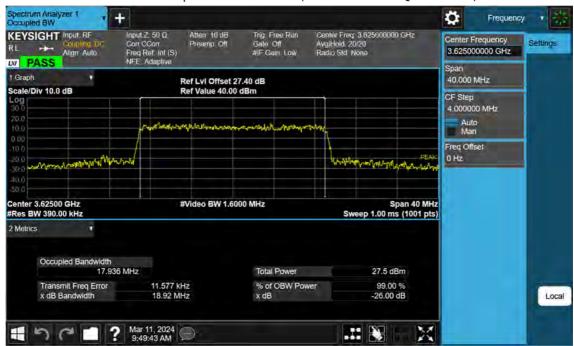
BAND 48. Occupied Bandwidth Plot (15 MHz Ch.55990 16-QAM RB 75)

F-TP22-03 (Rev. 06) Page 63 of 166



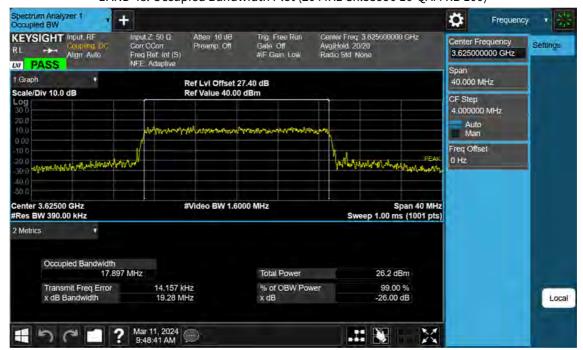
BAND 48. Occupied Bandwidth Plot (15 MHz Ch.55990 64-QAM RB 75)

F-TP22-03 (Rev. 06) Page 64 of 166



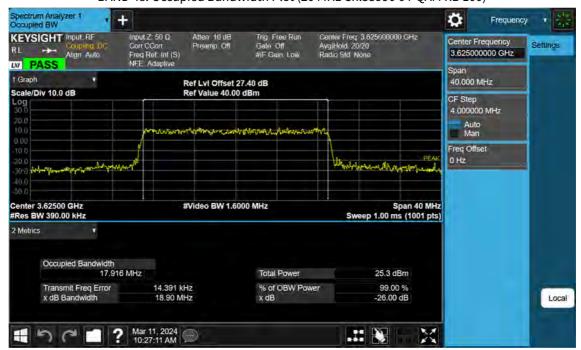
BAND 48. Occupied Bandwidth Plot (15 MHz Ch.55990 256-QAM RB 75)

F-TP22-03 (Rev. 06) Page 65 of 166



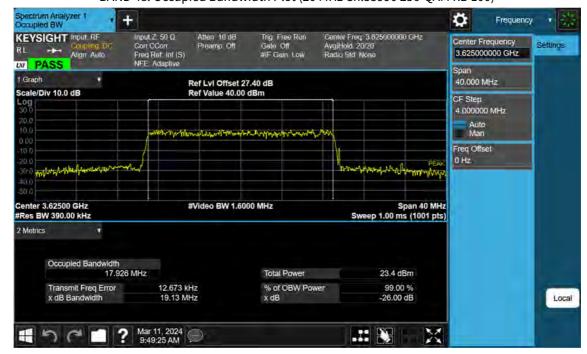
BAND 48. Occupied Bandwidth Plot (20 MHz Ch.55990 QPSK RB 100)

F-TP22-03 (Rev. 06) Page 66 of 166



BAND 48. Occupied Bandwidth Plot (20 MHz Ch.55990 16-QAM RB 100)

F-TP22-03 (Rev. 06) Page 67 of 166



BAND 48. Occupied Bandwidth Plot (20 MHz Ch.55990 64-QAM RB 100)

F-TP22-03 (Rev. 06) Page 68 of 166

BAND 48. Occupied Bandwidth Plot (20 MHz Ch.55990 256-QAM RB 100)

F-TP22-03 (Rev. 06) Page 69 of 166

BAND 48. PAR Plot (5 M BW_Ch.55990_QPSK_RB25_0)

F-TP22-03 (Rev. 06) Page 70 of 166

BAND 48. PAR Plot (5 M BW_Ch.55990_16QAM_RB25_0)

F-TP22-03 (Rev. 06) Page 71 of 166

BAND 48. PAR Plot (5 M BW_Ch.55990_64QAM_RB25_0)

F-TP22-03 (Rev. 06) Page 72 of 166

BAND 48. PAR Plot (5 M BW_Ch.55990_256QAM_RB25_0)

F-TP22-03 (Rev. 06) Page 73 of 166

BAND 48. PAR Plot (10 M BW_Ch.55990_QPSK_RB50_0)

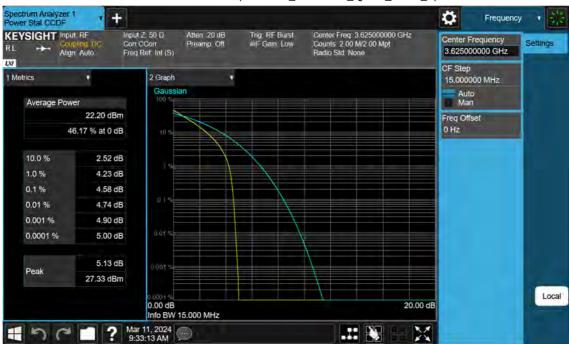
F-TP22-03 (Rev. 06) Page 74 of 166

BAND 48. PAR Plot (10 M BW_Ch.55990_16QAM_RB50_0)

F-TP22-03 (Rev. 06) Page 75 of 166

BAND 48. PAR Plot (10 M BW_Ch.55990_64QAM_RB50_0)

F-TP22-03 (Rev. 06) Page 76 of 166



BAND 48. PAR Plot (10 M BW_Ch.55990_256QAM_RB50_0)

F-TP22-03 (Rev. 06) Page 77 of 166

BAND 48. PAR Plot (15 M BW_Ch.55990_QPSK_RB75_0)

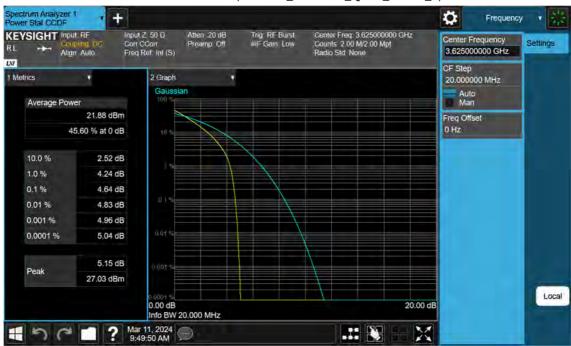
F-TP22-03 (Rev. 06) Page 78 of 166

BAND 48. PAR Plot (15 M BW_Ch.55990_16QAM_RB75_0)

F-TP22-03 (Rev. 06) Page 79 of 166

BAND 48. PAR Plot (15 M BW_Ch.55990_64QAM_RB75_0)

F-TP22-03 (Rev. 06) Page 80 of 166



BAND 48. PAR Plot (15 M BW_Ch.55990_256QAM_RB75_0)

F-TP22-03 (Rev. 06) Page 81 of 166

BAND 48. PAR Plot (20 M BW_Ch.55990_QPSK_RB100_0)

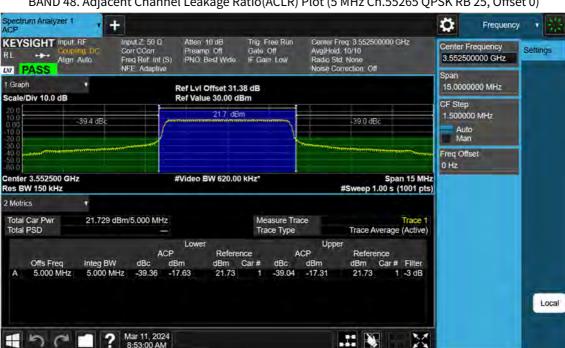
F-TP22-03 (Rev. 06) Page 82 of 166

BAND 48. PAR Plot (20 M BW_Ch.55990_16QAM_RB100_0)

F-TP22-03 (Rev. 06) Page 83 of 166

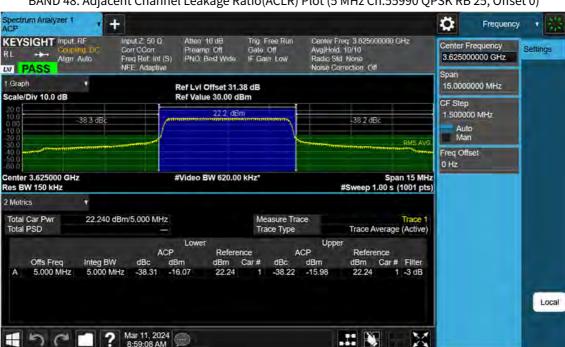
BAND 48. PAR Plot (20 M BW_Ch.55990_64QAM_RB100_0)

F-TP22-03 (Rev. 06) Page 84 of 166



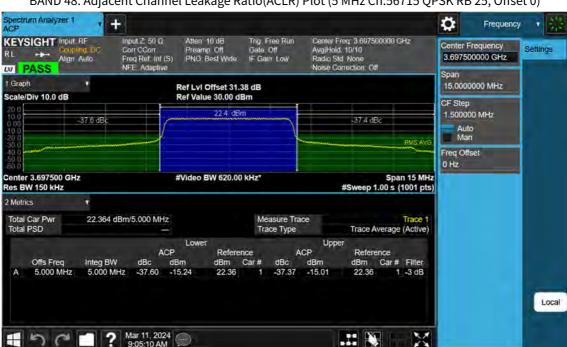
BAND 48. PAR Plot (20 M BW_Ch.55990_256QAM_RB100_0)

F-TP22-03 (Rev. 06) Page 85 of 166



BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (5 MHz Ch.55265 QPSK RB 25, Offset 0)

F-TP22-03 (Rev. 06) Page 86 of 166



BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (5 MHz Ch.55990 QPSK RB 25, Offset 0)

F-TP22-03 (Rev. 06) Page 87 of 166

BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (5 MHz Ch.56715 QPSK RB 25, Offset 0)

F-TP22-03 (Rev. 06) Page 88 of 166



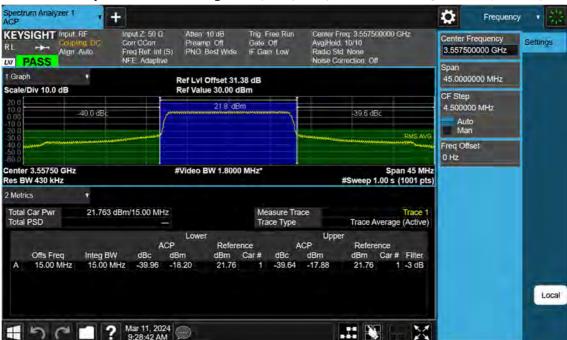
BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (10 MHz Ch.55290 QPSK RB 50, Offset 0)

F-TP22-03 (Rev. 06) Page 89 of 166



BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (10 MHz Ch.55990 QPSK RB 50, Offset 0)

F-TP22-03 (Rev. 06) Page 90 of 166



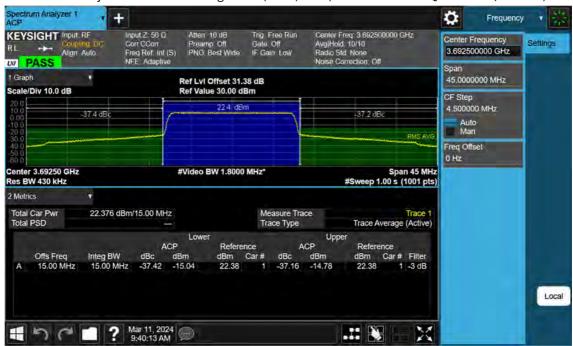
BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (10 MHz Ch. 56690 QPSK RB 50, Offset 0)

F-TP22-03 (Rev. 06) Page 91 of 166



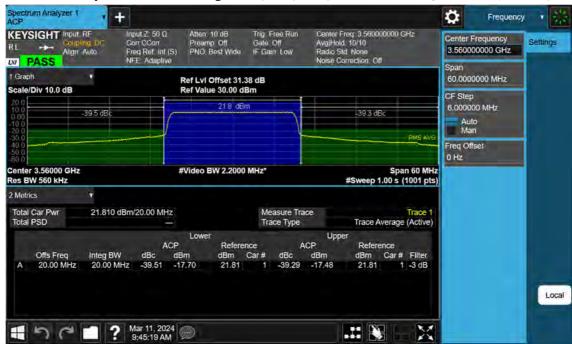
BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (15 MHz Ch.55315 QPSK RB 75, Offset 0)

F-TP22-03 (Rev. 06) Page 92 of 166



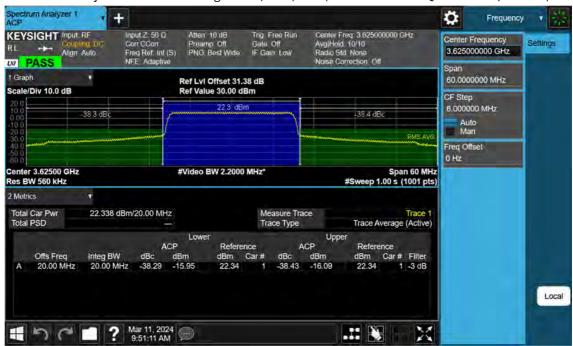
BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (15 MHz Ch.55990 QPSK RB 75, Offset 0)

F-TP22-03 (Rev. 06) Page 93 of 166



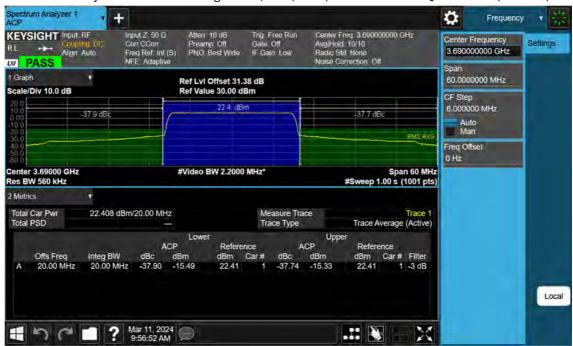
BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (15 MHz Ch.56665 QPSK RB 75, Offset 0)

F-TP22-03 (Rev. 06) Page 94 of 166



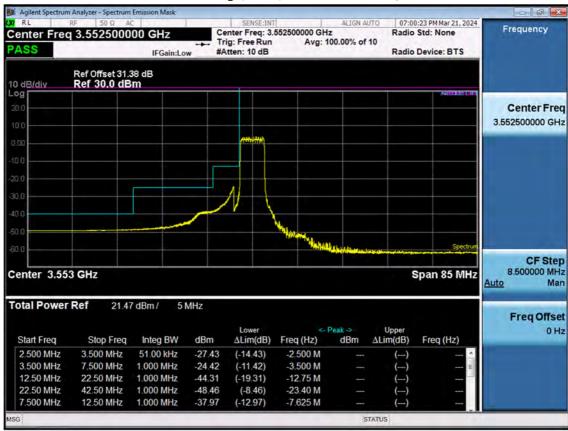
BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (20 MHz Ch.55340 QPSK RB 100, Offset 0)

F-TP22-03 (Rev. 06) Page 95 of 166



BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (20 MHz Ch.55990 QPSK RB 100, Offset 0)

F-TP22-03 (Rev. 06) Page 96 of 166

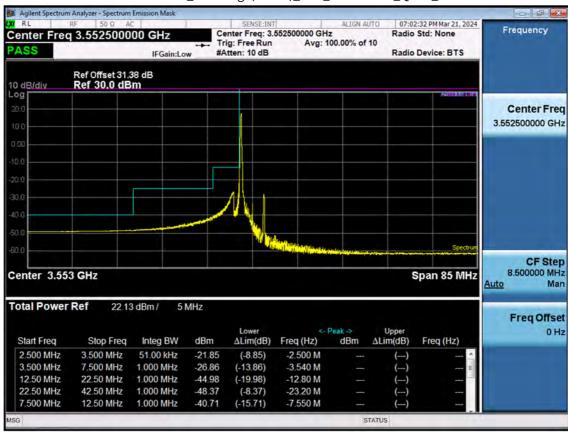


BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (20 MHz Ch.56640 QPSK RB 100, Offset 0)

F-TP22-03 (Rev. 06) Page 97 of 166

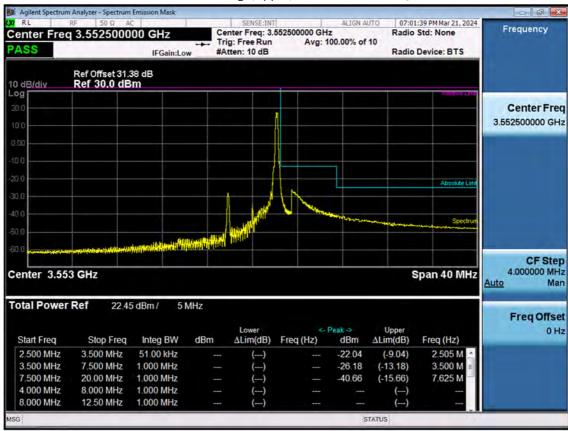
BAND 48. 5 M BandEdge(Lower)_Low_3552.5 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 98 of 166



BAND 48. 5 M_BandEdge(Upper)_Low_3552.5 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 99 of 166



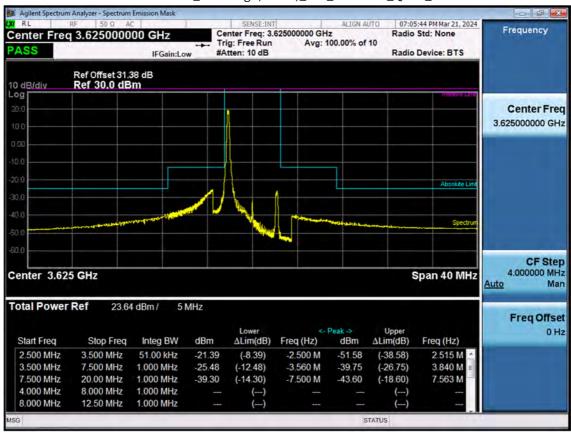
BAND 48. 5 M_BandEdge(Lower)_Low_3552.5 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 100 of 166



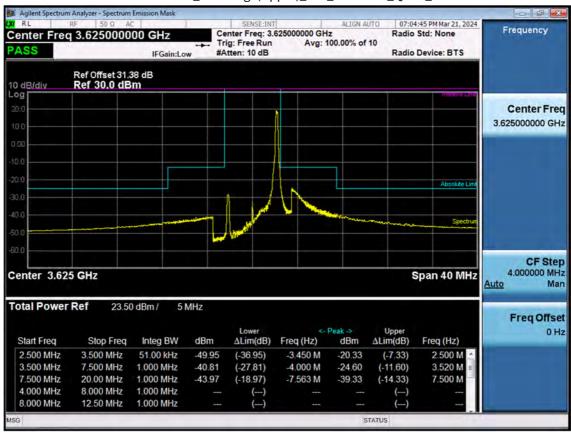
BAND 48. 5 M_BandEdge(Upper)_Low_3552.5 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 101 of 166



BAND 48. 5 M_BandEdge(Center)_Mid_3625 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 102 of 166



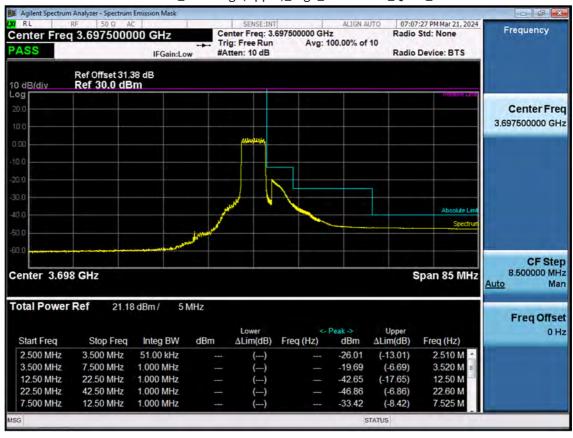
BAND 48. 5 M_BandEdge(Lower)_Mid_3625 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 103 of 166



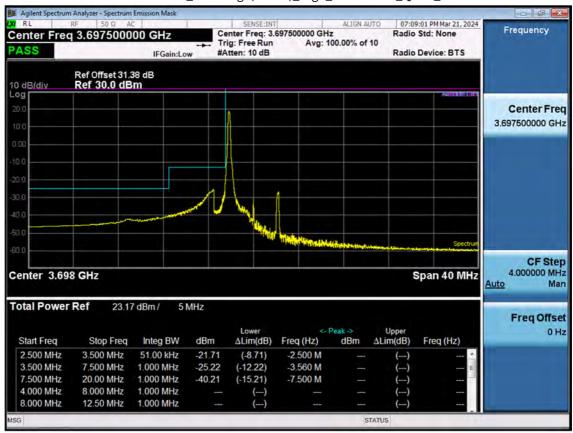
BAND 48. 5 M_BandEdge(Upper)_Mid_3625 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 104 of 166



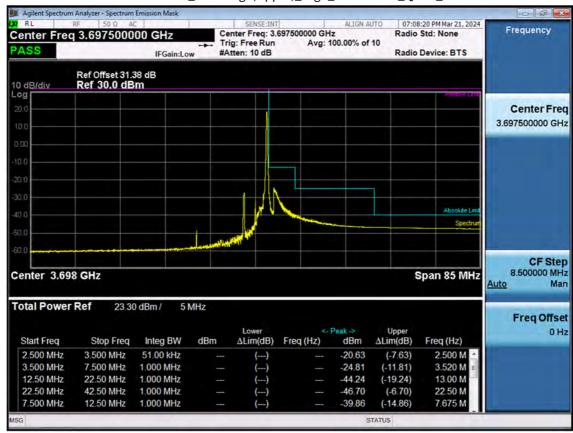
BAND 48. 5 M_BandEdge(Lower)_High_3697.5 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 105 of 166



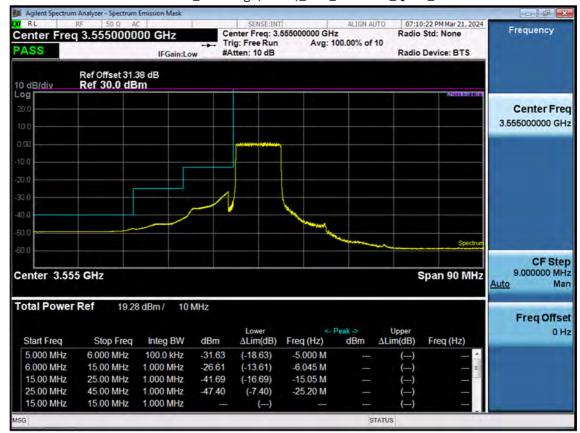
BAND 48. 5 M_BandEdge(Upper)_High_3697.5 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 106 of 166



BAND 48. 5 M_BandEdge(Lower)_High_3697.5 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 107 of 166

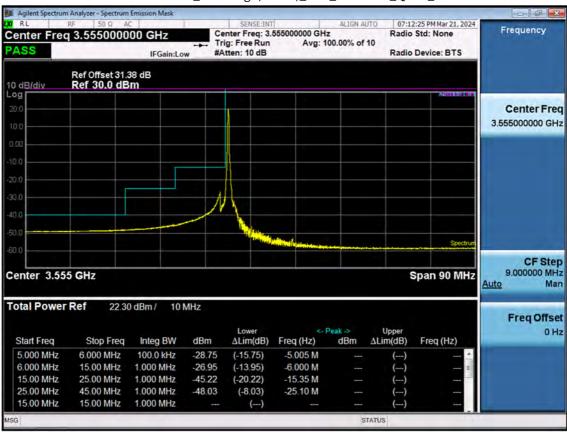


BAND 48. 5 M_BandEdge(Upper)_High_3697.5 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 108 of 166

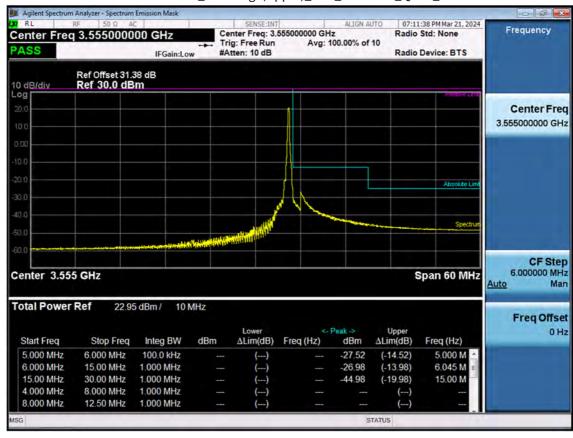
BAND 48. 10 M_BandEdge(Lower)_Low_3555 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 109 of 166



BAND 48. 10 M_BandEdge(Upper)_Low_3555 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 110 of 166

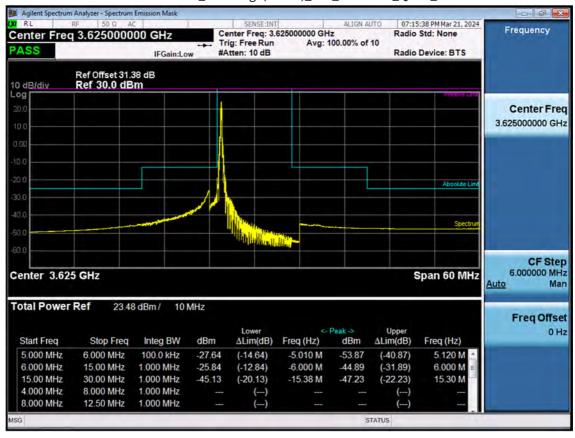


BAND 48. 10 M_BandEdge(Lower)_Low_3555 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 111 of 166

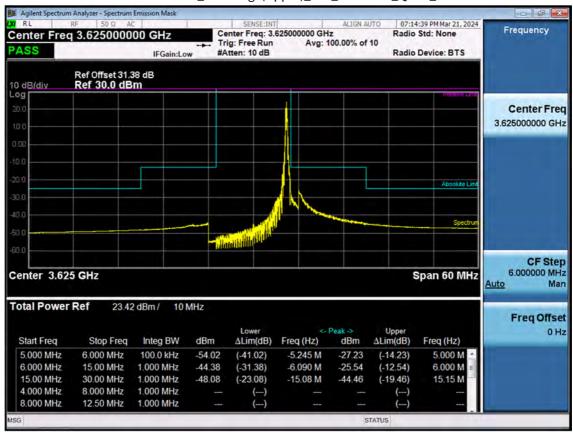
BAND 48. 10 M_BandEdge(Upper)_Low_3555 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 112 of 166



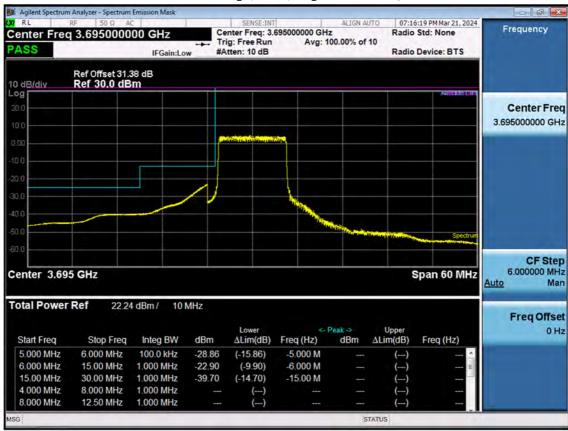
BAND 48. 10 M_BandEdge(Center)_Mid_3625 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 113 of 166



BAND 48. 10 M_BandEdge(Lower)_Mid_3625 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 114 of 166

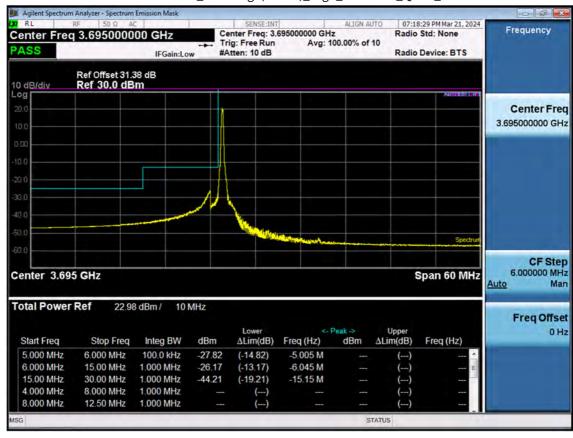


BAND 48. 10 M_BandEdge(Upper)_Mid_3625 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 115 of 166

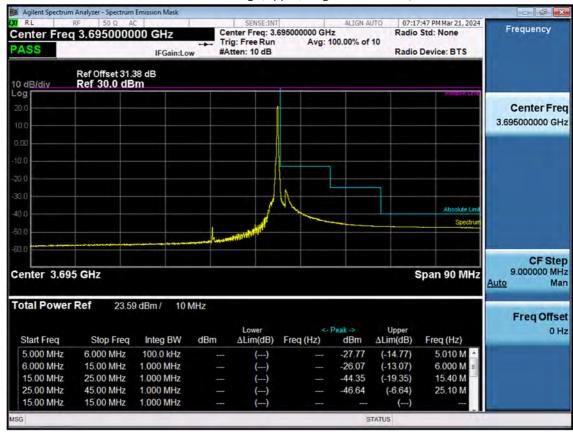
BAND 48. 10 M_BandEdge(Lower)_High_3695 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 116 of 166



BAND 48. 10 M_BandEdge(Upper)_High_3695 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 117 of 166



BAND 48. 10 M_BandEdge(Lower)_High_3695 MHz_QPSK_1RB

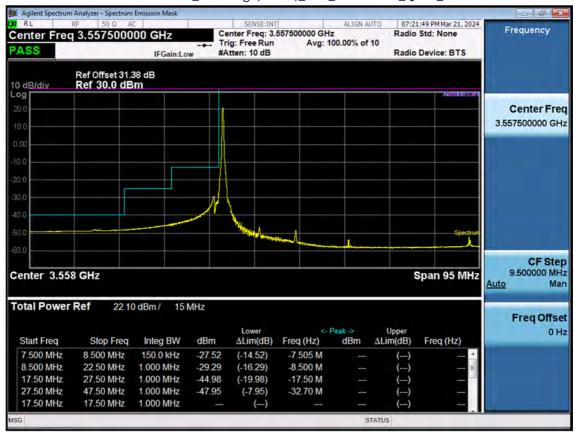
F-TP22-03 (Rev. 06) Page 118 of 166

BAND 48. 10 M_BandEdge(Upper)_High_3695 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 119 of 166

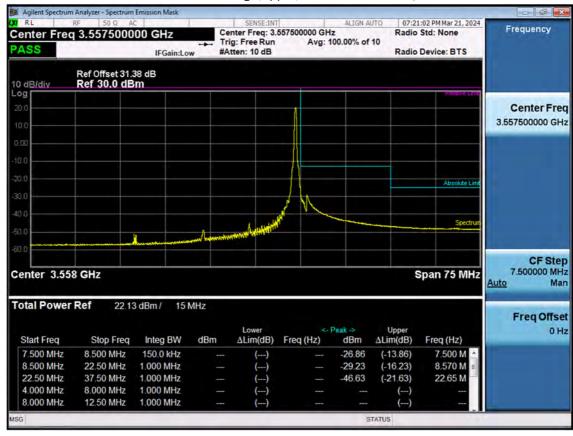
BAND 48. 15 M_BandEdge(Lower)_Low_3557.5 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 120 of 166



BAND 48. 15 M_BandEdge(Upper)_Low_3557.5 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 121 of 166

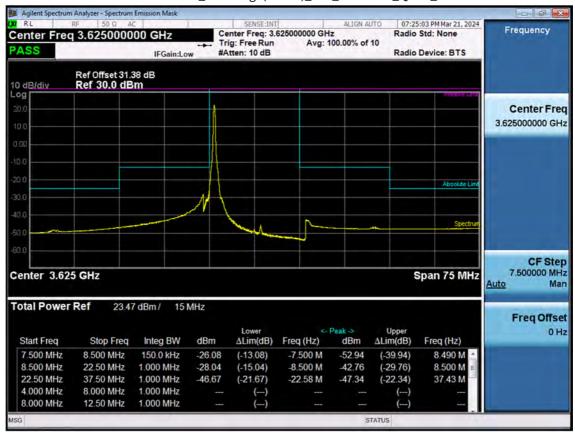


BAND 48. 15 M_BandEdge(Lower)_Low_3557.5 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 122 of 166

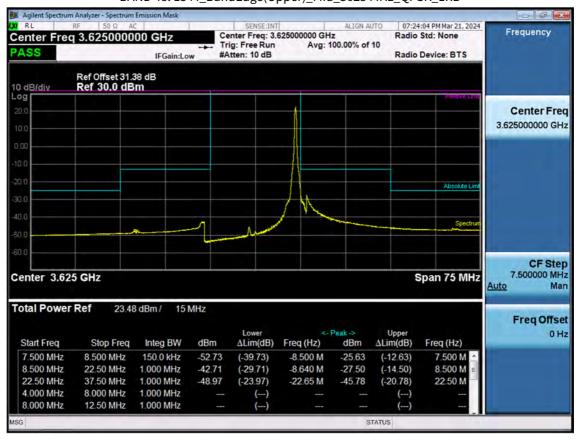
BAND 48. 15 M_BandEdge(Upper)_Low_3557.5 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 123 of 166



BAND 48. 15 M_BandEdge(Center)_Mid_3625 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 124 of 166



BAND 48. 15 M_BandEdge(Lower)_Mid_3625 MHz_QPSK_1RB

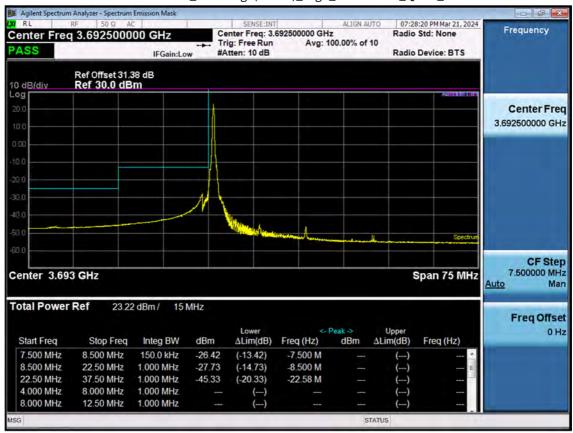
F-TP22-03 (Rev. 06) Page 125 of 166

BAND 48. 15 M_BandEdge(Upper)_Mid_3625 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 126 of 166

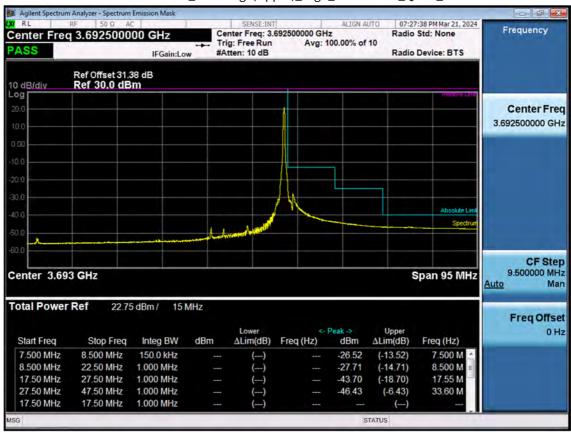
BAND 48. 15 M_BandEdge(Lower)_High_3692.5 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 127 of 166



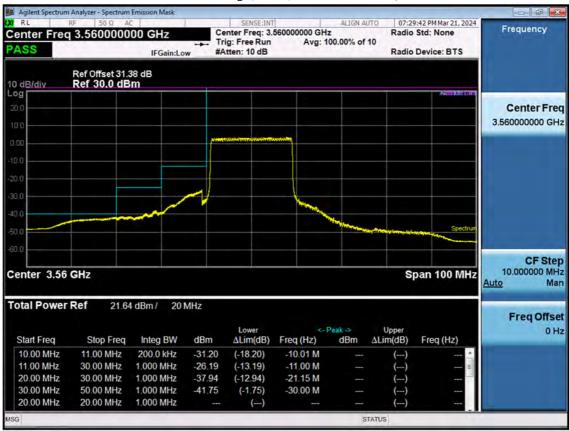
BAND 48. 15 M_BandEdge(Upper)_High_3692.5 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 128 of 166



BAND 48. 15 M_BandEdge(Lower)_High_3692.5 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 129 of 166



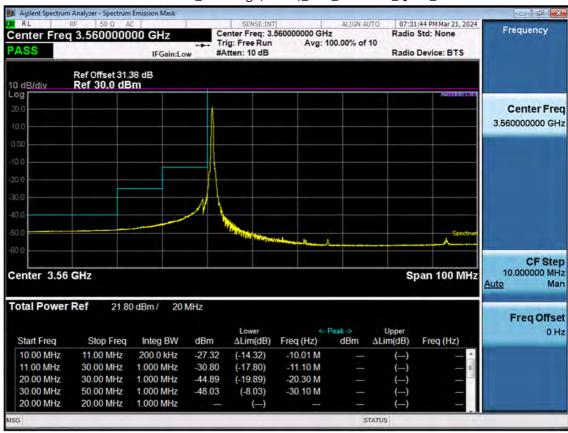
BAND 48. 15 M_BandEdge(Upper)_High_3692.5 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 130 of 166



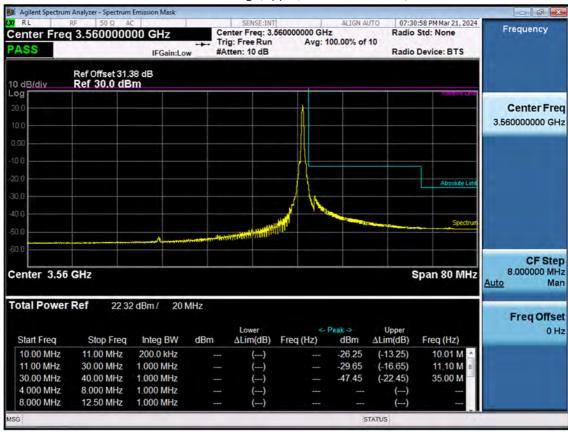
BAND 48. 20 M_BandEdge(Lower)_Low_3560 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 131 of 166



BAND 48. 20 M_BandEdge(Upper)_Low_3560 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 132 of 166

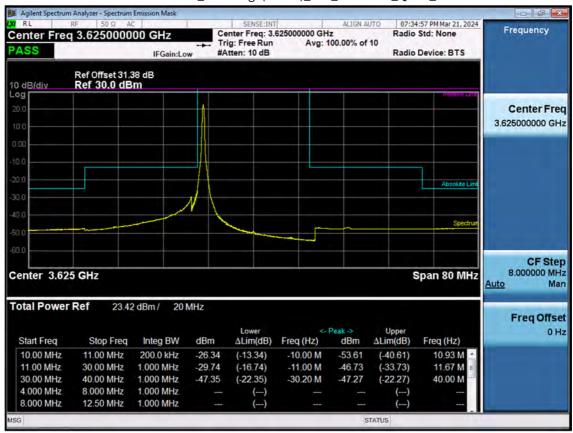


BAND 48. 20 M_BandEdge(Lower)_Low_3560 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 133 of 166

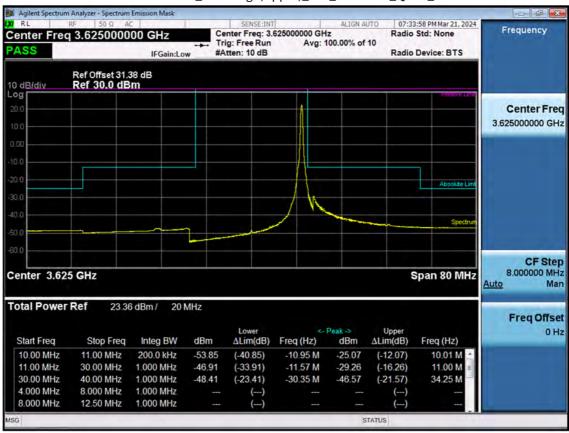
BAND 48. 20 M_BandEdge(Upper)_Low_3560 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 134 of 166



BAND 48. 20 M_BandEdge(Center)_Mid_3625 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 135 of 166

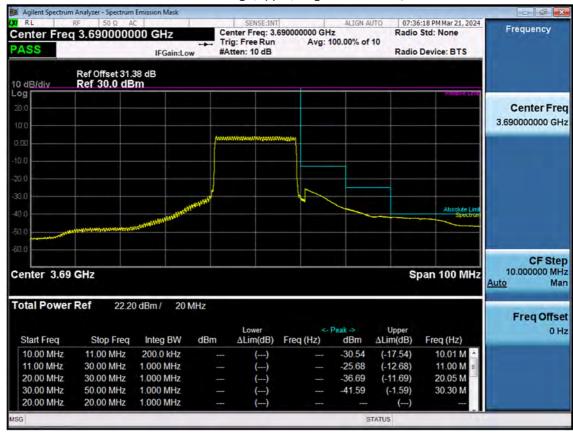


BAND 48. 20 M_BandEdge(Lower)_Mid_3625 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 136 of 166

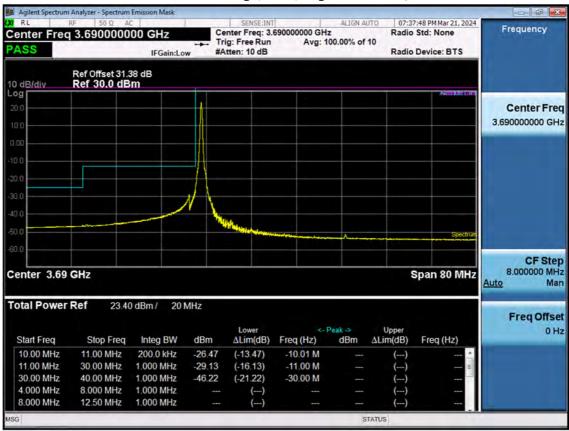
BAND 48. 20 M_BandEdge(Upper)_Mid_3625 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 137 of 166



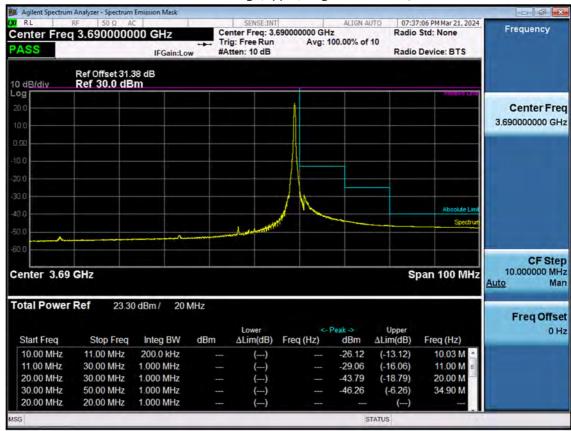
BAND 48. 20 M_BandEdge(Lower)_High_3690 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 138 of 166



BAND 48. 20 M_BandEdge(Upper)_High_3690 MHz_QPSK_Full RB

F-TP22-03 (Rev. 06) Page 139 of 166



BAND 48. 20 M_BandEdge(Lower)_High_3690 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 140 of 166

BAND 48. 20 M_BandEdge(Upper)_High_3690 MHz_QPSK_1RB

F-TP22-03 (Rev. 06) Page 141 of 166



BAND 48. Conducted Spurious Plot 1 (5 MHz Ch.55265 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 142 of 166

BAND 48. Conducted Spurious Plot 2 (5 MHz Ch. 55265 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 143 of 166

BAND 48. Conducted Spurious Plot 1 (5 MHz Ch.55990 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 144 of 166

BAND 48. Conducted Spurious Plot 2 (5 MHz Ch. 55990 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 145 of 166

BAND 48. Conducted Spurious Plot 1 (5 MHz Ch.56715 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 146 of 166

BAND 48. Conducted Spurious Plot 2 (5 MHz Ch. 56715 QPSK RB 1, Offset 0)

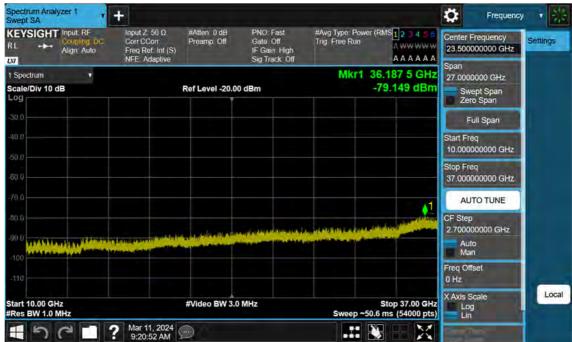
F-TP22-03 (Rev. 06) Page 147 of 166

BAND 48. Conducted Spurious Plot 1 (10 MHz Ch.55290 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 148 of 166

BAND 48. Conducted Spurious Plot 2 (10 MHz Ch. 55290 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 149 of 166



BAND 48. Conducted Spurious Plot 1 (10 MHz Ch.55990 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 150 of 166

BAND 48. Conducted Spurious Plot 2 (10 MHz Ch. 55990 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 151 of 166

BAND 48. Conducted Spurious Plot 1 (10 MHz Ch. 56690 QPSK RB 1, Offset 0)

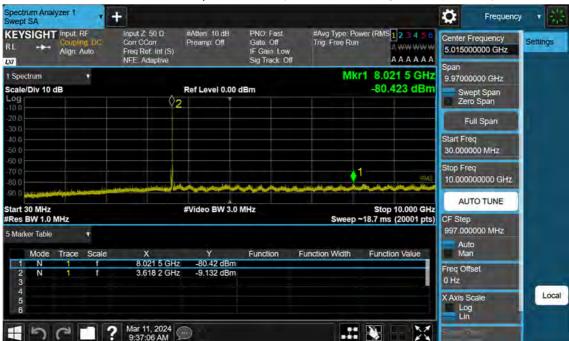
F-TP22-03 (Rev. 06) Page 152 of 166

BAND 48. Conducted Spurious Plot 2 (10 MHz Ch. 56690 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 153 of 166

BAND 48. Conducted Spurious Plot 1 (15 MHz Ch.55315 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 154 of 166



BAND 48. Conducted Spurious Plot 2 (15 MHz Ch. 55315 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 155 of 166

BAND 48. Conducted Spurious Plot 1 (15 MHz Ch.55990 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 156 of 166

BAND 48. Conducted Spurious Plot 2 (15 MHz Ch. 55990 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 157 of 166

BAND 48. Conducted Spurious Plot 1 (15 MHz Ch.56665 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 158 of 166

BAND 48. Conducted Spurious Plot 2 (15 MHz Ch. 56665 QPSK RB 1, Offset 0)

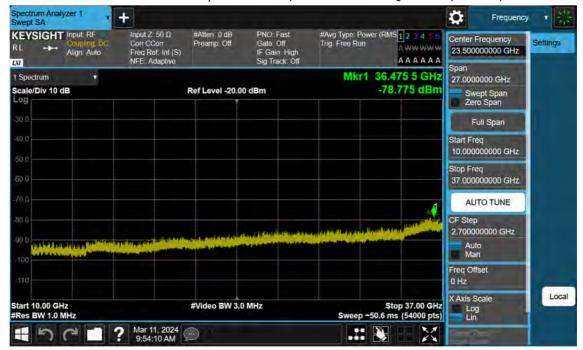
F-TP22-03 (Rev. 06) Page 159 of 166

BAND 48. Conducted Spurious Plot 1 (20 MHz Ch.55340 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 160 of 166

BAND 48. Conducted Spurious Plot 2 (20 MHz Ch. 55340 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 161 of 166



BAND 48. Conducted Spurious Plot 1 (20 MHz Ch.55990 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 162 of 166

BAND 48. Conducted Spurious Plot 2 (20 MHz Ch. 55990 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 163 of 166



BAND 48. Conducted Spurious Plot 1 (20 MHz Ch.56640 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 164 of 166

BAND 48. Conducted Spurious Plot 2 (20 MHz Ch. 56640 QPSK RB 1, Offset 0)

F-TP22-03 (Rev. 06) Page 165 of 166

10. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2404-FC021-P

F-TP22-03 (Rev. 06) Page 166 of 166