

APPENDIX C: PROBE AND DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of

Element

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2300V2-1073_Aug22

CALIBRATION CERTIFICATE

Object	D2300V2 - SN:10	73	BN 09-01-22
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources be	tween 0.7-3 GHz
Calibration date:	August 25, 2022		an an margana a sana arawana Kang Kanang Jana na arawana kata
		onal standards, which realize the physical units of robability are given on the following pages and are	
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 \pm 3)°C and	d humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	02-May-22 (No. DAE4-601_May22)	May-23
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Aldonia Georgiadou	Laboratory Technician	AZ
Approved by:	Sven Kühn	Technical Manager	SUT
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory.	Issued: August 25, 2022

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the 0 center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled 0 phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

The following parameters and carsulations and	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.69 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	44 10 00 PT	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	48.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	1.86 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	48.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.96 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.5 Ω + 2.5 jΩ
Return Loss	- 30.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.7 Ω + 1.4 jΩ
Return Loss	- 23.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.164 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

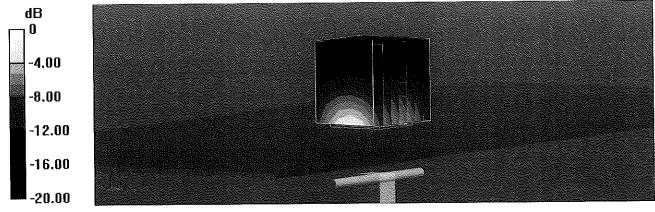
Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 24.08.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1073


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; σ = 1.69 S/m; ϵ_r = 38.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.98, 7.98, 7.98) @ 2300 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.8 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 22.6 W/kg SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.98 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 55% Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.3 W/kg = 12.86 dBW/kg

Impedance Measurement Plot for Head TSL

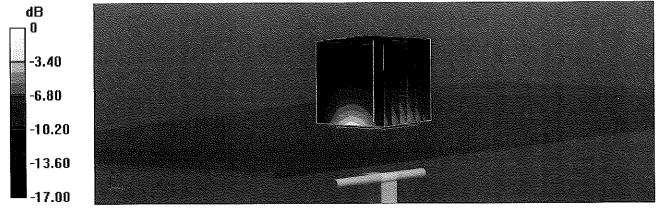
File	Yiew	Channel	Sw <u>e</u> ep	Calibration	<u>Trace</u> <u>S</u> cale	M <u>a</u> rker	S <u>y</u> stem <u>W</u> l	ndow <u>H</u>	elp			
					A	XX		~	300000 G 172.34 300000 G	pН	2.4 29.69	466 Ω 906 Ω 36 mU 20.18 °
	Chi:St	Ch 1 Avg = art 2,10000	: 20 GHz	******		**************************************					Stop 2.5	60000 GHz
-35 Lan	0 0 00 .00 .00 ₪ .00	Ch 1 Avg	= 20 GHz				> 1:	2				548 dB
	atus	CH 1;	<u>\$11</u>] C* 1-Port		Avg=20 De	elay				.CL

DASY5 Validation Report for Body TSL

Date: 25.08.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1073


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; σ = 1.86 S/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

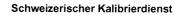
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.13, 8.13, 8.13) @ 2300 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.2 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 23.0 W/kg SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.96 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 54.7% Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.3 W/kg = 12.87 dBW/kg


Impedance Measurement Plot for Body TSL

File View	Channel	Sweep	Calibration	<u>Trace</u> <u>S</u> calo	e M <u>a</u> rker	System W	indow b	<u>H</u> elp		
Ch1: St	Ch 1 Avg ≍ art 2.10000	GHz						.300000 G 96.460 .300000 G	pН	43.724 Ω 1.3940 Ω 68.592 mU 166.63 ° \$top 2.50000 GHz
10.00	88 SM	T T		Ţ		> 1		3 00000 C	Hz	-2\$.275 dB
5.00 0.00							· •			
-5.00										
-10.00		······································	~~~~							
-15.00 -20.00				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
-25.00					man and a second second					
-30.00										
-35,00 -40,00	Ch 1 Avg ≈	20								
Ch1: SI	tart 2.10000	GHz -		1						Stop 2.58008 GHz
Status	CH 1:	511	99099-9207-9207-9207-9207-9207-9207-9207	C* 1-Port		Avg=20 D	0.440333333			LCL

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Service suisse d'étalonnage

S

С

S

- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the red	cognition of calibration	certificates	
Client Element Yongin, Republic of K	iorea	Certificate No.	D2450V2-945_May23
CALIBRATION C	ERTIFICATI		
Object	D2450V2 - SN:94	45	
Calibration procedure(s)	QA CAL-05.v12 Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	May 11, 2023		실무자 기술책임자 The 16/9/2023
		onal standards, which realize the physical uni- robability are given on the following pages and	
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 ± 3)°C	and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 7349	10-Jan-23 (No. EX3-7349_Jan23)	Jan-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID #	Check Date (in house)	Schodulad Chaolu
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	Scheduled Check In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
Calibrated by:	Name Paulo Pina	Function Laboratory Technician	Signature
Approved by:	Sven Kühn	Technical Manager	S, 15
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory.	Issued: May 16, 2023

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm 3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.9 W/kg ± 17.0 % (k=2)
		Constant Con
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.23 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	· · · ·
SAR measured	250 mW input power	12.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4 Ω + 1.8 jΩ
Return Loss	- 26.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.4 Ω + 4.8 jΩ
Return Loss	- 26.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	(, , , , , , , , , , , , , , , , , , ,
	1.15/ ns
	1.107 113

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

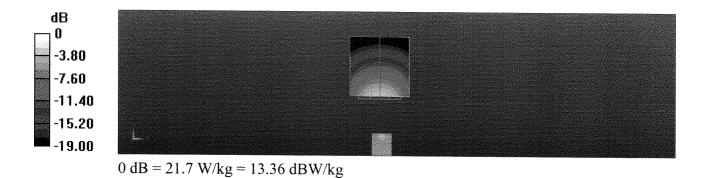
Manufactured by	SPEAC
	SPEAG

DASY5 Validation Report for Head TSL

Date: 11.05.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:945


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 10.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 115.4 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 25.8 W/kg **SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.23 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.7% Maximum value of SAR (measured) = 21.7 W/kg

Impedance Measurement Plot for Head TSL

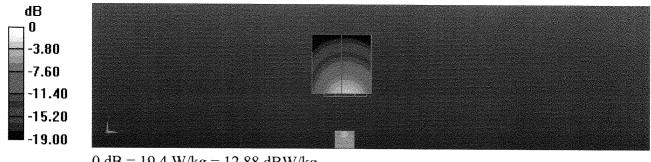
jle	⊻iew	Channel	Sw <u>e</u> ep	Calibration	<u>T</u> race	<u>5</u> cale	M <u>a</u> rker	System	<u>W</u> indow	Help)	adanta sumana		
						XXX					50000 119.6 50000	2 pH	1 45.5	1.379 C 8415 C 505 mL 1.797 °
		Ch 1 Awg = art 2.25000 (2700			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		X				Stop 2.	.65000 GH;
anninger det						STADDOGO STADOGO STADO	An example of the second s			decision de suo			and the second	
5.0	o f	18.511							1	2.45	50000	GHz	-26	839 dB
5.0 0.0		18 S 11						>	1	2.45	50000 1	GHz	-26	839 dE
5.0 0.0 -5.0 -10.										2.45	50000 י	3Hz	<u>-26</u>	839 dE
5.0 0.0 -5.0 -10.									1:	2.45	50000 1	GHz 	(-26.	839 de
5.0 0.0 -5.0 -10. -15. -20.								>	1	2.45	50000 •	GHz	(-28	839 dE
5.0 0.0 -5.0 -10. -20. -25. -30.										2.45	50000 ·	GHz	(-26. 	839 de
10.0 5.0 -5.0 -10. -15. -20. -25. -30. -35. -40.		16 511 	20 5Hz							2.45	50000 ·	GHz		839 dE

DASY5 Validation Report for Body TSL

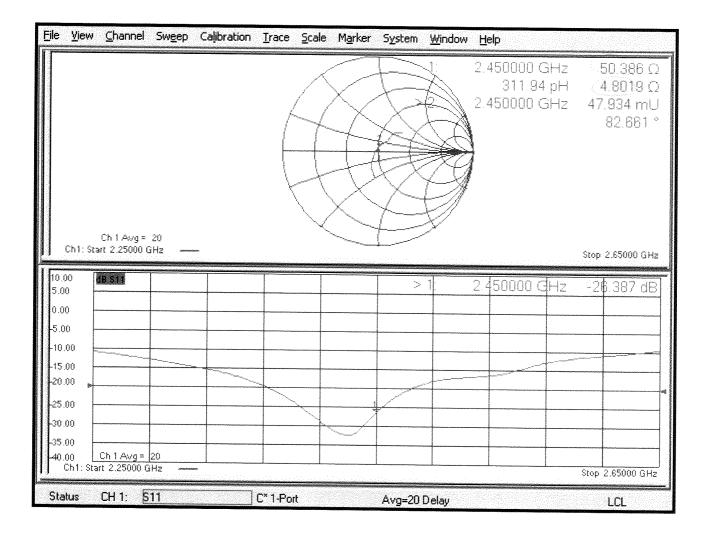
Date: 09.05.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:945


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 10.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.6 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 23.4 W/kg **SAR(1 g) = 12.7 W/kg; SAR(10 g) = 6.01 W/kg** Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 55.9% Maximum value of SAR (measured) = 19.4 W/kg

0 dB = 19.4 W/kg = 12.88 dBW/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

-MR datas

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S
 - **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Element Certificate No: D2450V2-882_Feb23

S

CALIBRATION CERTIFICATE

bject D2450V2 - SN:882							
Calibration procedure(s)	QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz						
Calibration date:	February 13, 202	3	실무자 기술책임자				
	-	nal standards, which realize the physic obability are given on the following page					
All calibrations have been conducte	d in the closed laborator	y facility: environment temperature (22 :	± 3)°C and humidity < 70%.				
Calibration Equipment used (M&TE	critical for calibration)						
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration				
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	/Apr-23				
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23				
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23				
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23				
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23				
Reference Probe EX3DV4	SN: 7349	10-Jan-23 (No. EX3-7349_Jan23)	Jan-24				
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23				
Secondary Standards	ID #	Check Date (in house)	Scheduled Check				
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24				
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24				
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24				
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24				
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24				
	Name	Function	Signature				
Calibrated by:	Paulo Pina	Laboratory Technician	terte				
Approved by:	Sven Kühn	Technical Manager					
			Issued: February 14, 2023				
This calibration certificate shall not	be reproduced except in	full without written approval of the labor	ratory.				

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	من من المراجع	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.08 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.4 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	(12.8 [°] W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.02 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2 Ω + 1.2 jΩ
Return Loss	-29.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8-Ω + 3.7 jΩ
Return Loss	(-28.1) dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

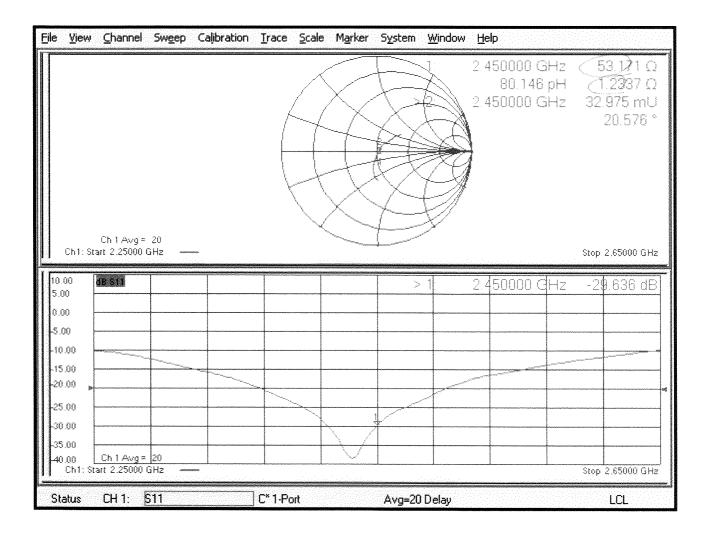
Date: 08.02.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:882

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = (1.85)$ S/m; $\epsilon_r = 39.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 10.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 115.0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.1 W/kg **SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.08 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.3% Maximum value of SAR (measured) = 21.7 W/kg

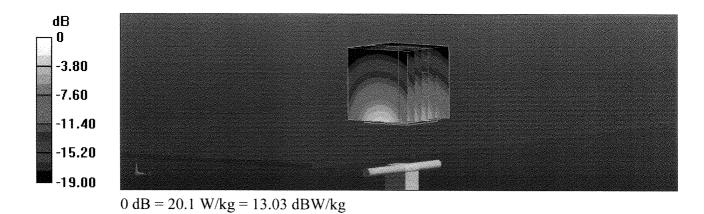
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

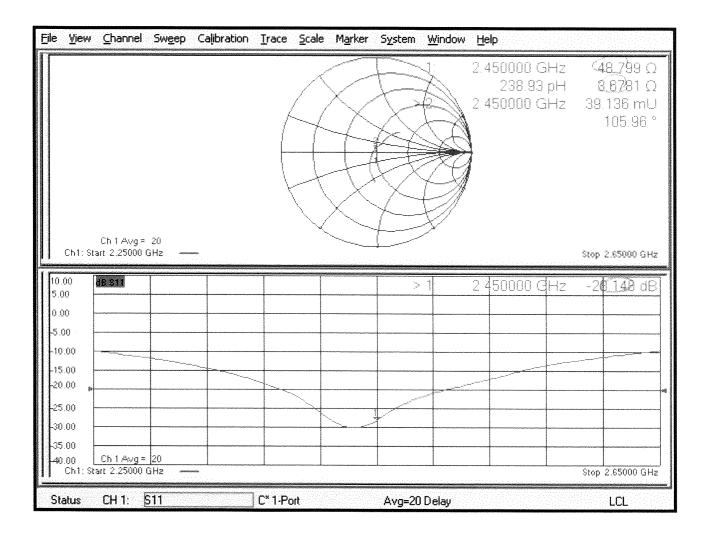
Date: 13.02.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:882


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.99 S/m; ϵ_r = 52.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 10.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.0 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 23.8 W/kg **SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6.02 W/kg** Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 54.9% Maximum value of SAR (measured) = 20.1 W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage C
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Object	D2450V2 - SN:9	81 ⁰⁰⁰⁰⁰⁰⁰	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	s between 0.7-3 GHz ,
			BN12-09-20
Calibration date:	November 25, 20)21 above to a final	BN12-09-20 BN11-25-22
This calibration certificate docume	ents the traceability to nat	ional standards, which realize the physical un	its of measurements (SI).
The measurements and the uncer	tainties with confidence p	robability are given on the following pages an	nd are part of the certificate.
All calibrations have been conduc	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%
		22 ± 3 (22 ± 3)	o anu numuny < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	
Power meter NRP	SN: 104778 SN: 103244	09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291)	Apr-22
Power meter NRP Power sensor NRP-Z91			
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22 Apr-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 103244 SN: 103245	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292)	Apr-22 Apr-22 Apr-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 103244 SN: 103245 SN: BH9394 (20k)	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343)	Apr-22 Apr-22 Apr-22 Apr-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 01-Nov-21 (No. DAE4-601_Nov21)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 01-Nov-21 (No. DAE4-601_Nov21)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22
	SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the . nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.2 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 5.8 jΩ
Return Loss	- 23.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.4 Ω + 8.5 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.163 ns		
	Electrical Delay (one direction)	1.163 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

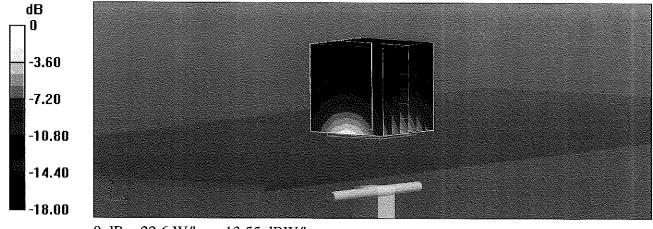
Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 25.11.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 981


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.42 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.1% Maximum value of SAR (measured) = 22.6 W/kg

0 dB = 22.6 W/kg = 13.55 dBW/kg

Impedance Measurement Plot for Head TSL

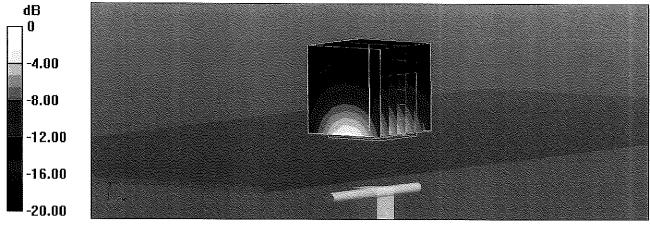
<u>F</u> ile	⊻iew	<u>C</u> hannel	Sw <u>e</u> ep	Calibration	<u>Trace</u> <u>S</u> cale	e M <u>a</u> rker	System	Window	<u>H</u> elp		
								2	450000 GH 374.71 p 450000 GH	H E Iz 66	i3.773 Ω i.7682 Ω .318 mU 53.629 °
	Ch1:St	Ch 1 Avg = art 2.25000 #	GHz	NEC			J	<u>11</u>		Stop	2.65000 GHz
10.0 5.0(5.0) 5.0) -10, -10, -20, -20, -25, -30, -35, -40, -	0 - 0 - 00 - 00 - 00 - 00 - 00 - 00 -	dB 311	20 GHz						450000 CF		3.567 dB

DASY5 Validation Report for Body TSL

Date: 25.11.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 981


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ S/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12) @ 2450 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.0 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 24.3 W/kg **SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6 W/kg** Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 54.1% Maximum value of SAR (measured) = 20.2 W/kg

0 dB = 20.2 W/kg = 13.05 dBW/kg

Impedance Measurement Plot for Body TSL

Eile Yiew	<u>C</u> hannel	Sweep	Calibration	<u>Trace S</u> cale	e M <u>a</u> rker	System	₩indow	Help			
				A	XXX		Δ	2.450000 C 551.81 2.450000 C	ρН	8,4 84,3	.350 Ω 1914 Ω 88 mU 2.801 °
Chi:S	Ch 1 Avg = Start 2,25000 (20 GHz		1						Stop 2.€	5000 GHz
10.00 5.00 0.00 -5.00 -10.00 -15.00						>		2.450000 C	3Hz	-21.4	174 dB
-20.00 s -25.00 -30.00 -35.00 -40.00 Ch1: S	Ch 1 Avg =	20 GHz								Stop 2.6	5000 GHz
Status	CH 1:	611		C* 1-Port		Avg=20	Delay			L	CL

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST) 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com

Certification of Calibration

Object

D2450V2 - SN: 981

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 11/24/2022

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

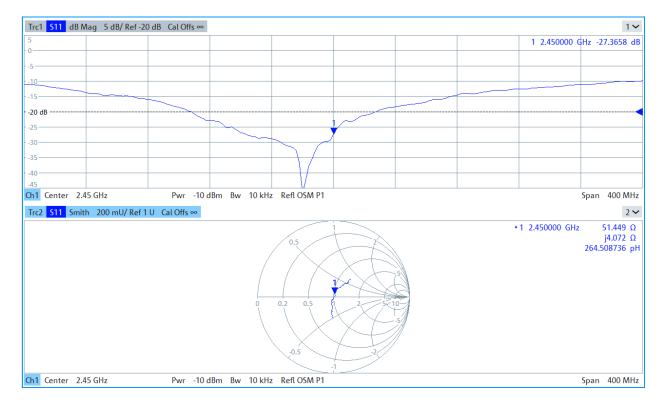
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	N5182A	MXG Vector Signal Generator	1/12/2022	Annual	1/12/2023	MY47420837
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343971
Anritsu	MA2411B	Pulse Power Sensor	3/28/2022	Annual	3/28/2023	1339007
Anritsu	MA2411B	Pulse Power Sensor	3/2/2022	Annual	3/2/2023	1126066
Anritsu	ML2496A	Power Meter	3/31/2022	Annual	3/31/2023	1138001
Anritsu	ML2496A	Power Meter	3/17/2022	Annual	3/17/2023	941001
Control Company	4040	Therm./ Clock/ Humidity Monitor	3/12/2021	Biennial	3/12/2023	210202100
Control Company	4352	Ultra Long Stem Thermometer	1/21/2022	Annual	1/21/2023	160508097
Control Company	4352	Long Stem Thermometer	9/10/2021	Biennial	9/10/2023	210774678
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE5011-1	Torque Wrench	12/21/2021	Biennial	12/21/2023	82475
Mini-Circuits	ZHDC-16-63-S+	Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/21/2022	Annual	10/21/2023	101307
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2022	Annual	5/12/2023	1070
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/21/2022	Annual	6/21/2023	MY53402352
SPEAG	EX3DV4	SAR Probe	2/21/2022	Annual	2/21/2023	7488
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/23/2022	Annual	2/23/2023	1415
SPEAG	EX3DV4	SAR Probe	6/16/2022	Annual	6/16/2023	7409
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/14/2022	Annual	6/14/2023	1334

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Tho Tong	Test Engineer	Tho Tong
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

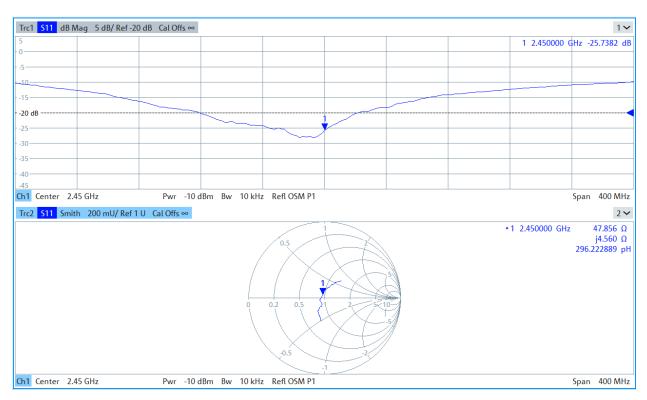
Object:	Date Issued:	Page 1 of 4	
D2450V2 – SN: 981	11/24/2022	Fage 1014	

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
11/25/2021	11/24/2022	1.163	5.39	5.22	-3.15%	2.54	2.43	-4.33%	53.8	51.4	2.4	5.8	4.1	1.7	-23.6	-27.4	-16.00%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
11/25/2021	11/24/2022	1.163	5.03	4.88	-2.98%	2.37	2.27	-4.22%	50.4	47.9	2.5	8.5	4.6	3.9	-21.5	-25.7	-19.70%	PASS

Object:	Date Issued:	Page 2 of 4	
D2450V2 – SN: 981	11/24/2022	r aye 2 01 4	

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4	
D2450V2 – SN: 981	11/24/2022	Page 3 of 4	

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 – SN: 981	11/24/2022	r aye 4 01 4

Calibration Laboratory of

Element

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1191_Jan23

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	191	ning general a state factor
Calibration procedure(s)	QA CAL-22.v7 Calibration Proce	dure for SAR Validation Sources	s between 3-10 GHz
Calibration date:	January 18, 2023	dure for SAR Validation Sources	8N 1/30/2023
	•	onal standards, which realize the physical un obability are given on the following pages ar	
All calibrations have been conducte Calibration Equipment used (M&TE		y facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 3503	08-Mar-22 (No. EX3-3503_Mar22)	Mar-23
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	M	- <i></i>	
	Name	Function	Signature Signature (States and States
Calibrated by:	Jeton Kastrati	Laboratory Technician	$\Rightarrow la$
Approved by:	Sven Kühn	Technical Manager	Ś. z-
This calibration certificate shall not	be reproduced except in	full without written approval of the laborator	lssued: January 19, 2023 y.

Schweizerischer Kalibrierdienst S

- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Service suisse d'étalonnage

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled • phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.5 ± 6 %	4.56 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.77 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

<u> </u>	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.4 ± 6 %	4.61 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.9 ± 6 %	4.98 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	,
SAR measured	100 mW input power	8.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.23 W/kg

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	5.19 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.89 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.0 ± 6 %	5.42 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	72.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.02 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.0 ± 6 %	5.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.6 ± 6 %	6.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.84 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.3 ± 6 %	6.18 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	6.24 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	72.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.0 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.6 Ω - 9.9 jΩ
Return Loss	- 20.1 dB

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	52.4 Ω - 6.7 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.9 Ω - 7.7 jΩ
Return Loss	- 21.6 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	54.3 Ω - 1.9 jΩ
Return Loss	- 26.9 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	50.9 Ω - 2.1 jΩ
Return Loss	- 32.8 dB

Antenna Parameters with Body TSL at 5200 MHz

Γ.

r

.

٣

Г

	Impedance, transformed to feed point	10.0.0.110
[Return Loss	48.8 Ω - 9.4 jΩ
1		- 20.4 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance,	transformed to feed point	
		50.2 Ω - 5.1 jΩ
Return Loss		- 25.9 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	
	55.6 Ω - 3.2 ϳΩ
Return Loss	
	- 24.3 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transforme	d to feed point	59.0 Ω + 3.0 ϳΩ
Return Loss		<u> </u>
		- 21.3 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	
	56.4 Ω + 2.7 ϳΩ
Return Loss	
	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns
	1.202 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

٣

Manufactured by	
	SPEAG

DASY5 Validation Report for Head TSL

Date: 09.01.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.56$ S/m; $\varepsilon_r = 36.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5250 MHz; $\sigma = 4.61$ S/m; $\varepsilon_r = 36.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 4.98$ S/m; $\varepsilon_r = 35.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 5.14$ S/m; $\varepsilon_r = 35.7$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.19$ S/m; $\varepsilon_r = 35.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.19$ S/m; $\varepsilon_r = 35.6$; $\rho = 1000$ kg/m³

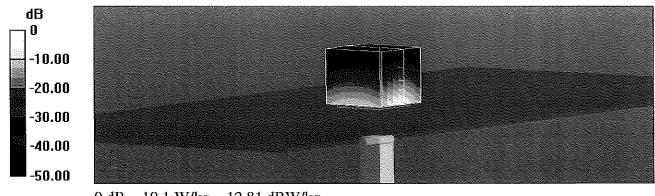
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.37 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 70.1% Maximum value of SAR (measured) = 17.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.89 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 71% Maximum value of SAR (measured) = 17.9 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.82 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 68% Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.59 V/m; Power Drift = -0.04 dBPeak SAR (extrapolated) = 30.1 W/kgSAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.23 W/kgSmallest distance from peaks to all points 3 dB below = 7.5 mmRatio of SAR at M2 to SAR at M1 = 66.4%Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.58 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 7.89 W/kg; SAR(10 g) = 2.23 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 65.9% Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 19.1 W/kg = 12.81 dBW/kg

Impedance Measurement Plot for Head TSL

File	⊻iew	Channel	Sw <u>e</u> ep	Calibration	<u>Trace</u> <u>S</u> cale	M <u>a</u> rker	System <u>W</u> ind	dow <u>H</u> elp		
								> 1 :	5.200000 GHz	50.648 Ω
					$ \land$. 2:	3.0839 pF 5.250000 GHz	-9.9245 Ω 52.407 Ω
						\land /	1		4.5449 pF	-6.670†Ω
					- 1	\sim	スト	Al 3:	5.600000 GHz 3.6872 pF	53.867 Ω -7.7078 Ω
						~{		4:	5.750000 GHz	54.316 Ω
								5:	14.469 p F 5.800000 GHz	-1.9130 Ω 50.959 Ω
							\mathcal{C}	TA -	12.864 p F	-2.1331 Q
					4	\mathcal{X}	XD	1		
						\times $^{\sim}$	1-17	/		
		~	a.a.		\sim		¥			
	Ch1:St	Ch 1 Avg = art 5.08000 #	GHz	4045		~~~ <u>-</u>			Stop	6.00000 GHz
10 5.		dB 811						≥ 1: 2:	5.200000 GHz 5.250000 GHz	-20,145 dB
									5.00000 GHz	
										-21.640 dB
1 3.	66 I							4:	5.50000 GHz	-28.888 dB
	.00									
	0.00							4:	5.50000 GHz	-28.888 dB
15	0.00 5.00			1				4:	5.50000 GHz	-28.888 dB
-15 -21	0.00 5.00 0.00 pr							4:	5.50000 GHz	-28.888 dB
-15 -20 -25	0.00 5.00 0.00 p 5.00							4:	5.50000 GHz	-28.888 dB
-15 -20 -25 -30	0.00 5.00 0.00 p 5.00 0.00							4:	5.30000 GHz 5.300000 GHz	-28.888 dB
-15 -20 -25 -30 -35	0.00 5.00 0.00 p 5.00 0.00 5.00							4:	5.30000 GHz 5.300000 GHz	-28.888 dB
-15 -20 -25 -30 -35	0.00 5.00 0.00 5.00 0.00 5.00 0.00	<u>Ch 1 Avg</u> = art 5.0000						4:	S. 50000 GHz S. 500000 GHz	28.888 dB
-15 -20 -25 -36 -35 -40	0.00 5.00 0.00 5.00 0.00 5.00 0.00	art 5.00000			C" 1-Port		Avg=20 Dela		S. 50000 GHz S. 500000 GHz	-28.888 dB

Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹

Evaluation Conditions (f=5200 MHz)

1	Phantom		
	Filditum	SAM Head Phantom	
		Universitie au Friantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

E.

r

F

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	82.4 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	86.3 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	82.3 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	52.4 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR for nominal Head TSL parameters	normalized to 1W	17.8 W/kg ± 19.9 % (k=2)	

 $^{^{\}rm I}$ Additional assessments outside the current scope of SCS 0108

Appendix: Transfer Calibration at Four Validation Locations on SAM Head²

Evaluation Conditions (f=5800 MHz)

Phantom		
rnamom	SAM Head Phantom	
	Onin neau Friantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

г

•

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	82.1 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	88.7 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	79.2 W/kg ± 20.3 % (k=2)
SAD even and the second second		
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	56.4 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	18.9 W/kg ± 19.9 % (k=2)

 $^{^{2}}$ Additional assessments outside the current scope of SCS 0108

Date: 18.01.2023

Test Laboratory: SPEAG, Zurich, Switzerland

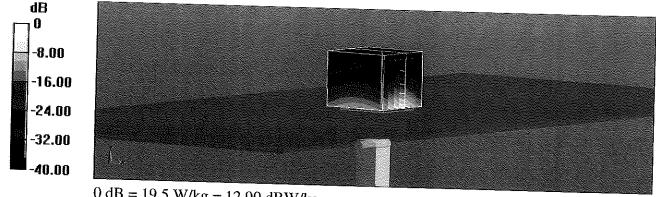
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.42$ S/m; $\varepsilon_r = 49.0$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5250 MHz; $\sigma = 5.51$ S/m; $\varepsilon_r = 49.0$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 6.00$ S/m; $\varepsilon_r = 48.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 6.18$ S/m; $\varepsilon_r = 48.3$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.24$ S/m; $\varepsilon_r = 48.2$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.24$ S/m; $\varepsilon_r = 48.2$; $\rho = 1000$ kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz, ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.91 V/m; Power Drift = -0.03 dBPeak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 7.23 W/kg; SAR(10 g) = 2.02 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.4% Maximum value of SAR (measured) = 17.3 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.43 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.07 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.3% Maximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.35 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.6 W/kg SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.18 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mmRatio of SAR at M2 to SAR at M1 = 64.1%Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.17 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.07 W/kgSmallest distance from peaks to all points 3 dB below = 7.2 mmRatio of SAR at M2 to SAR at M1 = 62.4%Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.89 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 7.21 W/kg; SAR(10 g) = 2.00 W/kgSmallest distance from peaks to all points 3 dB below = 7.4 mmRatio of SAR at M2 to SAR at M1 = 63.5%Maximum value of SAR (measured) = 18.2 W/kg

0 dB = 19.5 W/kg = 12.90 dBW/kg

Impedance Measurement Plot for Body TSL

ile <u>V</u> iew <u>C</u> hannel Sw <u>e</u> e	ep Calibration	<u>Trace</u> <u>S</u> cale	Marker	System	Window	Help		
		X			****	1:	5.200000 GHz	48,787
			\sum	\`	A	2:	3.2526 р.F 5.250000 GHz	-9,4098 50,184
		- KI	\sim	1-	11	3:	5.9365 pF 5.600000 GHz	-5.1066
		17	-4	$\ll \times$			8.9456 p F	55,647 -3.1770
						4:	5.750000 GHz 81.804pH	58,964 2.9554
					74	>5;	5,800000 GHz	56,437
		1-1	$\boldsymbol{\lambda}$	\times	<i>├</i> ─∕¶		74.034pH	2.6380
			\times $^{}$	/	=			
Ch 1 Avg = 20		\sim			Y			
Ch1: Start 5.00000 GHz -			~~					
		the the state of the second	and the second				Char	e opposite au
0.00 000							orob	6.00000 GH
					1	= 1:	5. 1 00000 6Hz	
5.00							5.200000 GHz 5.20000 GHz	-20.390 di -25.858 di
5.00							5.200000 GHz 5.50000 GHz 5.800000 GHz 5.50000 GHz	-20.390 df -25.859 df -24.250 df -21.251 df
5.00							5.200000 GHz 5.50000 GHz 5.60000 GHz	-20.390 df -25.859 df -24.250 df -21.251 df
5.00 5.00 0.00 0.00							5.200000 GHz 5.50000 GHz 5.800000 GHz 5.50000 GHz	-20.390 df -25.859 df -24.250 df -21.251 df
5.00	1						5.200000 GHz 5.50000 GHz 5.800000 GHz 5.50000 GHz	6.00000 GH -20.390 dE -25.859 dE -24.250 dE -21.251 dE -23.669 dE
5.00 5.00 5.00 5.00 5.00 5.00 0.00 8							5.200000 GHz 5.50000 GHz 5.800000 GHz 5.50000 GHz 5.50000 GHz 5.800000 GHz	-20.390 df -25.859 df -24.250 df -21.251 df
5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00						2; 3: 4: 5:	5.200000 GHz 5.50000 GHz 5.800000 GHz 5.50000 GHz 5.50000 GHz 5.800000 GHz	-20.390 df -25.859 df -24.250 df -21.251 df
5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00						2: 3: 4: 5:	5.200000 GHz 5.50000 GHz 5.800000 GHz 5.50000 GHz 5.50000 GHz 5.800000 GHz	-20.390 df -25.858 df -24.250 df -21.251 df
5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 0.00 Ch 1 Awg = 20						2: 3: 4: 5:	5.200000 GHz 5.50000 GHz 5.800000 GHz 5.50000 GHz 5.50000 GHz 5.800000 GHz	-20.390 di -25.859 di -24.250 di -21.251 di
5.00 5.00 10.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00						2: 3: 4: 5:	5.200000 GHz 5.50000 GHz 5.400000 GHz 5.30000 GHz 5.30000 GHz 5.30000 GHz 5.300000 GHz 5.30000 GHz 5.300000 GHz 5.30000 GHz 5.300000 GHZ 5.3000000 GHZ 5.300000 GHZ 5.3000000 GHZ 5.3000000 GHZ 5.300000 GHZ 5.3000000 GHZ 5.3000000 GHZ 5.30000000000 GHZ 5.3000000000000000000000000000000000000	-20.390 df -25.859 df -24.250 df -21.251 df

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1120_Feb23

Accreditation No.: SCS 0108

Element Client

CALIBRATION CI	ERTIFICATE		
Object	D5GHzV2 - SN:1	120	
Calibration procedure(s)	QA CAL-22.v7 Calibration Proce	dure for SAR Validation Source	s between 3-10 GHz
Colliburation datas	February 15, 202	3	실무자 기술책임자
Calibration date:		9	2023-02-27
This calibration certificate documen	its the traceability to natio	onal standards, which realize the physical u	nits of measurements (SI).
The measurements and the uncerta	ainties with confidence pr	obability are given on the following pages a	and are part of the certificate.
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 ± 3)	°C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 3503	08-Mar-22 (No. EX3-3503_Mar22)	Mar-23
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Paulo Pina	Laboratory Technician	tente
Approved by:	Sven Kühn	Technical Manager	S. ~
	the reproduced evector	full without writton approval of the laborate	Issued: February 15, 2023
I i nis calibration certificate snall not	Libe reproduced except if	n full without written approval of the laborate	лул

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528. "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.70 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	5.07 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.37 W/kg

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.2 ± 6 %	5.18 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	5.22 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.08 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)
	······	• • • /
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.27 W/kg

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.0 ± 6 %	5.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		~~~~

SAR result with Body TSL at 5250 MHz

SAR for nominal Body TSL parameters

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.49 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.0 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.10 W/kg

normalized to 1W

21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.6 ± 6 %	6.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.64 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.6 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.14 W/kg

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

· · · · · · · · · · · · · · · · · · ·	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.3 ± 6 %	6.18 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.50 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	6.24 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		57 FL 50 FL

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	52.4 Ω - 1.9 jΩ
Return Loss	- 30.6 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	57.9 Ω + 0.2 jΩ
Return Loss	- 22.7 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	54.6 Ω + 5.6 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.5 Ω + 3.4 jΩ
Return Loss	- 28.8 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	51.1 Ω + 0.3 jΩ
Return Loss	- 39.2 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	58.4 Ω + 0.4 jΩ
Return Loss	- 22.2 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	55.2 Ω + 5.3 jΩ
Return Loss	- 23.1 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	52.6 Ω + 3.9 jΩ
Return Loss	- 26.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 000	
	1.206 ns	
	1.200 115	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	CDEA C
indiada ou oy	SPEAG

DASY5 Validation Report for Head TSL

Date: 14.02.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1120

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.7$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 5.07$ S/m; $\epsilon_r = 35.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 5.18$ S/m; $\epsilon_r = 35.2$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.22$ S/m; $\epsilon_r = 35$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.22$ S/m; $\epsilon_r = 35$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.22$ S/m; $\epsilon_r = 35$; $\rho = 1000$ kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.01 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.3% Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.13 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 30.8 W/kg SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.37 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.7% Maximum value of SAR (measured) = 19.6 W/kg