

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

MEASUREMENT REPORT FCC PART 15.247 WLAN OFDMA

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 3/4-5/30/2023 Test Report Issue Date: 7/11/2023 Test Site/Location: Element Iab., Columbia, MD, USA Test Report Serial No.: 1M2304260059-11.A3L

FCC ID:

A3LSMF731JPN

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type: Model: Additional Model(s): EUT Type: Frequency Range: Modulation Type: FCC Classification: FCC Rule Part(s): Test Procedure(s):

Certification SC-54D SCG23 Portable Handset 2412 – 2472MHz CCK/DSSS/OFDMA Digital Transmission System (DTS) Part 15 Subpart C (15.247) ANSI C63.10-2013, KDB 558074 D01 v05r02, KDB 662911 D01 v02r01, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 558074 D01 v05r02. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	Test Dates: EUT Type:		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 1 of 89	
© 2023 ELEMENT	•		V9.0 02/01/2019	

TABLE OF CONTENTS

1.0	INTR	ODUC	TION	4
	1.1	Scope	э	4
	1.2	Eleme	ent Test Location	4
	1.3	Test I	Facility / Accreditations	4
2.0	PRO	DUCT	NFORMATION	5
	2.1	Equip	ment Description	5
	2.2	Devic	e Capabilities	5
	2.3	Test (Configuration	6
	2.4	Anter	na Description	6
	2.5	Softw	are and Firmware	6
	2.6	EMI S	Suppression Device(s)/Modifications	6
3.0	DESC	RIPTI	ON OF TESTS	7
	3.1	Evalu	ation Procedure	7
	3.2	Radia	ted Emissions	7
	3.3	Enviro	onmental Conditions	7
4.0	ANTE	INNA F	REQUIREMENTS	8
5.0	MEAS	SUREN	IENT UNCERTAINTY	9
6.0	TEST	EQUI	PMENT CALIBRATION DATA	10
7.0	TEST	RESL	ILTS	11
	7.1	Sumn	nary	11
	7.2	6dB E	Bandwidth Measurement	12
	7.3	Outpu	It Power Measurement	22
	7.4	Powe	r Spectral Density	28
	7.5	Cond	ucted Emissions at the Band Edge	38
	7.6	Cond	ucted Spurious Emissions	55
	7.7	Radia	ted Spurious Emission Measurements – Above 1 GHz	69
		7.7.2	MIMO Radiated Spurious Emission Measurements	72
		7.7.3	MIMO Radiated Restricted Band Edge Measurements	81
8.0	CON	CLUSI	ON	89

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	Test Dates: EUT Type:		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 2 of 89	
© 2023 ELEMENT	· · ·	· · ·	V9.0 02/01/2019	

MEASUREMENT REPORT

			MIMO				
		T	Avg Co	nducted	Peak Conducted		
Mode	Tones	Tx Frequency [MHz]	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)	
802.11ax OFDMA	26T	2412 - 2472	48.195	16.83	629.506	27.99	
802.11ax OFDMA	52T	2412 - 2472	62.739	17.98	738.982	28.69	
802.11ax OFDMA	106T	2412 - 2472	79.250	18.99	756.833	28.79	
802.11ax OFDMA	242T	2412 - 2472	94.406	19.75	849.180	29.29	

EUT Overview

FCC ID: A3LSMF731JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates: EUT Type:		Dege 2 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 3 of 89
© 2023 ELEMENT	-		V9.0 02/01/2019

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs).

FCC ID: A3LSMF731JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 4 of 89
© 2023 ELEMENT		·	V9.0 02/01/2019

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

2.0 **PRODUCT INFORMATION**

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMF731JPN**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

Test Device Serial No.: 0084M, 0097M, 0091M, 0032M, 0096M

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR (FR1), 802.11b/g/n/ac/ax WLAN, 802.11a/n/ac/ax UNII (5GHz and 6GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	12	2467
6	2437	13	2472
7	2442		

Table 2-1. Frequency/ Channel Operations

Note: The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of ANSI C63.10-2013 and KDB 558074 D01 v05r02. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Mada	Antonno	Bandwidth		Tana	Duty Cycle
Mode	Antenna	[MHz]	Channel	Tone	Duty Cycle
				26T	99.2
802.11ax	MIMO CDD	20	1	52T	99.2
DTS RU		20	T	106T	99.2
				242T	99.2

Table 2-2. Me	easured Dut	y Cycles
---------------	-------------	----------

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	Test Dates: EUT Type:		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 5 of 89	
© 2023 ELEMENT	·	·	V9.0 02/01/2019	

The device employs MIMO technology. Below are the possible configurations.

WiFi Configurations		SISO		SDM		CDD		
VVIF	Com	igurations	ANT1	ANT2	ANT1	ANT2	ANT1	ANT2
2.4GH	Z	11ax	×	×	✓	✓	✓	✓

Table 2-3. Frequency / Channel Operations

✓ = Support ; × = NOT Support
 SISO = Single Input Single Output
 SDM = Spatial Diversity Multiplexing – MIMO function
 CDD = Cyclic Delay Diversity - 2Tx Function

This device supports simultaneous transmission operation, which allows for two SISO channels to operate independent of one another in the 2.4GHz and 5GHz bands simultaneously on each antenna. The following tables show the worst case configurations determined during testing. The data for these configurations is contained in the UNII test report.

2.3 Test Configuration

The EUT was tested per the guidance of KDB 558074 D01 v05r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing. See Sections 7.7 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

This device supports three configurations: one is with screen open; one is where the screen is half open (90 degrees), and one is with the screen closed. All configurations are tested, and the worst case radiated emissions data is shown in this report.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) FCC ID: A3LEPP2400 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 Antenna Description

Following antenna was used for the testing.

Frequency [GHz]	Antenna 1 Gain [dBi]	Antenna 2 Gain [dBi]		
2.4	-5.16	-7.26		
Table 2-4 Antenna Poak Gain				

Table 2-4. Antenna Peak Gain

2.5 Software and Firmware

The test was conducted with software/firmware version F731USQU0AWD7 installed on the EUT.

2.6 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 6 of 80
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 6 of 89
© 2023 ELEMENT			V9.0 02/01/2019

3.0 **DESCRIPTION OF TESTS**

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v05r02 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01 v01r01.

3.3 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dama 7 af 00
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 7 of 89
© 2023 ELEMENT	·	· · · · · · · · · · · · · · · · · · ·	V9.0 02/01/2019

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are **permanently attached**.
- There are no provisions for connections to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 9 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 8 of 89
© 2023 ELEMENT	-		V9.0 02/01/2019

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 89
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 9 01 69
© 2023 ELEMENT			V9.0 02/01/2019

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	AP2-001	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	AP2-001
-	AP2-002	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	AP2-002
-	ETS-001	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-001
-	ETS-002	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-002
-	NMLC-2	Line Conducted Emissions Cable (NM)	1/11/2023	Annual	1/11/2024	NMLC-2
EMCO	3115	Horn Antenna (1-18GHz)	8/8/2022	Biennial	8/8/2024	9203-2178
EMCO	3116	Horn Antenna (18-40GHz)	7/20/2021	Biennial	7/20/2023	9704-5182
Keysight Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	8/18/2022	Annual	8/18/2023	MY54500644
Keysight Technologies	N9030A	PXA Signal Analyzer	9/6/2022	Annual	9/6/2023	MY55410501
Keysight Technologies	N9038A	MXE EMI Receiver	1/21/2022	Annual	6/21/2023	MY51210133
Sunol Sciences	DRH-118	Horn (Small)	2/14/2022	Biennial	2/14/2024	A102416-2
Sunol Sciences	JB5	Bi-Log Antenna (30M-5GHz)	8/30/2022	Biennial	8/30/2024	A102416-1
Sunol Sciences	DRH-118	Horn Antenna (1-18GHz)	7/14/2021	Biennial	7/14/2023	A051107
Rohde & Schwarz	ESW26	ESW26 EMI Test Receiver	5/19/2022	Annual	5/19/2023	161675
Solar Electronics	8012-50-R-24-BNC	Line Impedance Stabilization Network	9/21/2021	Annual	9/21/2023	310233

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 10 of 89
© 2023 ELEMENT	•	·	V9.0 02/01/2019

7.0 **TEST RESULTS**

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMF731JPN
FCC Classification:	Digital Transmission System (DTS)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2]	6dB Bandwidth	> 500kHz		PASS	Section 7.2
15.247(b)(3)	RSS-247 [5.4]	Transmitter Output Power	< 1 Watt		PASS	Sections 7.3
15.247(e)	RSS-247 [5.2]	Transmitter Power < 8dBm / 3kHz Band		PASS	Section 7.4	
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	≥ 20dBc		PASS	Sections 7.5, 7.6
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Sections 7.7

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is "WLAN Automation," Version 3.5.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is "Chamber Automation," Version 1.3.1.
- 6) 802.11ax OFDMA testing was performed for all signal tone configurations as specified by the 802.11ax standard. Worst case results are determined and reported per the guidance provided at the October 2018 TCB Workshop.

FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 11 of 89
© 2023 ELEMENT		·	V9.0 02/01/2019

7.2 6dB Bandwidth Measurement

<u>§15.247(a.2); RSS-247 [5.2]</u>

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 11.8.2 Option 2 KDB 558074 D01 v05r02 – Section 8.2

Test Settings

- The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Restaurant and and	Chinaka Manaka Manaka	
1 Protest		
And Dar May Sal 1		
		→ EUT

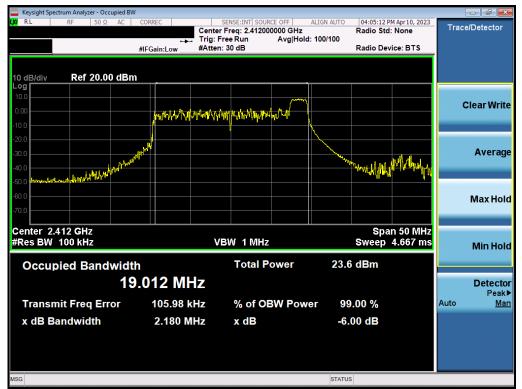
Figure 7-1. Test Instrument & Measurement Setup

FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 12 of 89
© 2023 ELEMENT			V9.0 02/01/2019

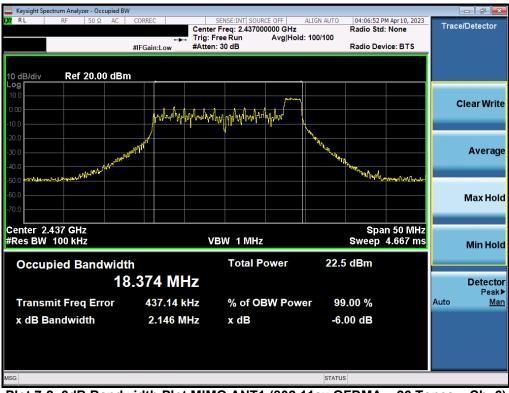
Test Notes

- 1. Based on preliminary measurements, it was determined that, of all the tone configurations, the 26T configuration produced the worst case 6dB Bandwidth measurement. Only the worst case data is included in this section.
- 2. The 6dB bandwidth for each channel was measured with the RU index showing the highest conducted power.

FCC ID: A3LSMF731JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 12 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 13 of 89
© 2023 ELEMENT			V9.0 02/01/2019

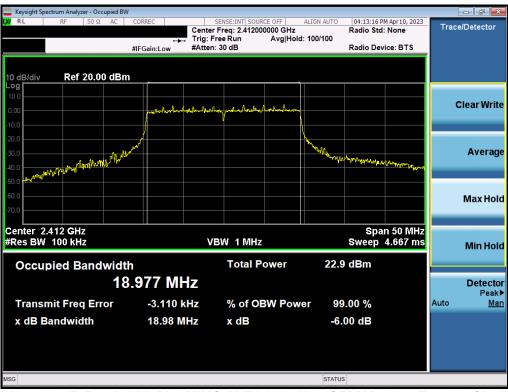

MIMO Antenna-1 6 dB Bandwidth Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	ax	26T	MCS0	2.180	0.500
2437	6	ax	26T	MCS0	2.146	0.500
2462	11	ax	26T	MCS0	2.146	0.500
2412	1	ax	242T	MCS0	18.98	0.500
2437	6	ax	242T	MCS0	19.06	0.500
2462	11	ax	242T	MCS0	19.02	0.500


Table 7-2. Conducted Bandwidth Measurements MIMO ANT1

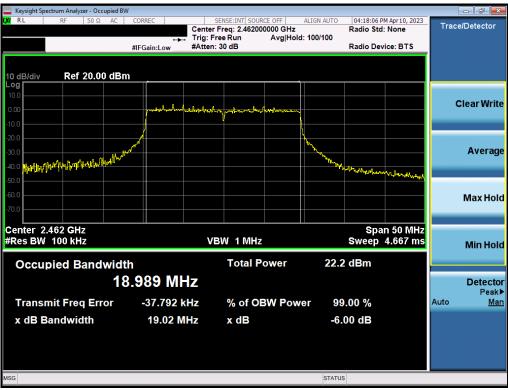
FCC ID: A3LSMF731JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege 14 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 14 of 89
© 2023 ELEMENT			V9.0 02/01/2019


Plot 7-1. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 1)


Plot 7-2. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 6)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 15 of 89	
© 2023 ELEMENT			V9.0 02/01/2019	

Plot 7-3. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 11)


Plot 7-4. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 1)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	Test Dates: EUT Type:		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 16 of 89	
© 2023 ELEMENT			\/9.0.02/01/2019	

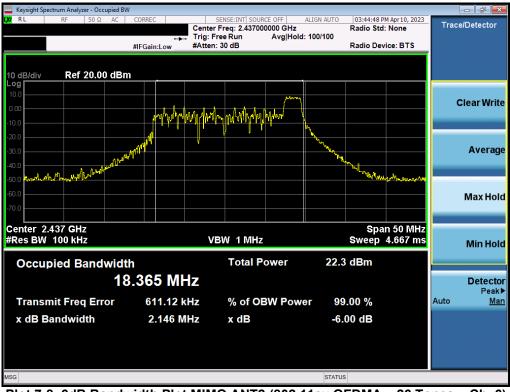
Plot 7-5. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 6)

Plot 7-6. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 11)

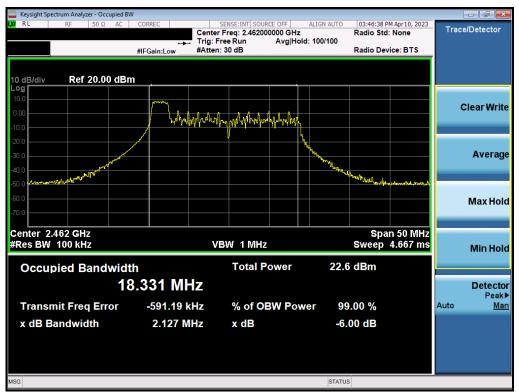
FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	Test Dates: EUT Type:		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 17 of 89	
© 2023 ELEMENT	·		V9.0 02/01/2019	


MIMO Antenna-2 6 dB Bandwidth Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	ax	26T	MCS0	2.094	0.500
2437	6	ax	26T	MCS0	2.146	0.500
2462	11	ax	26T	MCS0	2.127	0.500
2412	1	ax	242T	MCS0	19.07	0.500
2437	6	ax	242T	MCS0	19.12	0.500
2462	11	ax	242T	MCS0	19.10	0.500


Table 7-3. Conducted Bandwidth Measurements MIMO ANT2

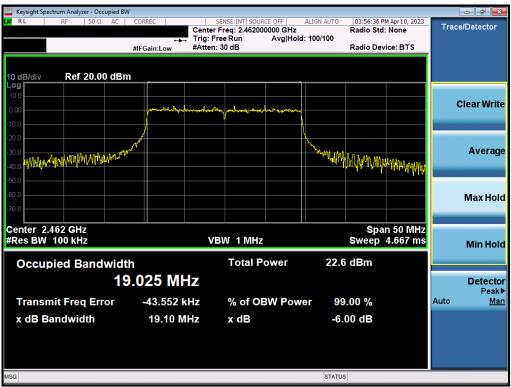
FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 19 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 18 of 89
© 2023 ELEMENT	·		V9.0 02/01/2019


Plot 7-7. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 1)


Plot 7-8. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 6)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 19 of 89	
© 2023 ELEMENT			V9.0 02/01/2019	

Plot 7-9. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 11)


Plot 7-10. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 1)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	Test Dates: EUT Type:		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 20 of 89	
© 2023 ELEMENT		•	V9.0.02/01/2019	

Plot 7-11. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 6)

Plot 7-12. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 11)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	Test Dates: EUT Type:		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 21 of 89	
© 2023 ELEMENT	·		V9.0 02/01/2019	

7.3 Output Power Measurement

§15.247(b.3); RSS-247 [5.4]

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

ANSI C63.10-2013 – Section 11.9.1.3 PKPM1 Peak Power Method KDB 558074 D01 v05r02 – Section 8.3.1.3 PKPM1 Peak-reading Power Meter Method ANSI C63.10-2013 – Section 11.9.2.3.2 Method AVGPM-G KDB 558074 D01 v05r02 – Section 8.3.2.3 Measurement using a Power Meter (PM) ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique KDB 662911 D01 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Method PKPM1 (Peak Power Measurement)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

Figure 7-2. Test Instrument & Measurement Setup for Power Meter Measurements

Test Notes

None

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dama 22 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 22 of 89
© 2023 ELEMENT	<u>.</u>	·	V9.0 02/01/2019

	Freq [MHz]	Channel	Tones	RU Index	Detector	Conducted Power [dBm]		Conducted Power Limit	Conducted Power		
						ANT1	ANT2	MIMO	[dBm]	Margin [dB]	
				0	AVG	13.79	13.21	16.52	30.00	-13.48	
				0	PEAK	24.92	24.77	27.85	30.00	-2.15	
	2412	1	26T	4	AVG	13.74	13.58	16.67	30.00	-13.33	
	2412	1	201	4	PEAK	24.80	24.72	27.77	30.00	-2.23	
				8	AVG	13.78	13.84	16.82	30.00	-13.18	
				0	PEAK	24.68	25.02	27.86	30.00	-2.14	
				0	AVG	13.52	13.71	16.63	30.00	-13.37	
				0	PEAK	24.26	24.88	27.59	30.00	-2.41	
	2437	6	26T	4	AVG	13.65	13.43	16.55	30.00	-13.45	
	2437	0	201	4	PEAK	24.42	25.13	27.80	30.00	-2.20	
N				8	AVG	13.93	13.72	16.83	30.00	-13.17	
Ï					PEAK	24.33	25.25	27.82	30.00	-2.18	
2.4GHz		11	26T	0	AVG	13.80	13.83	16.83	30.00	-13.17	
4					PEAK	24.62	24.79	27.72	30.00	-2.28	
Ň	2462			4	AVG	13.70	13.37	16.55	30.00	-13.45	
	2402				PEAK	24.71	24.94	27.84	30.00	-2.16	
					AVG	13.84	13.45	16.66	30.00	-13.34	
				0	PEAK	24.68	25.26	27.99	30.00	-2.01	
					0	AVG	5.95	5.34	8.66	30.00	-21.34
				0	PEAK	15.72	16.12	18.93	30.00	-11.07	
	2467	12	26T	4	AVG	5.05	5.63	8.36	30.00	-21.64	
	2407	12	201	4	PEAK	16.63	25.26	25.81	30.00	-4.19	
				8	AVG	5.27	5.87	8.59	30.00	-21.41	
				0	PEAK	16.59	17.08	19.85	30.00	-10.15	
				0	AVG	-6.13	-6.14	-3.12	30.00	-33.12	
				0	PEAK	4.66	3.96	7.33	30.00	-22.67	
	2472	13	26T	4	AVG	-6.92	-6.60	-3.75	30.00	-33.75	
	2412	15	261	-	PEAK	5.02	4.86	7.95	30.00	-22.05	
				8	AVG	-7.19	-6.29	-3.71	30.00	-33.71	
				0	PEAK	6.35	4.98	8.73	30.00	-21.27	

Table 7-4. Conducted Output Power Measurements MIMO (26 Tones)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dage 02 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 23 of 89	
© 2023 ELEMENT			V9.0 02/01/2019	

	Freq [MHz]	Channel	Tones	RU Index	Detector	Conc	lucted Power [dBm]	Conducted Power Limit	Conducted Power	
						ANT1	ANT2	MIMO	[dBm]	Margin [dB]	
				37	AVG	14.56	14.83	17.71	30.00	-12.29	
				37	PEAK	25.67	25.61	28.65	30.00	-1.35	
	2412	1	52T	38	AVG	14.84	14.77	17.82	30.00	-12.18	
	2412		JZT		PEAK	25.77	25.58	28.69	30.00	-1.31	
				40	AVG	14.57	14.39	17.49	30.00	-12.51	
				40	PEAK	25.21	25.14	28.19	30.00	-1.81	
				37	AVG	14.77	14.61	17.70	30.00	-12.30	
				57	PEAK	25.89	24.39	28.21	30.00	-1.79	
	2437	6	52T	38	AVG	14.99	14.94	17.98	30.00	-12.02	
	2407	U	521		PEAK	25.86	24.44	28.22	30.00	-1.78	
				40	AVG	14.47	14.40	17.45	30.00	-12.55	
N					PEAK	25.54	24.44	28.04	30.00	-1.96	
2.4GHz		11	52T	37	AVG	14.51	14.22	17.38	30.00	-12.62	
Q					PEAK	25.33	24.78	28.07	30.00	-1.93	
7	2462			52T 38	AVG	14.68	14.56	17.63	30.00	-12.37	
2	2102				PEAK	25.47	25.06	28.28	30.00	-1.72	
				40	AVG	14.77	14.97	17.88	30.00	-12.12	
					PEAK	25.77	25.10	28.46	30.00	-1.54	
					37	AVG	5.98	5.63	8.82	30.00	-21.18
					PEAK	16.11	16.59	19.37	30.00	-10.63	
	2467	12	52T	38	AVG	5.43	5.81	8.63	30.00	-21.37	
	2101		021		PEAK	16.62	17.15	19.90	30.00	-10.10	
				40	AVG	5.29	5.78	8.55	30.00	-21.45	
					PEAK	16.58	17.02	19.82	30.00	-10.18	
				37	AVG	-3.63	-3.22	-0.41	30.00	-30.41	
				<u> </u>	PEAK	6.76	7.60	10.21	30.00	-19.79	
	2472	13	52T	38	AVG	-4.25	-3.26	-0.72	30.00	-30.72	
				30	PEAK	7.17	8.01	10.62	30.00	-19.38	
				40	AVG	-4.18	-3.16	-0.63	30.00	-30.63	
					PEAK	7.23	8.11	10.70	30.00	-19.30	

Table 7-5. Conducted Output Power Measurements MIMO (52 Tones)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 89	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 24 01 69	
© 2023 ELEMENT		· · · · · · · · · · · · · · · · · · ·	V9.0 02/01/2019	

	Freq [MHz] Channel		Channel Tones RU Ir		Detector	ctor Conducted Power [dBm]			Conducted Power Limit	Conducted Power
						ANT1	ANT2	MIMO	[dBm]	Margin [dB]
				53	AVG	14.84	14.60	17.73	30.00	-12.27
	2412	1	106T	55	PEAK	25.15	24.98	28.08	30.00	-1.92
	2412	1	1001	54	AVG	15.35	14.50	17.96	30.00	-12.04
				94	PEAK	25.22	24.77	28.01	30.00	-1.99
				53	AVG	15.99	15.96	18.99	30.00	-11.01
	2417	2	106T	- 55	PEAK	25.57	25.51	28.55	30.00	-1.45
	2417	2	1001	54	AVG	15.92	15.57	18.76	30.00	-11.24
				94	PEAK	25.48	25.08	28.29	30.00	-1.71
				52	AVG	15.67	15.63	18.66	30.00	-11.34
	2437	6	106T	53	PEAK	26.12	24.66	28.46	30.00	-1.54
	2437	0	1001	54	AVG	15.38	15.48	18.44	30.00	-11.56
				-04	PEAK	25.92	24.63	28.33	30.00	-1.67
		8	106T	53 54	AVG	15.62	15.99	18.82	30.00	-11.18
	2447				PEAK	25.29	25.18	28.25	30.00	-1.75
Ν	2447				AVG	15.80	15.51	18.67	30.00	-11.33
2.4GHz					PEAK	25.28	25.21	28.26	30.00	-1.74
Ģ	2452	9	106T	53	AVG	14.54	14.71	17.64	30.00	-12.36
4					PEAK	25.21	24.81	28.02	30.00	-1.98
7				54	AVG	14.88	14.51	17.71	30.00	-12.29
					PEAK	25.12	24.77	27.96	30.00	-2.04
		10	10 106T	53	AVG	14.99	14.63	17.82	30.00	-12.18
	2457				PEAK	25.34	24.87	28.12	30.00	-1.88
	2437	10			AVG	14.56	14.31	17.45	30.00	-12.55
				54	PEAK	25.05	24.73	27.90	30.00	-2.10
				53	AVG	14.97	14.21	17.62	30.00	-12.38
	2462	11	106T	55	PEAK	24.97	24.63	27.81	30.00	-2.19
	2402		1001	54	AVG	14.92	14.62	17.79	30.00	-12.21
				54	PEAK	24.92	24.78	27.86	30.00	-2.14
				53	AVG	5.66	5.61	8.64	30.00	-21.36
	2467	12	106T	55	PEAK	16.08	16.64	19.38	30.00	-10.62
	2407	12	1001	54	AVG	5.38	5.83	8.62	30.00	-21.38
				54	PEAK	16.58	17.06	19.84	30.00	-10.16
				53	AVG	-0.74	-0.03	2.64	30.00	-27.36
	2472	13	3 106T	55	PEAK	9.92	11.09	13.55	30.00	-16.45
	241Z	15		54	AVG	-0.92	-0.10	2.52	30.00	-27.48
				94	PEAK	10.10	11.07	13.62	30.00	-16.38

Table 7-6. Conducted Output Power Measurements MIMO (106 Tones)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	Fest Dates: EUT Type:		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 25 of 89	
© 2023 ELEMENT			V9.0 02/01/2019	

	Freq [MHz]	Channel	Tones	RU Index	Detector	Cond	lucted Power [dBm]	Conducted Power Limit	Conducted Power		
						ANT1	ANT2	MIMO	[dBm]	Margin [dB]		
	2412	1	242T	61	AVG	15.91	15.49	18.72	30.00	-11.28		
	2412	I	2421	01	PEAK	25.24	25.39	28.33	30.00	-1.67		
	2417	2	242T	61	AVG	16.91	16.56	19.75	30.00	-10.25		
	2417	2	2421	01	PEAK	26.43	25.58	29.04	30.00	-0.96		
N	2437	6	242T 61	040T	61	AVG	16.77	16.54	19.67	30.00	-10.33	
I	2437	0		01	PEAK	26.51	24.77	28.74	30.00	-1.26		
4G	2452	9	242T	2∕12T	242T	61	AVG	16.48	16.80	19.66	30.00	-10.34
4	2432	3	2421	01	PEAK	26.13	25.49	28.83	30.00	-1.17		
2	2457	10	242T	242T 61	AVG	15.87	15.64	18.76	30.00	-11.24		
	2437	10	2421	01	PEAK	25.62	25.21	28.43	30.00	-1.57		
	2462	11	242T	61	AVG	15.79	15.32	18.57	30.00	-11.43		
	2402		2421	01	PEAK	25.46	25.18	28.33	30.00	-1.67		
	2467	12	242T	61	AVG	5.63	5.93	8.80	30.00	-21.20		
	2407	12	2421	01	PEAK	16.68	17.12	19.92	30.00	-10.08		
	2472	13	242T	61	AVG	-0.79	-0.02	2.62	30.00	-27.38		
	2412	15	2421	2421 61	PEAK	10.14	11.03	13.62	30.00	-16.38		

Table 7-7. Conducted Output Power Measurements MIMO (242 Tones)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	est Dates: EUT Type:		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 26 of 89	
© 2023 ELEMENT	•		V9.0 02/01/2019	

Note:

Per ANSI C63.10-2013 and KDB 662911 D01 v02r01 Section E)1), the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 2412MHz the average conducted output power was measured to be 15.91 dBm for Antenna 1 and 15.49 dBm for Antenna 2.

Antenna 1 + Antenna 2 = MIMO

(15.91 dBm + 15.49 dBm) = (39.01 mW + 35.40 mW) = 74.41 mW = 18.72 dBm

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 27 of 89
© 2023 ELEMENT	•	·	V9.0 02/01/2019

7.4 Power Spectral Density

§15.247(e); RSS-247 [5.2]

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates, tones configurations, and RU indices were investigated and the worst case configuration results are reported in this section.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

ANSI C63.10-2013 – Section 11.10.2 Method PKPSD KDB 558074 D01 v05r02 – Section 8.4 DTS Maximum Power Spectral Density level in the fundamental emission ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique KDB 662911 D01 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 3kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

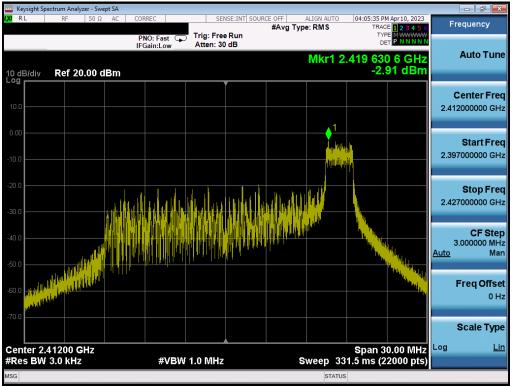
The EUT and measurement equipment were set up as shown in the diagram below.

And and an other state	
FEER	
have werken wit we	
	EUT

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dega 29 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 28 of 89	
© 2023 ELEMENT	•		V9.0 02/01/2019	

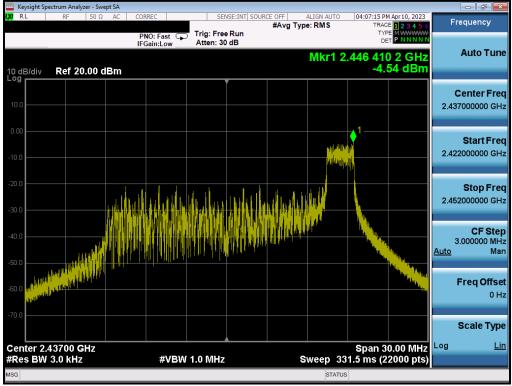
Test Notes

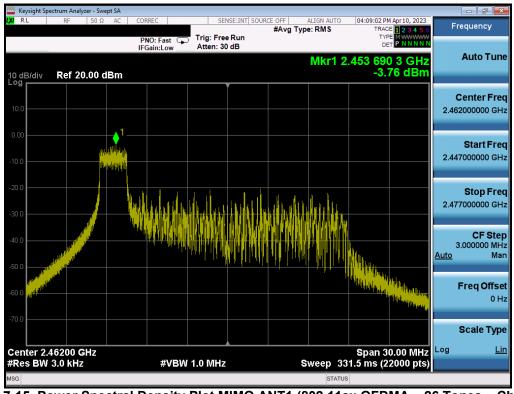
- 1. Based on preliminary measurements, it was determined that, of all of the tone configurations, the 26T configuration produced the worst case power spectral density measurement for partial loaded case. Therefore, only the 26 Tone configuration and 242 Tone data is included in this section.
- 2. The power spectral density for each channel was measured with the RU index showing the highest conducted power.


FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	Test Dates: EUT Type:		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 29 of 89	
© 2023 ELEMENT	•		V9.0 02/01/2019	

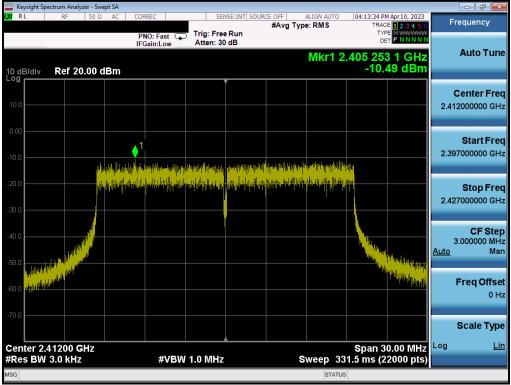
MIMO Power Spectral Density Measurements

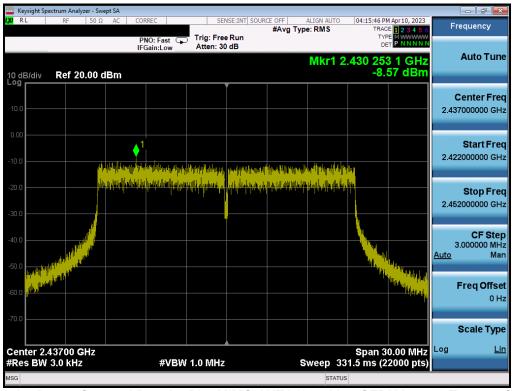
Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	ANT 1 Power Spectral Density [dBm]	ANT 2 Power Spectral Density [dBm]	Summed MIMO Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	ax	26T	MCS0	-2.91	-1.93	0.62	8.00	-7.38	Pass
2437	6	ax	26T	MCS0	-4.54	-4.27	-1.39	8.00	-9.39	Pass
2462	11	ax	26T	MCS0	-3.76	-4.25	-0.99	8.00	-8.99	Pass
2412	1	ax	242T	MCS0	-10.49	-10.68	-7.57	8.00	-15.57	Pass
2437	6	ax	242T	MCS0	-8.57	-9.68	-6.08	8.00	-14.08	Pass
2462	11	ax	242T	MCS0	-10.20	-11.17	-7.65	8.00	-15.65	Pass


Table 7-8. MIMO Conducted Bandwidth Measurements

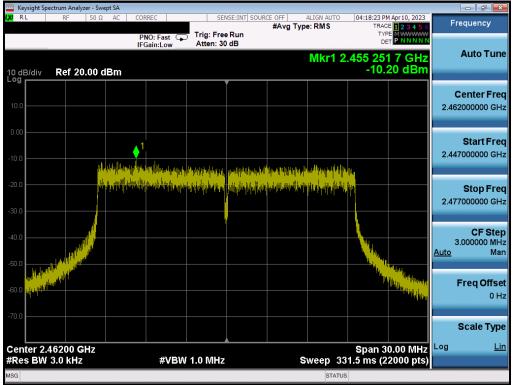

Plot 7-13. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 1)

FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 20
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 30 of 89
© 2023 ELEMENT	•	•	V9.0 02/01/2019


Plot 7-14. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA - 26 Tones - Ch. 6)

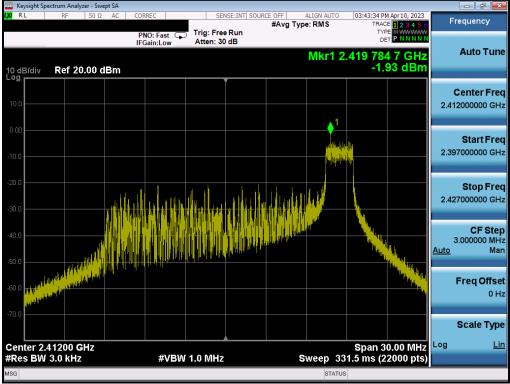

Plot 7-15. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 11)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 31 of 89
© 2023 ELEMENT			V9.0 02/01/2019

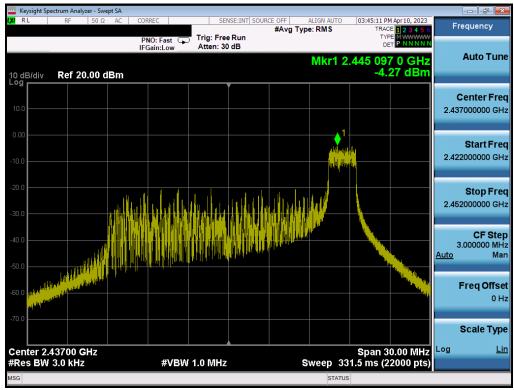

Plot 7-16. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 1)

Plot 7-17. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 6)

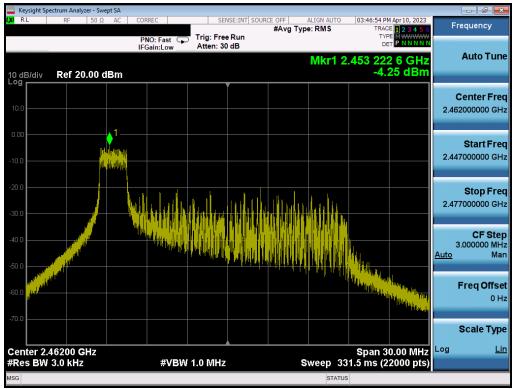
FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager		
Test Report S/N: Test Dates:		EUT Type:	Daga 22 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 32 of 89		
© 2023 ELEMENT V9.0 02/01/2019					

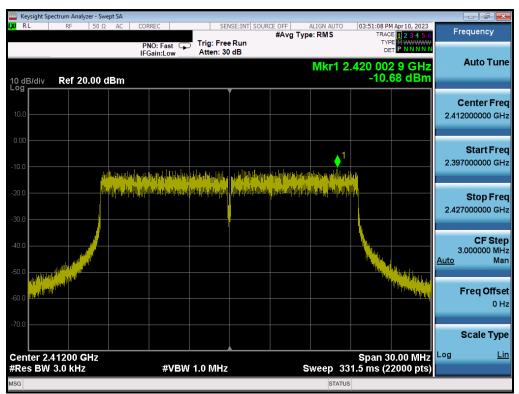


Plot 7-18. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch.

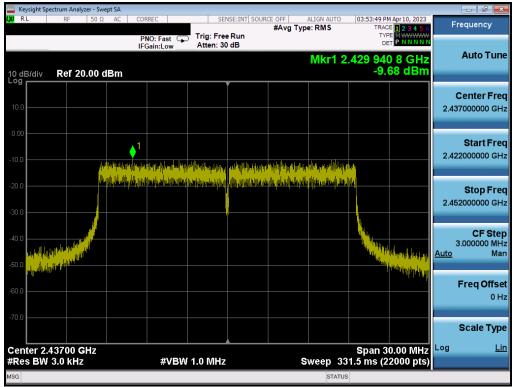

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 33 of 89
© 2023 ELEMENT		•	V9.0 02/01/2019

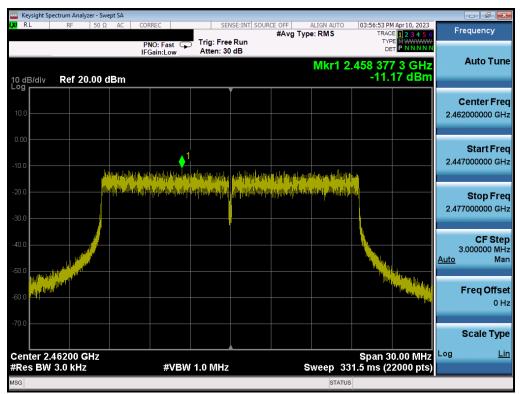
Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.


Plot 7-19. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 1)


Plot 7-20. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 6)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dama 24 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 34 of 89
© 2023 ELEMENT			V9.0 02/01/2019


Plot 7-21. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 11)


Plot 7-22. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 1)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	D 25
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 35 of 89
© 2023 ELEMENT	•		V9.0.02/01/2019

Plot 7-23. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 6)

Plot 7-24. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 11)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 20 of 00
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 36 of 89
© 2023 ELEMENT	•	•	V9.0.02/01/2019

Note:

Per ANSI C63.10-2013 Section 14.3.2.2 and KDB 662911 D01 v02r01 Section E)2), the power spectral density at Antenna 1 and Antenna 2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 2437MHz the average conducted power spectral density was measured to be -4.54 dBm for Antenna 1 and -4.27 dBm for Antenna 2.

Antenna 1 + Antenna 2 = MIMO

(-4.54dBm + -4.27 dBm) = (0.352mW + 0.374 mW) = 0.726 mW = -1.39 dBm

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dega 27 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 37 of 89		
© 2023 ELEMENT	<u>.</u>		V9.0 02/01/2019		

7.5 Conducted Emissions at the Band Edge §15.247(d); RSS-247 [5.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates, tone configurations, and RU indices were investigated to determine the worst case configuration. For the following out of band conducted emissions plots at the band edge, the EUT was set to a data rate of MCS0 in 802.11ax mode as this setting produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 7.4).

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.7.2

Test Settings

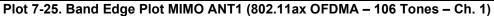
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

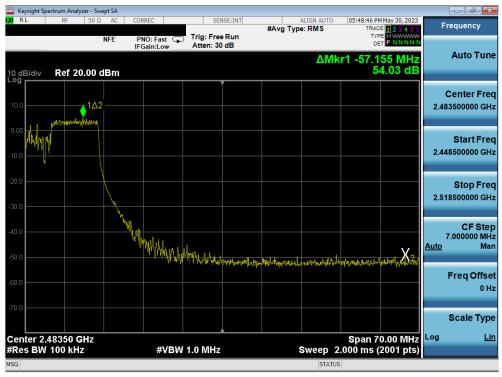
Test Notes


None

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dega 20 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 38 of 89		
© 2023 ELEMENT			V9.0 02/01/2019		

Keysight Spectrum Analyzer - Swept SA SENSE:INT SOURC 04:10:56 PM Apr 10, 2023 N AUTO Frequency #Avg Type: RMS Trig: Free Run PNO: Fast IFGain:Low Atten: 30 dB Auto Tune ΔMkr1 8.610 MHz 35.47 dE Ref 20.00 dBm 10 dB/div **Center Freq** 142 2.40000000 GHz Start Freq 2.365000000 GHz Stop Freq 2.435000000 GHz **(**2 CF Step 7.000000 MHz Auto Man **Freq Offset** 0 Hz Scale Type Center 2.40000 GHz #Res BW 100 kHz Span 70.00 MHz Sweep 2.000 ms (2001 pts) Log Lin #VBW 1.0 MHz SG STATUS

MIMO Antenna-1 Conducted Emissions at the Band Edge


Plot 7-26. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 106 Tones – Ch. 2)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Page 39 of 89		
1M2304260059-11.A3L	3/4-5/30/2023	3/4-5/30/2023 Portable Handset			
© 2023 ELEMENT			V9.0 02/01/2019		

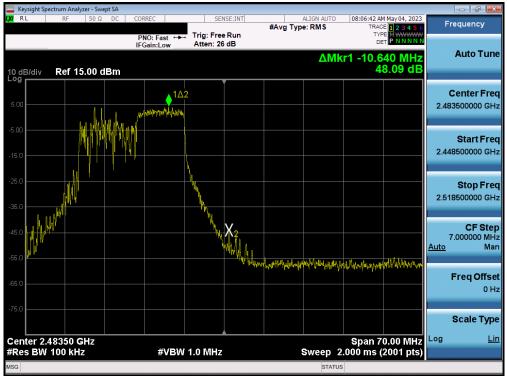
	ectrum Analyzer -										di X
LXU RL	RF 51	Ω AC	CORREC		SE:INT SOURC	#Avg Typ	ALIGN AUTO	TRAC	4 Apr 10, 2023 E 1 2 3 4 5 6	Frequen	су
10 dB/div	Ref 20.00) dBm	PNO: Fast • IFGain:Low	 Trig: Free Atten: 30 			ΔMk	r1 -30.0	30 MHz 4.80 dB	Auto	Tune
	1Δ2	JUBIII								Cente 2.48350000	
10.00										Star 2.44850000	tFre 00 GH
-20.0										Stor 2.51850000	o Fre 00 GH
-40.0	1	IL WINNIN	Waland	adudtaanseetyse	Selande Martin damer	almont that when	ente das portado	altranteau Anton	Maandia Madika	CF 7.00000 <u>Auto</u>	F Ste DO MH Ma
60.0				la se se sé de se dife	alawakta, ware	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	dan data ang ang ang ang ang ang ang ang ang an	di huk water a	a dalah ku sa naji	Freq	Offse 0⊦
										Scale	тур
Center 2. #Res BW	48350 GHz 100 kHz		#VB	W 1.0 MHz			Sweep 2	Span 7 .000 ms (0.00 MHz 2001 pts)	Log	Li
WSG	1001112						STATUS		2001 pt3/		_

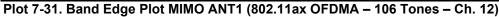
Plot 7-27. Band Edge Plot MIMO ANT1 (802.11ax OFDMA - 106 Tones - Ch. 8)

Plot 7-28. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 106 Tones – Ch. 9)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dame 40 of 80		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 40 of 89		
© 2023 ELEMENT		·	V9.0 02/01/2019		

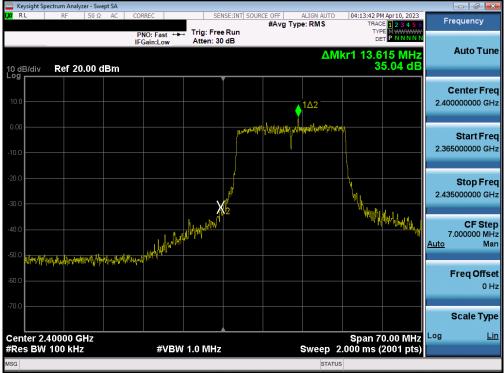
Keysight Spectrum Analyzer - Swept SA									
LX/ R.L RF 50Ω AC	CORREC	SEN	SE:INT	#Avg Typ	ALIGN AUTO		May 30, 2023	Fr	equency
NFE	PNO: Fast FIGain:Low	Trig: Free Atten: 30				TYP DE			A
10 dB/div Ref 20.00 dBm					ΔMk	r1 -21.0 5	00 MHz 2.85 dB		Auto Tune
								C	Center Freq
	! ท							2.48	3500000 GHz
									Start Freq
-10.0								2.44	8500000 GHz
-20.0	<u>\</u>								Stop Freq
-30.0	<u>\</u>							2.51	8500000 GHz
-40.0	WW AN								CF Step
	water the second s	Which is . A S	,					7 <u>Auto</u>	.000000 MHz Man
-50.0		- PRIMA	The many w	mannana	and material man	k∧ซ _ท /โมปลูโป _{เสร} ่า	mannahadana		
-60.0									Freq Offset 0 Hz
-70.0									
									Scale Type
Center 2.48350 GHz						Span 7	0.00 MHz	Log	<u>Lin</u>
#Res BW 100 kHz	#VBW	1.0 MHz			Sweep 2	.000 ms (:	2001 pts)		
MSG					STATUS				

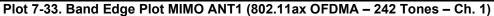

Plot 7-29. Band Edge Plot MIMO ANT1 (802.11ax OFDMA - 106 Tones - Ch. 10)



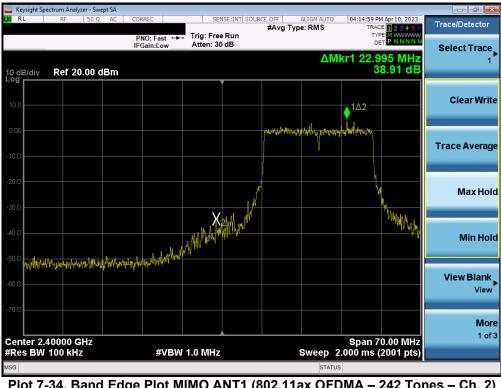
Plot 7-30. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 106 Tones – Ch. 11)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 41 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 41 of 89		
© 2023 ELEMENT			V9.0 02/01/2019		

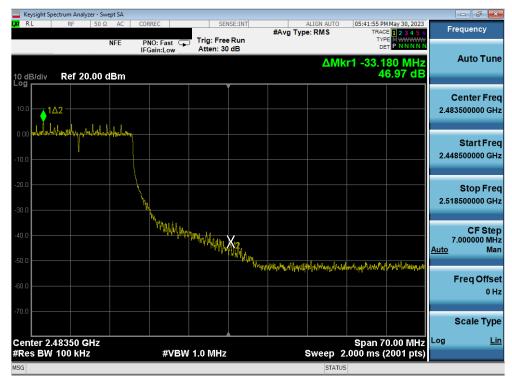




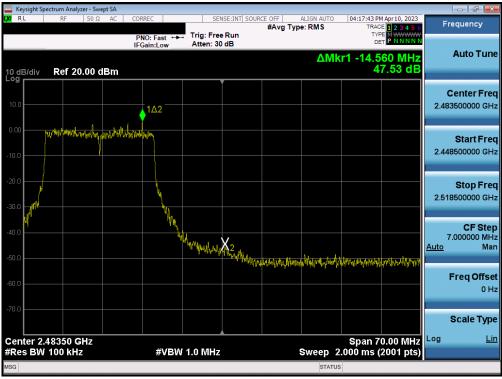
 FCC ID: A3LSMF731JPN
 MEASUREMENT REPORT (CERTIFICATION)
 Approved by: Technical Manager


 Test Report S/N: 1M2304260059-11.A3L
 Test Dates: 3/4-5/30/2023
 EUT Type: Portable Handset
 Page 42 of 89

 © 2023 ELEMENT
 V9.0 02/01/2019


Plot 7-34. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 2)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dega 42 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 43 of 89		
© 2023 ELEMENT		·	V9.0 02/01/2019		


Plot 7-35. Band Edge Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 9)

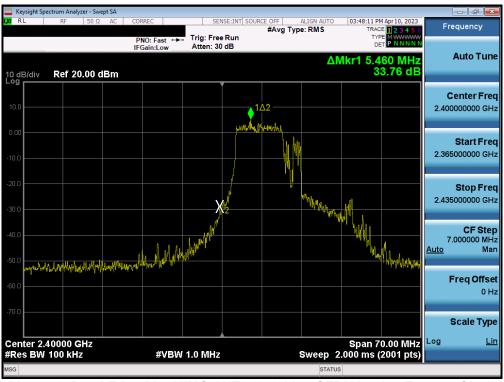

Plot 7-36. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 10)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 44 of 89		
© 2023 ELEMENT	•		V9.0 02/01/2019		

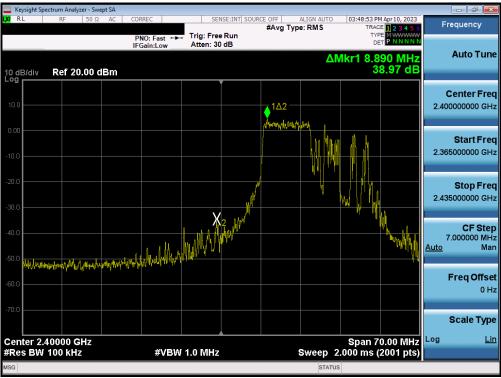
Plot 7-37. Band Edge Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 11)

Plot 7-38. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 12)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 45 of 89		
© 2023 ELEMENT		· · ·	V9.0 02/01/2019		

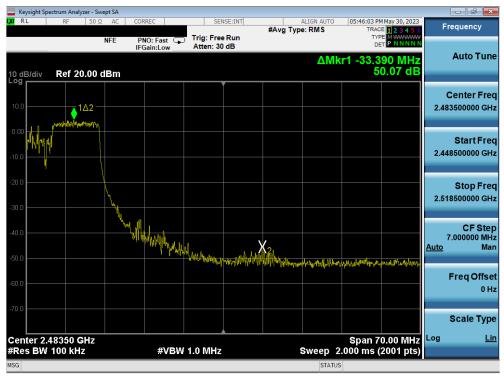

		trum Analy												
L <mark>XI</mark> RL		RF	50 Ω	DC	CORREC		SE	NSE:INT	#Avg Typ	ALIGN AUTO	08:05:19 A	M May 04, 2023	F	requency
						ast 🔸	Trig: Fre	e Run	#Avg Typ	De: KIVIS	TY			,
					IFGain:L	LOW	Atten: 2	6 dB			D	ET P NNNN		
										ΛM	kr1 -19.5	565 MHz		Auto Tune
10 dB	(aliu	Ref 1	5 00 d	Bm							3	5.64 dB		
Log	vuiv	Kelli	7.00 u											
				▲ 1∆	2									Center Freq
5.00														3500000 GHz
0.00				المرار المعداة	looked	dias	l n.t						2.40	5500000 GH2
				-0 24 Pr	in other healthead	the law of the	www.www.							
-5.00														Start Freq
													2.4	8500000 GHz
-15.0													2.44	18500000 GHZ
			1											
-25.0														Oton Eror
		. 11	M				Y	V						Stop Freq
-35.0	ant A	MAN	M.A.					* 2					2.51	8500000 GHz
-35.0	. WW	. Y						"VLA I						
	P10 7							1.1.10						CF Step
-45.0								- NM						7.000000 MHz
								1					Auto	Man
-55.0										N. J. 1811	and the second second	the second second		
								1	ALC NO WARD	n million from the	wallahland	Nurselle and Annalysis		
-65.0														Freq Offset
00.0														0 Hz
-75.0														
														Scale Type
A		0050 0						A			<u> </u>		Log	Lin
		8350 G				41/1514/	4 0 8411-			0	span / 2.000 ms (0.00 MHz		<u>E111</u>
#Res	DW 1	00 kH	2		7	₽V⊡W	1.0 MHz			Sweep	2.000 ms ((2001 pts)		
MSG										STAT	US			

Plot 7-39. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 13)


FCC ID: A3LSMF731JPN		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Page 46 of 89		
1M2304260059-11.A3L	3/4-5/30/2023	5/30/2023 Portable Handset			
© 2023 ELEMENT	•		V9.0 02/01/2019		

MIMO Antenna-2 Conducted Emissions at the Band Edge

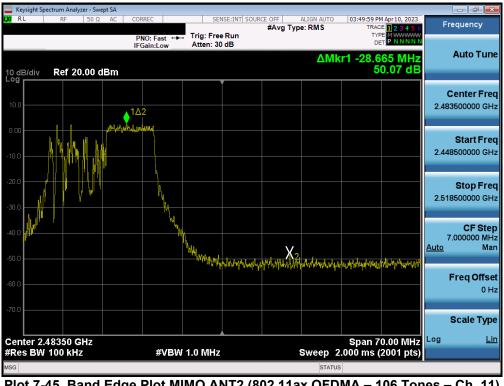
Plot 7-40. Band Edge Plot MIMO ANT2 (802.11ax OFDMA – 106 Tones – Ch. 1)


Plot 7-41. Band Edge Plot MIMO ANT2 (802.11ax OFDMA – 106 Tones – Ch. 2)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dage 47 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 47 of 89	
© 2023 ELEMENT			V9.0 02/01/2019	

									n Analyzer - Swe		
Frequency	M Apr10, 2023 CE 1 2 3 4 5 6	TRAC	ALIGN AUTO e: RMS	CE OFF #Avg Ty	ISE:INT SOUR		REC	AC COR	RF 50 Ω	RL	K <mark>I</mark> RI
	PE MWWWWW ET P NNNNN	TYI				Trig: Fre Atten: 30	IO: Fast ↔ Gain:Low	PI IFC			
Auto Tune	95 MHz	r1 -39.0	ΔMk								
	9.72 dB	4						Bm	ef 20.00 d		10 dE - ºg 1
Center Freq											
2.483500000 GHz										<u>1Δ2</u>	10.0
									M	howhow where	0.00
Start Freq											0.00
2.448500000 GHz											10.0
Stop Freq									1		20.0
2.518500000 GHz									N.		30.0
CF Step											
7.000000 MHz							. 1	"Hulushi			40.0
<u>Auto</u> Man		L	1- 1-		X ₂		Williamer a	"Why when			-50.0
Freq Offset	www.	nthatfathilt	www.white	narran ana	nalykayayillyva	, n-Ani, Mhulin (M	WINNER TO THE				
0 Hz											60.0
											70.0
Scale Type											70:0
Log Lin		Snor-7							50 CH2	nter 2.483	
	0.00 MHz (2001 pts)	.000 ms (Sweep 2			1.0 MHz	#VBW			es BW 10	
			STATUS								ISG

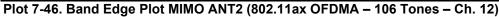
Plot 7-42. Band Edge Plot MIMO ANT2 (802.11ax OFDMA - 106 Tones - Ch. 8)


Plot 7-43. Band Edge Plot MIMO ANT2 (802.11ax OFDMA – 106 Tones – Ch. 9)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 48 of 89	
© 2023 ELEMENT		·	V9.0 02/01/2019	

www.www.com.com.com.com.com.com.com.com.com.com									- 6 ×
LX/ RL RF 50Ω AC	CORREC	SEN	SE:INT	#Avg Typ	ALIGN AUTO		May 30, 2023	Fre	quency
NFE	PNO: Fast 🖵 IFGain:Low	Trig: Free Atten: 30				TYP			
10 dB/div Ref 20.00 dBm					ΔMk	r1 -21.4 49	90 MHz 9.30 dB		Auto Tune
									enter Freq
								2.483	500000 GHz
									Start Freq
-10.0								2.448	500000 GHz
-20.0									Stop Freq
-30.0	<u></u>							2.518	500000 GHz
-40.0									CF Step
	WITH	MALANA	2					7. <u>Auto</u>	000000 MHz Man
-50.0			VWINHAN	44LANNA	William	Winderman	in manufilled		
-60.0								F	req Offset 0 Hz
-70.0									
								S	Scale Type
Center 2.48350 GHz						Span 7	211112	Log	<u>Lin</u>
#Res BW 100 kHz	#VBW	1.0 MHz			Sweep 2	.000 ms (2	2001 pts)		
MSG					STATUS				

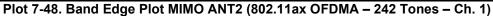
Plot 7-44. Band Edge Plot MIMO ANT2 (802.11ax OFDMA - 106 Tones - Ch. 10)



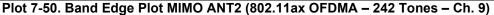
Plot 7-45. Band Edge Plot MIMO ANT2 (802.11ax OFDMA – 106 Tones – Ch. 11)

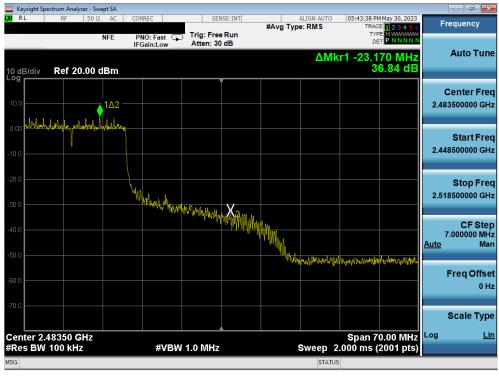
FCC ID: A3LSMF731JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 40 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 49 of 89
© 2023 ELEMENT	•		V9.0 02/01/2019



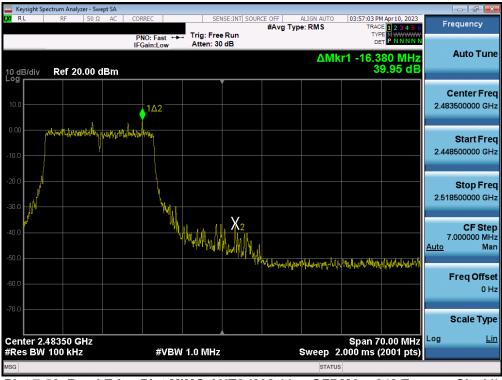


FCC ID: A3LSMF731JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage E0 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 50 of 89
© 2023 ELEMENT	•		V9.0 02/01/2019




Plot 7-49. Band Edge Plot MIMO ANT2 (802.11ax OFDMA - 242 Tones - Ch. 2)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dage 51 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 51 of 89	
© 2023 ELEMENT			V9.0 02/01/2019	



Plot 7-51. Band Edge Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 10)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dere 52 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 52 of 89	
© 2023 ELEMENT			V9.0 02/01/2019	

Plot 7-52. Band Edge Plot MIMO ANT2 (802.11ax OFDMA - 242 Tones - Ch. 11)

Plot 7-53. Band Edge Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 12)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dama 52 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 53 of 89	
© 2023 ELEMENT		· ·	V9.0 02/01/2019	

Plot 7-54. Band Edge Plot MIMO ANT2 (802.11ax OFDMA - 242 Tones - Ch. 13)

FCC ID: A3LSMF731JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege E4 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 54 of 89
© 2023 ELEMENT			V9.0 02/01/2019

7.6 Conducted Spurious Emissions §15.247(d); RSS-247 [5.5]

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates, tone configurations, and RU indices were investigated to determine the worst case configuration. For the following out of band conducted emissions plots, the EUT was set to a data rate of MCS0 in 802.11ax mode as this setting produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of ANSI C63.10-2013 and KDB 558074 D01 v05r02.

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 KDB 558074 D01 v05r02 – Section 8.5 ANSI C63.10-2013 – Section 14.3.3 KDB 662911 D01 v02r01 – Section E)3)b)

Test Settings

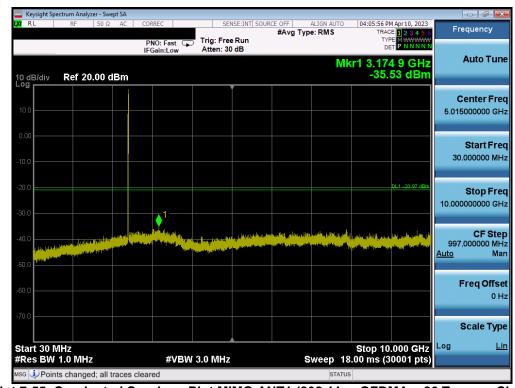
- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

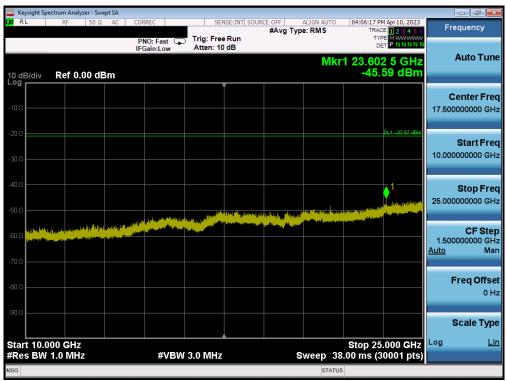
Figure 7-5. Test Instrument & Measurement Setup

FCC ID: A3LSMF731JPN		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dege EE of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 55 of 89	
© 2023 ELEMENT	<u>.</u>	·	V9.0 02/01/2019	

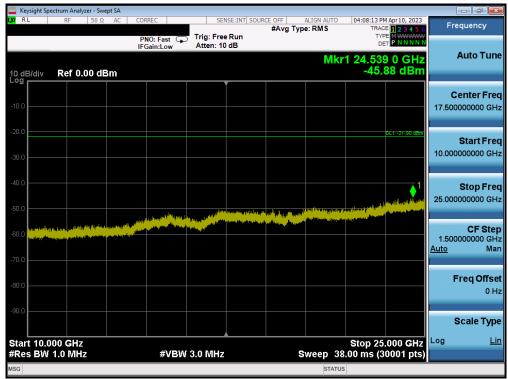


Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.
- 4. The conducted spurious emissions were measured to relative limits. Therefore, in accordance with ANSI C63.10-2013 and KDB 662911 D01 v02r01 Section E)3)b), it was unnecessary to show compliance through the summation of test results of the individual outputs.

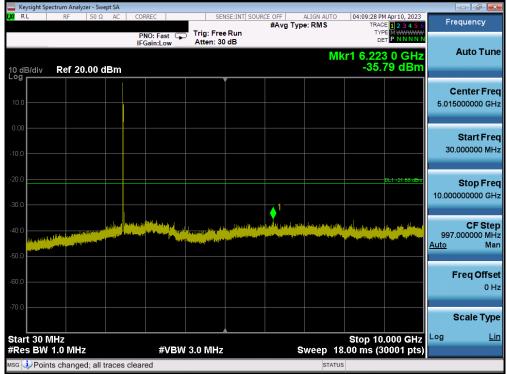

FCC ID: A3LSMF731JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege EG of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 56 of 89
© 2023 ELEMENT			V9.0 02/01/2019

MIMO Antenna-1 Conducted Spurious Emissions


Plot 7-56. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 1)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)				
Test Report S/N:	Test Dates:	EUT Type:				
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 57 of 89			
© 2023 ELEMENT	•		V9.0.02/01/2019			

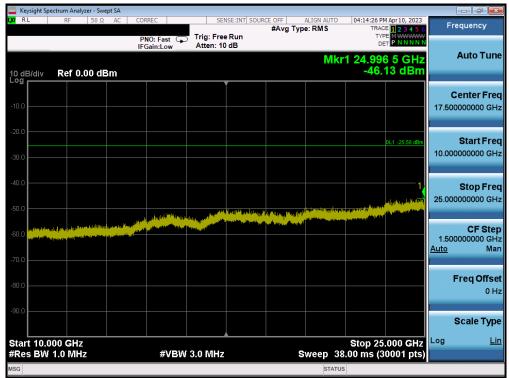
Keysight S	Spectrum Analy RF	yzer - Swep 50 Ω		CORREC			NSE:INT SOU		ALIGN AUTO	04-07-51 0	M Apr 10, 2023	-	7 ×
A KL	KF	50 \$2	AC					#Avg Typ		TRAC	CE 123456	Frequen	су
10 dB/div	Ref 20	0.00 di	Bm	PNO: IFGain	Fast 🕞	Atten: 3			M	(r1 3.04	5 3 GHz 78 dBm	Auto	Tun
10.0												Center 5.01500000	
•10.00												Start 30.00000	
30.0				1							DL1 -21.90 dBm	Stop 10.00000000	
-40.0	and a state of the state	an a	a laste Annel I dia					a geographic spatial and a state of the spatial and a state of the spatial and a state of the spatial and a sta	lander and bracking and the same trape.	la da Maria da angli pilang Ly Malang Changy Mang	, and a prime of all year and a grant and a second second	CF 997.00000 <u>Auto</u>	F Ste 00 M⊦ Ma
60.0												Freq (Offs 0 H
70.0												Scale	тур
Start 30 Res BV	MHz V 1.0 MH	z			#VBW	/ 3.0 MHz	 :	s	weep 18	Stop 10 3.00 ms (3	.000 GHz 80001 pts)	Log	L
sg 🗼 Poi	ints change	ed; all tr	aces c	leared					STATU	5			


Plot 7-57. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 6)

Plot 7-58. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 6)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)					
Test Report S/N:	Test Dates:	EUT Type:	Page 58 of 89				
1M2304260059-11.A3L	3/4-5/30/2023	30/2023 Portable Handset					
© 2023 ELEMENT			V9.0 02/01/2019				

Plot 7-59. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA - 26 Tones - Ch. 11)


Plot 7-60. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 11)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)				
Test Report S/N:	Test Dates:	EUT Type:	Dage E0 of 90			
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 59 of 89			
© 2023 ELEMENT			V9.0 02/01/2019			

Keysight Spectrun	n Analyzer - Swep	ot SA									
LXI RL F	RF 50 Ω	AC COI	RREC		SE:INT SOUR	E OFF #Avg Typ	ALIGN AUTO e: RMS	TRAC	M Apr10, 2023 CE 1 2 3 4 5 6	Freq	uency
	ef 20.00 di	IF	NO: Fast 🖵 Gain:Low	Trig: Free Atten: 30			М	bi kr1 3.52	7 1 GHz 18 dBm	A	uto Tune
10.0											n ter Freq 100000 GHz
-10.0											tart Fred
-20.0			1						DL1 -25.58 dBm		top Frec 10000 GH2
-40.0	The second s	annalis 1935 - 1935 - 194		nan i finan i finan i finan i finan Maria i finan i finan i finan i finan i	g ang di Salang si Salang sa Sala ng katipanang si Sana panah	laten er son	ng salah guya ^{ber} ang salah Panalak sang di Kang salah Panalak sang di Kang salah	in legel l'angester geologie Stagest in Sagester av Stage	d Hayselay alteration and a second second second	997.00 <u>Auto</u>	CF Step 0000 MH Mar
-60.0										Fre	e q Offse 0 H
-70.0 Start 30 MHz								Stop 10	.000 GHz	Sc Log	ale Type <u>Lir</u>
#Res BW 1.0	MHz			3.0 MHz		s		8.00 ms (3	0001 pts)		
MSG 🗼 Points ch	anged; all tr	aces clear	ed				STATU	JS			


Plot 7-61. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 1)

Plot 7-62. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 1)

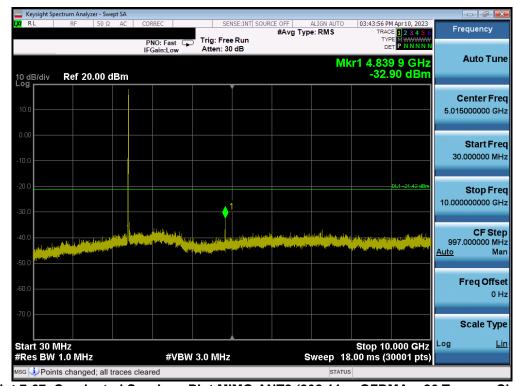
FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)					
Test Report S/N:	Test Dates:	EUT Type:	Page 60 of 89				
1M2304260059-11.A3L	3/4-5/30/2023	30/2023 Portable Handset					
© 2023 ELEMENT		·	V9.0 02/01/2019				

Plot 7-63. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 6)

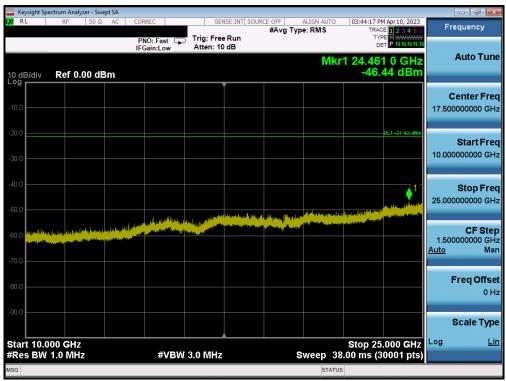
Plot 7-64. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 6)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)				
Test Report S/N:	Test Dates:	EUT Type:	Page 61 of 89			
1M2304260059-11.A3L	3/4-5/30/2023	4-5/30/2023 Portable Handset				
© 2023 ELEMENT			V9.0 02/01/2019			

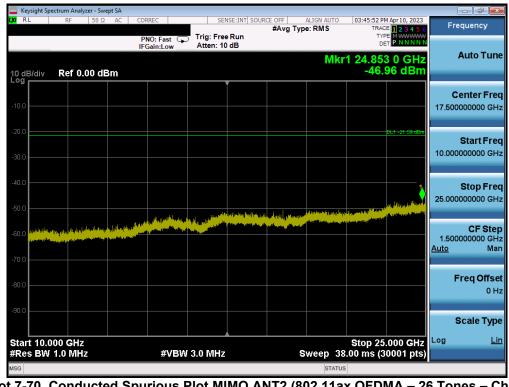
	ectrum Analyzer -									- F	×
LXI RL	RF 50	Ω AC	CORREC	SEI	NSE:INT SOUR	CE OFF #Avg Typ	ALIGN AUTO e: RMS		M Apr10, 2023	Frequency	
			PNO: Fast 🕞	Trig: Free Atten: 30		•		TYP			
			IFGalli.Low	/titelit oc			M	cr1 3.17	8 9 GHz	Auto Tu	une
10 dB/div	Ref 20.00) dBm						-35.	05 dBm		
)	Í					Center F	roc
10.0										5.015000000 (
0.00										Otort E	
										Start F 30.000000 M	
-10.0										00.0000001	
-20.0											
									DL1 -26.46 dBm	Stop F 10.000000000	
-30.0		<mark>_</mark>	1							10.000000000	
			at the Manual at a st			والأسرين المباعدين واللافين	ىلىر بىلىلىر بىلى			CF S	ten
-40.0	Land Line of the State of the		Colored Manhood Ales	and the state of the set	Contraction of the second second	and the standard sectors of	a series and the second se	a filia a succession and a succession of the suc	and the second secon	997.000000 M	мні
-50.0	and the same of th			his strength and a						Auto I	Mar
-30.0											
-60.0										Freq Off	fset 0 Hz
											7 112
-70.0										Scale T	
										-	ype
Start 30								Stop 10	.000 0112	Log	Lin
#Res BW				3.0 MHz		s			0001 pts)		
MSG 😲 Poir	nts changed; a	all traces c	leared				STATU	S			


Plot 7-65. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 11)

Plot 7-66. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 11)

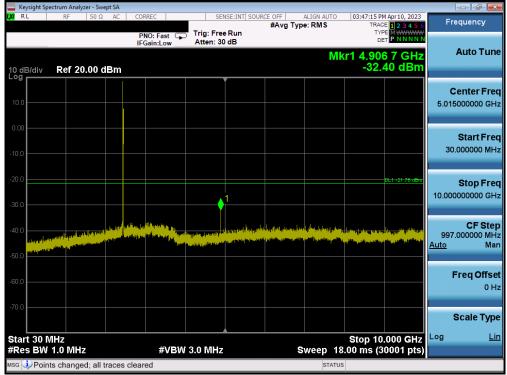

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)					
Test Report S/N:	Test Dates:	EUT Type:	Page 62 of 89				
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset					
© 2023 ELEMENT V9.0 02/01/2019							

MIMO Antenna-2 Conducted Spurious Emissions


Plot 7-68. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 1)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)				
Test Report S/N:	Test Dates:	EUT Type:				
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 63 of 89			
© 2023 ELEMENT			V9.0 02/01/2019			

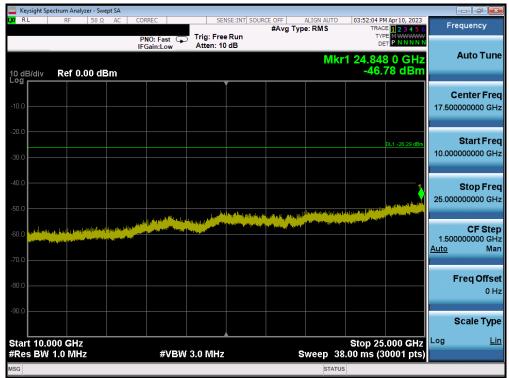
	pectrum Analyze											- 6 ×
LXI RL	RF	50 Ω AC	C CORF	REC		NSE:INT SOUP	RCE OFF	ALIGN AUTO	TRAC	M Apr 10, 2023	Fre	equency
10 dB/div	Ref 20.	00 dBm	IFG	0: Fast ⊊ ain:Low	Trig: Free Atten: 30			MI	or 1 4.89	0 4 GHz 22 dBm		Auto Tune
10.0												enter Free 000000 GH
-10.0											30.	Start Free 000000 MH
-20.0					•	1				DL1 -21.59 dDm	10.000	Stop Fre 000000 GH
-40.0	a jila ^{ta} ng bang berfan	genggen bereinen i	Polypyter Autologies		And Known (Mary VII)		n Lord gallogensi Sent Gardeni	an kalen ana manaka Penakan penakan	a ta ang ang ang ang ang ang ang ang ang an	<mark>a filmeny</mark> a tanàna kaopana Manjaraha dia kaominina dia	997. <u>Auto</u>	CF Ste 000000 MH Ma
-60.0											F	F req Offse 0 H
-70.0												Scale Typ
Start 30 #Res BW	MHz (1.0 MHz			#VBW	3.0 MHz		s	weep 18	Stop 10 3.00 ms (3	.000 GHz 0001 pts)	Log	Lii
	nts changed	; all trace	es cleare	d				STATU				


Plot 7-69. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 6)

Plot 7-70. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 6)

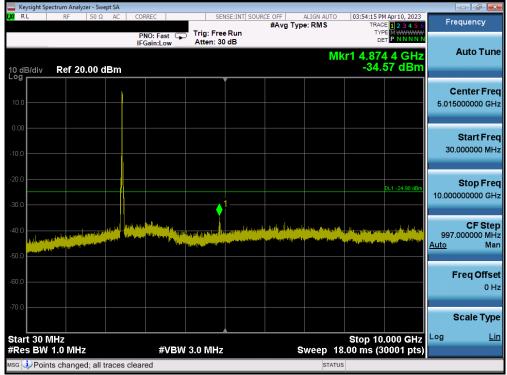
FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)					
Test Report S/N:	Test Dates:	EUT Type:	Page 64 of 89				
1M2304260059-11.A3L	3/4-5/30/2023	4-5/30/2023 Portable Handset					
© 2023 ELEMENT			V9.0 02/01/2019				

Plot 7-71. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 11)


Plot 7-72. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 11)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dere 65 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 65 of 89		
© 2023 ELEMENT	*	·	V9.0 02/01/2019		

Keysight Spectrum	n Analyzer - Swep	ot SA									- 6 ×
LXVI RL F	KF 50 Ω		RREC		SE:INT SOUR	CE OFF	ALIGN AUTO e: RMS	TRAC	M Apr 10, 2023 DE 1 2 3 4 5 6 PE M WWWW	Freq	uency
10 dB/div Re	ef 20.00 di	IF	PNO: Fast 🕞 Gain:Low	Atten: 30			M	or 1 4.82	3 9 GHz 97 dBm	A	uto Tune
10.0											n ter Fre d 00000 GH
-10.0											tart Free 100000 MH
-20.0				1					DL1 -26.29 dBm		top Free
-40.0				and a second	and <mark>Department of the second s</mark>	ng ng pang katang pang pang baha na katang katang pang katang pang pang pang pang pang pang pang p	andro y filmen ba andro a transation	an al an	e den en general de la de l La de la nacional de la de l	997.00 <u>Auto</u>	CF Stej 00000 MH Ma
-60.0										Fr	e q Offse 0 H
-70.0								0 4		Sc Log	ale Type
Start 30 MHz #Res BW 1.0			#VBW	3.0 MHz		s	weep 18	stop 10 3.00 ms (3	.000 GHz 0001 pts)		<u></u>
MSG 🗼 Points ch	anged; all tr	aces clea	red				STATU	5			


Plot 7-73. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 1)

Plot 7-74. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 1)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dere 66 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 66 of 89		
© 2023 ELEMENT			V9.0 02/01/2019		

Plot 7-75. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 6)

Plot 7-76. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 6)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 67 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 67 of 89		
© 2023 ELEMENT			V9.0 02/01/2019		

	ectrum Analyzer -										- ē -
X/RL	RF 5	0Ω AC	COR	REC		NSE:INT SOUR	#Avg Typ	ALIGN AUTO e: RMS	TR	PM Apr 10, 2023 ACE 1 2 3 4 5 6 YPE M WWWWW	Frequency
10 dB/div	Ref 20.0	0 dBm		ain:Low	Atten: 30			N	/lkr1 8.40	D1 5 GHz 20 dBm	Auto Tun
10.0											Center Fre 5.015000000 GH
-10.0											Start Fre 30.000000 MH
-20.0									.1	DL1 -26.19 dBm	Stop Fre 10.000000000 GH
-40.0 H)	n fan de fel fel staf kenne ^{je} r ste geborten gen geboren de ste	almin Dalari Alfri			l <mark>a pina di Mandra I</mark> nte Na pina di Mandra Inte	ng ng katalan k	ha da 19 ku kasara da a				CF Ste 997.000000 MH <u>Auto</u> Ma
60.0											Freq Offs 01
-70.0											Scale Typ
Start 30 N #Res BW				#VBW	3.0 MHz		s	weep	Stop 1 18.00 ms (0.000 GHz (30001 pts)	
//SG								STA	TUS		

Plot 7-77. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 11)

Plot 7-78. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 11)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dere 69 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 68 of 89		
© 2023 ELEMENT			V9.0 02/01/2019		

7.7 Radiated Spurious Emission Measurements – Above 1 GHz §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-9 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-9. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Section 6.6.4.3 KDB 558074 D01 v05r02 – Sections 8.6, 8.7

Test Settings

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be \geq 2 x span/RBW)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dama 60 of 80		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 69 of 89		
© 2023 ELEMENT			V9.0 02/01/2019		

<u>Test Setup</u>

The EUT and measurement equipment were set up as shown in the diagram below.

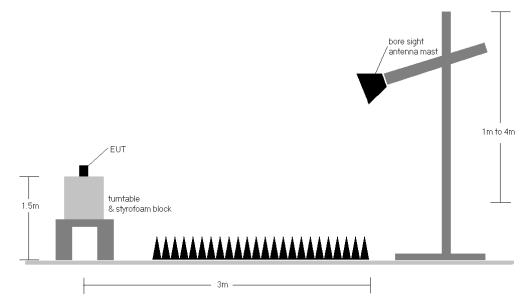


Figure 7-6. Test Instrument & Measurement Setup

Test Notes

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 D01 v05r02 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in Section 15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-9.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Daga Z0 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 70 of 89		
© 2023 ELEMENT			V9.0 02/01/2019		

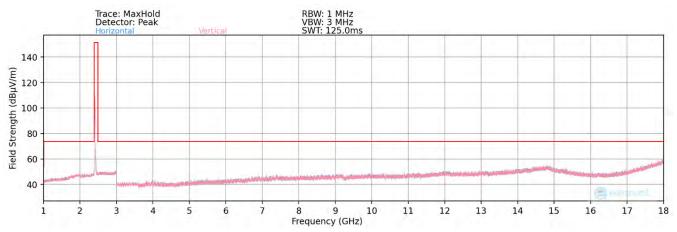
- 9. Some band edge measurements were performed using a channel integration method to determine compliance with the out of band average radiated spurious emissions limit in the 2483.5 2500MHz band. Per KDB 558074 D01 v05r02 Section 13.3, a measurement was performed using a RBW of 100kHz at the frequency with highest emission outside of band edge. For integration that does not start at 2483.5MHz, consideration was taken to ensure the worst case emission is in the 1MHz spectrum. The results were integrated up to the 1MHz reference bandwidth to show compliance with the 15.209 radiated limit for emissions greater than 1GHz.
- 10. For radiated measurements, emissions were investigated for the fully-loaded RU configuration and for all the partially-loaded RU configurations. Among all of the available partially-loaded RU configurations, only the configuration with the worst case emissions is reported.

Sample Calculations

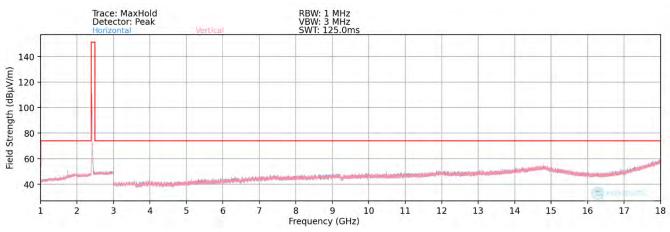
Determining Spurious Emissions Levels

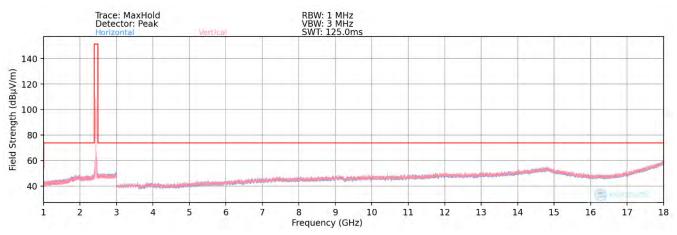
- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- ο Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

Radiated Band Edge Measurement Offset

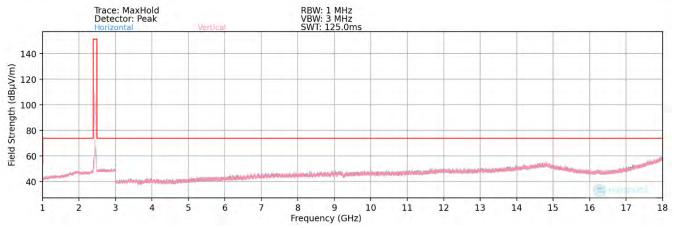

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.7 was calculated using the formula:

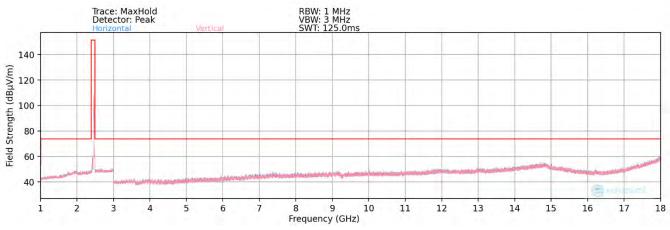
Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain


FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dega 71 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 71 of 89		
© 2023 ELEMENT			V9.0 02/01/2019		

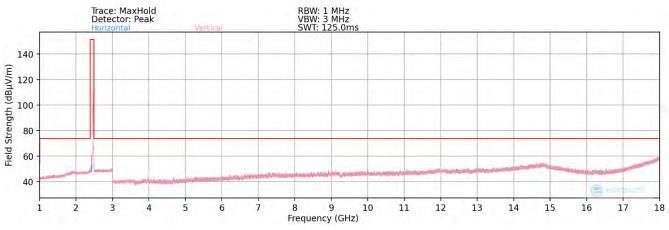

7.7.2 MIMO Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]

Plot 7-79. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA - 26 Tones - Ch. 1) - Closed

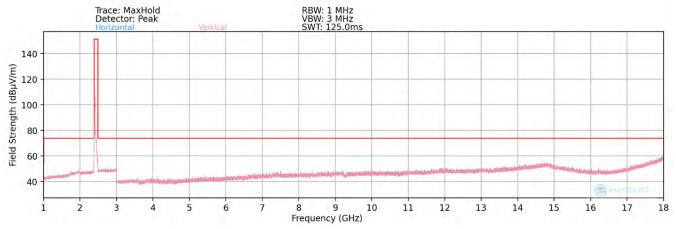

Plot 7-80. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA – 26 Tones – Ch. 1) - Open

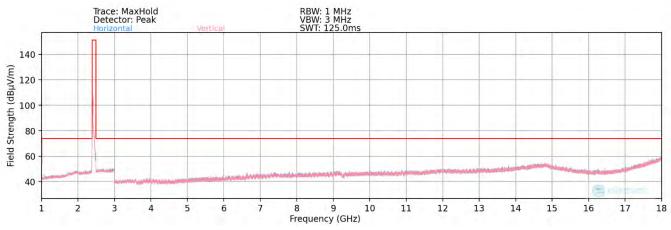

Plot 7-81. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA – 26 Tones – Ch. 6) - Closed

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 70 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 72 of 89		
© 2023 ELEMENT	•	· · ·	V9.0 02/01/2019		

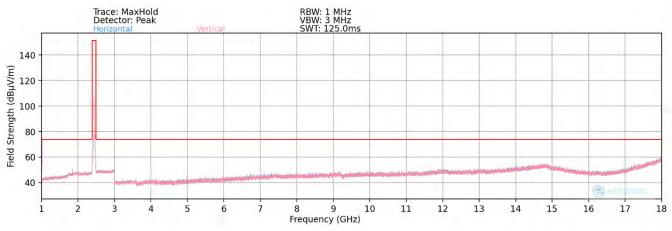


Plot 7-82. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA - 26 Tones - Ch. 6) - Open

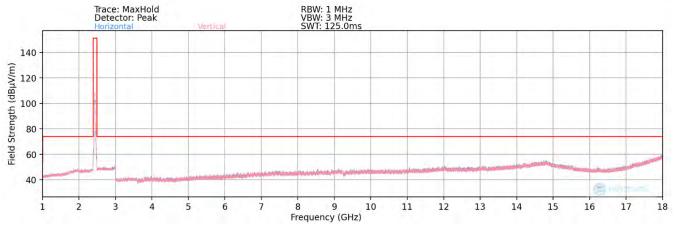


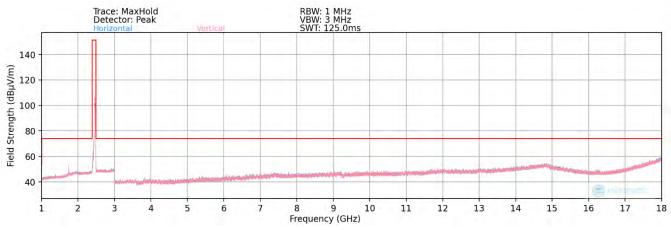

Plot 7-84. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA – 26 Tones – Ch. 11) - Open

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dega 72 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 73 of 89	
© 2023 ELEMENT	•		V9.0 02/01/2019	

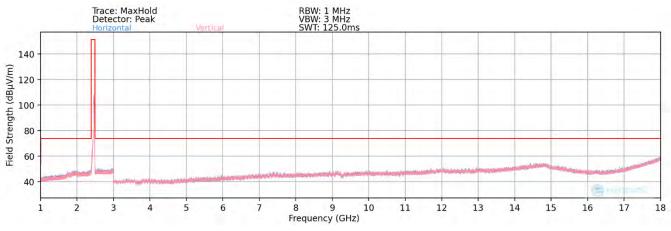


Plot 7-85. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA - 242 Tones - Ch. 1) - Closed

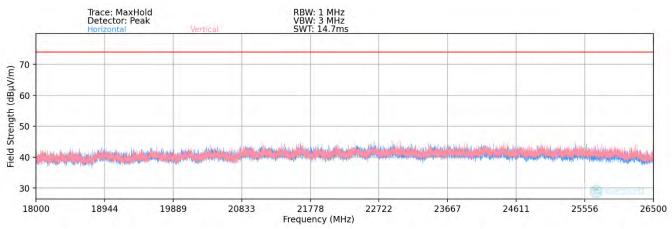



Plot 7-87. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA – 242 Tones – Ch. 6) - Closed

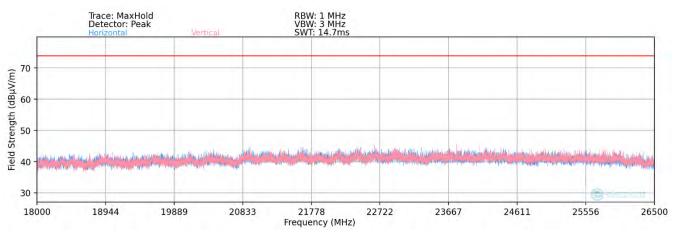
FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Daga 74 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 74 of 89	
© 2023 ELEMENT	•	·	V9.0 02/01/2019	

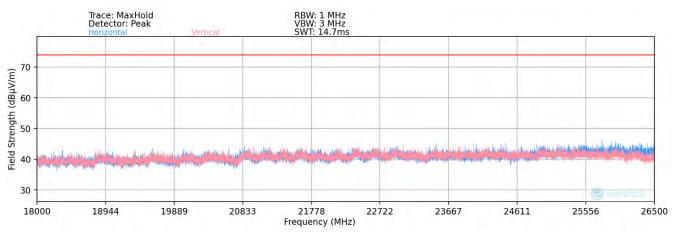


Plot 7-88. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA - 242 Tones - Ch. 6) - Open

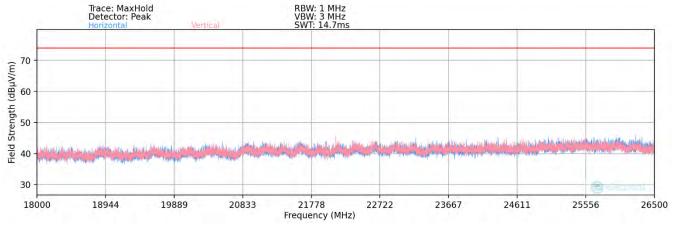


Plot 7-90. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA - 242 Tones - Ch. 11) - Open


FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dere 75 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 75 of 89	
© 2023 ELEMENT	·		V9.0 02/01/2019	


MIMO Radiated Spurious Emissions Measurements (Above 18GHz) §15.209; RSS-Gen [8.9]

Plot 7-91. Radiated Spurious Plot above 18GHz MIMO (802.11ax OFDMA - 26 Tones) - Closed



Plot 7-93. Radiated Spurious Plot above 18GHz MIMO (802.11ax OFDMA – 242 Tones) - Closed

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dago 76 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 76 of 89	
© 2023 ELEMENT	<u>.</u>	·	V9.0 02/01/2019	

Plot 7-94. Radiated Spurious Plot above 18GHz MIMO (802.11ax OFDMA – 242 Tones) - Open

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Domo 77 of 90	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 77 of 89	
© 2023 ELEMENT			V9.0 02/01/2019	

MIMO Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	53
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	01

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	Н	343	101	-78.41	4.03	32.62	53.98	-21.35
4824.00	Peak	Н	343	101	-46.47	4.03	64.56	73.98	-9.41
12060.00	Avg	Н	-	-	-81.50	12.87	38.37	53.98	-15.60
12060.00	Peak	Н	-	-	-69.99	12.87	49.88	73.98	-24.09

Table 7-10. Radiated Measurements MIMO (26 Tones)

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	53
Distance of Measurements:	3 Meters
Operating Frequency:	2437MHz
Channel:	06

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	Н	294	171	-78.95	-19.66	8.39	53.98	-45.59
4874.00	Peak	Н	294	171	-52.96	-19.66	34.38	73.98	-39.60
7311.00	Avg	Н	122	239	-79.96	-16.61	10.43	53.98	-43.55
7311.00	Peak	Н	122	239	-63.98	-16.61	26.41	73.98	-47.57
12185.00	Avg	Н	-	-	-81.53	-12.37	13.10	53.98	-40.88
12185.00	Peak	Н	-	-	-69.34	-12.37	25.29	73.98	-48.69

Table 7-11. Radiated Measurements MIMO (26 Tones)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dama 78 of 90		
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 78 of 89		
© 2023 ELEMENT			V9.0 02/01/2019		

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	53
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	Н	339	232	-78.78	-19.61	8.61	53.98	-45.37
4924.00	Peak	Н	339	232	-48.72	-19.61	38.67	73.98	-35.31
7386.00	Avg	Н	-	-	-79.80	-16.58	10.62	53.98	-43.36
7386.00	Peak	Н	-	-	-67.82	-16.58	22.60	73.98	-51.38
12310.00	Avg	Н	-	-	-82.03	-12.14	12.83	53.98	-41.15
12310.00	Peak	Н	-	-	-69.19	-12.14	25.67	73.98	-48.31

Table 7-12. Radiated Measurements MIMO (26 Tones)

Worst Case Mode:802.11ax OFDMAWorst Case Transfer Rate:MCS0RU Index:61Distance of Measurements:3 MetersOperating Frequency:2412MHzChannel:01

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	Н	122	141	-77.98	-20.01	9.01	53.98	-44.96
4824.00	Peak	н	122	141	-60.49	-20.01	26.50	73.98	-47.47
12060.00	Avg	н	-	-	-81.79	-12.84	12.37	53.98	-41.61
12060.00	Peak	Н	-	-	-66.54	-12.84	27.62	73.98	-46.36

Table 7-13. Radiated Measurements MIMO (242 Tones)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dama 70 of 00
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 79 of 89
© 2023 ELEMENT	•	· · · · · · · · · · · · · · · · · · ·	V9.0 02/01/2019

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2437MHz
Channel:	06

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	Н	-	-	-78.97	4.11	32.14	53.98	-21.84
4874.00	Peak	н	-	-	-64.80	4.11	46.31	73.98	-27.67
7311.00	Avg	н	-	-	-79.93	6.95	34.02	53.98	-19.96
7311.00	Peak	Н	-	-	-65.42	6.95	48.53	73.98	-25.45
12185.00	Avg	н	-	-	-81.60	13.36	38.76	53.98	-15.22
12185.00	Peak	н	-	-	-66.52	13.36	53.84	73.98	-20.14

Table 7-14. Radiated Measurements MIMO (242 Tones)

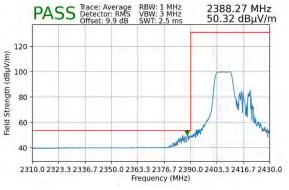
Worst Case Mode: _____ Worst Case Transfer Rate: ____ RU Index: _____ Distance of Measurements: _____ Operating Frequency: _____ Channel: _____

802.11ax OFDMA
MCS0
61
3 Meters
2462MHz
11

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	Н	375	260	-78.88	4.01	32.13	53.98	-21.85
4924.00	Peak	Н	375	260	-54.92	4.01	56.09	73.98	-17.89
7386.00	Avg	Н	-	-	-79.81	6.97	34.16	53.98	-19.82
7386.00	Peak	Н	-	-	-66.09	6.97	47.88	73.98	-26.10
12310.00	Avg	Н	-	-	-82.08	13.50	38.42	53.98	-15.55
12310.00	Peak	Н	-	-	-65.54	13.50	54.96	73.98	-19.01

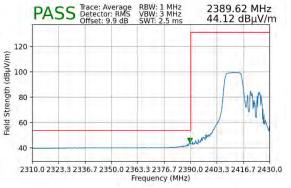
Table 7-15. Radiated Measurements MIMO (242 Tones)

FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dama 90 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 80 of 89
© 2023 ELEMENT			V9.0 02/01/2019



7.7.3 MIMO Radiated Restricted Band Edge Measurements

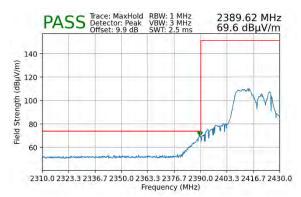
§15.205 §15.209; RSS-Gen [8.9]

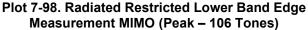

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	53
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	1

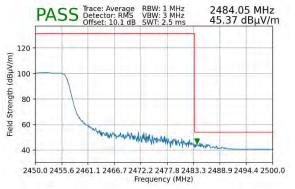


Plot 7-95. Radiated Restricted Lower Band Edge Measurement MIMO (Average – 106 Tones)

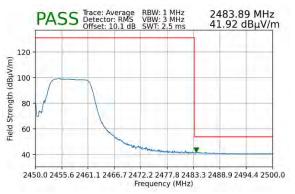

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	53
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	2



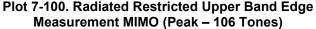
Plot 7-96. Radiated Restricted Lower Band Edge Measurement MIMO (Peak – 106 Tones)

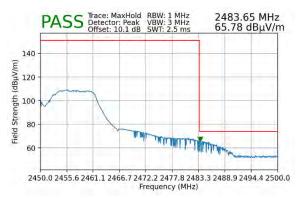


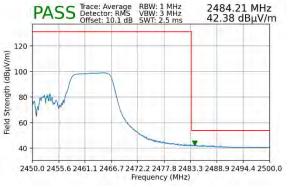
FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 81 of 89
© 2023 ELEMENT			\/Q 0 02/01/2010



Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	54
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	8

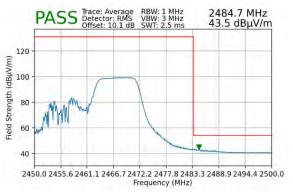

Plot 7-99. Radiated Restricted Upper Band Edge Measurement MIMO (Average – 106 Tones)


Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	54
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	9

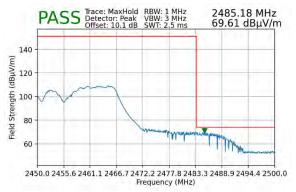


Plot 7-102. Radiated Restricted Upper Band Edge Measurement MIMO (Peak – 106 Tones)

FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 92 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 82 of 89
© 2023 ELEMENT	•	•	V9.0 02/01/2019



Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	54
Distance of Measurements:	3 Meters
Operating Frequency:	2457MHz
Channel:	10

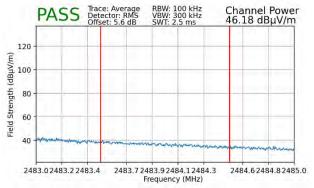


Plot 7-103. Radiated Restricted Upper Band Edge Measurement MIMO (Average – 106 Tones)

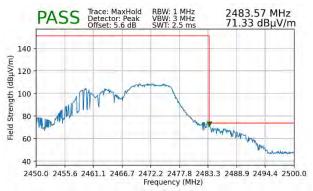
Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	54
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

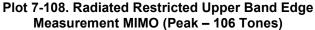
Plot 7-106. Radiated Restricted Upper Band Edge Measurement MIMO (Peak – 106 Tones)

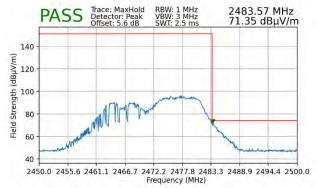
FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 92 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 83 of 89
© 2023 ELEMENT	•		V9.0 02/01/2019

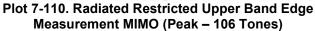


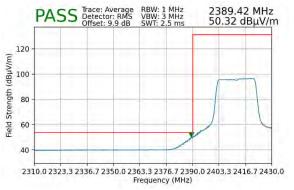
Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	54
Distance of Measurements:	3 Meters
Operating Frequency:	2467MHz
Channel:	12

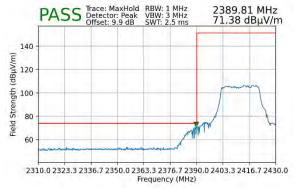


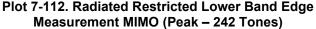

Plot 7-107. Radiated Restricted Upper Band Edge Measurement MIMO (Average – 106 Tones)


Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	54
Distance of Measurements:	3 Meters
Operating Frequency:	2472MHz
Channel:	13

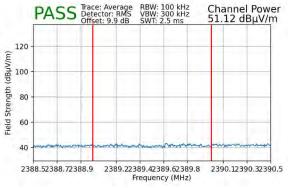




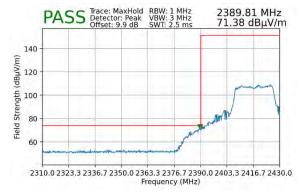

FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 94 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 84 of 89
© 2023 ELEMENT		·	V9.0 02/01/2019

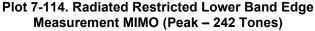


Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	1

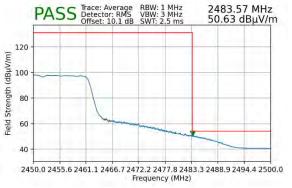


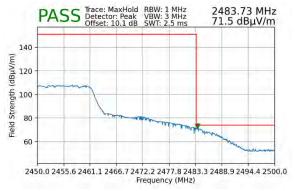


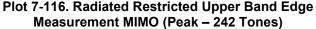




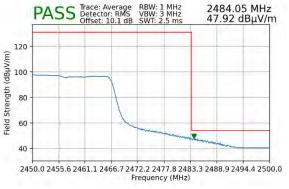
Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	2



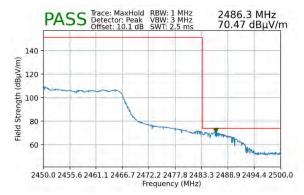

FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 95 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 85 of 89
© 2023 ELEMENT	•		V9.0 02/01/2019



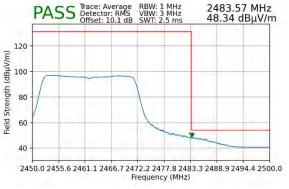
Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2452MHz
Channel:	9







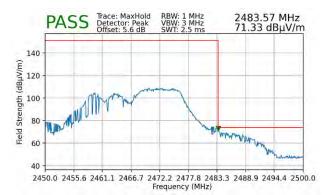
Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2457MHz
Channel:	10



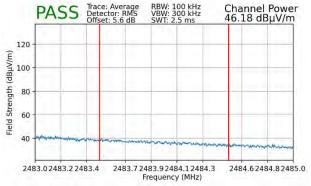
FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 96 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 86 of 89
© 2023 ELEMENT	•		V9.0 02/01/2019

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

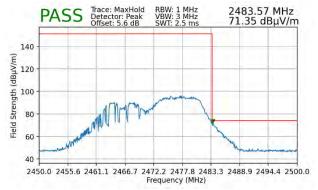
Plot 7-119. Radiated Restricted Upper Band Edge Measurement MIMO (Average – 242 Tones)

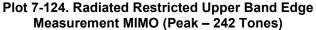

802.11ax OFDMA
MCS0
61
3 Meters
2467MHz
12

Plot 7-121. Radiated Restricted Upper Band Edge Measurement MIMO (Average – 242 Tones)



Plot 7-122. Radiated Restricted Upper Band Edge Measurement MIMO (Peak – 242 Tones)


FCC ID: A3LSMF731JPN		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 00
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 87 of 89
© 2023 ELEMENT	•		V9.0 02/01/2019



Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2467MHz
Channel:	13

Plot 7-123. Radiated Restricted Upper Band Edge Measurement MIMO (Average – 242 Tones)

FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 99 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 88 of 89
© 2023 ELEMENT	-		V9.0 02/01/2019

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMF731JPN** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules.

FCC ID: A3LSMF731JPN	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 90 of 90
1M2304260059-11.A3L	3/4-5/30/2023	Portable Handset	Page 89 of 89
© 2023 ELEMENT			V9.0 02/01/2019