ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST) 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing: 05/30/2023 - 06/21/2023 Test Site/Location: Element, Columbia, MD, USA **Document Serial No.:** 1M2305260071-01.A3L

FCC ID:

A3LSMF731B

APPLICANT:

SAMSUNG ELECTRONICS CO., LTD.

DUT Type: Portable Handset **Class II Permissive Change** Application Type: FCC Rule Part(s): CFR §2.1093 Model(s): SM-F731B Permissive Change(s): See FCC Change Document **Date of Original Certification:** 06/23/2023

Equipment	Band & Mode	Tx Frequency		SA	AR	
Class		TXT Toquonoy	1g Head (W/kg)	1g Body-Worn (W/kg)	1g Hotspot (W/kg)	10g Phablet (W/kg)
DTS	2.4 GHz WLAN	2412 - 2472 MHz	0.10	N/A	N/A	N/A
NII	U-NII-1	5180 - 5240 MHz	N/A	N/A	N/A	N/A
NII	U-NII-2A	5260 - 5320 MHz	0.35*	N/A	N/A	N/A
NII	U-NII-2C	5500 - 5720 MHz	0.30*	N/A	N/A	N/A
NII	U-NII-3	5745 - 5825 MHz	0.33*	N/A	N/A	N/A
NII	U-NII-4	5845 - 5885 MHz	0.25*	N/A	N/A	N/A
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.10	N/A	N/A	N/A
Simultaneous	SAR per KDB 690783 D01v01r03	3:	1.34	0.79	1.52	3.99

* Note: * SAR values represent RF exposure during MIMO operations.

Only operations relevant to this permissive change were evaluated for compliance. Please see the original compliance evaluation in RF Exposure Technical Report S/N: 1M2303170032-19-R1.A3L for complete evaluation of all other operating modes. The operation description includes a description of all changed items.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.9 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

sion in writing

Executive Vice President

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: A3LSMF731B		SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset		Page 1 of 37
			REV 22.0 03/30/2022

TABLE OF CONTENTS

1	DEVICE	JNDER TEST	3
3	INTRODU	JCTION	. 13
4	DOSIME	RIC ASSESSMENT	. 14
5	DEFINITI	ON OF REFERENCE POINTS	. 15
6	TEST CO	NFIGURATION POSITIONS	. 16
7	RF EXPC	SURE LIMITS	. 18
8	FCC MEA	SUREMENT PROCEDURES	. 19
9	RF CONE	DUCTED POWERS	. 22
10	SYSTEM	VERIFICATION	. 27
11	SAR DAT	A SUMMARY	. 29
12	SAR MEA	SUREMENT VARIABILITY	. 32
13	EQUIPME	ENT LIST	. 33
14	MEASUR	EMENT UNCERTAINTIES	. 34
15	CONCLU	SION	. 35
16	REFERE	NCES	. 36
APPEN APPEN APPEN APPEN APPEN APPEN APPEN	DIX B: DIX C: DIX D: DIX E: DIX F: DIX G:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS PROBE AND DIPOLE CALIBRATION CERTIFICATES SAR TISSUE SPECIFICATIONS MULTI-TX AND ANTENNA SAR CONSIDERATIONS POWER REDUCTION VERIFICATION SAR SYSTEM VALIDATION 802.11ax RU SAR EXCLUSION	

APPENDIX I: DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS

FCC ID: A3LSMF731B		SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset		Page 2 of 37
			REV 22.0 03/30/2022

1 DEVICE UNDER TEST

1.1 Device Overview

perating Modes	Tx Frequency
Voice/Data	824.20 - 848.80 MHz
Voice/Data	1850.20 - 1909.80 MHz
Voice/Data	826.40 - 846.60 MHz
Voice/Data	1712.4 - 1752.6 MHz
Voice/Data	1852.4 - 1907.6 MHz
Voice/Data	699.7 - 715.3 MHz
Voice/Data	706.5 - 713.5 MHz
Voice/Data	779.5 - 784.5 MHz
Voice/Data	814.7 - 848.3 MHz
Voice/Data	824.7 - 848.3 MHz
Voice/Data	1710.7 - 1779.3 MHz
Voice/Data	1710.7 - 1754.3 MHz
Voice/Data	1850.7 - 1914.3 MHz
Voice/Data	1850.7 - 1909.3 MHz
Voice/Data	2498.5 - 2687.5 MHz
Voice/Data	826.5 - 846.5 MHz
Voice/Data	1712.5 - 1777.5 MHz
Voice/Data	1852.5 - 1912.5 MHz
Voice/Data	1852.5 - 1907.5 MHz
Voice/Data	2501.01 - 2685 MHz
Voice/Data	3455.01 - 3544.98 MHz 3705 - 3975 MHz
Voice/Data	2412 - 2472 MHz
	5180 - 5240 MHz
	5260 - 5320 MHz
	5500 - 5720 MHz
Voice/Data	5745 - 5825 MHz
Voice/Data	5845 - 5885 MHz
Voice/Data	5935 - 6415 MHz
Voice/Data	6435 - 6515 MHz
Voice/Data	6535 - 6875 MHz
Voice/Data	6895 - 7115 MHz
Data	2402 - 2480 MHz
Data	13.56 MHz
	Voice/Data Voice/Data

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 3 of 37
		REV 22.0

1.2 Power Reduction for SAR

This device uses an independent fixed level power reduction mechanism for WLAN/BT operations during voice or VoIP held to ear scenarios and when 5G NR is active. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

Only operations relevant to this permissive change were evaluated for compliance. No other target changes have been made. Targets for all other bands/exposure conditions can be found in the original filing.

Note: Targets for 802.11ax RU operations can be found in 802.11ax RU SAR Exclusion Appendix.

1.3.1 2.4 GHz SISO/MIMO WLAN Output Power

The below table is applicable is applicable in the following conditions:

Simultaneous conditions with 5G NR and/or 5/6 GHz WLAN

									SISO															MIMO							
lode	Band								Antenna	2												Ant	enna 1 &	Antenn	a 2 in M	IMO					
			ь			g			n			ac			ax (SU)		CD	b O + STB	c	(CD	g D + STB	IC)	(CDD+	n +STBC, :	SDM)	(CDD	ac +STBC, \$	SDM)			DM)
mum / No	minal Power	Max		Nom.	м	ax	Nom.	M	ах	Nom.	М	ах	Nom.	Ma	ах	Nom.	Ma	x	Nom.	Ma	×	Nom.	Ма	x	Nom.	Ma	ах	Nom.	Max	1	Nom.
GHz		13.0		12.0	1:	3.0	12.0	1:	3.0	12.0	13	1.0	12.0	13	.0	12.0	13.	0	12.0	13.	0	12.0	13.	.0	12.0	13	.0	12.0	13.0		12.0
VIFI	2.45 GHz			5.0 -1.0	ch. 12: ch. 13:	6.0 0.0	5.0 -1.0	ch. 12: ch. 13:	6.0 0.0	5.0 -1.0	ch. 12: ch. 13:	6.0 0.0	5.0 -1.0	ch. 12: ch. 13:	6.0 0.0	5.0 -1.0	ch. 12: ch. 13:	6.0 0.0	5.0 -1.0	ch. 12: ch. 13:	6.0 0.0			6.0 0.0	5.0 -1.0	ch. 12: ch. 13:	6.0 0.0	5.0 -1.0			5.0 -1.0
	mum / No GHz	mum / Nominal Power	GHz 2.45 GHz 13.0 ch. 12: 6	b mum / Nominal Power Max GHz 2.45 GHz 13.0 ch. 12: 6.0	b mum / Nominal Power Max Nom. GHz 2.45 GHz 13.0 12.0 v/FI 2.45 GHz ch. 12: 6.0 5.0	b mum / Nominal Power Max Nom. M GHz 2.45 GHz 13.0 12.0 11: ch.12: 6.0 5.0 ch.12: 12.0 11:	b g mum / Nominal Power Max Nom. Max GHz 13.0 12.0 13.0 GHz 6.1 12: 6.0 5.0 ch. 12: 6.0	g mum / Nominal Power Max Nom. Max Nom. GHz 2.45 GHz 13.0 12.0 13.0 12.0 Hz 2.45 GHz ch.12: 6.0 5.0 ch.12: 6.0 5.0	b g mum / Nominai Power Max Nom. Max Nom. M GHz 2.45 GHz 13.0 12.0 13.0 12.0 13.0 12.0 13.0 GHz 6.12 6.0 5.0 ch.12: 5.0 ch.12: 6.0 5.0 ch.12: 6.0 5.0 ch.12: 5.0 ch.12: 5.0 ch.12: 5.0 ch.12: 5.0 ch.12: 5.0 ch.12: 5.0 <	deal Band	ode Band	deal Band Antenna 2 b g n Antenna 2 mum / Nominal Power Max Nom. Max Nom. Max Nom. Max Nom. Max Nom. Nom. Nom. Nom. Nom. Nom. Nom. Nom. Nom.	Anterna 2 Anterna 2 Band g n acc Image: Second Seco	deal Band Jene Stress Jene Stress Antenna 2 Ant	ode Band Image: space spac	deal Band	dee Band → Image: Section 10 and 10 a	Alterna Anterna Section 2016 Officience Officience	ode Band Image: space spac	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	dee Band Image: space spac	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	def Band	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mem Image: Imag	def

(Upper tolerance: Target +1.0 dB)

The below table is applicable is applicable in the following conditions:

- RCV Active
- RCV Active during simultaneous conditions with 5G NR and/or 5/6 GHz WLAN

										IEEE 802.11 M	odulated	Output Power (in	dBm)								
						SISO										MIMO					
Mode	Band					Antenna	2								An	tenna 1 & Antenn	na 2 in MI	MO			
		b		g		n		ac		ax (SU)		b CDD + STB	iC	g (CDD + STB	C)	n (CDD+STBC, :	SDM)	ac (CDD+STBC,	SDM)	ax (SU) (CDD+STBC,	
Maximum / N	ominal Power	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.
2.4 GHz	2.45 GHz	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0
WIFI	2.45 GHz	ch. 12: 6.0	5.0	ch. 12: 6.0	5.0	ch. 12: 6.0	5.0	ch. 12: 6.0	5.0	ch. 12: 6.0	5.0	ch. 12: 6.0	5.0	ch. 12: 6.0	5.0						
		ch. 13: 0.0	-1.0	ch. 13: 0.0	-1.0	ch. 13: 0.0	-1.0	ch. 13: 0.0	-1.0	ch. 13: 0.0	-1.0	ch. 13: 0.0	-1.0	ch. 13: 0.0	-1.0						

(Upper tolerance: Target +1.0 dB)

FCC ID: A3LSMF731B	SAR EVALU	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 4 of 37
		REV 22.0 03/30/2022

1.3.2 5 GHz MIMO WLAN Output Power

The below table is applicable is applicable in the following conditions:

- RCV Active
- RCV Active during simultaneous conditions with 5G NR and/or 2.4 GHz WLAN/BT
- During simultaneous conditions with 5G NR and/or 2.4 GHz WLAN/BT

			IEEE 802.11	Modulated	Output Power (in dBm)		
Mode				MI	ON			
Wiode			Anter	nna 1 & An	tenna 2 in MIMO			
	а		n		ac		ax (SU)
Maximum /								
Nominal	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.
Power								
5 GHz WIFI	12.0	11.0	12.0	11.0	12.0	11.0	12.0	11.0
(20MHz BW)	12.0	11.0	12.0	11.0	12.0	11.0	12.0	11.0
5 GHz WIFI			10.0	11.0	10.0	11.0	10.0	11.0
(40MHz BW)			12.0	11.0	12.0	11.0	12.0	11.0
5 GHz WIFI					10.0	11.0	10.0	44.0
(80MHz BW)					12.0	11.0	12.0	11.0
5 GHz WIFI					10.0	11.0	10.0	44.0
(160MHz BW)					12.0	11.0	12.0	11.0

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 5 of 37
		REV 22.0 03/30/2022

1.3.3 2.4 GHz Bluetooth Output Power

The below table is applicable is applicable in the following conditions:

RCV Active

	· · ·	Modulated Output Power (in dBm)											
Mode	Data Rate		Antenna										
		Anten	na 1	Antenna	a 2								
Maximum / Nomi	nal Power	Max	Nom.	Max	Nom.								
Bluetooth	1Mbps	7.0	6.0	10.0	9.0								
Bluetooth EDR	2Mbps	7.0	6.0	10.0	9.0								
Bluetooth EDR	3Mbps	7.0	6.0	10.0	9.0								
Bluetooth LE	1Mbps	7.0	6.0	10.0	9.0								
Bluetooth LE	2Mbps	7.0	6.0	10.0	9.0								
Bluetooth LE	125kbps	7.0	6.0	8.0	7.0								
Bluetooth LE	500kbps	7.0	6.0	8.0	7.0								

(Upper tolerance: Target +1.0 dB)

FCC ID: A3LSMF731B	S/			SAR EVALUATION REPORT Approv	
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset		Page 6 of 37		
			REV 22.0 03/30/2022		

1.4 DUT Antenna Locations

A diagram showing the location of the device antennas for both open and closed configurations can be found in DUT Antenna Diagram and SAR Test Setup Photographs Appendix.

1.5 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in DUT Antenna Diagram and SAR Test Setup Photographs Appendix.

1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 procedures.

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 7 of 37
		REV 22.0 03/30/2022

	Simultaneous Transmission Scenarios					
No.	Capable Transmit Configuration	Head	Body-Worn	Wireless	Phablet	Notes
1	GSM voice + 2.4 GHz WLAN MIMO	Yes	Accessory Yes	Router N/A	Yes	
2	GSM voice + 5 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
3	GSM voice + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
4	GSM voice + 2.4 GHz Bluetooth Ant 1	Yes	Yes	N/A	Yes	
5	GSM voice + 2.4 GHz Bluetooth Ant 2	Yes	Yes	N/A	Yes	
6	GSM voice + 2.4 GHz WLAN MIMO + 5 GHz WLAN MIMO GSM voice + 2.4 GHz WLAN MIMO + 6 GHz WLAN MIMO	Yes	Yes Yes	N/A N/A	Yes Yes	
8	GSM voice + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2	Yes	Yes	N/A	Yes	
9	GSM voice + 2.4 GHz Bluetooth Ant 1 + 5 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
10	GSM voice + 2.4 GHz Bluetooth Ant 1 + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
11	GSM voice + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 5 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
12	GSM voice + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
13 14	GSM voice + 2.4 GHz Bluetooth Ant 2 + 5 GHz WLAN MIMO GSM voice + 2.4 GHz Bluetooth Ant 2 + 6 GHz WLAN MIMO	Yes	Yes	N/A N/A	Yes Yes	
15	UMTS + 2.4 GHz WLAN MIMO	Yes	Yes	Yes	Yes	
16	UMTS + 5 GHz WLAN MIMO	Yes	Yes	Yes	Yes	
17	UMTS + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
18	UMTS + 2.4 GHz Bluetooth Ant 1	Yes	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
19 20	UMTS + 2.4 GHz Bluetooth Ant 2	Yes	Yes	N/A Yes	Yes	
20	UMTS + 2.4 GHz WLAN MIMO + 5 GHz WLAN MIMO UMTS + 2.4 GHz WLAN MIMO + 6 GHz WLAN MIMO	Yes	Yes Yes	N/A	Yes Yes	
21	UMTS + 2.4 GHz WEAK MINIO + 0 GHz WEAK MINIO UMTS + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2	Yes	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
23	UMTS + 2.4 GHz Bluetooth Ant 1 + 5 GHz WLAN MIMO	Yes	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
24	UMTS + 2.4 GHz Bluetooth Ant 1 + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
25	UMTS + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 5 GHz WLAN MIMO	Yes	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
26	UMTS + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
27	UMTS + 2.4 GHz Bluetooth Ant 2 + 5 GHz WLAN MIMO UMTS + 2.4 GHz Bluetooth Ant 2 + 6 GHz WLAN MIMO	Yes	Yes Yes	N/A N/A	Yes Yes	
29	LTE + 2.4 GHz WLAN MIMO	Yes	Yes	Yes	Yes	
30	LTE + 5 GHz WLAN MIMO	Yes	Yes	Yes	Yes	
31	LTE + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
32	LTE + 2.4 GHz Bluetooth Ant 1	Yes	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
33 34	LTE + 2.4 GHz Bluetooth Ant 2 LTE + 2.4 GHz WLAN MIMO + 5 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
34	LTE + 2.4 GHz WLAN MIMO + 5 GHz WLAN MIMO	Yes	Yes	Yes N/A	Yes	
36	LTE + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2	Yes	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
37	LTE + 2.4 GHz Bluetooth Ant 1 + 5 GHz WLAN MIMO	Yes	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
38	LTE + 2.4 GHz Bluetooth Ant 1 + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
39	LTE + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 5 GHz WLAN MIMO	Yes	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
40	LTE + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 6 GHz WLAN MIMO LTE + 2.4 GHz Bluetooth Ant 2 + 5 GHz WLAN MIMO	Yes	Yes	N/A N/A	Yes Yes	
41	LTE + 2.4 GHz Bluetooth Ant 2 + 5 GHz WLAN MIMO	Yes	Yes	N/A N/A	Yes	
43	LTE + NR	Yes	Yes	N/A	Yes	
44	LTE + NR + 2.4 GHz WLAN MIMO	Yes	Yes	Yes	Yes	
45	LTE + NR + 5 GHz WLAN MIMO	Yes	Yes	Yes	Yes	
46	LTE + NR + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
47 48	LTE + NR + 2.4 GHz Bluetooth Ant 1	Yes	Yes	Yes^ N/A	Yes Yes	^ Bluetooth Tethering is considered
40	LTE + NR + 2.4 GHz Bluetooth Ant 2 LTE + NR + 2.4 GHz WLAN MIMO + 5 GHz WLAN MIMO	Yes	Yes Yes	Yes	Yes	
50	LTE + NR + 2.4 GHz WLAN MIMO + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
51	LTE + NR + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2	Yes	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
52	LTE + NR + 2.4 GHz Bluetooth Ant 1 + 5 GHz WLAN MIMO	Yes	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
53	LTE + NR + 2.4 GHz Bluetooth Ant 1 + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
54 55	LTE + NR + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 5 GHz WLAN MIMO LTE + NR + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 6 GHz WLAN MIMO	Yes	Yes Yes	Yes^ N/A	Yes Yes	^ Bluetooth Tethering is considered
55	LTE + NR + 2.4 GH2 Bluetooth Ant 2 + 5 GH2 WLAN ANT 2 + 5 GH2 WLAN MINIO	Yes	Yes	N/A N/A	Yes	
57	LTE + NR + 2.4 GHz Bluetooth Ant 2 + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
58	NR + 2.4 GHz WLAN MIMO	Yes	Yes	Yes	Yes	
59	NR + 5 GHz WLAN MIMO	Yes	Yes	Yes	Yes	
60 61	NR + 6 GHz WLAN MIMO NR + 2.4 GHz Bluetooth Ant 1	Yes	Yes Yes	N/A Yes^	Yes Yes	^ Bluetooth Tethering is considered
61	NR + 2.4 GHz Bluetooth Ant 1 NR + 2.4 GHz Bluetooth Ant 2	Yes	Yes	N/A	Yes	staetootii rethering is considered
63	NR + 2.4 GHz WLAN MIMO + 5 GHz WLAN MIMO	Yes	Yes	Yes	Yes	
64	NR + 2.4 GHz WLAN MIMO + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
65	NR + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2	Yes	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
66	NR + 2.4 GHz Bluetooth Ant 1 + 5 GHz WLAN MIMO	Yes	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
67 68	NR + 2.4 GHz Bluetooth Ant 1 + 6 GHz WLAN MIMO NR + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 5 GHz WLAN MIMO	Yes	Yes	N/A Yes^	Yes	^ Bluetooth Tethering is considered
68	NR + 2.4 GHZ Bluetooth Ant 1 + 2.4 GHZ WLAN ANT 2 + 5 GHZ WLAN MIMU NR + 2.4 GHZ Bluetooth Ant 1 + 2.4 GHZ WLAN Ant 2 + 6 GHZ WLAN MIMO	Yes	Yes	N/A	Yes	staetootii rethering is considered
70	NR + 2.4 GHz Bluetooth Ant 2 + 5 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
71	NR + 2.4 GHz Bluetooth Ant 2 + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
72	GPRS/EDGE + 2.4 GHz WLAN MIMO	N/A	N/A	Yes	Yes	
73	GPRS/EDGE + 5 GHz WLAN MIMO	N/A	N/A	Yes	Yes	
74	GPRS/EDGE + 6 GHz WLAN MIMO GPRS/EDGE + 2.4 GHz Bluetooth Ant 1	N/A	N/A	N/A	Yes	A Rhustooth Tothoring is considered
75	GPRS/EDGE + 2.4 GHz Bluetooth Ant 1 GPRS/EDGE + 2.4 GHz Bluetooth Ant 2	N/A N/A	N/A N/A	Yes^ N/A	Yes Yes	^ Bluetooth Tethering is considered
77	GPRS/EDGE + 2.4 GHz WLAN MIMO + 5 GHz WLAN MIMO	N/A N/A	N/A N/A	Yes	Yes	
78	GPRS/EDGE + 2.4 GHz WLAN MIMO + 6 GHz WLAN MIMO	N/A	N/A	N/A	Yes	
17	GPRS/EDGE + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2	N/A	N/A	Yes^	Yes	^ Bluetooth Tethering is considered
79	GPRS/EDGE + 2.4 GHz Bluetooth Ant 1 + 5 GHz WLAN MIMO	N/A	N/A	Yes^	Yes	^ Bluetooth Tethering is considered
80						
80 81	GPRS/EDGE + 2.4 GHz Bluetooth Ant 1 + 6 GHz WLAN MIMO	N/A	N/A	N/A	Yes	A Diverse and Technologic Constants
80 81 82	GPRS/EDGE + 2.4 GHz Bluetooth Ant 1 + 6 GHz WLAN MIMO GPRS/EDGE + 2.4 GHz Bluetooth Ant 1 + 2.4 GHz WLAN Ant 2 + 5 GHz WLAN MIMO	N/A N/A	N/A	Yes^	Yes	^ Bluetooth Tethering is considered
80 81	GPRS/EDGE + 2.4 GHz Bluetooth Ant 1 + 6 GHz WLAN MIMO	N/A				^ Bluetooth Tethering is considered

 Table 1-1

 Simultaneous Transmission Scenarios

1. No other simultaneous scenarios besides described above is supported for this model.

2. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel

FCC ID: A3LSMF731B		SAR EVALUATION REPORT	
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset		Page 8 of 37
			REV 22.0 03/30/2022

[DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.

- Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear or bodyworn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 4. 5 GHz Wireless Router is only supported for the U-NII-3 by S/W, therefore U-NII-1, U-NII-2A, U-NII-2C, and U-NII-4 were not evaluated for wireless router conditions.
- 5. This device supports 2x2 MIMO Tx for WLAN 802.11a/b/g/n/ac/ax. 802.11a/b/g/n/ac/ax supports CDD and STBC and 802.11n/ac/ax additionally supports SDM.
- 6. This device supports VoWIFI.
- 7. This device supports Bluetooth Tethering on ant 1 only.
- 8. This device supports VoLTE.
- 9. This device supports VoNR.
- 10. LTE + 5G NR FR1 Scenarios are limited to EN-DC combinations with anchor bands as shown in the NR FR1 checklist.
- 11. NFC was evaluated for phablet based on expected usage conditions.
- 12. 6 GHz Wireless Router is not supported, therefore it was not evaluated for wireless router conditions.

1.7 Miscellaneous SAR Test Considerations

When on the device dimensions when closed, hotspot SAR in the closed configuration was performed at 5mm per KDB Publication 941225 D06v02r01.

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

This device supports channel 1-13 for 2.4 GHz WLAN. However, because channel 12/13 targets are not higher than that of channels 1-11, channels 1, 6, and 11 were considered for SAR testing per FCC KDB 248227 D01V02r02.

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-1, U-NII-2A, U-NII-2C, and U-NII-4 WIFI, only 2.4 GHz WIFI, 2.4 GHz Bluetooth, and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

This device supports IEEE 802.11ax with the following features:

- a) Up to 160 MHz Bandwidth only for 5/6 GHz
- b) Up to 20 MHz Bandwidth only for 2.4 GHz
- c) 2 Tx antenna output
- d) Up to 1024 QAM is supported
- e) TDWR and Band gap channels are supported for 5 GHz
- f) MU-MIMO UL Operations are not supported

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" in open configuration since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because wireless router operations are not supported for U-NII-1, U-NII-2A, U-NII-2C, and U-NII-4 WLAN, phablet SAR tests were performed. Phablet SAR was not evaluated for 2.4 GHz and U-NII-3 WLAN operations since wireless router 1g SAR was < 1.2 W/kg.

Per April 2019 TCB Workshop Notes, SAR testing was not required for 802.11ax when applying the initial test configuration procedures of KDB 248227, with 802.11ax considered a higher order 802.11 mode.

ion in writing

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 9 of 37
		REV 22.0 03/30/2022

This device supports 6 GHz WIFI Operations. RF Exposure assessment for these bands can be found in the WIFI 6E RF Exposure Report (report SN can be found in Section 1.11 – Bibliography). Simultaneous transmission analysis is addressed in Multi-Tx and Antenna SAR Considerations Appendix of this report.

1.8 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r05, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- April 2019 TCB Workshop Notes (IEEE 802.11ax)

1.9 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

1.10 Bibliography

Report Type	Report Serial Number
RF Exposure Part 2 Test Report	1M2305260071-03.A3L
Original Filing RF Exposure Part 1 Test Report	1M2303170032-19-R1.A3L
Original Filing WIFI 6 GHz RF Exposure	1M2303170032-21.A3L
RF Exposure Compliance Summary Report	1M2305260071-04.A3L

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 10 of 37
		REV 22.0 03/30/2022

2 LTE AND NR INFORMATION

	1	LTE Information					
orm Factor			Portable Handset				
requency Range of each LTE transmission band			E Band 12 (699.7 - 715.3 M	,			
	LTE Band 17 (706.5 - 713.5 MHz)						
		LTE Band 13 (779.5 - 784.5 MHz)					
			Band 26 (Cell) (814.7 - 848.3 Band 5 (Cell) (824.7 - 848.3				
			()(,			
			nd 66 (AWS) (1710.7 - 1779 and 4 (AWS) (1710.7 - 1754				
			nd 25 (PCS) (1710.7 - 1754 nd 25 (PCS) (1850.7 - 1914				
			and 2 (PCS) (1850.7 - 1914				
			Band 41 (2498.5 - 2687.5 I				
nannel Bandwidths			12: 1.4 MHz, 3 MHz, 5 MH				
			TE Band 17: 5 MHz, 10 MH				
			TE Band 13: 5 MHz, 10 MH				
			II): 1.4 MHz, 3 MHz, 5 MHz				
			(Cell): 1.4 MHz, 3 MHz, 5 M				
			.4 MHz, 3 MHz, 5 MHz, 10 4 MHz, 3 MHz, 5 MHz, 10				
			4 MHz, 3 MHz, 5 MHz, 10				
			4 MHz, 3 MHz, 5 MHz, 10				
			41: 5 MHz, 10 MHz, 15 MH				
nannel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid	Mid-High	High		
E Band 12: 1.4 MHz		(23017)	707.5 (23095)		(23173)		
E Band 12: 3 MHz		(23025)	707.5 (23095)		(23165)		
E Band 12: 5 MHz		(23035)	707.5 (23095)		(23155)		
E Band 12: 10 MHz		(23060)	707.5 (23095)		23130)		
E Band 17: 5 MHz		(23755)	710 (23790)		(23825)		
E Band 17: 10 MHz		(23780)	710 (23790)		23800)		
E Band 13: 5 MHz E Band 13: 10 MHz		(23205)	782 (23230)		(23255)		
E Band 13: 10 MHz E Band 26 (Cell): 1.4 MHz		1/A	782 (23230)		J/A		
E Band 26 (Cell): 1.4 MHz		(26697)	831.5 (26865)		(27033)		
TE Band 26 (Cell): 5 MHz		(26705)	831.5 (26865)		(27025)		
E Band 26 (Cell): 10 MHz		(26715) (26740)	831.5 (26865)	846.5 (27015)			
E Band 26 (Cell): 15 MHz		(26765)	831.5 (26865) 831.5 (26865)	844 (26990)			
E Band 5 (Cell): 1.4 MHz		(20407)	836.5 (20525)	841.5 (26965) 848.3 (20643)			
E Band 5 (Cell): 3 MHz		(20415)	836.5 (20525)	847.5 (20635)			
E Band 5 (Cell): 5 MHz		(20425)	836.5 (20525)	846.5 (20625)			
E Band 5 (Cell): 10 MHz		(20450)	836.5 (20525)	844 (20600)			
E Band 66 (AWS): 1.4 MHz		(131979)	1745 (132322)		(132665)		
E Band 66 (AWS): 3 MHz		(131987)	1745 (132322)	1778.5 (132657)			
E Band 66 (AWS): 5 MHz		(131997)	1745 (132322)	1777.5 (132647)			
E Band 66 (AWS): 10 MHz	1715 ((132022)	1745 (132322)	1775 (132622)			
E Band 66 (AWS): 15 MHz	1717.5	(132047)	1745 (132322)	1772.5 (132597)			
E Band 66 (AWS): 20 MHz	1720 ((132072)	1745 (132322)	1770 (132572)			
E Band 4 (AWS): 1.4 MHz		7 (19957)	1732.5 (20175)	1754.3 (20393)			
E Band 4 (AWS): 3 MHz		5 (19965)	1732.5 (20175)	1753.5 (20385)			
E Band 4 (AWS): 5 MHz		5 (19975)	1732.5 (20175)	1752.5 (20375)			
E Band 4 (AWS): 10 MHz		(20000)	1732.5 (20175)	1750 (20350)			
E Band 4 (AWS): 15 MHz		5 (20025)	1732.5 (20175)	1747.5 (20325)			
E Band 4 (AWS): 20 MHz E Band 25 (PCS): 1.4 MHz		(20050)	1732.5 (20175)	1745 (20300)			
E Band 25 (PCS): 3 MHz		7 (26047)	1882.5 (26365)	1914.3 (26683)			
E Band 25 (PCS): 5 MHz		5 (26055)	1882.5 (26365)	1913.5 (26675)			
E Band 25 (PCS): 10 MHz		(26065)	1882.5 (26365) 1882.5 (26365)	1912.5 (26665) 1910 (26640)			
E Band 25 (PCS): 15 MHz		(26090) 5 (26115)	1882.5 (26365)		(26640)		
E Band 25 (PCS): 10 MHz		(26140)	1882.5 (26365)		(26590)		
E Band 2 (PCS): 1.4 MHz		7 (18607)	1880 (18900)		(19193)		
E Band 2 (PCS): 3 MHz		5 (18615)	1880 (18900)		(19185)		
TE Band 2 (PCS): 5 MHz		5 (18625)	1880 (18900)		(19175)		
E Band 2 (PCS): 10 MHz		(18650)	1880 (18900)		(19150)		
E Band 2 (PCS): 15 MHz		5 (18675)	1880 (18900)		(19125)		
E Band 2 (PCS): 20 MHz	1860	(18700)	1880 (18900)	1900	(19100)		
E Band 41: 5 MHz	2506 (39750)	2549.5 (40185)	2549.5 (40185)	2593 (40620)	2636.5 (41055		
E Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2549.5 (40185)	2593 (40620)	2636.5 (41055		
E Band 41: 15 MHz	2506 (39750)	2549.5 (40185)	2549.5 (40185)	2593 (40620)	2636.5 (41055		
E Band 41: 20 MHz	2506 (39750)	2549.5 (40185)	2549.5 (40185)	2593 (40620)	2636.5 (41055		
Category			DLUE Cat 20, ULUE Cat 1				
bullations Supported in UL E MPR Permanently implemented per 3GPP TS 36.101 ction 6.2.3~6.2.5? (manufacturer attestation to be		QP	SK, 16QAM, 64QAM, 2560 YES				
ovided)			V= -				
A-MPR (Additional MPR) disabled for SAR Testing? YES							
E Carrier Aggregation Possible Combinations	TT	ne technical description in	cludes all the possible carri	er aggregation combinati	ons		
TE Additional Information	features as shown i Appendix in the original	n the RF Conducted Powe filing. All uplink communi C. The following LTE Relea	s on 3GPP Release 16. It s ers section of this report an ications are identical to the se 16 Features are not sup Scheduling, Enhanced SC	d the Downlink LTE CA F Release 8 Specifications ported: Relay, HetNet, E	RF Conducted Powers		

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 11 of 37
		REV 22.0

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

03/30/2022

	N	R Information				
Form Factor Frequency Range of each NR transmission band				Handset		
Frequency Range of each NR transmission band	NR Band n5 (826.5 - 846.5 MHz) NR Band n66 (1712.5 - 1777.5 MHz)					
				52.5 - 1912.5 MHz)		
				2.5 - 1907.5 MHz)		
	NR Band n41 (2501.01 - 2685 MHz) NR Band n77 (3455.01 - 3544.98 MHz, 3705 - 3975 MHz)					
Channel Bandwidths		N			Hz)	
	NR Band n5: 5 MHz, 10 MHz, 15 MHz, 20 MHz NR Band n66: 5 MHz, 10 MHz, 15 MHz, 20 MHz, 40 MHz, 40 MHz NR Band n25: 5 MHz, 10 MHz, 15 MHz, 20 MHz, 25 MHz, 30 MHz, 40 MHz NR Band n25: 5 MHz, 10 MHz, 15 MHz, 20 MHz, 25 MHz, 30 MHz, 40 MHz NR Band n25: 5 MHz, 10 MHz, 15 MHz, 20 MHz, 26 MHz NR Band n41: 10 MHz, 10 MHz, 10 MHz, 10 MHz, 10 MHz, 20 MHz NR Band n41: 10 MHz, 10 MHz, 30 MHz, 40 MHz, 70 MHz, 80 MHz, 90 MHz, 100 MHz					
					MHZ, 80 MHZ, 90 MHZ, 10 MHZ, 80 MHZ, 90 MHZ, 10	
Channel Numbers and Frequencies (MHz)			, 20 111 12, 00 111 12, 10 111	12, 00 Mil 12, 00 Mil 12, 10 M	11 12, 00 11 12, 00 11 12, 10	
NR Band n5: 5 MHz	826.5	165300)	836.5 (167300)	846.5 (169300)
NR Band n5: 10 MHz		65800)		167300)	844 (1	
NR Band n5: 15 MHz		(166300)		167300)	841.5 (
NR Band n5: 20 MHz NR Band n66: 5 MHz		66800)		167300)	839 (1	
NR Band n66: 10 MHz		(342500)		349000) 349000)	1777.5 (1775 (3	
NR Band n66: 15 MHz		343000) (343500)		349000)	1775 (3	
NR Band n66: 20 MHz		344000)		349000)	1770 (3	
NR Band n66: 25 MHz		(344500)		349000)	1767.5 (
NR Band n66: 30 MHz		345000)		349000)	1765 (3	
NR Band n66: 40 MHz		346000)		349000)	1760 (3	
NR Band n25: 5 MHz		(370500)		(376500)	1912.5 (
NR Band n25: 10 MHz NR Band n25: 15 MHz		371000)		(376500)	1910 (3	
NR Band n25: 15 MHz NR Band n25: 20 MHz		(371500) 372000)		(376500)	1907.5 (
NR Band n25: 25 MHz		(372500)		(376500) (376500)	1905 (3 1902.5 (
NR Band n25: 30 MHz		373000)		(376500)	1900 (3	
NR Band n25: 40 MHz		374000)		(376500)	1895 (3	
NR Band n2: 5 MHz	1852.5	(370500)	1880 (376000)	1907.5 (381500)
NR Band n2: 10 MHz		371000)		376000)	1905 (3	
NR Band n2: 15 MHz		(371500)		376000)	1902.5 (
NR Band n2: 20 MHz NR Band n41: 10 MHz		372000)		376000)	1900 (3	
NR Band n41: 15 MHz	2501.01 (500202) 2503.5 (500700)	2547 (509400) 2548.26 (509652)		(518598) (518598)	2639.01 (527802) 2637.75 (527550)	2685 (537000) 2682.51 (536502)
NR Band n41: 20 MHz	2506.02 (501204)	2549.49 (509898)		(518598)	2636.49 (527298)	2679.99 (535998)
NR Band n41: 30 MHz	2511 (502200)	2552.01 (510402)	2592.99	(518598)	2634 (526800)	2674.98 (534996)
NR Band n41: 40 MHz	2516.01 (503202)	2567.34 (513468)		I/A	2618.67 (523734)	2670 (534000)
NR Band n41: 50 MHz NR Band n41: 60 MHz		(504204) 505200)		(518598) (518598)	2664.99 2659.98	
NR Band n41: 70 MHz		(506202)		(516596) I/A	2655 (5	
NR Band n41: 80 MHz		(507204)		I/A	2649.99	
NR Band n41: 90 MHz	2541 (508200)	N	I/A	2644.98 (528996)	
NR Band n41: 100 MHz		(509202)		(518598)	2640 (5	
NR Band n77 DoD: 10 MHz		(630334)		(633334)	3544.98	
NR Band n77 DoD: 15 MHz NR Band n77 DoD: 20 MHz		(630500)		(633334)	3542.49	
NR Band n77 DoD: 30 MHz		(630668) 631000)		(633334) (633334)	3540 (6 3534.99	
NR Band n77 DoD: 40 MHz		(631334)		(000004) I/A	3470.01	
NR Band n77 DoD: 50 MHz		(631668)		I/A	3475.02	
NR Band n77 DoD: 60 MHz		VA		(633334)	N	
NR Band n77 DoD: 70 MHz	١	I/A	3500.01	(633334)	N	A
NR Band n77 DoD: 80 MHz		I∕A		(633334)	N	
NR Band n77 DoD: 90 MHz		I/A		(633334)	N	
NR Band n77 DoD: 100 MHz NR Band n77: 10 MHz		VA		(633334)	N.	
NR Band n77: 10 MHz NR Band n77: 15 MHz	3705 (647000) 3707.52 (647168)	3759 (650600) 3760.5 (650700)	3813 (654200) 3813.51 (654234)	3867 (657800) 3866.49 (657766)	3921 (661400) 3919.5 (661300)	3975 (665000) 3972.48 (664832)
NR Band n77: 20 MHz	3710.01 (647334)	3760.5 (650700) 3762 (650800)	3813.99 (654266)	3866.01 (657734)	3919.5 (661300) 3918 (661200)	3972.48 (064832) 3969.99 (664666)
NR Band n77: 30 MHz	3715.02 (647668)	3765 (651000)	3815.01 (654334)	3864.99 (657666)	3915 (661000)	3964.98 (664332)
NR Band n77: 40 MHz	3720 (648000)	3768 (651200)	3816 (654400)	3864 (657600)	3912 (660800)	3960 (664000)
NR Band n77: 50 MHz	3725.01 (648334)	3782.49 (652166)		656000)	3897.51 (659834)	3954.99 (663666)
NR Band n77: 60 MHz	3730.02 (648668)	3803.34 (653556)	N/A	N/A	3876.66 (658444)	3949.98 (663332)
NR Band n77: 70 MHz	3735 (649000)	3804.99 (653666)		Ϊ/A	3875.01 (658334)	3945 (663000)
NR Band n77: 80 MHz	3740.01 (649334)	N/A		656000)	N/A	3939.99 (662666)
NR Band n77: 90 MHz	3745.02 (649668)	N/A		656000)	N/A	3934.98 (662332)
NR Band n77: 100 MHz SCS for NR Band: n5/n66/n25/n2	3750 (650000)	N/A	N/A	N/A	N/A	3930 (662000)
SCS for NR Band: n41/n77				kHz kHz		
Modulations Supported in UL	DFT-s-OFDM: π/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM CP-OFDM: QPSK, 16QAM, 64QAM, 256QAM					
A-MPR (Additional MPR) disabled for SAR Testing?			Y	ES		
EN-DC Carrier Aggregation Possible Combinations	The technical description includes all the possible carrier aggregation combinations					
LTE Anchor Bands for NR Band n5	LTE Band 2/66					
LTE Anchor Bands for NR Band n66			LTE Band	12/13/5/2		
LTE Anchor Bands for NR Band n25			LTE Ba	nd 12/13		
LTE Anchor Bands for NR Band n2	LTE Band 12/13/5/66/4					
LTE Anchor Bands for NR Band n41			LTE Ban	d 12/66/4		
LTE Anchor Bands for NR Band n77	1					
L	LTE Band 12/13/5/66/25/2					

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 12 of 37
		REV 22.0

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

SAR =	$\frac{d}{dt} \left(\frac{dU}{dm} \right)$	-d	$\left(\begin{array}{c} dU \end{array} \right)$
5лк –	$dt \langle dm \rangle$	$\int -\frac{1}{dt}$	$\left(\overline{\rho dv} \right)$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

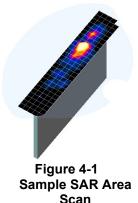
where:

 σ = conductivity of the tissue-simulating material (S/m)

- ρ = mass density of the tissue-simulating material (kg/m³)
- E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LSMF731B	SAR EVALUATION REP	DRT Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 13 of 37
		REV 22.0 03/30/2022


ion in writing

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points ($10 \times 10 \times 10$) were obtained through interpolation, in order to calculate the averaged SAR.

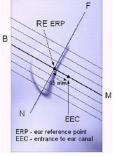
c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

	Maximum Area Scan	Maximum Zoom Scan	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	$\Delta z_{zoom}(n>1)^*$	
≤2 GHz	≤15	≤8	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
3-4 GHz	≤ 12	≤5	≤4	≤ 3	≤ 1.5*∆z _{zoom} (n-1)	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤ 2.5	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤4	≤2	≤2	≤ 1.5*∆z _{zoom} (n-1)	≥22

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6


FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 14 of 37
		REV 22.0

REV 22.0 03/30/2022

5 DEFINITION OF REFERENCE POINTS

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 5-1 Close-Up Side view of ERP

ission in writing

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

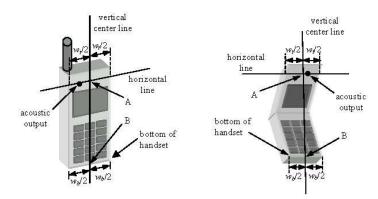


Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

FCC ID: A3LSMF731B		SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset		Page 15 of 37
			REV 22.0 03/30/2022

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

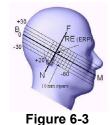
6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt


With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 16 of 37
		REV 22.0 03/30/2022

ion in writing

Side view w/ relevant markings

Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

FCC ID: A3LSMF731B		SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset		Page 17 of 37
			REV 22.0 03/30/2022

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

HUN	IAN EXPOSURE LIMITS	
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
Peak Spatial Average SAR Head	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

 Table 7-1

 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMF731B		SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset		Page 18 of 37
			REV 22.0 03/30/2022

ion in writing

8 FCC MEASUREMENT PROCEDURES

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.3 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.3.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.3.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 19 of 37
		REV 22.0 03/30/2022

ion in writing

required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.3.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

8.3.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.3.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n/ax OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.3.6 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. Per April 2019 TCB Workshop guidance, 802.11ax was considered the highest order 802.11 mode. When the maximum

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 20 of 37
		REV 22.0 03/30/2022

ission in writing

output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.3.7 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.3.6). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.3.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.3.9 MIMO SAR considerations

Per KDB Publication 248227 D01v02r02, the simultaneous SAR provisions in KDB Publication 447498 D01v06 should be applied to determine simultaneous transmission SAR test exclusion for WIFI MIMO. If the sum of 1g single transmission chain SAR measurements is <1.6 W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 21 of 37
		REV 22.0 03/30/2022

9 RF CONDUCTED POWERS

9.1 WLAN Conducted Powers

Table 9-1
2.4 GHz WLAN Reduced Average RF Power with RCV Active and/or During Conditions with 5/6 GHz
WLAN and/or 5G NR– Ant 2

2.4GHz Conducted Power [dBm]												
Freq [MHz]			IEEE Transmission Mode									
	Channel	802.11b	802.11g	802.11ac	802.11ax							
		Average	Average	Average	Average	Average						
2412	1	8.92	8.45	8.12	8.11	8.27						
2437	6	8.59	8.63	8.49	8.51	8.44						
2462	11	8.83	8.41	8.36	8.41	8.39						

 Table 9-2

 2.4 GHz WLAN Reduced Average RF Power with RCV Active and/or During Conditions with 5/6 GHz

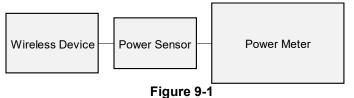
 WLAN and/or 5G NR– MIMO

2.4GHz 802.11n Conducted Power [dBm]										
Freq [MHz]	Channel	ANT1	ANT2	МІМО						
2412	1	8.86	8.66	11.77						
2437	6	8.61	8.40	11.52						
2462	11	8.69	8.50	11.61						

Table 9-3

5 GHz WLAN Reduced Average RF Power with RCV Active and/or During Conditions with 2.4 GHz WLAN/BT and/or 5G NR– MIMO

5GHz (80MHz) 802.11ac Conducted Power [dBm]											
Freq [MHz]	Channel	ANT1	ANT2	MIMO							
5210	42	11.79	11.51	14.66							
5290	58	11.65	11.45	14.56							
5530	106	11.85	11.69	14.78							
5610	122	11.76	11.55	14.67							
5690	138	11.71	11.67	14.70							
5775	155	11.91	11.81	14.87							
5855	171	11.88	11.74	14.82							


Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

• Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.

FCC ID: A3LSMF731B		SAR EVALUATION REPORT	
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset		Page 22 of 37
			REV 22.0 03/30/2022

ission in writing

- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

Power Measurement Setup

FCC ID: A3LSMF731B	SAR EVALUATION REPO	DRT Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 23 of 37
		REV 22.0 03/30/2022

Bluetooth Conducted Powers 9.1

Bluetooth Measured Average RF Power with RCV Active – Antenna 2										
Frequency [MHz]	Data			Avg Conducted Power						
	Rate [Mbps]	Mod.	Channel No.	[dBm]	[mW]					
2402	1.0	GFSK	0	5.46	3.513					
2441	1.0	GFSK	39	6.49	4.459					
2480	1.0	GFSK	78	5.37	3.442					

Table 9-4
Bluetooth Measured Average RF Power with RCV Active – Antenna 1

Table 9-5

Bluetooth Measured Average RF Power with RCV Active - Antenna 2

Frequency	Data Rate	Mod.	Channel	Avg Cor Pov	nducted wer
[MHz]	[Mbps]	Mod.	No.	[dBm]	[mW]
2402	1.0	GFSK	0	9.00	7.936
2441	1.0	GFSK	39	9.62	9.163
2480	1.0	GFSK	78	8.33	6.801

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 24 of 37
		REV 22.0

	ectrum Analyzer -	Swept SA							
LXI RL	RF 5	OΩ DC	CORREC	SENS	#A	ALIGN AUTO	08:51:07 AM	Mar 27, 2023 1 2 3 4 5 6 W	Frequency
10 dB/div	Ref 30.0	NFE 0 dBm	PNO: Fast ↔ IFGain:Low	⊢ Trig: Free F Atten: 40 d			DET	PNNNNN	Auto Tune
20.0 10.0 0.00				_ ≬ 1		<u></u> 2∆1<	3 ∆1		Center Freq 2.441000000 GHz
-10.0			y ja kanagata a ja kanagata			a postila di nadi generale di nadi			Start Freq 2.441000000 GHz
-40.0 -50.0 -60.0									Stop Freq 2.441000000 GHz
Res BW 8			#VBV	V 50 MHz			10.00 ms (5		CF Step 8.000000 MHz Auto Man
MKR MODE TH 1 N 1 2 Δ1 1 3 Δ1 1 4 5 6	t t (Δ)	X	4.160 ms 2.881 ms (Δ) 3.749 ms (Δ)	Y 15.87 dBr 0.39 dI -0.02 dI	В	FUNCTION WIDTH	FUNCTION	IVALUE A	Freq Offset
7 8 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11				m					Scale Type
MSG						STATL	JS		

Figure 9-2 Bluetooth Antenna 1 Transmission Plot

Equation 9-1 Bluetooth Antenna 1 Duty Cycle Calculation

 $Duty Cycle = \frac{Pulse Width}{Period} * 100\% = \frac{2.881ms}{3.749ms} * 100\% = 76.8\%$

FCC ID: A3LSMF731B	SA	R EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset		Page 25 of 37
			REV 22.0 03/30/2022

🔤 Keysight Spe		nalyzer - S	wept SA																×
L <mark>XI</mark> RL	RF	50 9	Ω DC	CORR	EC			SENSE:IN	IT	#Avg		LIGN AUTO	0		M Mar 27, 2 DE <mark>1 2 3</mark> 4		F	requency	
			NFE		D: Fast		Trig: F Atten:		1					TY		www.			
				IFGa	in:Low		Atten:	40 ab										Auto Tu	ne
10 dB/div	Bat	30.00	dBm																
	Rei	30.00	авш				<u>ہ 1</u>					∆ <mark>2∆1</mark>		8∆1					
20.0							_ <u>\</u>					- <u>-</u>						Center Fr	eq
10.0																	2.4	41000000 G	Hz
0.00			_									_							
-10.0												_						Start Fr	ea
-20.0																	2.4	41000000 G	
-30.0 Hetslic the							rtout					- which a	wije –						
-40.0					at la							and the second second	100.00						
-50.0			_															Stop Fr 41000000 G	-
-60.0																	2.4	41000000 G	HZ
Center 2.4 Res BW 8			GHZ		#V	BW	50 MH	7			5	weep	10.0	s ۱ ms (pan 0 5001 n	HZ (fs)		CF St 8.000000 M	
MKR MODE TR			X		" •	-44	Y	_	FUN	CTION		CTION WIDT			ON VALUE		<u>Auto</u>		an
1 N 1	t		^	4.38	2 ms		16.90	dBm	FUNC		FUNC			FUNCTI	UN VALUE	Ê			
	t			2.88	3 ms 9 ms	(Δ)	0.6	6 dB 1 dB										Freq Offs	et
4				0.74	5 1113		0.0											-	Hz
5 6																=			
7 8	+																	Scale Ty	pe
9																			
10																-	Log	L	<u>_in</u>
•							m									·			
MSG												STAT	US						

Figure 9-3 Bluetooth Antenna 2 Transmission Plot

Equation 9-2 Bluetooth Antenna 2 Duty Cycle Calculation

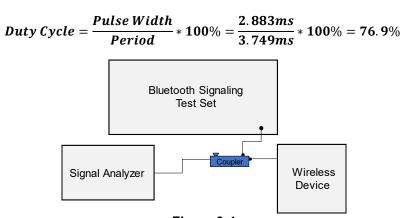


Figure 9-4 Power Measurement Setup

FCC ID: A3LSMF731B	S	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset		Page 26 of 37
			REV 22.0 03/30/2022

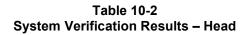
ission in writing

10 SYSTEM VERIFICATION

10.1 Tissue Verification

Calibrated for ests Performed on:	Tissue Type	Tissue Temp During Calibration ('C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev
			2300	1.696	38.953	1.670	39.500	1.56%	-1.38%
			2310 2320	1.703	38.940 38.927	1.679	39.480 39.460	1.43%	-1.37%
			2320	1.769	38.822	1.756	39,289	0.74%	-1.19%
			2450	1.808	38.745	1.800	39.200	0.44%	-1.16%
			2480	1.830	38.694	1.833	39.162	-0.16%	-1.20%
			2500	1.844	38.660	1.855	39.136	-0.59%	-1.229
06/20/2023	2450 Head	22.9	2510	1.851	38.645	1.866	39.123	-0.80%	-1.229
			2535 2550	1.871	38.601 38.578	1.893 1.909	39.092 39.073	-1.16% -1.36%	-1.269
			2550	1.883	38.578	1.909	39.073	-1.30%	-1.279
			2600	1.922	38.509	1.964	39.009	-2.14%	-1.289
			2650	1.958	38.398	2.018	38.945	-2.97%	-1.409
			2680	1.984	38.356	2.051	38.907	-3.27%	-1.429
			2700	1.998	38.344	2.073	38.882	-3.62%	-1.389
			2300	1.728 1.736	39.745 39.732	1.670	39.500	3.47%	0.62%
			2310 2320	1.736	39.732 39.718	1.679	39.480 39.460	3.39% 3.32%	0.64%
			2400	1.803	39.615	1.756	39.289	2.68%	0.83%
			2450	1.841	39.536	1.800	39.200	2.28%	0.86%
			2480	1.863	39.499	1.833	39.162	1.64%	0.86%
			2500	1.877	39.470	1.855	39.136	1.19%	0.85%
06/21/2023	2450 Head	20.2	2510 2535	1.885	39.455	1.866	39.123	1.02%	0.85%
			2535 2550	1.905 1.917	39.412 39.391	1.893 1.909	39.092 39.073	0.63%	0.82%
			2550	1.917	39.391	1.909	39.073	0.42%	0.819
			2600	1.955	39.321	1.964	39.009	-0.46%	0.809
			2650	1.994	39.230	2.018	38.945	-1.19%	0.739
			2680	2.018	39.191	2.051	38.907	-1.61%	0.739
			2700	2.031	39.157	2.073	38.882	-2.03%	0.71%
			5180	4.687	36.521	4.635	36.009	1.12%	1.42%
			5190	4.684	36.518	4.645	35.998	0.84%	1.44%
			5200 5210	4.683	36.489 36.430	4.655	35.986 35.975	0.60%	1.409
			5210	4.683	36.356	4.676	35.975	0.36%	1.20%
			5240	4.728	36.241	4.696	35.940	0.68%	0.84%
			5250	4.755	36.212	4.706	35.929	1.04%	0.79%
			5260	4.782	36.208	4.717	35.917	1.38%	0.81%
			5270	4.803	36.242	4.727	35.906	1.61%	0.94%
			5280	4.818	36.282	4.737	35.894	1.71%	1.08%
			5290 5300	4.828 4.826	36.311 36.298	4.748 4.758	35.883 35.871	1.68%	1.19%
			5300	4.826	36.298	4.758	35.871	1.43% 1.07%	1.19%
			5320	4.813	36.223	4.778	35.849	0.73%	1.04%
			5500	5.074	35.808	4.963	35.643	2.24%	0.46%
			5510	5.082	35.846	4.973	35.632	2.19%	0.60%
			5520	5.080	35.869	4.983	35.620	1.95%	0.70%
			5530	5.080	35.850	4.994	35.609	1.72%	0.68%
			5540 5550	5.082 5.085	35.794 35.716	5.004 5.014	35.597 35.586	1.56%	0.55%
			5550 5560	5.085	35.716	5.014	35.586	1.42%	0.37%
			5580	5.138	35.542	5.024	35.574	1.39%	-0.039
			5600	5.182	35.552	5.065	35.529	2.31%	0.06%
			5610	5.198	35.586	5.076	35.518	2.40%	0.19%
05/30/2023	5200-5800 Head	19.1	5620	5.206	35.604	5.086	35.506	2.36%	0.28%
			5640	5.212	35.584	5.106	35.483	2.08%	0.28%
			5660	5.226	35.468	5.127	35.460	1.93%	0.02%
			5670 5680	5.241 5.263	35.392 35.344	5.137 5.147	35.449 35.437	2.02%	-0.169
			5690	5.283	35.344	5.147	35.437	2.25%	-0.269
			5700	5.301	35.348	5.168	35.414	2.57%	-0.199
			5710	5.316	35.363	5.178	35.403	2.67%	-0.119
			5720	5.327	35.376	5.188	35.391	2.68%	-0.049
			5745	5.329	35.351	5.214	35.363	2.21%	-0.039
			5750 5755	5.330 5.333	35.324 35.290	5.219 5.224	35.357 35.351	2.13%	-0.099
			5765	5.333	35.290	5.224	35.351 35.340	2.09%	-0.179
			5775	5.367	35.132	5.245	35.329	2.33%	-0.569
			5785	5.391	35.083	5.255	35.317	2.59%	-0.669
			5795	5.415	35.078	5.265	35.305	2.85%	-0.64%
			5800	5.428	35.090	5.270	35.300	3.00%	-0.59%
			5805	5.439	35.105	5.275	35.294	3.11%	-0.54%
			5825	5.462	35.186	5.296	35.271	3.13%	-0.249
			5835 5845	5.455 5.445	35.216 35.219	5.305 5.315	35.230 35.210	2.83% 2.45%	-0.049
			5855	5.445	35.219	5.315	35.210 35.197	2.45%	-0.03%
			5865	5.443	35.096	5.336	35.197	2.14%	-0.05
		1	5875	5.453	35.002	5.347	35.183	1.98%	-0.519
					33.002				

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2. The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.


FCC ID: A3LSMF731B	SAR EVALUATION REPOR	RT Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 27 of 37
		REV 22.0 03/30/2022

ssion in writing

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in SAR System Validation Appendix.

SAR System	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp. (C)	Liquid Temp. (C)	Input Power (W)	Source SN	Probe SN	DAE	Measured SAR 1g (W/kg)	1W Target SAR 1g (W/kg)	1W Normalized SAR 1g (W/kg)		Measured SAR 10g (W/kg)	1W Target SAR 10g (W/kg)	1W Normalized SAR 10g (W/kg)	Deviation 10g (%)
0	2450	HEAD	06/20/2023	24.6	22.9	0.10	981	7570	1558	4.940	53.900	49.400	-8.35%	2.330	25.400	23.300	-8.27%
K2	2450	HEAD	06/21/2023	19.7	20.2	0.10	945	7565	1466	5.530	51.900	55.300	6.55%	2.540	24.600	25.400	3.25%
G	5250	HEAD	05/30/2023	21.1	20.1	0.05	1191	7417	665	3.660	80.400	73.200	-8.96%	1.040	23.100	20.800	-9.96%
G	5600	HEAD	05/30/2023	21.1	20.1	0.05	1191	7417	665	3.990	81.900	79.800	-2.56%	1.130	23.300	22.600	-3.00%
G	5750	HEAD	05/30/2023	21.1	20.1	0.05	1191	7417	665	3.580	78.400	71.600	-8.67%	1.020	22.300	20.400	-8.52%
G	5800	HEAD	05/30/2023	21.1	20.1	0.05	1191	7417	665	3.600	79.000	72.000	-8.86%	1.030	22,300	20,600	-7.62%

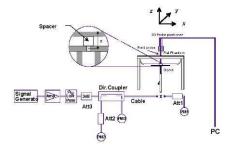


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

ission in writing

FCC ID: A3LSMF731B	SAR EVALUATION RE	PORT Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 28 of 37
		REV 22.0 03/30/2022

11 SAR DATA SUMMARY

11.1 Standalone Head SAR Data

	DTS Head SISO SAR																				
	MEASUREMENT RESULTS																				
FREQUEN			ide Test Position		Mode	Service	Antenna Config.	Form Factor		Bandwidth [MHz]	(Mbpc)	Maxim um Allowed	Conducted Power [dBm]	Power Drift [dB]	Duty Cycle	Duty Cycle (%)	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Plot#
MHz	Ch.							Number	[]	(/	Power [dBm]	r [dBm]		(%)	(,,,	(W/kg)	(,	(,	(W/kg)		
2412	1	Right	Cheek	802.11b	DSSS	2	Open	1319M	22	1	9.0	8.92	0.12	100.00	98.74	0.030	1.019	1.013	0.031		
2412	1	Right	Tilt	802.11b	DSSS	2	Open	1319M	22	1	9.0	8.92	0.01	100.00	98.74	0.028	1.019	1.013	0.029		
2412	1	Left	Cheek	802.11b	DSSS	2	Open	1319M	22	1	9.0	8.92	-0.06	100.00	98.74	0.096	1.019	1.013	0.099	A1	
2412	1	Left	Tilt	802.11b	DSSS	2	Open	1319M	22	1	9.0	8.92	0.06	100.00	98.74	0.056	1.019	1.013	0.058		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									Head											
	Spatial Peak									1.6 W/kg (mW/g)											
	Uncontrolled Exposure/General Population									averaged over 1 gram											

Table 11-1 DTS Head SISO SAR

Table 11-2 NII MIMO Head SAR

	MEASUR											EMENT RESULTS									
FREQUE	NCY	Side	Test	Mode	Service	Antenna	Device Serial		Data Rate	Maxim um Allowed	Conducted Power (Ant 1)	Maxim um Allowed	Conducted Power (Ant 2)	Power	Maximum Duty Cycle	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	Side	Position	mode	Service	Config.	Number	[MHz]	(Mbps)	Power (Ant 1) [dBm]	[dBm]	Power (Ant 2) [dBm]	[dBm]	Drift [dB]	(%)	(%)	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	FIOL #
5290	58	Right	Cheek	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.65	12.0	11.45	0.04	100.00	99.80	0.309	1.135	1.002	0.351	
5290	58	Right	Tilt	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.65	12.0	11.45	-0.02	100.00	99.80	0.213	1.135	1.002	0.242	
5290	58	Left	Cheek	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.65	12.0	11.45	0.17	100.00	99.80	0.093	1.135	1.002	0.106	
5290	58	Left	Tilt	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.65	12.0	11.45	-0.16	100.00	99.80	0.077	1.135	1.002	0.088	
5530	106	Right	Cheek	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.85	12.0	11.69	-0.03	100.00	99.80	0.282	1.074	1.002	0.303	
5530	106	Right	Tilt	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.85	12.0	11.69	0.12	100.00	99.80	0.254	1.074	1.002	0.273	
5530	106	Left	Cheek	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.85	12.0	11.69	-0.02	100.00	99.80	0.113	1.074	1.002	0.122	
5530	106	Left	Tilt	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.85	12.0	11.69	-0.17	100.00	99.80	0.104	1.074	1.002	0.112	
5775	155	Right	Cheek	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.91	12.0	11.81	0.02	100.00	99.80	0.312	1.045	1.002	0.327	A2
5775	155	Right	Tilt	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.91	12.0	11.81	0.04	100.00	99.80	0.304	1.045	1.002	0.318	
5775	155	Left	Cheek	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.91	12.0	11.81	0.15	100.00	99.80	0.133	1.045	1.002	0.139	
5775	155	Left	Tilt	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.91	12.0	11.81	-0.07	100.00	99.80	0.158	1.045	1.002	0.165	
5855	171	Right	Cheek	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.88	12.0	11.74	0.01	100.00	99.80	0.234	1.062	1.002	0.249	
5855	171	Right	Tilt	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.88	12.0	11.74	0.06	100.00	99.80	0.222	1.062	1.002	0.236	
5855	171	Left	Cheek	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.88	12.0	11.74	-0.07	100.00	99.80	0.167	1.062	1.002	0.178	
5855	171	Left	Tilt	802.11ac	OFDM	MIMO	1391M	80	58.5	12.0	11.88	12.0	11.74	-0.05	100.00	99.80	0.125	1.062	1.002	0.133	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Head 1.6 W/kg (mW/g) averaged over 1 gram														

Note: To achieve the 15.0 dBm maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 12.0 dBm.

FCC ID: A3LSMF731B	SAR EVALUATION REPOR	T Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 29 of 37
		REV 22.0 03/30/2022

Table 11-3 DSS Head SISO SAR

	MEASUREMENT RESULTS																		
FREQU	ENCY	Side	Test	Mode	Service	Antenna	Form Factor	Device Serial	Data Rate	Maxim um Allowed	Conducted	Power	Maxim um Duty Cycle	Duty Cycle	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.		Position			Config.		Number	(Mbps)	Power [dBm]	Power [dBm]	Drift [dB]	(%)	(%)	(W/kg)	(Cond Power)	(Duty Cycle)	(W/kg)	
2441	39	Right	Cheek	Bluetooth	FHSS	1	Open	1365M	1	7.0	6.49	0.02	78.00	76.85	0.059	1.125	1.015	0.067	
2441	39	Right	Tilt	Bluetooth	FHSS	1	Open	1365M	1	7.0	6.49	0.01	78.00	76.85	0.035	1.125	1.015	0.040	
2441	39	Left	Cheek	Bluetooth	FHSS	1	Open	1365M	1	7.0	6.49	0.03	78.00	76.85	0.010	1.125	1.015	0.011	
2441	39	Left	Tilt	Bluetooth	FHSS	1	Open	1365M	1	7.0	6.49	0.07	78.00	76.85	0.007	1.125	1.015	0.008	
2441	39	Right	Cheek	Bluetooth	FHSS	2	Open	1365M	1	10.0	9.62	0.19	78.00	76.90	0.028	1.091	1.014	0.031	
2441	39	Right	Tilt	Bluetooth	FHSS	2	Open	1365M	1	10.0	9.62	0.01	78.00	76.90	0.026	1.091	1.014	0.029	
2441	39	Left	Cheek	Bluetooth	FHSS	2	Open	1365M	1	10.0	9.62	0.08	78.00	76.90	0.090	1.091	1.014	0.100	A3
2441	2441 39 Left Tilt Bluetooth FHSS 2 Open 1365M 1									10.0	9.62	0.20	78.00	76.90	0.046	1.091	1.014	0.051	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									Head 1.6 W/kg (mW/g) averaged over 1 gram									

11.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Per FCC KDB 865664 D01v01r04, variability SAR tests were not required since measured SAR for all frequency bands were less than 0.8 W/kg.
- 7. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the 1g thresholds for the equivalent test cases.
- 8. This device uses Qualcomm Smart Transmit for WWAN operations to control and manage transmitting power in real time to ensure RF Exposure compliance. Per FCC Guidance, compliance for was assessed at the minimum of the time averaged power and the maximum output power for each band/mode/exposure condition (DSI).

WLAN Notes:

- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n/ax) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.3.5 for more information.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 8.3.6 for more information.
- Per KDB Publication 248227 D01v02r02, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498 D01v06 by either evaluating the sum of the 1g SAR values of each antenna transmitting independently or making a SAR measurement with both antennas transmitting simultaneously. Please see Multi-Tx and Antenna SAR Consideration Appendix for complete analysis.

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 30 of 37
		REV 22.0

03/30/2022 copying and microfilm, without permission in writing

- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 6. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Bluetooth Notes

- 1. Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5 operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 78% transmission duty factor for Bluetooth to determine compliance. See Section 9 for the time domain plot and calculation for the duty factor of the device.
- 2. Head and Hotspot Bluetooth SAR were evaluated for BT BDR tethering applications.
- 3. The highest frame average power configurations for both Bluetooth and Bluetooth LE were evaluated for SAR. The worst case configuration was used for the remaining test positions as the most conservative scenario.
- 4. Bluetooth LE was not evaluated since additional checks on Bluetooth LE in the original filing was found to be lower than Bluetooth

FCC ID: A3LSMF731B	SAR	EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset		Page 31 of 37
			REV 22.0 03/30/2022

12 SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability is assessed when the highest measured SAR is ≥ 0.80 W/kg. Since all measured SAR values are < 0.80 W/kg for this device, SAR measurement variability was not assessed

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 32 of 37
		REV 22.0 03/30/2022

13 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4404B	Spectrum Analyzer	N/A	N/A	N/A	MY45113242
Agilent	E4438C	ESG Vector Signal Generator	1/18/2023	Annual	1/18/2024	MY47270002
Agilent	E4438C	ESG Vector Signal Generator	4/25/2023	Annual	4/25/2024	US41460739
Agilent	N5182A	MXG Vector Signal Generator	11/30/2022	Annual	11/30/2023	MY47420603
Agilent	N5182A	MXG Vector Signal Generator	4/1/2023	Annual	4/1/2024	MY47420837
Agilent	N5182A	MXG Vector Signal Generator	7/4/2022	Annual	7/4/2023	MY48180366
Agilent	8753ES	S-Parameter Vector Network Analyzer	1/12/2023	Annual	1/12/2024	MY40001472
Agilent	8753ES	S-Parameter Vector Network Analyzer	6/14/2022	Annual	6/14/2023	US39170118
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433972
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Amplifier Research	150A100C	Amplifier	CBT	N/A	СВТ	350132
Anritsu	ML2496A	Power Meter	4/4/2023	Annual	4/4/2024	1840005
Anritsu	ML2496A	Power Meter	8/16/2022	Annual	8/16/2023	1351001
Anritsu	MA2411B	Pulse Power Sensor	1/10/2023	Annual	1/10/2024	1315051
Anritsu	MA2411B	Pulse Power Sensor	10/21/2022	Annual	10/21/2023	1207364
Anritsu	MA24116 MA24106A	USB Power Sensor	2/9/2023	Annual	2/9/2024	1520505
Anritsu	MA24106A MA24106A	USB Power Sensor	4/21/2023	Annual	4/21/2024	1244515
Anritsu	MA24106A MA24106A	USB Power Sensor	1/13/2023	Annual	1/13/2024	1344557
	PWR-4GHS	USB Power Sensor	1/13/2023	Annual	1/13/2024	11710030062
Mini-Circuits Control Company	4352		9/10/2022	Biennial	9/10/2023	210774678
		Long Stem Thermometer				
Control Company	4352	Long Stem Thermometer	9/10/2021	Biennial	9/10/2023	210774685
Control Company	4352	Long Stem Thermometer	9/10/2021	Biennial	9/10/2023	210774675
Control Company	4040	Therm./ Clock/ Humidity Monitor	1/17/2023	Annual	1/17/2024	160574418
Mitutoyo	500-196-30	CD-6"ASX 6Inch Digital Caliper	2/16/2022	Triennial	2/16/2025	A20238413
Keysight Technologies	N6705B	DC Power Analyzer	5/5/2021	Triennial	5/5/2024	MY53004059
Keysight Technologies	N9020A	MXA Signal Analyzer	3/15/2023	Annual	3/15/2024	US46470561
Keysight Technologies	N9020A	MXA Signal Analyzer	4/6/2023	Annual	4/6/2024	MY48010233
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	31634
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	ZUDC10-83-S+	Directional Coupler	CBT	N/A	CBT	2050
Mini-Circuits	ZUDC10-83-S+	Directional Coupler	CBT	N/A	CBT	2111
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Seekonk	TSF-100	Torque Wrench	7/11/2022	Annual	7/11/2023	47639-29
SPEAG	DAK-3.5	Dielectric Assessment Kit	12/15/2022	Annual	12/15/2023	1278
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/15/2022	Annual	8/15/2023	1041
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	9/19/2022	Annual	9/19/2023	1045
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	7/5/2022	Annual	7/5/2023	1039
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1379
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1243
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1237
SPEAG	D2450V2	2450 MHz SAR Dipole	5/11/2023	Annual	5/11/2024	945
SPEAG	D2450V2	2450 MHz SAR Dipole	11/25/2021	Biennial	11/25/2023	981
SPEAG	D5GHzV2	5 GHz SAR Dipole	1/18/2023	Annual	1/18/2024	1191
SPEAG	D3GH2V2 DAE4	Dasy Data Acquisition Electronics	2/15/2023	Annual	2/15/2024	665
SPEAG	DAE4 DAE4	<i>i</i>	1/20/2023	Annual	1/20/2024	1466
JF LAU	DAE4 DAE4	Dasy Data Acquisition Electronics		Annual		
CDEAC	DAE4	Dasy Data Acquisition Electronics	1/17/2023		1/17/2024	1558
SPEAG	EV2DV/4	CAD Doole	2/0/2022	Apressel	2/0/2024	7447
SPEAG SPEAG SPEAG	EX3DV4 EX3DV4	SAR Probe SAR Probe	2/8/2023 1/12/2023	Annual Annual	2/8/2024 1/12/2024	7417 7565

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. Note: All equipment was used solely within its respective calibration period.

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 33 of 37
		REV 22.0

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without perform Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

03/30/2022

14 MEASUREMENT UNCERTAINTIES

a	ь	с	d	e=	f	a	h =	i =	k
a		C			1	g			r.
				f(d,k)			c x f/e	c x g/e	
	IEEE 1528	Tol.	Prob.		ci	c _i	1gm	10gms	
Uncertainty Component	Sec.	(± %)	Dist.	Div.	1gm	10 gms	ui	u	v_i
							(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	7	N	1	1	1	7.0	7.0	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E.2.3	2	R	1.732	1	1	1.2	1.2	∞
Linearity	E.2.4	0.3	Ν	1	1	1	0.3	0.3	∞
System Detection Limits	E.2.4	0.25	R	1.732	1	1	0.1	0.1	∞
Modulation Response	E.2.5	4.8	R	1.732	1	1	2.8	2.8	8
Readout Electronics	E.2.6	0.3	Ζ	1	1	1	0.3	0.3	8
Response Time	E.2.7	0.8	R	1.732	1	1	0.5	0.5	8
Integration Time	E.2.8	2.6	R	1.732	1	1	1.5	1.5	8
RF Ambient Conditions - Noise	E.6.1	3	R	1.732	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	3	R	1.732	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.732	1	1	0.5	0.5	8
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.732	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.732	1	1	2.3	2.3	8
Test Sample Related									
Test Sample Positioning	E.4.2	3.12	N	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	N	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.732	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.732	1	1	0.0	0.0	8
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	N	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	N	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	8
Liquid Permittivity - Temperature Unceritainty	E.3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)	1		RSS	1		1	12.2	12.0	191
Expanded Uncertainty			k=2				24.4	24.0	
(95% CONFIDENCE LEVEL)			N=2				∠ r.⊤	21.0	
							L	l	

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 34 of 37
		REV 22.0 03/30/2022

15 CONCLUSION

15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMF731B		SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset		Page 35 of 37
			REV 22.0 03/30/2022

16 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 36 of 37
<u></u>		REV 22.0

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D04
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMF731B	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1M2305260071-01.A3L	DUT Type: Portable Handset	Page 37 of 37
		REV 22.0 03/30/2022