FCC ID: A3LSMF711U1	$\sqrt{\text { f/ PCTEST }}$	NEAR-FIELD POWER DENSITY EVALUATION REPORT	simsuna	Approved by: Technical Manager
Test Dates: 08/09/2021-09/07/2021	DUT Type: Portable Handset			APPENDIX C: Page 1 of 9

© 2021 PCTEST. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact info@pCTEST.com.

The Total Exposure Ratio (TER) is calculated by combining all SAR measurements and power density measurements after normalizing to their respective limits. The general expression is below.

$$
T E R=\sum_{a=1}^{A} \frac{S A R_{a}}{\text { SAR }_{a}, \text { limit }}+\sum_{b=1}^{B} \frac{p s P D_{b}}{p s P D_{b}, \text { limit }}<1
$$

The TER shall be less than unity to ensure compliance with the limits.

$$
\sum_{n=1}^{N} \frac{4 G S A R_{n}}{4 G S A R_{n}, \text { limit }}+\sum_{m=1}^{M} \frac{5 G m m W N R p s P D_{m}}{5 G m m W N R p s P D_{m}, \text { limit }}+\sum_{p=1}^{P} \frac{W L A N S A R_{p}}{W L A N S A R}, \text { limit }<1
$$

Qualcomm ${ }^{\circledR}$ Smart Transmit algorithm for WWAN adds directly the time-averaged RF exposure from 4G and timeaveraged RFexposure from 5G mmW NR. Smart Transmit algorithm controls the total RF exposure from both 4G and 5G mmW NR to not exceed FCC limit. Therefore, per FCC guidance, TER does not need to be evaluated directly for the 4 G and 5 G simultaneous compliance via summation. The following equations are derived later in Appendix C. The validation of the time-averaging algorithm and compliance under the Tx varying transmission scenario for WWAN technologies are reported in Part 2 report. The report SN could be found in Bibliography section.

$$
\begin{gathered}
\sum_{n=1}^{N} \frac{4 G S A R_{n}}{4 G S A R_{n}, \text { limit }}+\sum_{p=1}^{P} \frac{W L A N S A R_{p}}{W L A N S A R_{p}, \text { limit }}<1 \\
\sum_{m=1}^{M} \frac{5 G m m W N R p s P D_{m}}{5 G m m W N R p s P D_{m}, \text { limit }}+\sum_{p=1}^{P} \frac{W L A N S A R}{p} \\
W L A N S A R_{p}, \text { limit }
\end{gathered} 1 .
$$

For 5 GmmW NR, since there is total design-related uncertainty arising from TxAGC and device-to-device variation, the worst-case RF exposure should be determined by accounting for device uncertainty. For this device, the manufacturer has added an additional permanent back-off (indicated below as WWAN backoff) for every beam in the calculations for input.power.limits used in the EFS file. The back-off levels can be found in the Part 0 Test report. Therefore, 5 GmmW NR RF exposure for this DUT is evaluated by reported psPD calculated as:

$$
\text { reported_psPD }=\left(P D_{-} \text {design_target }+P D_{_} \text {uncertainty }\right) \times 10(- \text { WWAN backoff in dB }) / 10
$$

Note that since not all the beams supported by this EUT are measured, reported_psPD cannot be computed based on limited measured psPD data. Alternatively, since measured psPD for all the beams will be \leq $P D _$design_target $+P D$ _uncertainty uncertainty, reported_ps $P D$ is computed based on this worst-case psPD as shown above.

The compliance analysis for simultaneous transmission scenarios of WWAN (4G LTE \& 5G mmW NR) with Smart Transmit and 4G \& WLAN can be found in two reports indicated in the table below. This appendix demonstrates compliance for the 5G + WLAN scenarios. The report SNs can be found in Bibliography section.

	Simultaneous Scenario	Evaluation Report
1.	4G LTE WWAN + WLAN	FCC SAR Evaluation Report (Part 1)
2.	4G LTE WWAN + 5G mmW NR WWAN	RF Exposure Part 2 Test Report

RF exposure compliance with 5G mmW NR WWAN+WLAN simultaneous transmission scenarios is demonstrated for various radio configurations below.

Note that the above reported $p s P D$ applies to the worst-case surfaces of the DUT at 2 mm evaluation distance.
Worst-case PD on other surfaces of the DUT are calculated from simulated PD data (see Power Density Simulation Report), by multiplying reported psPD with the highest proportion out of all beams and out of all three channels in each band, where the adjustment for each beam/channel is computed as the proportion of "simulated PD on desired surface" to "simulated PD on worst-surface". For example, to determine worst-case PD on front surface (needed for Head RF Exposure evaluation during simultaneous transmission), highest proportion of (simulated PD on front surface)/(simulated PD on worst surface) was determined out of all supported beams and out of all three channels by the DUT in each band.

In some cases, the simulation vs measurement for some surfaces can exceed the device's total uncertainty. In those cases, if the measured psPD > simulated adjusted psPD (assuming a linear congruency of the psPD across surfaces), then measured psPD should be used towards the simultaneous TX analysis. Table C-1 lists the relevant worst-case reported psPD values based on the additional surfaces and evaluation distances needed to perform the TER analysis. The highest of the adjusted Reported_psPD and Measured Total psPD was chosen for TER analysis and the chosen values are indicated by bolded psPD values.

Table C-1
5G mmW NR psPD - Closed

NR Band	Antenna	Surface	Evaluation Distance (mm)	Adjustment Factor due to Simulation	Adjusted Reported psPD ($\mathrm{mW} / \mathrm{cm}^{2}$)	Measured Total psPD (mW/cm ${ }^{2}$)	Final Reported psPD (mW/cm ${ }^{2}$)
n261	K	Back	2	0.338	0.269	0.131	0.269
n261	K	Front	2	1.000	0.794	0.111	0.794
n261	K	Top	2	0.168	0.133	0.144	0.144
n261	K	Bottom	2	0.118	0.094	-	0.094
n261	K	Right	2	0.057	0.045	-	0.045
n261	K	Left	2	1.000	0.794	0.325	0.794
n260	K	Back	2	0.327	0.260	0.187	0.260
n260	K	Front	2	0.619	0.492	-	0.492
n260	K	Top	2	0.143	0.113	0.078	0.113
n260	K	Bottom	2	0.081	0.064	-	0.064
n260	K	Right	2	0.032	0.026	-	0.026
n260	K	Left	2	1.000	0.794	0.456	0.794
n261	L	Back	2	0.022	0.018	0.046	0.046
n261	L	Front	2	1.000	0.794	0.462	0.794
n261	L	Top	2	0.461	0.367	-	0.367
n261	L	Bottom	2	0.019	0.015	-	0.015
n261	L	Right	2	0.161	0.128	0.110	0.128
n261	L	Left	2	0.136	0.108	-	0.108
n260	L	Back	2	0.017	0.013	0.028	0.028
n260	L	Front	2	1.000	0.794	0.372	0.794
n260	L	Top	2	0.452	0.359	0.128	0.359
n260	L	Bottom	2	0.071	0.057	-	0.057
n260	L	Right	2	0.176	0.140	0.077	0.140
n260	L	Left	2	0.156	0.124	-	0.124
n261	K	Front	5	0.662	0.526	0.146	0.526
n261	K	Left	5	0.793	0.630	0.312	0.630
n260	K	Front	5	0.424	0.337	0.061	0.337
n260	K	Left	5	0.797	0.633	0.128	0.633
n261	L	Front	5	0.812	0.645	0.342	0.645
n261	L	Left	5	0.108	0.086	0.057	0.086
n260	L	Front	5	0.736	0.585	0.306	0.585
n260	L	Left	5	0.121	0.096	0.028	0.096

Note: Adjusted factor is (simulated PD on desired exposure plane)/(PD on worst-surface at 2 mm evaluation distance) out of all beams and out of all channels. See Power Density Simulation Report.

FCC ID: A3LSMF711U1		NEAR-FIELD POWER DENSITY EVALUATION REPORT	SIMSUNG	Approved by: Technical Manager
Test Dates: 08/09/2021 - 09/07/2021	DUT Type: Portable Handset			APPENDIX C: Page 4 of 9
2021 PCTEST 2021 PCTEST. All rights reserved crofilm, without permission in wri ereof, please contact INFO@PCTEST	specified, no part of this report m . If you have any questions about th	produced or utilized in any part, form or by national copyright or have an enquiry about	electronic or mechani additional rights to this	REV $4 / 29 / 2$ cluding photocopying and rt or assembly of contents

Table C-2
5G mmW NR psPD - Open

NR Band	Antenna	Surface	Evaluation Distance (mm)	Adjustment Factor due to Simulation	$\frac{\begin{array}{c} \text { Adjusted } \\ \text { Reported psPD } \end{array}}{\left(\mathrm{mW} / \mathrm{cm}^{2}\right)}$	Measured Total psPD (mW/cm ${ }^{2}$)	$\frac{\text { Final Reported }}{\operatorname{psPD}\left(\mathrm{mW} / \mathrm{cm}^{2}\right)}$
n261	K	Back	2	0.666	0.529	-	0.529
n261	K	Front	2	0.660	0.524	-	0.524
n261	K	Top	2	0.077	0.061	-	0.061
n261	K	Bottom	2	0.041	0.033	-	0.033
n261	K	Right	2	0.036	0.029	-	0.029
n261	K	Left	2	1.000	0.794	0.123	0.794
n260	K	Back	2	0.792	0.629	0.162	0.629
n260	K	Front	2	0.757	0.601	0.208	0.601
n260	K	Top	2	0.091	0.073	-	0.073
n260	K	Bottom	2	0.022	0.017	-	0.017
n260	K	Right	2	0.030	0.024	-	0.024
n260	K	Left	2	1.000	0.794	0.325	0.794
n261	L	Back	2	1.000	0.794	0.428	0.794
n261	L	Front	2	0.026	0.021	0.030	0.030
n261	L	Top	2	0.022	0.017	-	0.017
n261	L	Bottom	2	0.023	0.018	-	0.018
n261	L	Right	2	0.133	0.106	0.079	0.106
n261	L	Left	2	0.136	0.108	-	0.108
n260	L	Back	2	1.000	0.794	0.317	0.794
n260	L	Front	2	0.042	0.033	0.028	0.033
n260	L	Top	2	0.057	0.046	-	0.046
n260	L	Bottom	2	0.053	0.042	-	0.042
n260	L	Right	2	0.171	0.136	0.034	0.136
n260	L	Left	2	0.197	0.156	-	0.156

Note: Adjusted factor is (simulated PD on desired exposure plane)/(PD on worst-surface at 2 mm evaluation distance) out of all beams and out of all channels. See Power Density Simulation Report.

Note: Additional beams with highest adjustment factors for n260 Antenna K were evaluated at 2 mm front side to show that measured psPD is lower than adjusted reported psPD for those specific beams. The worst case adjustment factor due to simulation of the non-selected beams was used in the above table for n260 Antenna K (Front).

Table C-3
5G mmW NR Head Total Exposure Ratio - Open

Table C-4
5G mmW NR Body-Worn Total Exposure Ratio - Closed

Table C-5
5G mmW NR Body-Worn Total Exposure Ratio - Open

Table C-6
5G mmW NR Hotspot Total Exposure Ratio - Closed

Table C-7
5G mmW NR Hotspot Total Exposure Ratio - Open

	mpo			men	\pm		$\begin{array}{\|c\|} \hline 5 \mathrm{GHz} \text { WLAN } \\ \begin{array}{c} \text { MIMO } \\ \text { Reported SAR } \end{array} \\ \hline \end{array}$				miximem						coit	come		
		${ }_{2}^{2}$	$\stackrel{\text { wis }}{\substack{\text { a }}}$	$\stackrel{\text { mma }}{\substack{\text { a }}}$	$\stackrel{\text { ume }}{\text { mis }}$	$\stackrel{\text { wes }}{6}$	$\stackrel{\text { mas }}{1}$						${ }^{1.3,}$	${ }_{1}^{1.2 .4}$	(12, 2,6	${ }^{12,2.2,7}$, 2,0	$\stackrel{12,8}{ }$		
basso		${ }_{\text {atem }}^{\substack{\text { atem }}}$	${ }_{\text {cosem }}^{\text {atem }}$	${ }_{\text {cosem }}$	${ }_{\text {ata }}^{\substack{\text { ata }}}$		$\xrightarrow{\text { aticta }}$													
tomese				\%omm		${ }^{\circ}$		${ }^{\circ}$	Oex	${ }^{6}$		\%	osam	Ovm	or	\%ry	O908	\bigcirc	\%	
Topete				:	\bigcirc	:	\%					0×8				016	Ors	Oexs	(1384	
					${ }_{\text {omom }}^{\substack{\text { omom }}}$	\%	${ }_{\text {amb }}$	\%ar								oar	oas			
notue				\bigcirc				${ }^{\text {owe }}$												
Unitar	$\xrightarrow{\text { omm }}$		\square	a	\%	\bigcirc	\%			O89	\%m	\%as		087		(88)	0			-080

FCC ID: A3LSMF711U1	F/ PCTEST	NEAR-FIELD POWER DENSITY EVALUATION REPORT	SAMSUNE	Approved by: Technical Manager
Test Dates: 08/09/2021 - 09/07/2021	DUT Type: Portable Handset			APPENDIX C: Page 6 of 9
2021 PCTEST 2021 PCTEST. All rights reserved icrofilm, without permission in writ hereof, please contact INFO@PCTEST	specified, no part of this report m . If you have any questions about	produced or utilized in any part, form or by an national copyright or have an enquiry about o	electronic or mecha dditional rights to th	RE $4 / 29$ cluding photocopying and ort or assembly of contents

Table C-8
5G mmW NR Phablet Total Exposure Ratio - Open

FCC ID: A3LSMF711U1	$\sqrt{\text { f/ PCTEST }}$	NEAR-FIELD POWER DENSITY EVALUATION REPORT	SAMSUNE	Approved by: Technical Manager
Test Dates: 08/09/2021-09/07/2021	DUT Type: Portable Handset			APPENDIX C: Page 7 of 9

Notes:

1. Worst-case power density results for each test configuration among all antenna arrays and among all supported bands were considered for TER analysis.
2. If test positions were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst-case WLAN SAR result for the applicable exposure conditions was used for simultaneous transmission analysis. Any such values are indicated in the above tables in blue.
3. If Part 1 SAR report does not include standalone WLAN MIMO results, then per KDB Publication 248227 D01v02r02, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498 D01v06 by evaluating the sum of the 1 g SAR values of each antenna transmitting independently. Any such values are indicated in the above tables in green.
4. When additional sides were tested at a distance greater than 2 mm for hotspot and body-worn configurations, those power density results were used for TER. Otherwise, power density results at 2 mm were considered as a more conservative evaluation.
5. Per FCC guidance, the bands/modes that are not required to be evaluated for Phablet SAR are not considered for TER analysis.
6. Per FCC guidance, for power density measurements, a test separation distance of 2 mm was used for phablet configuration due to probe restraints.
7. Beams with highest adjustment factor were evaluated at 2 mm front side to demonstrate that measured psPD for front side was low and head exposure conditions would not exceed FCC TER limit. Front side with worst case psPD adjustment factor of the remaining beams was used for head TER analysis.
8. The worst-case between Adjusted Reported_psPD and Measured Total psPD was chosen for TER analysis. The bolded psPD values in Table C-1 indicate the worst-case Reported psPD used in TER analysis.
9. In WLAN MIMO operations, each antenna transmits at target powers to achieve the MIMO target powers as indicated above.

The above numerical summed PD and SAR for all the worst-case simultaneous transmission conditions were below the Total Exposure Ratio. Therefore, the above analysis is sufficient to determine no further test cases are required and that simultaneous transmission is compliant to the FCC RF Exposure Limit.

Mathematical Derivation of TER Compliance

Total Normalized RFx $=$ Normalized RFx Time Averaged $W W A N+$ Normalized $^{\text {RFF }} x_{W L A N} \leq 1.0$
Since WWAN Smart Transmit algorithm adds directly the time-averaged RF exposure from 4G and time-averaged RF exposure from 5 GmmW NR, per chipset manufacturer's guidance, Normalized RF exposure from 4G and from 5G mmW NR could be assumed as

Normalized RFX Time Averaged $W W A N=\frac{4 G \operatorname{SAR}}{4 G S A R \text { Limit }}+\frac{5 G m m W N R p s P D}{5 G m m W N R p s P D \text { Limit }} \leq 1.0$
Smart Transmit algorithm assumes that 4G and 5G mmW NR hotspots are co-located and therefore:
Time Averaged WWAN $=[x(t) \times A]+[(1-x(t)) \times B] \leq 1.0$ Normalized Limit
$A=$ Max normalized time-averaged SAR exposure from $4 G$
$B=$ Max normalized time-averaged PD exposure from $5 \mathrm{GmmW} N R$
$x(t)=$ Ranges between [0,1]
$x(t) \times A=$ Percentage of normalized time-averaged $R F$ exposure from $4 G$
$(1-x(t)) \times B=$ Remaining percentage of $R F$ exposure contribution from $5 \mathrm{GmmW} N R$
Smart Transmit controls " x " in real time such that the sum of these exposures never exceeds 1.0 Normalized Limit. If the equations below (4a, 4b) are proven, then, mathematically equation (5) would be proven.
$A+$ norm. $S A R$ from $W L A N \leq 1.0$ normalized limit
$B+$ norm. SAR from $W L A N \leq 1.0$ normalized limit
$[x(t) \times A]+[(1-x(t)) \times B]+$ norm. SAR from WLAN ≤ 1.0 normalized limit
Without 5G mmW NR, Smart Transmit limits the maximum RF exposure contributed from 4G to 100\% normalized exposure. For this device, the manufacturer has added an additional permanent back-off (indicated below as WWAN backoff) for every beam in the calculations for input.power.limits used in the EFS file. Therefore, Smart Tx WWAN: A = max (normalized SAR exposure from $4 G$) ≤ 1.0 normalized limit
Smart Tx WWAN: $B=\max$ (normalized PD exposure from $5 G \mathrm{mmW} N R$) x $10^{(-W W A N ~ b a c k o f f ~ i n ~ d B) / I 0 ~} \leq 1.0$ normalized limit (6b)
To demonstrate simultaneous transmission compliance in equation (1), below equations (7a \& 7b) obtained by combining equations ($4 \mathrm{a} \& 4 \mathrm{~b}$) and ($6 \mathrm{a} \& 6 \mathrm{~b}$), should be proven for simultaneous transmission compliance:

Total Normalized RFx = Normalized SAR ${ }_{4 G W W A N}+$ Normalized $S A R ~_{W L A N}<1.0$
Total Normalized RFX $=10^{(-W W A N ~ b a c k o f f i n d B) / 10} x$ Normalized psPD ${ }_{5 G}$ mmW NRWWAN +

$$
\begin{equation*}
\text { Normalized } S A R_{W L A N}<1.0 \tag{7a}
\end{equation*}
$$

which are re-written as:
Total Normalized RFx $=\frac{4 G \text { SAR }}{4 G \text { SAR Limit }}+\frac{\text { WLAN SAR }}{W \text { LAN SAR Limit }}<1$
Total Normalized RFx $\left.=10^{(-W W A N ~ b a c k o f f ~ i n ~} \mathrm{CB}\right) / 10 * \frac{5 \mathrm{GmmW} \text { NR psPD }}{5 G \mathrm{mmW} \text { NR psPD Limit }}+\frac{\text { WLAN SAR }}{\text { WLAN SAR Limit }}<1$
Analysis for equation (8a) is performed in Section 12 of FCC SAR Evaluation Report (Part 1). Analysis for equation (8b) is performed in this appendix.

