TEST REPORT

FCC ULCA 48C Test for SM-F741U
Certification

APPLICANT
SAMSUNG Electronics Co., Ltd.
REPORT NO.
HCT-RF-2404-FC039

DATE OF ISSUE
April 26, 2024

HCT CO.,LTD.
2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA
Tel. +82 316456300 Fax. +82 316456401

Applicant SAMSUNG Electronics Co., Ltd.
129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea

Product Name Model Name	Mobile Phone SM-F741U
Date of Test	February 22, 2024 ~ April 23, 2024
FCC ID	A3LSMF741U
FCC Classification:	Citizens Band End User Devices (CBE) (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi- do, 17383 Republic of Korea)
FCC Rule Part(s):	$\S 96$

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	April 26, 2024	Initial Release

Notice

Content

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section $\S 2.947$. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.
HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S.
C.853(a)

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.
The test results have only been applied with the test methods required by the standard(s).

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

The test results in this test report are not associated with the ((KS Q) ISO/IEC 17025) accreditation by KOLAS (Korea Laboratory Accreditation Scheme) / A2LA (American Association for Laboratory Accreditation) that are under the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA).

CONTENTS

1. GENERAL INFORMATION 5
1.1. MAXIMUM OUTPUT POWER 6
2. INTRODUCTION 7
2.1. DESCRIPTION OF EUT 7
2.2. MEASURING INSTRUMENT CALIBRATION 7
2.3. TEST FACILITY 7
3. DESCRIPTION OF TESTS 8
3.1 TEST PROCEDURE 8
3.2 RADIATED POWER 9
3.3 RADIATED SPURIOUS EMISSIONS 10
3.4 PEAK- TO- AVERAGE RATIO 11
3.5 OCCUPIED BANDWIDTH. 13
3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL 14
3.7 BAND EDGE 15
3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 17
3.9 Adjacent Channel Leakage Ratio 18
4. LIST OF TEST EQUIPMENT 19
5. MEASUREMENT UNCERTAINTY 20
6. SUMMARY OF TEST RESULTS 21
7. SAMPLE CALCULATION 22
8. TEST DATA 24
8.1 Conducted Power 27
8.2 Equivalent Isotropic Radiated Power 30
8.3 Conducted Spurious Emissions 33
8.4 Channel Edge 54
8.5 Frequency Stability / Variation Of Ambient Temperature 70
8.6 Radiated Spurious Emissions 78
8.7 Occupied Bandwidth 81
8.8 Peak- to- Average Ratio 87
8.9 Adjacent Channel Leakage Ratio(ACLR) 93
9. ANNEX A_TEST SETUP PHOTO 98

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	SAMSUNG Electronics Co., Ltd.
Address:	129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
FCC ID:	A3LSMF741U
Application Type:	Certification
FCC Classification:	Citizens Band End User Devices (CBE)
FCC Rule Part(s):	§96
EUT Type:	Mobile phone
Model(s):	SM-F741U
Additional Model(s)	$3553.3-3690.0: 5 \mathrm{MHz}+20 \mathrm{MHz}$
3555.5-3690.0: $10 \mathrm{MHz}+20 \mathrm{MHz}$	
$3557.8-3690.0: 15 \mathrm{MHz}+20 \mathrm{MHz}$	
$3560.0-3696.7: 20 \mathrm{MHz}+5 \mathrm{MHz}$	
Tx Frequency:	$3560.0-3694.5: 20 \mathrm{MHz}+10 \mathrm{MHz}$ $3560.0-3692.2: 20 \mathrm{MHz}+15 \mathrm{MHz}$ $3560.0-3690.0: 20 \mathrm{MHz}+20 \mathrm{MHz}$
Serial number:	February $22,2024 \sim$ April 23,2024
LTE CA :	Radiated : R3CX20KJT0F Conducted : 7b5599bdac507ece

1.1. MAXIMUM OUTPUT POWER

$\begin{gathered} \text { Mode } \\ (\mathrm{PCC}+\mathrm{SCC}) \end{gathered}$	$\begin{aligned} & \text { Tx Frequency } \\ & \text { (MHz) } \end{aligned}$	Modulation	Emission Designator	EIRP	
				Max. Power (dBm)	Max. Power (W)
$5 \mathrm{MHz}+20 \mathrm{MHz}$	3553.3-3690.0	QPSK	22M9G7D	19.91	0.098
		16QAM	22M8W7D	20.35	0.108
		64QAM	22M7W7D	20.20	0.105
		256QAM	21M7W7D	17.32	0.054
$10 \mathrm{MHz}+20 \mathrm{MHz}$	3555.5-3690.0	QPSK	27M6G7D	20.19	0.104
		16QAM	27M7W7D	20.76	0.119
		64QAM	27M6W7D	20.32	0.108
		256QAM	27M7W7D	17.29	0.054
$15 \mathrm{MHz}+20 \mathrm{MHz}$	3557.8-3690.0	QPSK	32M6G7D	20.57	0.114
		16QAM	32M7W7D	21.23	0.133
		64QAM	32M8W7D	20.20	0.105
		256QAM	32M6W7D	17.32	0.054
$20 \mathrm{MHz}+5 \mathrm{MHz}$	3560.0-3696.7	QPSK	22M7G7D	19.64	0.092
		16QAM	22M9W7D	20.24	0.106
		64QAM	22M7W7D	19.97	0.099
		256QAM	22M7W7D	17.24	0.053
$20 \mathrm{MHz}+10 \mathrm{MHz}$	3560.0-3694.5	QPSK	27M8G7D	20.12	0.103
		16QAM	27M7W7D	20.68	0.117
		64QAM	27M8W7D	20.21	0.105
		256QAM	27M7W7D	17.25	0.053
$20 \mathrm{MHz}+15 \mathrm{MHz}$	3560.0-3692.2	QPSK	32M6G7D	20.75	0.119
		16QAM	32M5W7D	21.26	0.134
		64QAM	32M6W7D	20.16	0.104
		256QAM	32M5W7D	17.22	0.053
$20 \mathrm{MHz}+20 \mathrm{MHz}$	3560.0-3690.0	QPSK	37M3G7D	20.87	0.122
		16QAM	37M7W7D	21.29	0.135
		64QAM	37M3W7D	20.23	0.105
		256QAM	37M5W7D	17.47	0.056

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT was a Mobile Phone with GSM/GPRS/EGPRS/UMTS and LTE, Sub 6, mmWave.
It also supports IEEE $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n} / \mathrm{ac} / \mathrm{ax}(20 / 40 / 80 / 160 \mathrm{MHz})$, Bluetooth(iPA, ePA), BT LE(iPA, ePA), NFC, WPT, WIFI 6E.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE

Test Description	Test Procedure Used
Occupied Bandwidth	$\begin{aligned} & \text { - KDB } 971168 \text { D01 v03r01 - Section } 4.3 \\ & \text { - ANSI C63.26-2015 - Section 5.4.4 } \\ & \text { - KDB } 940660 \text { D01 v01 } \end{aligned}$
Channel Edge/ ACLR	- KDB 971168 D01 v03r01 - Section 6.0 - ANSI C63.26-2015 - Section 5.7 - KDB 940660 D01 v01
Spurious and Harmonic Emissions at Antenna Terminal	- KDB 971168 D01 v03r01 - Section 6.0 - ANSI C63.26-2015 - Section 5.7 - KDB 940660 D01 v01
Conducted Output Power	- KDB 971168 D01 v03r01 - Section 5.2.4 - ANSI C63.26-2015 - Section 5.2.1 \& 5.2.4.2
Peak- to- Average Ratio	$\begin{aligned} & \text { - KDB } 971168 \text { D01 v03r01 - Section } 5.7 \\ & \text { - ANSI C63.26-2015 - Section 5.2.3.4 } \\ & \text { - KDB } 940660 \text { D01 v01 } \end{aligned}$
Frequency stability	- ANSI C63.26-2015 - Section 5.6 - KDB 940660 D01 v01
Effective Radiated Power/ Effective Isotropic Radiated Power	$\begin{aligned} & \text { - KDB } 971168 \text { D01 v03r01 - Section } 5.2 \& 5.8 \\ & \text { - ANSI/TIA-603-E-2016 - Section 2.2.17 } \\ & \text { - KDB 940660 D01 v01 } \end{aligned}$
Radiated Spurious and Harmonic Emissions	$\begin{aligned} & \text { - KDB } 971168 \text { D01 v03r01 - Section } 6.2 \\ & \text { - ANSI/TIA-603-E-2016 - Section 2.2.12 } \\ & \text { - KDB } 940660 \text { D01 v01 } \end{aligned}$

3.2 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.
The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-E-2016 Clause 2.2.17.

Test Settings

1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
2. RBW = $1-5 \%$ of the expected OBW, not to exceed 1 MHz
3. VBW $\geq 3 \times$ RBW
4. Span $=1.5$ times the OBW
5. No. of sweep points $>2 \times$ span / RBW
6. Detector = RMS
7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
9. Trace mode = trace averaging (RMS) over 100 sweeps
10. The trace was allowed to stabilize

Test Note

1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz , a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.
The power is calculated by the following formula;

$$
\mathrm{Pd}_{\mathrm{d}(\mathrm{dBm})}=\operatorname{Pg}(\mathrm{dBm})-\text { cable loss }(\mathrm{dB})+\text { antenna gain }_{(\mathrm{dB})}
$$

Where: P_{d} is the dipole equivalent power and P_{g} is the generator output power into the substitution antenna.
3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.
These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
4. The EUT was tested in three orthogonal planes (X, Y, Z) and in all possible test configurations and positioning.
5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

3.3 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.
Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

Test Settings

1. RBW $=100 \mathrm{kHz}$ for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
2. VBW $\geq 3 \times$ RBW
3. Span = 1.5 times the OBW
4. No. of sweep points $>2 \times$ span / RBW
5. Detector $=$ Peak
6. Trace mode = Max Hold
7. The trace was allowed to stabilize
8. Test channel : Low/ Middle/ High
9. Frequency range : We are performed all frequency to $10^{\text {th }}$ harmonics from 9 kHz .

Test Note

1. Measurements value show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin $>20 \mathrm{~dB}$ from the applicable limit) and considered that's already beyond the background noise floor.
2. The EUT was tested in three orthogonal planes (X, Y, Z) and in all possible test configurations and positioning.

The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
3. For spurious emissions above 1 GHz , a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.
The spurious emissions is calculated by the following formula;

$$
\operatorname{Result}_{(\mathrm{dBm})}=\operatorname{Pg}(\mathrm{dBm})-\text { cable loss }_{(\mathrm{dB})}+\text { antenna gain }_{(\mathrm{dBi})}
$$

Where: P_{g} is the generator output power into the substitution antenna.

If the fundamental frequency is below $1 \mathrm{GHz}, \mathrm{RF}$ output power has been converted to EIRP.

$$
\operatorname{EIRP}_{(\mathrm{dBm})}=\mathrm{ERP}_{(\mathrm{dBm})}+2.15
$$

3.4 PEAK- TO- AVERAGE RATIO

(1) CCDF Procedure for PAPR

Test Settings

1. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
2. Set the number of counts to a value that stabilizes the measured CCDF curve;
3. Set the measurement interval as follows:
.- for continuous transmissions, set to 1 ms ,
.- or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
4. Record the maximum PAPR level associated with a probability of 0.1%.

(2) Alternate Procedure for PAPR

Use one of the procedures presented in 5.2(ANSI C63.26-2015) to measure the total peak power and record as as P_{Pk}.

Use one of the applicable procedures presented 5.2(ANSI C63.26-2015) to measure the total average power and record as $P_{\text {Avg. }}$. Determine the P.A.R. from:

$$
\text { P.A.R }{ }_{(d B)}=P_{P k(d B m)}-P_{\text {Avg (dBm) }}\left(P_{\text {Avg }}=\text { Average Power }+ \text { Duty cycle Factor }\right)
$$

Test Settings(Peak Power)

The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW $\geq 3 \times$ RBW.

1. Set the RBW \geq OBW.
2. Set VBW $\geq 3 \times$ RBW.
3. Set span $\geq 2 \times O B W$.
4. Sweep time $\geq 10 \times$ (number of points in sweep) \times (transmission symbol period).
5. Detector $=$ peak.
6. Trace mode $=$ max hold .
7. Allow trace to fully stabilize.
8. Use the peak marker function to determine the peak amplitude level.

Test Settings(Average Power)

1. Set span to $2 \times$ to $3 \times$ the OBW.
2. Set RBW \geq OBW.
3. Set VBW $\geq 3 \times$ RBW.
4. Set number of measurement points in sweep $\geq 2 \times$ span / RBW.
5. Sweep time:

Set $\geq[10 \times($ number of points in sweep $) \times($ transmission period $)]$ for single sweep (automation-compatible) measurement. The transmission period is the (on + off) time.
6. Detector = power averaging (rms).
7. Set sweep trigger to "free run."
8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
9. Use the peak marker function to determine the maximum amplitude level.
10. Add [$10 \log (1 /$ duty cycle) $]$ to the measured maximum power level to compute the average power during continuous transmission. For example, add $[10 \log (1 / 0.25)]=6 \mathrm{~dB}$ if the duty cycle is a constant 25%.

3.5 OCCUPIED BANDWIDTH.

Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean power of a given emission.
The EUT makes a call to the communication simulator.
The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99% occupied bandwidth

Test Settings

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. RBW $=1-5 \%$ of the expected OBW
3. VBW $\geq 3 \times$ RBW
4. Detector = Peak
5. Trace mode = max hold
6. Sweep = auto couple
7. The trace was allowed to stabilize
8. If necessary, steps $2-7$ were repeated after changing the RBW such that it would be within $1-5 \%$ of the 99% occupied bandwidth observed in Step 7

3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test setup

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings

1. $\mathrm{RBW}=1 \mathrm{MHz}$
2. VBW $\geq 3 \mathrm{MHz}$
3. Detector $=$ RMS
4. Trace Mode = trace average
5. Sweep time = auto
6. Number of points in sweep $\geq 2 \times$ Span / RBW

3.7 BAND EDGE

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings

1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
2. Span was set large enough so as to capture all out of band emissions near the band edge
3. RBW $>1 \%$ of the emission bandwidth
4. $V B W>3 \times$ RBW
5. Detector = RMS
6. Number of sweep points $\geq 2 \times$ Span/RBW
7. Trace mode = trace average
8. Sweep time = auto couple
9. The trace was allowed to stabilize

Test Notes

According to FCC 22.917, 24.238, 27.53 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43+10 \log (P) d B$.
In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.
All measurements were done at 2 channels(low and high operational frequency range.)
The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

Where Margin < 1 dB the emission level is either corrected by $10 \log (1 \mathrm{MHz} / \mathrm{RB})$ or the emission is integrated over a 1 MHz bandwidth to determine the final result. When using the integration method the integration window is either centered on the emission or, for emissions at the band edge, centered by an offset of 500 kHz from the block edge so that the integration window is the 1 MHz adjacent to the block edge.

3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ in $10^{\circ} \mathrm{C}$ increments using an environmental chamber.
2. Primary Supply Voltage:
.- Unless otherwise specified, vary primary supply voltage from 85% to 115% of the nominal value for other than hand carried battery equipment.
.- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

Test Settings

1. The carrier frequency of the transmitter is measured at room temperature
($20^{\circ} \mathrm{C}$ to provide a reference).
2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
3. Frequency measurements are made at $10^{\circ} \mathrm{C}$ intervals ranging from $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

3.9 Adjacent Channel Leakage Ratio

Test setup

Test Settings

1. Use ACP measurement function of Spectrum analyzer to measure adjacent channel leakage ratio
2. Integ BW = Assigned channel bandwidth
3. Detector = RMS
4. Number of sweep points $\geq 2 \times$ Span/RBW
5. Trace mode = trace average
6. Sweep time $=1 \mathrm{~s}$
7. The trace was allowed to stabilize

Test Notes

the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB .

4. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
RF Switching System	FBSR-02B(1.2G HPF+LNA)	T\&M SYSTEM	F1L1	12/11/2024	Annual
RF Switching System	FBSR-02B(3.3G HPF+LNA)	T\&M SYSTEM	F1L2	12/11/2024	Annual
Power Splitter(DC ~ 26.5 GHz)	11667B	Hewlett Packard	5001	04/17/2025	Annual
DC Power Supply	E3632A	Agilent	MY40010147	06/23/2024	Annual
Dipole Antenna	UHAP	Schwarzbeck	557	03/09/2025	Biennial
Dipole Antenna	UHAP	Schwarzbeck	558	03/09/2025	Biennial
Chamber	SU-642	ESPEC	93008124	02/19/2025	Annual
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	147	08/17/2025	Biennial
Horn Antenna(1~18GHz)	BBHA 9120D	Schwarzbeck	9120D-1298	09/11/2025	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	09/29/2024	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial
Signal Analyzer($10 \mathrm{~Hz} \sim 26.5$ GHz)	N9020A	Agilent	MY52090906	04/19/2025	Annual
ATTENUATOR(20 dB)	8493C	Hewlett Packard	17280	04/17/2025	Annual
Spectrum Analyzer(10 Hz ~ 40 GHz)	FSV40	REOHDE \& SCHWARZ	100931	08/17/2024	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/10/2024	Annual
Loop Antenna(9 kHz ~ 30 MHz)	FMZB1513	Schwarzbeck	1513-333	03/07/2026	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	895	09/16/2024	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	1135	09/16/2024	Biennial
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6262094331	11/17/2024	Annual
Wideband Radio Communication Tester	MT8820C	Anritsu Corp.	6201026545	12/11/2024	Annual
SIGNAL GENERATOR $(100 \mathrm{kHz} \sim 40 \mathrm{GHz})$	SMB100A	REOHDE \& SCHWARZ	177633	06/22/2024	Annual
Signal Analyzer($5 \mathrm{~Hz} \sim 40.0$ GHz)	N9030B	KEYSIGHT	MY55480167	05/24/2024	Annual
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.,	-	-	-

Note:

1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
2. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5
(Version : 2017).

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of $k=2$ to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the $U_{\text {cISPR }}$ measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty ($\pm \mathrm{dB}$)
Conducted Disturbance ($150 \mathrm{kHz} \sim 30 \mathrm{MHz}$)	1.98 (Confidence level about 95%, $k=2$)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about $95 \%, k=2$)
Radiated Disturbance ($30 \mathrm{MHz} \sim 1 \mathrm{GHz}$)	5.70 (Confidence level about 95%, $k=2$)
Radiated Disturbance ($1 \mathrm{GHz} \sim 18 \mathrm{GHz}$)	5.52 (Confidence level about 95%, $k=2$)
Radiated Disturbance ($18 \mathrm{GHz} \sim 40 \mathrm{GHz}$)	5.66 (Confidence level about 95\%, k=2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95\%,k=2)

6. SUMMARY OF TEST RESULTS

6.1 Test Condition: Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Occupied Bandwidth	§ 2.1049	N/A	PASS
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	$\begin{aligned} & \S 2.1051, \\ & \S 96.41(\mathrm{e}) \end{aligned}$	$-13 \mathrm{dBm} / \mathrm{Mhz}$ at frequencies within $0-10 \mathrm{MHz}$ of channel edge $-25 \mathrm{dBm} / \mathrm{MHz}$ at frequencies greater than 10 MHz above and below channel edge $-40 \mathrm{dBm} / \mathrm{MHz}$ at frequencies below 3530 MHz and above 3720 MHz	PASS
Adjacent Channel Leakage Ratio	§96.41(e)	At least 30 dB .	PASS
Conducted Output Power	§ 2.1046	N/A	PASS
Frequency stability / variation of ambient temperature	§ 2.1055,	Emission must remain in band	PASS

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Equivalent Isotropic Radiated Power	$\S 96.41(\mathrm{~b})$	$23 \mathrm{dBm} / 10 \mathrm{MHz}$	PASS
Radiated Spurious and Harmonic Emissions	 $\S 9.1053$,	$-40 \mathrm{dBm} / \mathrm{MHz}$	PASS

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch./ Freq.		Measured Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBd)	C.L	Pol.	ERP	
channel	Freq.(MHz)						W	dBm
128	824.20	-21.37	38.40	-10.61	0.95	H	0.483	26.84

$\underline{E R P=\text { Substitute LEVEL(dBm) }+ \text { Ant. Gain }- \text { CL(Cable Loss) }}$

1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
2) During the test, the turn table is rotated until the maximum signal is found.
3) Record the field strength meter's level.
4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.
7.2 EIRP Sample Calculation

Ch./ Freq.		Measured Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBi)	C.L	Pol.	EIRP	
channel	Freq.(MHz)						W	dBm
20175	1,732.50	-15.75	18.45	9.90	1.76	H	0.456	26.59

$\underline{\text { EIRP }=\text { Substitute LEVEL(dBm) }+ \text { Ant. Gain - CL(Cable Loss) }}$

1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
2) During the test, the turn table is rotated until the maximum signal is found.
3) Record the field strength meter's level.
4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

7.3. Emission Designator

GSM Emission Designator

Emission Designator $=$ 249KGXW
GSM BW $=249 \mathrm{kHz}$
G = Phase Modulation
X = Cases not otherwise covered
W = Combination (Audio/Data)

WCDMA Emission Designator
Emission Designator $=4$ M17F9W
WCDMA BW $=4.17 \mathrm{MHz}$
F = Frequency Modulation
9 = Composite Digital Info
W = Combination (Audio/Data)

QAM Modulation

Emission Designator $=4$ M48W7D
LTE BW $=4.48 \mathrm{MHz}$
W = Amplitude/Angle Modulated
7 = Quantized/Digital Info
D = Data transmission; telemetry; telecommand

EDGE Emission Designator

Emission Designator $=249$ KG7W
GSM BW $=249 \mathrm{kHz}$
G = Phase Modulation
7 = Quantized/Digital Info
W = Combination (Audio/Data)

QPSK Modulation

Emission Designator $=4$ M48G7D
LTE BW $=4.48 \mathrm{MHz}$
G = Phase Modulation
7 = Quantized/Digital Info
D = Data transmission; telemetry; telecommand

8. TEST DATA

Test Overview

The EUT is set up to transmit two contiguous LTE channels. The power level of both carriers and the various
conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The
spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its $10^{\text {th }}$ harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Note

1. All tests were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth.
2. Channel bandwidth is shown in the tables below based only on the channel bandwidths that were supported in this device.

Channel Bandwidth (PCC)	Channel Bandwidth (SCC)	Maximum aggregated bandwidth (MHz)
5	20	25
10	20	35
15	20	35
20	5	25
20	10	30
20	15	35
20	20	40

3. All modes of operation were investigated and the worst case configuration results are reported in this section.
Please refer to the table below.

- Worst case(Conducted Spurious Emissions, BandEdge)
: We have selected higher of the Conduction Output Power.
- Worst case(Radiated Spurious Emissions) : We have selected higher of the EIRP.
- Worst case(OBW, PAR, Frequency stability)
: All modes of operation were investigated and the worst case configuration results are reported.

4. All modes of operation were investigated and the worst case configuration results are reported.

Mode : Stand alone, Stand alone + External accessories (Earphone, AC adapter, etc)
Worst case : Stand alone
5. We were performed the RSE test in condition of co-location.

Mode : Stand alone, Simultaneous transmission scenarios
Worst case : Stand alone
6. All 3 channels(low/mid/high) of conducted power and radiated power were investigated and the worst case channel results are reported.
7. The EUT was tested in three modes(Open, Half-open, Closed), the worst case configuration results are reported.
Worst case: Closed mode.
[Worst case]

Test Description	Mod	Operating frequency	PCC					SCC				
			$\begin{gathered} \mathrm{BW} \\ (\mathrm{MHz}) \end{gathered}$	Freq. (MHz)	Ch.	RB	RB Offset	$\begin{gathered} \mathrm{BW} \\ (\mathrm{MHz}) \end{gathered}$	Freq. (MHz)	Ch.	RB	RB Offset
Conducted Spurious Emissions/ Band Edge	16QAM	Low	20	3560.0	55340	1	99	20	3579.8	55538	1	0
		Mid	20	3615.1	55891	1	99	20	3634.9	56089	1	0
		High	20	3670.2	56442	1	99	20	3690.0	56640	1	0
		Low	20	3560.0	55340	1	0	20	3579.8	55538	1	99
		Mid	20	3615.1	55891	1	0	20	3634.9	56089	1	99
		High	20	3670.2	56442	1	0	20	3690.0	56640	1	99
		Low	20	3560.0	55340	100	0	20	3579.8	55538	100	0
		Mid	5	3615.8	55898	25	0	20	3627.5	56015	100	0
		High	20	3670.2	56442	100	0	20	3690.0	56640	100	0
		Mid	20	3615.1	55891	100	0	20	3634.9	56089	100	0
Radiated Spurious Emissions	16QAM	Low	20	3560.0	55340	1	99	20	3579.8	55538	1	0
		Mid	20	3615.1	55891	1	99	20	3634.9	56089	1	0
		High	20	3670.2	56442	1	99	20	3690.0	56640	1	0

[Worst case]

Test Description	Mod	Operating frequency	PCC					SCC				
			$\begin{gathered} \mathrm{BW} \\ (\mathrm{MHz}) \end{gathered}$	Freq. (MHz)	Ch.	RB	RB Offset	$\begin{gathered} \mathrm{BW} \\ (\mathrm{MHz}) \end{gathered}$	Freq. (MHz)	Ch.	RB	RB Offset
$\begin{gathered} \text { OBW, } \\ \text { PAR } \end{gathered}$	QPSK, 16QAM 64QAM 256QAM	Mid	5	3615.8	55898	25	0	20	3627.5	56015	100	0
			10	3615.6	55896	50	0	20	3630.0	56040	100	0
			15	3615.3	55893	75	0	20	3632.4	56064	100	0
			20	3622.5	55965	100	0	5	3634.2	56082	25	0
			20	3620.1	55941	100	0	10	3634.5	56085	50	0
			20	3617.6	55916	100	0	15	3634.7	56087	75	0
			20	3615.1	55891	100	0	20	3634.9	56089	100	0
Frequency stability	16QAM	Low	5	3553.3	55273	25	0	20	3565.0	55390	100	0
			10	3555.5	55295	50	0	20	3569.9	55439	100	0
			15	3557.8	55318	75	0	20	3574.9	55489	50	0
			20	3560.0	55340	100	0	20	3579.8	55538	100	0
		High	5	3678.3	56523	25	0	20	3690.0	56640	100	0
			10	3675.6	56496	50	0	20	3690.0	56640	100	0
			15	3672.9	56469	75	0	20	3690.0	56640	50	0
			20	3670.2	56442	100	0	20	3690.0	56640	100	0

8.1 Conducted Power

Operating frequency	PCC					SCC					Conducted. Power [dBm]
	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	
Low	5	3553.3	55273	1	24	20	3565.0	55390	1	0	17.18
	10	3555.5	55295	1	49	20	3569.9	55439	1	0	16.55
	15	3557.8	55318	1	74	20	3574.9	55489	1	0	16.44
	20	3560.0	55340	1	99	5	3571.7	55457	1	0	17.63
	20	3560.0	55340	1	99	10	3574.4	55484	1	0	16.52
	20	3560.0	55340	1	99	15	3577.1	55511	1	0	16.50
	20	3560.0	55340	1	99	20	3579.8	55538	1	0	18.06
Mid	5	3615.8	55898	1	24	20	3627.5	56015	1	0	21.47
	10	3615.6	55896	1	49	20	3630.0	56040	1	0	21.82
	15	3615.3	55893	1	74	20	3632.4	56064	1	0	22.27
	20	3622.5	55965	1	99	5	3634.2	56082	1	0	21.38
	20	3620.1	55941	1	99	10	3634.5	56085	1	0	21.75
	20	3617.6	55916	1	99	15	3634.7	56087	1	0	22.28
	20	3615.1	55891	1	99	20	3634.9	56089	1	0	22.29
High	5	3678.3	56523	1	24	20	3690.0	56640	1	0	17.88
	10	3675.6	56496	1	49	20	3690.0	56640	1	0	17.26
	15	3672.9	56469	1	74	20	3690.0	56640	1	0	17.12
	20	3685.0	56590	1	99	5	3696.7	56707	1	0	18.17
	20	3680.1	56541	1	99	10	3694.5	56685	1	0	17.16
	20	3675.1	56491	1	99	15	3692.2	56662	1	0	17.13
	20	3670.2	56442	1	99	20	3690.0	56640	1	0	18.60

Note:
Modulation : QPSK(1RB)

Operating frequency	PCC					SCC					Conducted. Power [dBm]
	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	
Low	5	3553.3	55273	25	0	20	3565.0	55390	100	0	10.90
	10	3555.5	55295	50	0	20	3569.9	55439	100	0	11.95
	15	3557.8	55318	75	0	20	3574.9	55489	100	0	11.96
	20	3560.0	55340	100	0	5	3571.7	55457	25	0	10.93
	20	3560.0	55340	100	0	10	3574.4	55484	50	0	11.91
	20	3560.0	55340	100	0	15	3577.1	55511	75	0	11.95
	20	3560.0	55340	100	0	20	3579.8	55538	100	0	11.96
Mid	5	3615.8	55898	25	0	20	3627.5	56015	100	0	19.53
	10	3615.6	55896	50	0	20	3630.0	56040	100	0	19.05
	15	3615.3	55893	75	0	20	3632.4	56064	100	0	19.01
	20	3622.5	55965	100	0	5	3634.2	56082	25	0	19.51
	20	3620.1	55941	100	0	10	3634.5	56085	50	0	19.09
	20	3617.6	55916	100	0	15	3634.7	56087	75	0	18.74
	20	3615.1	55891	100	0	20	3634.9	56089	100	0	19.10
High	5	3678.3	56523	25	0	20	3690.0	56640	100	0	11.70
	10	3675.6	56496	50	0	20	3690.0	56640	100	0	12.81
	15	3672.9	56469	75	0	20	3690.0	56640	100	0	12.78
	20	3685.0	56590	100	0	5	3696.7	56707	25	0	11.68
	20	3680.1	56541	100	0	10	3694.5	56685	50	0	12.70
	20	3675.1	56491	100	0	15	3692.2	56662	75	0	12.73
	20	3670.2	56442	100	0	20	3690.0	56640	100	0	12.82

Note:
Modulation : QPSK(Full RB)

Operating frequency	PCC					SCC					Conducted. Power [dBm]
	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	Bandwidth [MHz]	Freq. (MHz)	Channel	RB	RB Offset	
Low	20	3560.0	55340	1	99	20	3579.8	55538	1	0	18.82
Mid	20	3615.1	55891	1	99	20	3634.9	56089	1	0	22.95
High	20	3670.2	56442	1	99	20	3690.0	56640	1	0	19.31
Low	20	3560.0	55340	100	0	20	3579.8	55538	100	0	11.99
Mid	5	3615.8	55898	25	0	20	3627.5	56015	100	0	19.60
High	20	3670.2	56442	100	0	20	3690.0	56640	100	0	12.84

Note:
Modulation : 16QAM

| Operating
 frequency | Bandwidth
 $[\mathrm{MHz}]$ | Freq.
 (MHz) | Channel | RB | RB Offset | Bandwidth
 $[\mathrm{MHz}]$ | Freq.
 (MHz) | Channel | RB | RB Offset | Power
 [dBm] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 20 | 3560.0 | 55340 | 1 | 99 | 20 | 3579.8 | 55538 | 1 | 0 | 18.70 |
| | 20 | 3615.1 | 55891 | 1 | 99 | 20 | 3634.9 | 56089 | 1 | 0 | 21.97 |
| High | 20 | 3670.2 | 56442 | 1 | 99 | 20 | 3690.0 | 56640 | 1 | 0 | 19.18 |
| Low | 20 | 3560.0 | 55340 | 100 | 0 | 20 | 3579.8 | 55538 | 100 | 0 | 11.96 |
| Mid | 5 | 3615.8 | 55898 | 25 | 0 | 20 | 3627.5 | 56015 | 100 | 0 | 19.55 |
| High | 20 | 3670.2 | 56442 | 100 | 0 | 20 | 3690.0 | 56640 | 100 | 0 | 12.71 |

Note:
Modulation: 64QAM

| Operating
 frequency | Bandwidth
 $[\mathrm{MHz}]$ | Freq.
 (MHz) | Channel | RB | RB Offset | Bandwidth
 $[\mathrm{MHz}]$ | Freq.
 (MHz) | Channel | RB | RB Offset | Power
 [dBm] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 20 | 3560.0 | 55340 | 1 | 99 | 20 | 3579.8 | 55538 | 1 | 0 | 18.17 |
| | 20 | 3615.1 | 55891 | 1 | 99 | 20 | 3634.9 | 56089 | 1 | 0 | 18.94 |
| High | 20 | 3670.2 | 56442 | 1 | 99 | 20 | 3690.0 | 56640 | 1 | 0 | 18.66 |
| Low | 20 | 3560.0 | 55340 | 100 | 0 | 20 | 3579.8 | 55538 | 100 | 0 | 11.84 |
| Mid | 5 | 3615.8 | 55898 | 25 | 0 | 20 | 3627.5 | 56015 | 100 | 0 | 18.60 |
| High | 20 | 3670.2 | 56442 | 100 | 0 | 20 | 3690.0 | 56640 | 100 | 0 | 12.53 |

Note:
Modulation : 256QAM

8.2 Equivalent Isotropic Radiated Power

	PCC			SCC			Measured Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBi)	C.L	Pol.	E.I.R.P	
	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Channel	RB/ Offset	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Channel	RB/ Offset						W	dBm
Low	5	55273	1/24	20	55390	1/0	-32.00	6.36	12.34	3.24	H	0.035	15.46
	10	55295	1/49	20	55439	1/0	-32.40	5.96	12.34	3.24	H	0.032	15.06
	15	55318	1/74	20	55489	1/0	-32.44	5.89	12.34	3.22	H	0.032	15.01
	20	55340	1/99	5	55457	1/0	-31.26	7.07	12.34	3.22	H	0.042	16.19
	20	55340	1/99	10	55484	1/0	-32.35	5.94	12.34	3.19	H	0.032	15.09
	20	55340	1/99	15	55511	1/0	-32.30	5.99	12.34	3.19	H	0.033	15.14
	20	55340	1/99	20	55538	1/0	-30.93	7.36	12.34	3.19	H	0.045	16.51
Mid	5	55898	1/24	20	56015	1/0	-27.81	10.80	12.32	3.21	H	0.098	19.91
	10	55896	1/49	20	56040	1/0	-27.53	11.08	12.32	3.21	H	0.104	20.19
	15	55893	1/74	20	56064	1/0	-27.09	11.47	12.32	3.22	H	0.114	20.57
	20	55965	1/99	5	56082	1/0	-27.97	10.55	12.31	3.22	H	0.092	19.64
	20	55941	1/99	10	56085	1/0	-27.49	11.03	12.31	3.22	H	0.103	20.12
	20	55916	1/99	15	56087	1/0	-26.91	11.65	12.32	3.22	H	0.119	20.75
	20	55891	1/99	20	56089	1/0	-26.79	11.77	12.32	3.22	H	0.122	20.87
High	5	56523	1/24	20	56640	1/0	-31.65	7.35	12.29	3.16	H	0.045	16.48
	10	56496	1/49	20	56640	1/0	-32.14	6.75	12.29	3.18	H	0.039	15.86
	15	56469	1/74	20	56640	1/0	-32.29	6.60	12.29	3.18	H	0.037	15.71
	20	56590	1/99	5	56707	1/0	-31.23	7.88	12.29	3.13	H	0.051	17.04
	20	56541	1/99	10	56685	1/0	-32.34	6.77	12.29	3.13	H	0.039	15.93
	20	56491	1/99	15	56662	1/0	-32.38	6.62	12.29	3.16	H	0.038	15.75
	20	56442	1/99	20	56640	1/0	-30.85	8.04	12.29	3.18	H	0.052	17.15

Note:

1. Modulation : QPSK
2. Limit : < 23 dBm

PCC			SCC			Measured Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBi)	C.L	Pol.	E.I.R.P	
$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Channel	$\begin{gathered} \text { RB/ } \\ \text { Offset } \end{gathered}$	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Channel	RB/ Offset						W	dBm
20	55340	1/99	20	55538	1/0	-30.20	8.09	12.34	3.19	H	0.053	17.24
5	55898	1/24	20	56015	1/0	-27.37	11.24	12.32	3.21	H	0.108	20.35
10	55896	1/49	20	56040	1/0	-26.96	11.65	12.32	3.21	H	0.119	20.76
15	55893	1/74	20	56064	1/0	-26.43	12.13	12.32	3.22	H	0.133	21.23
20	55965	1/99	5	56082	1/0	-27.37	11.15	12.31	3.22	H	0.106	20.24
20	55941	1/99	10	56085	1/0	-26.93	11.59	12.31	3.22	H	0.117	20.68
20	55916	1/99	15	56087	1/0	-26.40	12.16	12.32	3.22	H	0.134	21.26
20	55891	1/99	20	56089	1/0	-26.37	12.19	12.32	3.22	H	0.135	21.29
20	56442	1/99	20	56640	1/0	-30.13	8.76	12.29	3.18	H	0.061	17.87

Note:

1. Modulation : 16QAM
2. Limit : < 23 dBm

PCC			SCC			Measured Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBi)	C.L	Pol.	E.I.R.P	
$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Channel	$\begin{gathered} \text { RB/ } \\ \text { Offset } \end{gathered}$	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Channel	$\begin{gathered} \text { RB/ } \\ \text { Offset } \end{gathered}$						W	dBm
20	55340	1/99	20	55538	1/0	-30.38	7.91	12.34	3.19	H	0.051	17.06
5	55898	1/24	20	56015	1/0	-27.52	11.09	12.32	3.21	H	0.105	20.20
10	55896	1/49	20	56040	1/0	-27.40	11.21	12.32	3.21	H	0.108	20.32
15	55893	1/74	20	56064	1/0	-27.46	11.10	12.32	3.22	H	0.105	20.20
20	55965	1/99	5	56082	1/0	-27.64	10.88	12.31	3.22	H	0.099	19.97
20	55941	1/99	10	56085	1/0	-27.40	11.12	12.31	3.22	H	0.105	20.21
20	55916	1/99	15	56087	1/0	-27.50	11.06	12.32	3.22	H	0.104	20.16
20	55891	1/99	20	56089	1/0	-27.43	11.13	12.32	3.22	H	0.105	20.23
20	56442	1/99	20	56640	1/0	-30.30	8.59	12.29	3.18	H	0.059	17.70

Note:

1. Modulation : 64QAM
2. Limit : < 23 dBm

PCC			SCC			Measured Level (dBm)	Substitute Level (dBm)	Ant. Gain (dBi)	C.L	Pol.	E.I.R.P	
$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Channel	$\begin{gathered} \text { RB/ } \\ \text { Offset } \end{gathered}$	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Channel	$\begin{gathered} \text { RB/ } \\ \text { Offset } \end{gathered}$						W	dBm
20	55340	1/99	20	55538	1/0	-30.59	7.70	12.34	3.19	H	0.048	16.85
5	55898	1/24	20	56015	1/0	-30.40	8.21	12.32	3.21	H	0.054	17.32
10	55896	1/49	20	56040	1/0	-30.43	8.18	12.32	3.21	H	0.054	17.29
15	55893	1/74	20	56064	1/0	-30.34	8.22	12.32	3.22	H	0.054	17.32
20	55965	1/99	5	56082	1/0	-30.37	8.15	12.31	3.22	H	0.053	17.24
20	55941	1/99	10	56085	1/0	-30.36	8.16	12.31	3.22	H	0.053	17.25
20	55916	1/99	15	56087	1/0	-30.44	8.12	12.32	3.22	H	0.053	17.22
20	55891	1/99	20	56089	1/0	-30.38	8.18	12.32	3.22	H	0.053	17.28
20	56442	1/99	20	56640	1/0	-30.53	8.36	12.29	3.18	H	0.056	17.47

Note:

1. Modulation : 256QAM
2. Limit : < 23 dBm

8.3 Conducted Spurious Emissions

Operating frequency	PCC				SCC				Measurement Maximum Frequency (GHz)	Factor (dB)	Measurement Maximum Data (dBm)	Result (dBm)
	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch.	Freq. (MHz)	RB/ Offset	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch.	Freq. (MHz)	$\begin{gathered} \text { RB/ } \\ \text { Offset } \end{gathered}$				
Low	20	55340	3560.0	1/99	20	55538	3579.8	1/0	9.6874	28.591	-75.68	-47.09
Mid	20	55891	3615.1	1/99	20	56089	3634.9	1/0	5.1715	28.591	-76.16	-47.57
High	20	56442	3670.2	1/99	20	56640	3690.0	1/0	8.2543	28.591	-76.45	-47.86
Low	20	55340	3560.0	1/0	20	55538	3579.8	1/99	8.2926	28.591	-75.30	-46.71
Mid	20	55891	3615.1	1/0	20	56089	3634.9	1/99	8.2617	28.591	-76.10	-47.51
High	20	56442	3670.2	1/0	20	56640	3690.0	1/99	8.2971	28.591	-75.64	-47.04
Low	20	55340	3560.0	100/0	20	55538	3579.8	100/0	3.9891	27.976	-75.78	-47.80
Mid	5	55898	3615.8	25/0	20	56015	3627.5	100/0	4.3051	27.976	-75.74	-47.77
High	20	56442	3670.2	100/0	20	56640	3690.0	100/0	8.3086	28.591	-75.37	-46.78
Mid	20	55891	3615.1	100/0	20	56089	3634.9	100/0	9.6825	28.591	-76.57	-47.98

Note:

1. Modulation : 16QAM
2. Factor $(\mathrm{dB})=$ Cable Loss + Ext. Attenuator + Power Splitter
3. Factors for frequency :

Frequency Range (GHz)	Factor [dB]
$0.03-1$	25.270
$1-5$	27.976
$5-10$	28.591
$10-15$	29.116
$15-20$	29.489
Above 20(26.5)	30.131

4. Limit : -40.0 dBm

Frequency Range : $30 \mathrm{MHz} \sim 10 \mathrm{GHz}$

PCC 20 MHz Ch55340 RB1 Offset99 SCC 20 MHz Ch55538 RB1 Offset0

PCC 20 MHz Ch55891 RB1 Offset99 SCC 20 MHz Ch56089 RB1 Offset0

PCC 20 MHz Ch56442 RB1 Offset99 SCC 20 MHz Ch56640 RB1 Offset0

PCC 20 MHz Ch55340 RB1 Offset0 SCC 20 MHz Ch55538 RB1 Offset99

PCC 20 MHz Ch55891 RB1 Offset0 SCC 20 MHz Ch56089 RB1 Offset99

PCC 20 MHz Ch56442 RB1 Offset0 SCC 20 MHz Ch56640 RB1 Offset99

PCC 20 MHz Ch55340 RB100 Offset0 SCC 20 MHz Ch55538 RB100 Offset0

PCC 5MHz Ch55898 RB25 Offset0 SCC 20 MHz Ch56015 RB100 Offset0

PCC 20 MHz Ch56442 RB100 Offset0 SCC 20 MHz Ch56640 RB100 Offset0

PCC 20 MHz Ch55891 RB100 Offset0 SCC 20 MHz Ch56089 RB100 Offset0

Frequency Range : $10 \mathrm{GHz} \sim 37 \mathrm{GHz}$

PCC 20 MHz Ch55340 RB1 Offset99, SCC 20 MHz Ch55538 RB1 Offset0

PCC 20 MHz Ch55891 RB1 Offset99, SCC 20 MHz Ch56089 RB1 Offset0

PCC 20 MHz Ch56442 RB1 Offset99, SCC 20 MHz Ch56640 RB1 Offset0

PCC 20 MHz Ch55340 RB1 Offset0, SCC 20 MHz Ch55538 RB1 Offset99

PCC 20 MHz Ch55891 RB1 Offset0, SCC 20 MHz Ch56089 RB1 Offset99

PCC 20 MHz Ch56442 RB1 Offset0, SCC 20 MHz Ch56640 RB1 Offset99

PCC 20 MHz Ch55340 RB100 Offset0, SCC 20 MHz Ch55538 RB100 Offset0

PCC 5MHz Ch55898 RB25 Offset0, SCC 20 MHz Ch56015 RB100 Offset0

PCC 20 MHz Ch56442 RB100 Offset0, SCC 20 MHz Ch56640 RB100 Offset0

PCC 20 MHz Ch55891 RB100 Offset0, SCC 20 MHz Ch56089 RB100 Offset0

8.4 Channel Edge

PCC 20 MHz Ch55340 RB1 Offset99, SCC 20 MHz Ch55538 RB1 Offset0-1

PCC 20 MHz Ch55340 RB1 Offset99, SCC 20 MHz Ch55538 RB1 Offset0-2

PCC 20 MHz Ch55891 RB1 Offset99, SCC 20 MHz Ch56089 RB1 Offset0

PCC 20 MHz Ch56442 RB1 Offset99, SCC 20 MHz Ch56640 RB1 Offset0-1

PCC 20 MHz Ch56442 RB1 Offset99, SCC 20 MHz Ch56640 RB1 Offset0-2

PCC 20 MHz Ch55340 RB1 Offset0, SCC 20 MHz Ch55538 RB1 Offset99-1

PCC 20 MHz Ch55340 RB1 Offset0, SCC 20 MHz Ch55538 RB1 Offset99-2

PCC 20 MHz Ch55891 RB1 Offset0, SCC 20 MHz Ch56089 RB1 Offset99

PCC 20 MHz Ch56442 RB1 Offset0, SCC 20 MHz Ch56640 RB1 Offset99-1

PCC 20 MHz Ch56442 RB1 Offset0, SCC 20 MHz Ch56640 RB1 Offset99-2

PCC 20 MHz Ch55340 RB100 Offset0, SCC 20 MHz Ch55538 RB100 Offset0-1

PCC 20 MHz Ch55340 RB100 Offset0, SCC 20 MHz Ch55538 RB100 Offset0-2

PCC 5MHz Ch55898 RB25 Offset0, SCC 20 MHz Ch56015 RB100 Offset0

PCC 20 MHz Ch56442 RB100 Offset0, SCC 20 MHz Ch56640 RB100 Offset0-1

PCC 20 MHz Ch56442 RB100 Offset0, SCC 20 MHz Ch56640 RB100 Offset0-2

PCC 20 MHz Ch55891 RB100 Offset0, SCC 20 MHz Ch56089 RB100 Offset0

8.5 Frequency Stability / Variation Of Ambient Temperature

- PCC Channel:
- PCC Frequency:
- PCC BandWidth:
- SCC Channel:
- SCC Frequency:
- SCC BandWidth:
- Voltage:
\square LIMIT:

55273
3553.3

MHz
MHz
55390
3565.0

MHz
20
3.880

Emission must remain in band

Voltage (\%)	Power (VDC)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	PPM		Frequency Error (MHz)	
			PCC	SCC	PCC	SCC
100%	3.880	+20(Ref)	0.027	-0.028	3553.30010	3564.99985
100%		-30	0.035	-0.027	3553.30012	3564.99989
100%		-20	0.023	0.021	3553.30004	3565.00006
100 \%		-10	-0.035	0.023	3553.29985	3565.00009
100%		0	0.033	0.026	3553.30004	3565.00009
100%		10	0.029	0.024	3553.30001	3565.00002
100%		30	0.021	0.033	3553.30000	3565.00007
100%		40	-0.040	0.036	3553.29985	3565.00008
100%		50	-0.042	0.031	3553.29981	3565.00008
Batt. Endpoint	3.300	20	0.029	-0.035	3553.30004	3564.99987

- PCC Channel: 55295
- PCC Frequency: 3555.5 MHz
- PCC BandWidth:

10
MHz

- SCC Channel:

55439
\square SCC Frequency:

- SCC BandWidth:
- Voltage :
- LIMIT:
3569.9 MHz

20 MHz
3.880 VDC

Emission must remain in band

Voltage(\%)	Power (VDC)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	PPM		Frequency Error (MHz)	
			PCC	SCC	PCC	SCC
100%	3.880	+20(Ref)	0.033	0.037	3555.50005	3569.90007
100 \%		-30	0.021	0.023	3555.50005	3569.90008
100 \%		-20	0.035	0.035	3555.50012	3569.90007
100%		-10	-0.049	-0.045	3555.49984	3569.89984
100%		0	0.026	0.028	3555.50011	3569.90006
100%		10	0.020	0.019	3555.50006	3569.90009
100%		30	-0.047	0.020	3555.49982	3569.90005
100%		40	0.034	0.017	3555.50009	3569.89999
100%		50	0.031	-0.042	3555.50008	3569.89981
Batt. Endpoint	3.300	20	0.026	0.036	3555.50008	3569.90013

■ PCC Channel:	55318	
■ PCC Frequency:	3557.8	MHz
\square PCC BandWidth:	15	MHz
■ SCC Channel:	55489	
\square SCC Frequency:	3574.9	MHz
\square SCC BandWidth:	20	MHz
\square Voltage :	3.880	VDC
\square LIMIT:	Emission must remain in band	

Voltage(\%)	Power (VDC)	Temp. (${ }^{\circ} \mathrm{C}$)	PPM		Frequency Error (MHz)	
			PCC	SCC	PCC	SCC
100 \%	3.880	+20(Ref)	0.025	0.036	3557.80007	3574.90008
100 \%		-30	0.034	0.041	3557.80006	3574.90009
100%		-20	0.032	-0.036	3557.80010	3574.89987
100%		-10	-0.045	-0.036	3557.79979	3574.89990
100%		0	0.036	-0.047	3557.80007	3574.89982
100%		10	0.022	-0.036	3557.80011	3574.89986
100%		30	0.038	0.024	3557.80008	3574.90003
100%		40	0.026	0.033	3557.80001	3574.90012
100%		50	-0.037	0.026	3557.79983	3574.90007
Batt. Endpoint	3.300	20	0.017	0.029	3557.80005	3574.90013

- PCC Channel:
- PCC Frequency:
- PCC BandWidth:
- SCC Channel:
\square SCC Frequency:
- SCC BandWidth:
- Voltage:
\square LIMIT:

55340
3560.0 MHz

20
55538
3579.8 MHz

20
3.880 VDC

Emission must remain in band

Voltage(\%)	Power (VDC)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	PPM		Frequency Error (MHz)	
			PCC	SCC	PCC	SCC
100%	3.880	+20(Ref)	-0.048	0.028	3559.99977	3579.80004
100%		-30	-0.032	0.021	3559.99985	3579.80003
100 \%		-20	0.022	0.019	3560.00001	3579.80002
100 \%		-10	-0.040	0.027	3559.99978	3579.80005
100%		0	0.039	-0.028	3560.00006	3579.79985
100%		10	0.026	0.023	3560.00001	3579.80008
100%		30	0.036	-0.040	3560.00011	3579.79985
100%		40	0.032	-0.044	3560.00013	3579.79986
100%		50	0.030	0.029	3560.00013	3579.80007
Batt. Endpoint	3.300	20	0.034	0.029	3560.00009	3579.80003

- PCC Channel:
- PCC Frequency:
- PCC BandWidth:
- SCC Channel:
\square SCC Frequency:
- SCC BandWidth:
- Voltage:
- LIMIT:

56523
3678.3 MHz

5
MHz
56640
3690.0 MHz

20 MHz
3.880 VDC

Emission must remain in band

Voltage (\%)	Power (VDC)	Temp. (${ }^{\circ} \mathrm{C}$)	PPM		Frequency Error (MHz)	
			PCC	SCC	PCC	SCC
100%	3.880	+20(Ref)	-0.038	0.037	3678.29985	3690.00012
100%		-30	0.031	0.022	3678.30004	3690.00006
100%		-20	-0.030	0.025	3678.29987	3690.00005
100%		-10	0.030	-0.041	3678.30014	3689.99976
100 \%		0	0.041	-0.037	3678.30012	3689.99982
100%		10	0.027	0.026	3678.30005	3690.00002
100 \%		30	0.019	-0.035	3678.30001	3689.99982
100%		40	0.031	-0.044	3678.30003	3689.99986
100%		50	0.027	0.028	3678.30004	3690.00002
Batt. Endpoint	3.300	20	0.036	0.020	3678.30012	3690.00010

- PCC Channel:
- PCC Frequency:
- PCC BandWidth:
- SCC Channel:
\square SCC Frequency:
\square SCC BandWidth:
- Voltage:
- LIMIT:

56496
3675.6 MHz

10
56640
3690.0 MHz

20
3.880 VDC

Emission must remain in band

Voltage (\%)	Power (VDC)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	PPM		Frequency Error (MHz)	
			PCC	SCC	PCC	SCC
100 \%	3.880	+20(Ref)	0.034	0.023	3675.60012	3690.00000
100%		-30	0.031	0.018	3675.60011	3690.00000
100%		-20	0.028	-0.034	3675.60010	3689.99982
100 \%		-10	0.029	0.034	3675.60006	3690.00008
100%		0	0.014	-0.042	3675.60000	3689.99983
100%		10	0.030	0.029	3675.60005	3690.00008
100%		30	-0.036	0.031	3675.59981	3690.00011
100%		40	0.032	0.039	3675.60013	3690.00006
100%		50	-0.038	0.019	3675.59981	3690.00003
Batt. Endpoint	3.300	20	0.040	0.029	3675.60013	3690.00002

- PCC Channel:
- PCC Frequency:
- PCC BandWidth:
- SCC Channel:
\square SCC Frequency:
\square SCC BandWidth:
- Voltage:
- LIMIT:

56469
3672.9 MHz

15
56640
3690.0 MHz

20 MHz
3.880 VDC

Emission must remain in band

Voltage (\%)	Power (VDC)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	PPM		Frequency Error (MHz)	
			PCC	SCC	PCC	SCC
100 \%	3.880	+20(Ref)	0.025	-0.042	3672.90009	3689.99983
100%		-30	-0.050	0.038	3672.89982	3690.00006
100 \%		-20	-0.035	-0.034	3672.89983	3689.99984
100 \%		-10	0.028	-0.031	3672.90009	3689.99983
100%		0	0.030	0.019	3672.90004	3690.00008
100%		10	0.025	-0.041	3672.90002	3689.99985
100%		30	0.030	0.036	3672.90009	3690.00009
100%		40	0.040	0.024	3672.90006	3690.00009
100%		50	0.021	0.017	3672.90008	3690.00006
Batt. Endpoint	3.300	20	0.035	0.031	3672.90009	3690.00005

- PCC Channel:
- PCC Frequency:
- PCC BandWidth:
- SCC Channel:
\square SCC Frequency:
- SCC BandWidth:
- Voltage:
\square LIMIT:

56442
3670.2 MHz

20
56640
3690.0 MHz

20
3.880 MHz

Emission must remain in band

Voltage (\%)	Power (VDC)	Temp. (${ }^{\circ} \mathrm{C}$)	PPM		Frequency Error (MHz)	
			PCC	SCC	PCC	SCC
100%	3.880	+20(Ref)	0.036	-0.040	3670.20014	3689.99981
100%		-30	0.019	0.027	3670.20000	3690.00001
100%		-20	0.026	0.034	3670.20003	3690.00010
100%		-10	0.030	0.042	3670.20010	3690.00008
100 \%		0	0.032	-0.048	3670.20010	3689.99980
100%		10	0.034	0.032	3670.20005	3690.00010
100%		30	-0.038	0.035	3670.19989	3690.00004
100%		40	-0.035	0.022	3670.19986	3690.00004
100%		50	-0.037	0.026	3670.19980	3690.00007
Batt. Endpoint	3.300	20	-0.026	0.024	3670.19982	3690.00002

8.6 Radiated Spurious Emissions

- PCC Channel:

55340 (3560.0 MHz)

- PCC BW(MHz):

20

- PCC RB/RB Offset :

1/99

- SCC Channel :
- SCC BW(MHz):

55538 (3579.8 MHz)

- SCC RB/RB Offset:
- DISTANCE:
- LIMIT:

Freq.(MHz)	Measured Level $[\mathrm{dBm}]$	Ant. Gain (dBi)	Substitute Level $[\mathrm{dBm}]$	C.L	Pol.	Result (dBm)
7139.80	-57.27	10.79	-58.63	4.59	V	-52.43
10709.70	-58.35	11.34	-54.06	5.82	V	-48.54
14279.60	-60.86	11.74	-49.80	6.79	V	-44.85

- PCC Channel:
55891 (3615.1 MHz)
- PCC BW(MHz): 20
- PCC RB/RB Offset :
$1 / 99$
- SCC Channel:

56089 (3634.9 MHz)

- SCC BW(MHz) :

20

- SCC RB/RB Offset:
$1 / 0$
- DISTANCE:

1 meters

- LIMIT:
$-40.0 \mathrm{dBm}$

Freq.(MHz)	Measured Level $[\mathrm{dBm}]$	Ant. Gain (dBi)	Substitute Level $[\mathrm{dBm}]$	C.L	Pol.	Result (dBm)
7250.00	-59.48	10.74	-61.41	4.64	V	-55.31
10875.00	-59.86	11.04	-52.91	5.72	V	-47.59
14500.00	-60.98	11.45	-49.79	6.81	H	-45.15

- PCC Channel:
56442 (3670.2 MHz)
- PCC BW(MHz):
- PCC RB/RB Offset :
$1 / 99$
- SCC Channel:
$56640(3690.0 \mathrm{MHz})$
- SCC BW(MHz) :

20

- SCC RB/RB Offset:
$1 / 0$
- DISTANCE:

1 meters

- LIMIT:
$-40.0 \mathrm{dBm}$

Freq.(MHz)	Measured Level $[\mathrm{dBm}]$	Ant. Gain (dBi)	Substitute Level $[\mathrm{dBm}]$	C.L	Pol.	Result (dBm)
7360.20	-58.75	10.83	-59.69	4.65	H	-53.51
11040.30	-57.61	10.97	-52.45	5.78	H	-47.26
14720.40	-61.48	11.30	-50.30	6.96	V	-45.96

8.7 Occupied Bandwidth

| | PCC | | | | SCC | | | | | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BW
 $[\mathrm{MHz}]$ | Ch | Freq
 $[\mathrm{MHz}]$ | Mod | RB/
 Offset | BW
 $[\mathrm{MHz}]$ | Ch | Freq
 $[\mathrm{MHz}]$ | Mod | RB/
 Offset | (MHz) |
| 5 | 55898 | 3615.8 | QPSK | $25 / 0$ | 20 | 56015 | 3627.5 | QPSK | $100 / 0$ | 22.932 |
| 10 | 55896 | 3615.6 | QPSK | $50 / 0$ | 20 | 56040 | 3630 | QPSK | $100 / 0$ | 27.591 |
| 15 | 55893 | 3615.3 | QPSK | $75 / 0$ | 20 | 56064 | 3632.4 | QPSK | $100 / 0$ | 32.624 |
| 20 | 55965 | 3622.5 | QPSK | $100 / 0$ | 5 | 56082 | 3634.2 | QPSK | $25 / 0$ | 22.730 |
| 20 | 55941 | 3620.1 | QPSK | $100 / 0$ | 10 | 56085 | 3634.5 | QPSK | $50 / 0$ | 27.766 |
| 20 | 55916 | 3617.6 | QPSK | $100 / 0$ | 15 | 56087 | 3634.7 | QPSK | $75 / 0$ | 32.566 |
| 20 | 55891 | 3615.1 | QPSK | $100 / 0$ | 20 | 56089 | 3634.9 | QPSK | $100 / 0$ | 37.313 |

PCC					SCC					$\begin{aligned} & \text { Data } \\ & (\mathrm{MHz}) \end{aligned}$
$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch	$\begin{gathered} \text { Freq } \\ {[\mathrm{MHz}]} \end{gathered}$	Mod	$\mathrm{RB} /$ Offset	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch	$\begin{aligned} & \text { Freq } \\ & \text { [MHz] } \end{aligned}$	Mod	RB/ Offset	
5	55898	3615.8	16QAM	25/0	20	56015	3627.5	16QAM	100/0	22.846
10	55896	3615.6	16QAM	50/0	20	56040	3630.0	16QAM	100/0	27.653
15	55893	3615.3	16QAM	75/0	20	56064	3632.4	16QAM	100/0	32.675
20	55965	3622.5	16QAM	100/0	5	56082	3634.2	16QAM	25/0	22.922
20	55941	3620.1	16QAM	100/0	10	56085	3634.5	16QAM	50/0	27.660
20	55916	3617.6	16QAM	100/0	15	56087	3634.7	16QAM	75/0	32.524
20	55891	3615.1	16QAM	100/0	20	56089	3634.9	16QAM	100/0	37.718

PCC					SCC					Data(MHz)
BW [MHz]	Ch	Freq [MHz]	Mod	RB/ Offset	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch	Freq [MHz]	Mod	RB/ Offset	
5	55898	3615.8	64QAM	25/0	20	56015	3627.5	64QAM	100/0	22.712
10	55896	3615.6	64QAM	50/0	20	56040	3630	64QAM	100/0	27.645
15	55893	3615.3	64QAM	75/0	20	56064	3632.4	64QAM	100/0	32.774
20	55965	3622.5	64QAM	100/0	5	56082	3634.2	64QAM	25/0	22.741
20	55941	3620.1	64QAM	100/0	10	56085	3634.5	64QAM	50/0	27.784
20	55916	3617.6	64QAM	100/ 0	15	56087	3634.7	64QAM	75/0	32.560
20	55891	3615.1	64QAM	100/ 0	20	56089	3634.9	64QAM	100/0	37.254
		PCC					SCC			
$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch	Freq [MHz]	Mod	RB/ Offset	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch	$\begin{gathered} \text { Freq } \\ \text { [MHz] } \end{gathered}$	Mod	RB/ Offset	(MHz)
5	55898	3615.8	256QAM	25/0	20	56015	3627.5	256QAM	100/ 0	21.651
10	55896	3615.6	256QAM	50/ 0	20	56040	3630.0	256QAM	100/0	27.748
15	55893	3615.3	256QAM	75/0	20	56064	3632.4	256QAM	100/0	32.648
20	55965	3622.5	256QAM	100/0	5	56082	3634.2	256QAM	25/0	22.720
20	55941	3620.1	256QAM	100/0	10	56085	3634.5	256QAM	50/0	27.670
20	55916	3617.6	256QAM	100/0	15	56087	3634.7	256QAM	75/0	32.548
20	55891	3615.1	256QAM	100/0	20	56089	3634.9	256QAM	100/0	37.519

Note:

In order to simplify the report, attached plots were only Max. Bandwidth(20+20)

PCC 20 MHz Ch55891 RB100 Offset0, SCC 20 MHz Ch56089 RB100 Offset0_(QPSK)

PCC 20 MHz Ch55891 RB100 Offset0, SCC 20 MHz Ch56089 RB100 Offset0_(16QAM)

PCC 20 MHz Ch55891 RB100 Offset0, SCC 20 MHz Ch56089 RB100 Offset0_(64QAM)

PCC 20 MHz Ch55891 RB100 Offset0, SCC 20 MHz Ch56089 RB100 Offset0_(256QAM))

8.8 Peak- to- Average Ratio

PCC					SCC					$\begin{aligned} & \text { Data } \\ & \text { (dB) } \end{aligned}$
$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch	Freq [MHz]	Mod	$\begin{gathered} \text { RB/ } \\ \text { Offset } \end{gathered}$	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch	Freq [MHz]	Mod	RB/ Offset	
5	55898	3615.8	QPSK	25/0	20	56015	3627.5	QPSK	100/0	5.44
10	55896	3615.6	QPSK	50/0	20	56040	3630	QPSK	100/0	5.42
15	55893	3615.3	QPSK	75/0	20	56064	3632.4	QPSK	100/0	5.48
20	55965	3622.5	QPSK	100/0	5	56082	3634.2	QPSK	25/0	5.55
20	55941	3620.1	QPSK	100/0	10	56085	3634.5	QPSK	50/0	5.59
20	55916	3617.6	QPSK	100/0	15	56087	3634.7	QPSK	75/0	5.56
20	55891	3615.1	QPSK	100/0	20	56089	3634.9	QPSK	100/0	5.57

PCC					SCC					Data
BW $[\mathrm{MHz}]$	Ch	Freq $[\mathrm{MHz}]$	Mod	RB/ Offset	BW $[\mathrm{MHz}]$	Ch	Freq $[\mathrm{MHz}]$	Mod	RB/ Offset	(dB)
5	55898	3615.8	16QAM	$25 / 0$	20	56015	3627.5	16QAM	$100 / 0$	6.46
10	55896	3615.6	16QAM	$50 / 0$	20	56040	3630.0	16QAM	$100 / 0$	6.39
15	55893	3615.3	16QAM	$75 / 0$	20	56064	3632.4	16QAM	$100 / 0$	6.33
20	55965	3622.5	16QAM	$100 / 0$	5	56082	3634.2	16QAM	$25 / 0$	6.41
20	55941	3620.1	16QAM	$100 / 0$	10	56085	3634.5	16QAM	$50 / 0$	6.39
20	55916	3617.6	16QAM	$100 / 0$	15	56087	3634.7	16QAM	$75 / 0$	6.42
20	55891	3615.1	16QAM	$100 / 0$	20	56089	3634.9	16QAM	$100 / 0$	6.47

PCC					SCC					Data (dB)
$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch	Freq [MHz]	Mod	RB/ Offset	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch	$\begin{gathered} \text { Freq } \\ {[\mathrm{MHz}]} \end{gathered}$	Mod	RB/ Offset	
5	55898	3615.8	64QAM	25/0	20	56015	3627.5	64QAM	100/0	6.97
10	55896	3615.6	64QAM	50/0	20	56040	3630	64QAM	100/0	6.96
15	55893	3615.3	64QAM	75/0	20	56064	3632.4	64QAM	100/0	6.83
20	55965	3622.5	64QAM	100/0	5	56082	3634.2	64QAM	25/0	7.15
20	55941	3620.1	64QAM	100/0	10	56085	3634.5	64QAM	50/0	6.86
20	55916	3617.6	64QAM	100/0	15	56087	3634.7	64QAM	75/0	6.80
20	55891	3615.1	64QAM	100/0	20	56089	3634.9	64QAM	100/0	6.96
PCC					SCC					Data (dB)
$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch	Freq [MHz]	Mod	RB/ Offset	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch	Freq [MHz]	Mod	RB/ Offset	
5	55898	3615.8	256QAM	25/0	20	56015	3627.5	256QAM	100/0	7.32
10	55896	3615.6	256QAM	50/0	20	56040	3630	256QAM	100/0	7.06
15	55893	3615.3	256QAM	75/0	20	56064	3632.4	256QAM	100/0	6.95
20	55965	3622.5	256QAM	100/0	5	56082	3634.2	256QAM	25/0	7.33
20	55941	3620.1	256QAM	100/0	10	56085	3634.5	256QAM	50/0	6.95
20	55916	3617.6	256QAM	100/0	15	56087	3634.7	256QAM	75/0	6.94
20	55891	3615.1	256QAM	100/0	20	56089	3634.9	256QAM	100/0	7.15

Note:

In order to simplify the report, attached plots were only Max.Bandwidth(20+20)

PCC 20 MHz Ch55891 RB100 Offset0, SCC 20 MHz Ch56089 RB100 Offset0_(QPSK)

PCC 20 MHz Ch55891 RB100 Offset0, SCC 20 MHz Ch56089 RB100 Offset0_(16QAM)

PCC 20 MHz Ch55891 RB100 Offset0, SCC 20 MHz Ch56089 RB100 Offset0_(64QAM)

PCC 20 MHz Ch55891 RB100 Offset0, SCC 20 MHz Ch56089 RB100 Offset0_(256QAM)

8.9 Adjacent Channel Leakage Ratio(ACLR)

Operating	PCC				SCC				Adjacent Channel Leakage Ratio(dB)	
frequency	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch.	Freq. (MHz)	RB/ Offset	$\begin{gathered} \mathrm{BW} \\ {[\mathrm{MHz}]} \end{gathered}$	Ch.	Freq. (MHz)	RB/ Offset	Lower Side	Upper Side
Low	20	55340	3560.0	100/0	20	55538	3579.8	100/0	40.74	45.72
Mid	5	55898	3615.8	25/0	20	56015	3627.5	100/0	36.00	48.04
High	20	56442	3670.2	100/0	20	56640	3690.0	100/0	41.95	45.88
Mid	20	55891	3615.1	100/0	20	56089	3634.9	100/0	40.51	44.36
Limit (dB)									ACLR > 30 dB	ACLR > 30 dB

Note:

1. Duty Cycle factor already applied on the factor.

- Duty Cycle factor(dB) $=3.979$
- Factor $(\mathrm{dB})=$ Duty Cycle factor + Cable Loss + Ext. Attenuator + Power Splitter

PCC 20 MHz Ch55340 RB100 Offset0, SCC 20 MHz Ch55538 RB100 Offset0

PCC 5 MHz Ch55898 RB25 Offset0, SCC 20 MHz Ch56015 RB100 Offset0

PCC 20 MHz Ch56442 RB100 Offset0, SCC 20 MHz Ch56640 RB100 Offset0

PCC 20 MHz Ch55891 RB100 Offset0, SCC 20 MHz Ch56089 RB100 Offset0

9. ANNEX A_TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;
No.
Description

1
HCT-RF-2404-FC039-P

