

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

HEARING AID COMPATIBILITY

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 16677, Korea Date of Testing: 05/10/2021 - 06/05/2021 Test Site/Location: PCTEST, Columbia, MD, USA Test Report Serial No.: 1M2104130035-18-R1.A3L Date of Issue: 6/28/2021

FCC ID: A3LSMF711B

APPLICANT: SAMSUNG ELECTRONICS CO., LTD.

Scope of Test: Audio Band Magnetic Testing (T-Coil)

Application Type: Certification
FCC Rule Part(s): CFR §20.19(b)
HAC Standard: ANSI C63.19-2011

285076 D01 HAC Guidance v05

285076 D02 T-Coil testing for CMRS IP v03

DUT Type: Portable Handset

Model: SM-F711B

Test Device Serial No.: Pre-Production Sample [S/N: 0808M, 3724M]

C63.19-2011 HAC Category: T3 (SIGNAL TO NOISE CATEGORY)

Note: This revised Test Report (S/N: 1M2104130035-18-R1.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 1 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 101107

TABLE OF CONTENTS

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	6
4.	METHOD OF MEASUREMENT	8
5.	VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION	18
6.	VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION	22
7.	OTT VOIP TEST SYSTEM AND DUT CONFIGURATION	31
8.	FCC 3G MEASUREMENTS	37
9.	T-COIL TEST SUMMARY	38
10.	MEASUREMENT UNCERTAINTY	56
11.	EQUIPMENT LIST	57
12.	TEST DATA	58
13.	CALIBRATION CERTIFICATES	89
14.	CONCLUSION	102
15.	REFERENCES	103
16.	TEST SETUP PHOTOGRAPHS	105

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 2 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 2 of 107

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-86581 to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dogo 2 of 107	
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 3 of 107	

© 2021 PCTEST

DUT DESCRIPTION 2.

FCC ID: A3LSMF711B

Applicant: Samsung Electronics Co., Ltd.

129, Samsung-ro, Maetan dong,

Yeongtong-gu, Suwon-si Gyeonggi-do 16677, Korea

SM-F711B Model: 0808M, 3724M Serial Number:

HW Version: REV0.0

SW Version: F711BXXU0AUD9 Antenna: Internal Antenna DUT Type: Portable Handset

LTE Band Selection

This device supports the following pairs of LTE bands with similar frequencies: LTE B12 & B17, and LTE B4 & B66. These pairs of LTE bands have the same target power and shares the same transmission path. Since the supported frequency span for the smaller LTE band is completely covered by the larger LTE band, only the larger LTE band (LTE B12 & B66) were evaluated for hearing-aid compliance. LTE B2 and B5 are LTE anchor bands for dual connectivity (EN-DC) scenarios between LTE and NR so they were additionally evaluated as independent LTE bands.

II. Device Serial Numbers

Several samples were used to support HAC testing. There are two variants of the WIFI chipset, and both were evaluated for FCC HAC regulations. WIFI Variants are labeled as 'Variant N' or 'Variant Q' for reference. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 9.

FCC ID: A3LSMF711B	PCTEST Thought to be port of the second	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 4 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 4 of 107

Table 2-1 A3LSMF711B HAC Air Interfaces

Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Name of Voice Service	Audio Codec Evaluated
	850	VO	Yes	Yes: WIFI or BT	CMRS Voice ¹	EFR
GSM	1900		1.63			2.11
	GPRS/EDGE	VD	Yes	Yes: WIFI or BT	Google Duo²	OPUS
	850					
UMTS	1700	VD	Yes	Yes: WIFI or BT	CMRS Voice ¹	NB AMR, WB AMR
05	1900					
	HSPA	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS
	700 (B12)					
	700 (B17)					
	780 (B13)					
	850 (B5)					Volte: NB AMR, WB AMR, EVS
LTE (FDD)	850 (B26)	VD	Yes	Yes: WIFI or BT	VoLTE ¹ , Google Duo ²	Google Duo: OPUS
	1700 (B4)					
	1700 (B66)					
	1900 (B2)					
	1900 (B25)					
LTE (TDD)	2600 (B41)	VD	Yes	Yes: WIFI or BT	VoLTE ¹ , Google Duo ²	Volte: NB AMR, WB AMR, EVS Google Duo: OPUS
ND (FDD)	850 (n5)		Yes ³	Ver MIEL en DT	Carala Dua?	ODUS
NR (FDD)	1700 (n66)	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS
	2450					
	5200 (U-NII 1)					
WIFI	5300 (U-NII 2A)	VD	Yes	Yes: GSM, UMTS, LTE, or NR	VoWIFI², Google Duo²	VoWIFI: NB AMR, WB AMR, EVS Google Duo: OPUS
	5500 (U-NII 2C)					Google Duo. Of Go
	5800 (U-NII 3)					
ВТ	2450	DT	No	Yes: GSM, UMTS, LTE, or NR	N/A	N/A
						ation.

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 5 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 5 of 107

3. ANSI C63.19-2011 PERFORMANCE CATEGORIES

I. MAGNETIC COUPLING

Axial and Radial Field Intensity

All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz – 3000 Hz per §8.3.2.

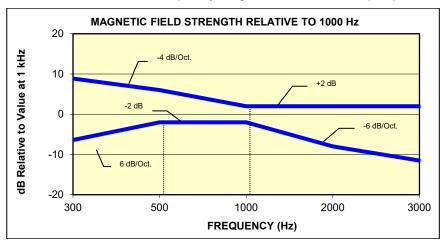


Figure 3-1
Magnetic field frequency response for Wireless Devices with an axial field ≤-15 dB(A/m) at 1 kHz

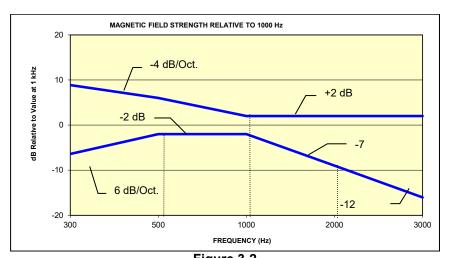


Figure 3-2
Magnetic Field frequency response for wireless devices with an axial field that exceeds
-15 dB(A/m) at 1 kHz

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 6 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 6 01 107

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Catagory	Telephone RF Parameters		
Category	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]		
T1	0 to 10 dB		
T2	10 to 20 dB		
Т3	20 to 30 dB		
T4	> 30 dB		
Table 3-1 Magnetic Coupling Parameters			

Note: The FCC limit for SNNR is 20dB and the test data margins will indicate a margin from the FCC limit for compliance.

FCC ID: A3LSMF711B	PCTEST* Proof to be part of ® secured	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 7 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 7 of 107

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

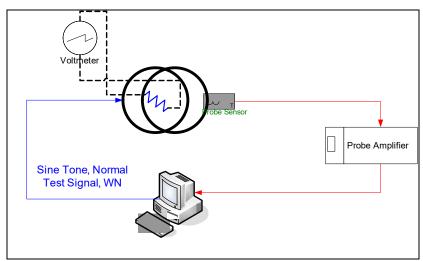


Figure 4-1
Validation Setup with Helmholtz Coil

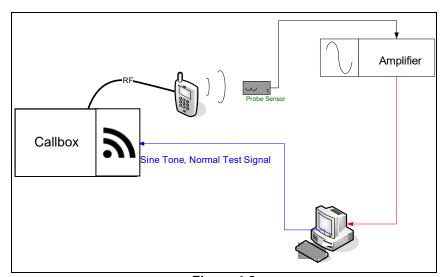


Figure 4-2 T-Coil Test Setup

FCC ID: A3LSMF711B	PCTEST Total to be port of the receiver	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dogg 0 of 107	
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 8 of 107	

II. **Scanning Mechanism**

Manufacturer: TEM

Accuracy: ± 0.83 cm/meter

Minimum Step Size: 0.1 mm Maximum speed 6.1 cm/sec Line Voltage: 115 VAC Line Frequency: 60 Hz

Material Composite: Delrin (Acetal) Data Control: Parallel Port

45 x 31.75 x 47 cm Dynamic Range (X-Y-Z):

36" x 25" x 38" Dimensions: 36" x 49" x 55" Operating Area:

Reflections: < -20 dB (in anechoic chamber)

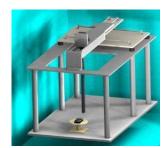


Figure 4-3 RF Near-Field Scanner

III. **3GPP2 Normal Test Signal (Speech)**

Manufacturer: 3GPP2 (TIA 1042 §3.3.1)

Modified-IRS weighted, multi-talker speech signal, 4 Male and 4

Stimulus Type: Female speakers (alternating)

Single Sample Duration: 51.62 seconds

77.4% **Activity Level:**

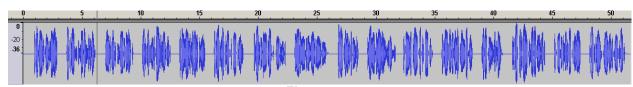



Figure 4-4 **Temporal Characteristic of Normal Test Signal**

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 0 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 9 of 107

© 2021 PCTEST **REV 3.5.M**

ABM2 Measurement Block Diagram:

Figure 4-5 Magnetic Measurement Processing Steps

IV. Test Procedure

- 1. Ambient Noise Check per C63.19 §7.3.1
 - a. Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
 - b. "A-weighting" and Half-Band Integration was applied to the measurements.
 - c. Since this measurement was measured in the same method as ABM2 measurements, this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is:

- 2. Measurement System Validation (See Figure 4-1)
 - a. The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - b. ABM1 Validation

The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

$$H_c = \frac{NI}{r\sqrt{1.25^3}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^3}}$$

Where H_c = magnetic field strength in amperes per meter N = number of turns per coil

For the Helmholtz Coil SN: SBI 1052, N=20; r=0.13m; R=10.193Ω and using V=29mV:

$$H_c = \frac{20 \cdot (\frac{0.029}{10.193})}{0.13 \cdot \sqrt{1.25^3}} = 0.316A/m \approx -10dB(A/m)$$

For the Helmholtz Coil SN: 925, N=20; r=0.08m; R=10.2Ω and using V=18mV

$$H_c = \frac{20 \cdot (\frac{0.018}{10.2})}{0.08 \cdot \sqrt{1.25^3}} = 0.316A/m \approx -10dB(A/m)$$

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 10 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 10 01 107

Therefore a pure tone of 1kHz was applied into the coils such that 29mV (for HH Coil SN SBI 1052) 18mV and (for HH Coil SN 925) was observed across the resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of -10 dB(A/m) in the center of the Helmholtz coil which was used to validate the probe measurement at - 10dB(A/m). This was verified to be within \pm 0.5 dB of the -10dB(A/m) value (see Page 54).

c. Frequency Response Validation

The frequency response through the Helmholtz Coil was verified to be within $0.5~\mathrm{dB}$ relative to 1kHz, between $300-3000~\mathrm{Hz}$ using the Normal signal as shown below:

Figure 4-6 Frequency Response Validation

d. ABM2 Measurement Validation

WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz – 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

Table 4-1
ABM2 Frequency Response Validation

	HBI, A -	HBI, A -	
f (Hz)	Measured	Theoretical	dB Var.
	(dB re 1kHz)	(dB re 1kHz)	
100	-16.180	-16.170	-0.010
125	-13.257	-13.250	-0.007
160	-10.347	-10.340	-0.007
200	-8.017	-8.010	-0.007
250	-5.925	-5.920	-0.005
315	-4.045	-4.040	-0.005
400	-2.405	-2.400	-0.005
500	-1.212	-1.210	-0.002
630	-0.349	-0.350	0.001
800	0.071	0.070	0.001
1000	0.000	0.000	0.000
1250	-0.503	-0.500	-0.003
1600	-1.513	-1.510	-0.003
2000	-2.778	-2.780	0.002
2500	-4.316	-4.320	0.004
3150	-6.166	-6.170	0.004
4000	-8.322	-8.330	0.008
5000	-10.573	-10.590	0.017
6300	-13.178	-13.200	0.022
8000	-16.241	-16.270	0.029
10000	-19.495	-19.520	0.025

FCC ID: A3LSMF711B	PCTEST . Road to be post of ® removed.	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 11 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 11 01 107

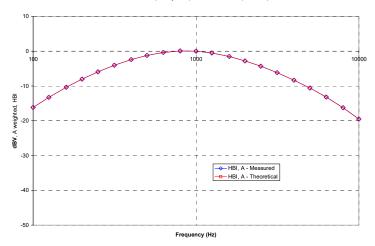
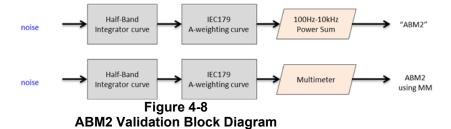



Figure 4-7
ABM2 Frequency Response Validation

The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and A-weighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 4-8). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.

Table 4-2
ABM2 Power Sum Validation

WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)
-60	-60.36	-60.2	0.16
-50	-50.19	-50.13	0.06
-40	-40.14	-40.03	0.11
-30	-30.13	-30.01	0.12
-20	-20.12	-20	0.12
-10	-10.14	-10	0.14

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 12 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 12 01 107

© 2021 PCTEST REV 3.5.M 8/18/2020

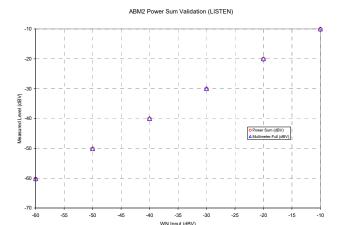
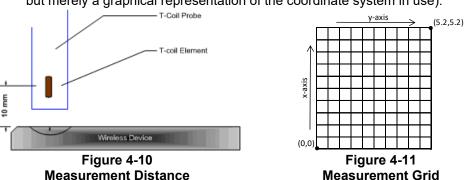



Figure 4-9 **ABM2 Power Sum Validation**

- 3. Measurement Test Setup
 - a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below (note that in Figure 4-11, the grid is not to scale but merely a graphical representation of the coordinate system in use):

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the SoundCheck system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure 4-13 after a T-coil orientation was fully measured with the SoundCheck system.
- b. Speech Signal Setup to Base Station Simulator
 - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
iDEN TM	TDMA (22 and 11 Hz)	-18

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 12 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 13 of 107

- ii. See Section 5 and 6 for more information regarding CMW500 audio level settings for Voice Over LTE (VoLTE), and Voice Over WIFI (VoWIFI) testing.
- iii. See Section 7 for more information regarding audio level settings for Over-The-Top (OTT) Voice Over IP (VoIP) Testing.
- c. Real-Time Analyzer (RTA)
 - i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.
- d. WD Radio Configuration Selection
 - The device was chosen to be tested in the worst-case ABM2 condition (See Section 8 for more information regarding worst-case configurations for UMTS. LTE configuration information can be found in Section 5 and 7. NR configuration information can be found in Section 7. WIFI configuration information can be found in Section 6 and 7)
 - ii. Supported GSM vocoders were investigated for the worst-case ABM2 condition. GSM-EFR was deemed the worst-case condition for the GSM air interface.
- 4. Signal Quality Data Analysis
 - a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.
 - b. Frequency Response
 - i. The appropriate frequency response curve was measured to curves in Figure 3-1 or Figure 3-2 between 300 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
 - ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 4-6. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.
 - iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.
 - c. Signal Quality Index
 - i. Ensuring the WD was at maximum RF power, maximum volume, backlight off, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz 10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).
 - ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
 - iii. This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

FCC ID: A3LSMF711B	PCTEST Total to be port of the receiver	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 14 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 14 of 107

V. Test Setup

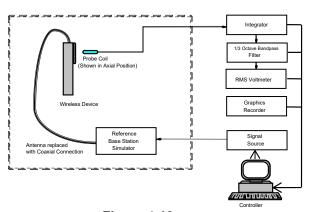


Figure 4-12 Audio Magnetic Field Test Setup

Environmental conditions such as temperature and relative humidity are monitored to ensure there are no impacts on system specifications. Proper voltage and power line frequency conditions are maintained with three phase power sources. Environmental noise and reflections are monitored through system checks.

VI. Deviation from C63.19 Test Procedure

Non-conducted RF connection due to inaccessible RF ports.

VII. Air Interface Technologies Tested

All air interfaces which support voice capabilities over a managed CMRS or pre-installed OTT VoIP applications were tested for T-coil unless otherwise noted. See Table 2-1 for more details regarding which modes were tested.

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dago 15 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 15 of 107

© 2021 PCTEST REV 3.5

VIII. Wireless Device Channels and Frequencies

1. 2G/3G Modes

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band. Only middle channels were evaluated for data modes.

Table 4-3
Center Channels and Frequencies

Test frequencies & associated channels				
Channel	Frequency (MHz)			
Cellular 850				
190 (GSM)	836.60			
4183 (UMTS)	836.60			
AWS 1750				
1412 (UMTS)	1730.40			
PCS 1900				
661 (GSM)	1880			
9400 (UMTS)	1880			

2. 4G (LTE) Modes

The middle channel for every band and bandwidth combination was tested for each probe orientation. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. Low-mid and mid-high channels are additionally tested for LTE TDD. The middle channel and supported bandwidths from the worst-case bands according to Tables 7-6 and 7-7 were additionally evaluated with OTT VoIP for each probe orientation. See Tables 9-4 to 9-12 and Tables 9-25 and 9-26 for LTE bandwidths and channels.

3. 5G (NR) Modes

The middle channel and supported bandwidths from the worst-case NR FDD band according to Table 7-10 was evaluated with OTT VoIP for each probe orientation. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. See Table 9-27 for NR bandwidths and channels.

4. WIFI

The middle channel for each IEEE 802.11 standard was tested for each probe orientation. The 2.4GHz IEEE 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels. The 5GHz IEEE 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested on higher U-NII bands as well as applicable low and high channels. See Tables 9-13 to 9-22 and Tables 9-29 to 9-38 for WIFI standards and channels.

FCC ID: A3LSMF711B	PCTEST . Road to be post of ® removed.	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 16 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 10 01 107

IX. **Test Flow**

The flow diagram below was followed (From C63.19):

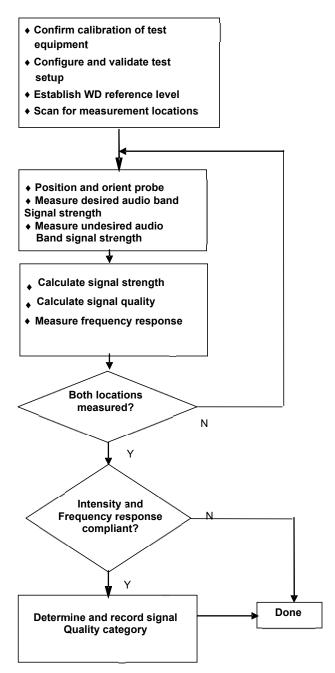


Figure 4-13 C63.19 T-Coil Signal Test Process

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 17 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 17 01 107

© 2021 PCTEST **REV 3.5.M**

5. VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoLTE over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoLTE over IMS is shown below. The callbox used when performing VoLTE over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

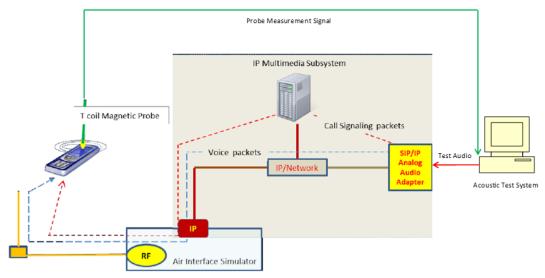


Figure 5-1
Test Setup for VoLTE over IMS T-Coil Measurements

2. Audio Level Settings

According to the July 2012 interpretations by the C63 Committee regarding the appropriate audio levels to be used for VoLTE over IMS T-coil testing, -16dBm0 shall be used for the normal speech input level*. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -16dBm0 speech input level to the DUT for the VoLTE over IMS connection.

* http://c63.org/documents/misc/posting/new_interpretations.htm

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 18 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 10 01 107

© 2021 PCTEST REV 3.5.M 8/18/2020

II. **DUT Configuration for VoLTE over IMS T-coil Testing**

1. Radio Configuration

An investigation was performed to determine the modulation and RB configuration to be used for testing. The effects of modulation and RB configuration were found to be independent of band and bandwidth; therefore, only one band and bandwidth were used for this investigation. 16QAM, 1RB, 99%RB offset was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different radio configurations:

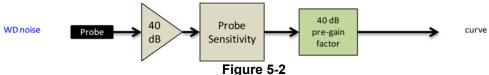
> Table 5-1 **VoLTE over IMS SNNR by Radio Configuration**

	Frequency		Bandwidth				ABM1	ABM2	SNNR
Band	[MHz]	Channel	[MHz]	Modulation	RB Size	RB Offset	[dB(A/m)]	[dB(A/m)]	[dB]
66	1745.0	132322	20	QPSK	1	0	6.55	-47.70	54.25
66	1745.0	132322	20	QPSK	1	50	6.47	-47.52	53.99
66	1745.0	132322	20	QPSK	1	99	6.59	-47.21	53.80
66	1745.0	132322	20	QPSK	50	0	6.42	-47.87	54.29
66	1745.0	132322	20	QPSK	50	25	6.37	-49.83	56.20
66	1745.0	132322	20	QPSK	50	50	6.44	-46.69	53.13
66	1745.0	132322	20	QPSK	100	0	6.53	-49.67	56.20
66	1745.0	132322	20	16QAM	1	0	6.53	-40.70	47.23
66	1745.0	132322	20	16QAM	1	50	6.57	-40.90	47.47
66	1745.0	132322	20	16QAM	1	99	6.44	-40.67	47.11
66	1745.0	132322	20	16QAM	50	0	6.30	-48.32	54.62
66	1745.0	132322	20	16QAM	50	25	6.47	-48.39	54.86
66	1745.0	132322	20	16QAM	50	50	6.31	-47.80	54.11
66	1745.0	132322	20	16QAM	100	0	6.51	-47.72	54.23
66	1745.0	132322	20	64QAM	1	0	6.36	-43.39	49.75
66	1745.0	132322	20	64QAM	1	50	6.31	-41.69	48.00
66	1745.0	132322	20	64QAM	1	99	6.50	-41.43	47.93
66	1745.0	132322	20	64QAM	50	0	6.32	-46.65	52.97
66	1745.0	132322	20	64QAM	50	25	6.32	-47.31	53.63
66	1745.0	132322	20	64QAM	50	50	6.37	-48.09	54.46
66	1745.0	132322	20	64QAM	100	0	6.34	-48.53	54.87
66	1745.0	132322	20	256QAM	1	0	6.31	-46.94	53.25
66	1745.0	132322	20	256QAM	1	50	6.25	-45.79	52.04
66	1745.0	132322	20	256QAM	1	99	6.45	-45.89	52.34
66	1745.0	132322	20	256QAM	50	0	6.46	-48.94	55.40
66	1745.0	132322	20	256QAM	50	25	6.56	-48.82	55.38
66	1745.0	132322	20	256QAM	50	50	6.26	-49.04	55.30
66	1745.0	132322	20	256QAM	100	0	6.50	-49.08	55.58

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The NB AMR 4.75kbps setting was used for the audio codec on the CMW500 for VoLTE over IMS T-coil testing. See below tables for comparisons between different codecs and codec data rates:

> Table 5-2 AMR Codec Investigation - VolTE over IMS


Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band / BW	Channel
ABM1 (dBA/m)	12.21	11.16	6.31	6.23			132322
ABM2 (dBA/m)	-41.58	-41.21	-41.33	-41.40	Axial	LTE Band 66 20MHz	
Frequency Response	Pass	Pass	Pass	Pass	Axiai		
S+N/N (dB)	53.79	52.37	47.64	47.63			

FCC ID: A3LSMF711B	PCTEST Board of Browners	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 19 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 19 01 107

Table 5-3
EVS Codec Investigation - VoLTE over IMS

Codec Setting:	EVS Primary SWB 128kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 128kbps	EVS Primary WB 5.9kbps	EVS Primary NB 24.4kbps	EVS Primary NB 5.9kbps	Orientation	Band / BW	Channel
ABM1 (dBA/m)	8.53	7.81	12.81	12.14	6.20	6.83		LTE Band 66 20MHz	132322
ABM2 (dBA/m)	-41.71	-41.51	-41.99	-41.38	-41.48	-40.90	Axial		
Frequency Response	Pass	Pass	Pass	Pass	Pass	Pass	Axiai		
S+N/N (dB)	50.24	49.32	54.80	53.52	47.68	47.73			

- Mute on; Backlight off; Max Volume; Max Contrast
- TPC = "Max Power"

Audio Band Magnetic Curve Measurement Block Diagram

3. LTE TDD Uplink-Downlink Configuration Investigation for VoLTE over IMS

An investigation was performed to determine the worst-case Uplink-Downlink configuration for VoLTE over IMS T-Coil testing.

Per 3GPP TS 36.211, the total frame length for each TDD radio frame of length T_f = 307200 \cdot T_s = 10 ms, where T_s is a number of time units equal to 1/(15000 x 2048) seconds. Additionally, each radio frame consists of 10 subframes, each of length 30720 \cdot T_s = 1 ms, and subframes can be designated as uplink (U), downlink (D), or special subframe (S), depending on the Uplink-Downlink configuration as indicated in Table 4.2-2 of 3GPP TS 36.211. In the transmission duty factor calculation, the special subframe configuration with the shortest UpPTS duration within the special subframe is used and will be applied for measurement. From 3GPP TS 36.211 Table 4.2-1, the shortest UpPTS is 2192 \cdot Ts which occurs in the normal cyclic prefix and special subframe configuration 4.

See table below outlining the calculated transmission duty cycles for each Uplink-Downlink configuration:

Table 5-4
Uplink-Downlink Configurations for Type 2 Frame Structures

Uplink-downlink configuration	Downlink-to-Uplink Switch-point periodicity	Subframe number										Calculated Transmission
comiguration	Switch-point periodicity	0	1	2	3	4	5	6	7	8	9	Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	61.4%
1	5 ms	D	S	U	U	D	D	S	U	U	D	41.4%
2	5 ms	D	S	U	D	D	D	S	U	D	D	21.4%
3	10 ms	D	S	U	U	U	D	D	D	D	D	30.7%
4	10 ms	D	S	U	U	D	D	D	D	D	D	20.7%
5	10 ms	D	S	U	D	D	D	D	D	D	D	10.7%
6	5 ms	D	S	U	U	U	D	S	U	U	D	51.4%

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 20 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 20 01 107

a. Power Class 3 Uplink-Downlink Configuration Investigation

Power Class 3 was evaluated with the following radio configuration: channel 40620, 20MHz BW, 16QAM, 1RB, 99%RB Offset. For Power Class 3, all configurations (0-6) are supported. The configuration which resulted in the worst SNNR was used for full testing. Uplink-Downlink configuration 0 was used as the worst-case configuration for Power Class 3 VoLTE over IMS T-Coil testing. See table below for the SNNR comparison between each Uplink-Downlink configuration:

Table 5-5 Power Class 3 VoLTE over IMS SNNR by UL-DL Configuration

· · · · · · · · · · · · · · · · · · ·									
Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	UL-DL Configuration	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
2593.0	40620	20	16QAM	1	99	0	6.43	-33.70	40.13
2593.0	40620	20	16QAM	1	99	1	6.30	-34.42	40.72
2593.0	40620	20	16QAM	1	99	2	6.60	-34.81	41.41
2593.0	40620	20	16QAM	1	99	3	6.59	-36.39	42.98
2593.0	40620	20	16QAM	1	99	4	6.38	-37.30	43.68
2593.0	40620	20	16QAM	1	99	5	6.56	-37.61	44.17
2593.0	40620	20	16QAM	1	99	6	6.35	-34.01	40.36

b. Power Class 2 Uplink-Downlink Configuration Investigation

Power Class 2 was evaluated with the following radio configuration: channel 40620, 20MHz BW, 16QAM, 1RB, 99%RB Offset. For Power Class 2, configurations 1-5 are supported. The configuration which resulted in the worst SNNR was used for full testing. Uplink-Downlink configuration 1 was used as the worst-case configuration for Power Class 2 VoLTE over IMS T-Coil testing. See table below for the SNNR comparison between each Uplink-Downlink configuration:

Table 5-6 Power Class 2 VoLTE over IMS SNNR by UL-DL Configuration

Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	UL-DL Configuration	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
2593.0	40620	20	16QAM	1	99	1	6.42	-31.56	37.98
2593.0	40620	20	16QAM	1	99	2	6.32	-32.75	39.07
2593.0	40620	20	16QAM	1	99	3	6.65	-33.92	40.57
2593.0	40620	20	16QAM	1	99	4	6.66	-34.98	41.64
2593.0	40620	20	16QAM	1	99	5	6.53	-35.45	41.98

Note: LTE TDD B41 Power Class 2 only supports UL-DL configurations 1-5, not 0 or 6.

c. Conclusion

Per the investigations above, UL-DL Configuration 0 was used to evaluate Power Class 3 VoLTE over IMS and UL-DL Configuration 1 was used to evaluate Power Class 2 VoLTE over IMS.

FCC ID: A3LSMF711B	PCTEST Total to be port of the receiver	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 01 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 21 of 107

6. VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoWIFI over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoWIFI over IMS, or CMRS WIFI Calling, is shown below. The callbox used when performing VoWIFI over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

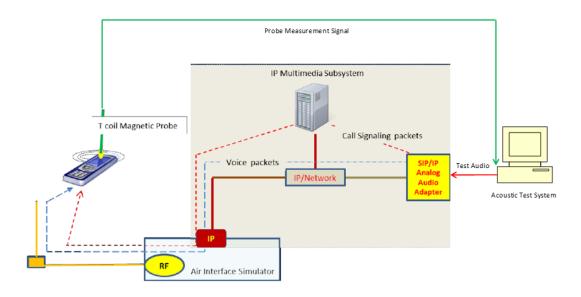


Figure 6-1
Test Setup for VoWIFI over IMS T-Coil Measurements

2. Audio Level Settings

According to KDB 285076 D02 released by the FCC OET regarding the appropriate audio levels to be used for VoWIFI over IMS T-Coil testing, -20dBm0 shall be used for the normal speech input level². The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the VoWIFI over IMS connection.

² FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

1 00 office of Engineer	1 66 6 mile of Engineering and Teermology RBB, 2000 to Boz T cent Teering for Chinte in 100, 66 ptember 10, 20									
FCC ID: A3LSMF711B	PCTEST . Road to be part of § removed	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager						
Filename: 1M2104130035-18-R1.A3L	Test Dates: 05/10/2021 - 06/05/2021	DUT Type: Portable Handset		Page 22 of 107						

© 2021 PCTEST REV 3.5.M

DUT Configuration for VoWIFI over IMS T-coil Testing II.

1. Radio Configuration (Variant - N)

An investigation was performed on all applicable data rates and modulations to determine the radio configuration to be used for testing. See tables below for SNNR comparison between radio configurations in each IEEE 802.11 standard:

> Table 6-1 IEEE 802.11b SNNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11b	6	DSSS	1	2.34	-33.89	36.23
IEEE 802.11b	6	DSSS	2	2.45	-34.05	36.50
IEEE 802.11b	6	CCK	5.5	2.25	-34.38	36.63
IEEE 802.11b	6	CCK	11	2.42	-34.56	36.98

Table 6-2 IEEE 802.11g/a SNNR by Radio Configuration

		00				
Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11g	6	BPSK	6	2.26	-35.05	37.31
IEEE 802.11g	6	BPSK	9	2.27	-36.19	38.46
IEEE 802.11g	6	QPSK	12	2.36	-36.01	38.37
IEEE 802.11g	6	QPSK	18	2.42	-35.41	37.83
IEEE 802.11g	6	16QAM	24	2.35	-36.48	38.83
IEEE 802.11g	6	16QAM	36	2.45	-35.56	38.01
IEEE 802.11g	6	64QAM	48	2.33	-36.03	38.36
IEEE 802.11g	6	64QAM	54	2.34	-37.78	40.12

Table 6-3 IFFF 802 11n/ac 20MHz BW SNNR by Radio Configuration

IEEE 802.1111/ac 20MHZ BW SNINK by Radio Configuration											
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]				
IEEE 802.11n	20	40	BPSK	0	2.15	-36.17	38.32				
IEEE 802.11n	20	40	QPSK	1	2.25	-36.25	38.50				
IEEE 802.11n	20	40	QPSK	2	2.28	-36.73	39.01				
IEEE 802.11n	20	40	16QAM	3	2.55	-36.19	38.74				
IEEE 802.11n	20	40	16QAM	4	2.21	-36.30	38.51				
IEEE 802.11n	20	40	64QAM	5	2.43	-36.36	38.79				
IEEE 802.11n	20	40	64QAM	6	2.44	-36.54	38.98				
IEEE 802.11n	20	40	64QAM	7	2.43	-37.92	40.35				
IEEE 802.11ac	20	40	256QAM	8	2.33	-37.19	39.52				

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 23 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 23 01 107

Table 6-4 IEEE 802.11ax SU 20MHz BW SNNR by Radio Configuration

	1666	OUL. I TUX O	J ZUMINIZ DVV	Sititit by i	tadio coning	ai atioii	
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11ax SU	20	40	BPSK	0	2.41	-35.45	37.86
IEEE 802.11ax SU	20	40	QPSK	1	2.25	-35.09	37.34
IEEE 802.11ax SU	20	40	QPSK	2	2.28	-35.27	37.55
IEEE 802.11ax SU	20	40	16QAM	3	2.24	-35.39	37.63
IEEE 802.11ax SU	20	40	16QAM	4	2.32	-36.00	38.32
IEEE 802.11ax SU	20	40	64QAM	5	2.25	-35.65	37.90
IEEE 802.11ax SU	20	40	64QAM	6	2.37	-35.24	37.61
IEEE 802.11ax SU	20	40	64QAM	7	2.27	-35.66	37.93
IEEE 802.11ax SU	20	40	256QAM	8	2.39	-35.67	38.06
IEEE 802.11ax SU	20	40	256QAM	9	2.36	-35.16	37.52
IEEE 802.11ax SU	20	40	1024QAM	10	2.31	-36.20	38.51
IEEE 802.11ax SU	20	40	1024QAM	11	2.37	-35.76	38.13

Table 6-5 IEEE 802.11ax RU 20MHz BW SNNR by Radio Configuration

	ILLE 002. I Tax NO 20MITE DW SHAN by Nadio Configuration												
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	RU Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]					
IEEE 802.11ax RU	20	40	QPSK	1	0	2.38	-35.71	38.09					
IEEE 802.11ax RU	20	40	QPSK	1	8	2.35	-35.47	37.82					
IEEE 802.11ax RU	20	40	QPSK	1	37	2.26	-35.26	37.52					
IEEE 802.11ax RU	20	40	QPSK	1	40	2.49	-35.25	37.74					
IEEE 802.11ax RU	20	40	QPSK	1	53	2.35	-34.94	37.29					
IEEE 802.11ax RU	20	40	QPSK	1	54	2.37	-35.67	38.04					
IEEE 802.11ax RU	20	40	QPSK	1	61	2.39	-35.41	37.80					

Table 6-6 IEEE 802.11n/ac 40MHz BW SNNR by Radio Configuration

Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11n	40	38	BPSK	0	2.16	-36.08	38.24
IEEE 802.11n	40	38	QPSK	1	2.19	-35.47	37.66
IEEE 802.11n	40	38	QPSK	2	2.26	-36.16	38.42
IEEE 802.11n	40	38	16QAM	3	2.36	-36.78	39.14
IEEE 802.11n	40	38	16QAM	4	2.36	-36.62	38.98
IEEE 802.11n	40	38	64QAM	5	2.56	-36.26	38.82
IEEE 802.11n	40	38	64QAM	6	2.33	-36.60	38.93
IEEE 802.11n	40	38	64QAM	7	2.37	-37.64	40.01
IEEE 802.11ac	40	38	256QAM	8	2.07	-37.03	39.10
IEEE 802.11ac	40	38	256QAM	9	2.48	-36.87	39.35

FCC ID: A3LSMF711B	PCTEST Total to be post of the received	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 24 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 24 01 107

Table 6-7 IEEE 802.11ax SU 40MHz BW SNNR by Radio Configuration

	included the second sec										
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]				
IEEE 802.11ax SU	40	38	BPSK	0	2.39	-35.37	37.76				
IEEE 802.11ax SU	40	38	QPSK	1	2.34	-36.01	38.35				
IEEE 802.11ax SU	40	38	QPSK	2	2.31	-35.82	38.13				
IEEE 802.11ax SU	40	38	16QAM	3	2.16	-36.41	38.57				
IEEE 802.11ax SU	40	38	16QAM	4	2.31	-36.46	38.77				
IEEE 802.11ax SU	40	38	64QAM	5	2.28	-36.17	38.45				
IEEE 802.11ax SU	40	38	64QAM	6	2.11	-36.61	38.72				
IEEE 802.11ax SU	40	38	64QAM	7	2.32	-35.79	38.11				
IEEE 802.11ax SU	40	38	256QAM	8	2.37	-36.57	38.94				
IEEE 802.11ax SU	40	38	256QAM	9	2.38	-36.00	38.38				
IEEE 802.11ax SU	40	38	1024QAM	10	2.35	-35.91	38.26				
IEEE 802.11ax SU	40	38	1024QAM	11	2.27	-36.71	38.98				

Table 6-8 IEEE 802.11ax RU 40MHz BW SNNR by Radio Configuration

	TELE 602. I Tax NO 40MITE DW SMAN by Naulo Configuration												
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	RU Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]					
IEEE 802.11ax RU	40	38	BPSK	0	0	2.32	-35.54	37.86					
IEEE 802.11ax RU	40	38	BPSK	0	17	2.28	-35.32	37.60					
IEEE 802.11ax RU	40	38	BPSK	0	37	2.28	-35.62	37.90					
IEEE 802.11ax RU	40	38	BPSK	0	44	2.28	-35.55	37.83					
IEEE 802.11ax RU	40	38	BPSK	0	53	2.37	-35.57	37.94					
IEEE 802.11ax RU	40	38	BPSK	0	56	2.55	-35.65	38.20					
IEEE 802.11ax RU	40	38	BPSK	0	61	2.38	-35.39	37.77					
IEEE 802.11ax RU	40	38	BPSK	0	62	2.49	-35.58	38.07					
IEEE 802.11ax RU	40	38	BPSK	0	65	2.27	-36.28	38.55					

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dago 25 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 25 of 107

2. Codec Configuration (Variant - N)

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The NB AMR 4.75kbps setting was used for the audio codec on the CMW500 for VoWIFI over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

Table 6-9
AMR Codec Investigation – VoWIFI over IMS

	AMIN Codec Investigation - vovin rover into												
Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band	Standard	Channel					
ABM1 (dBA/m)	8.79	7.47	2.42	2.30			IEEE 802.11b	6					
ABM2 (dBA/m)	-33.86	-33.69	-33.74	-33.50	Axial	2.4GHz							
Frequency Response	Pass	Pass	Pass	Pass	Axiai								
S+N/N (dB)	42.65	41.16	36.16	35.80									

Table 6-10
EVS Codec Investigation – VoWIFI over IMS

	Evo coace investigation vovin rover into													
Codec Setting:	EVS Primary SWB 128kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 128kbps	EVS Primary WB 5.9kbps	EVS Primary NB 24.4kbps	EVS Primary NB 5.9kbps	Orientation	Band	Standard	Channel				
ABM1 (dBA/m)	4.39	3.32	8.65	8.76	2.42	4.14								
ABM2 (dBA/m)	-33.60	-33.03	-33.79	-34.41	-33.93	-33.92	Axial	2.4GHz	IEEE 802.11b	6				
Frequency Response	Pass	Pass	Pass	Pass	Pass	Pass	Axiai	2.46П2						
S+N/N (dB)	37.99	36.35	42.44	43.17	36.35	38.06								

Mute on; Backlight off; Max Volume; Max Contrast

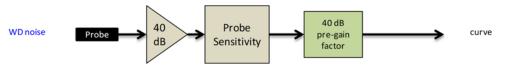


Figure 6-2
Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 26 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 20 01 107

3. Radio Configuration (Variant - Q)

An investigation was performed on all applicable data rates and modulations to determine the radio configuration to be used for testing. See tables below for SNNR comparison between radio configurations in each IEEE 802.11 standard:

> **Table 6-11** IEEE 802.11b SNNR by Radio Configuration

in the state of th										
Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]				
IEEE 802.11b	6	DSSS	1	2.25	-29.67	31.92				
IEEE 802.11b	6	DSSS	2	2.18	-29.86	32.04				
IEEE 802.11b	6	CCK	5.5	2.36	-29.74	32.10				
IEEE 802.11b	6	CCK	11	2.23	-31.30	33.53				

Table 6-12 IEEE 802.11g/a SNNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11g	6	BPSK	6	1.99	-32.67	34.66
IEEE 802.11g	6	BPSK	9	2.07	-32.61	34.68
IEEE 802.11g	6	QPSK	12	2.12	-32.59	34.71
IEEE 802.11g	6	QPSK	18	2.33	-32.55	34.88
IEEE 802.11g	6	16QAM	24	2.23	-32.94	35.17
IEEE 802.11g	6	16QAM	36	2.34	-32.77	35.11
IEEE 802.11g	6	64QAM	48	2.33	-34.21	36.54
IEEE 802.11g	6	64QAM	54	1.98	-34.29	36.27

Table 6-13 IEEE 802 11n/ac 20MHz BW SNNR by Radio Configuration

ILLE GOZ: 1 11/40 ZOMINZ BW ONNIX BY Radio Configuration									
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
IEEE 802.11n	20	40	BPSK	0	2.35	-31.65	34.00		
IEEE 802.11n	20	40	QPSK	1	1.98	-33.32	35.30		
IEEE 802.11n	20	40	QPSK	2	2.13	-33.17	35.30		
IEEE 802.11n	20	40	16QAM	3	2.02	-32.69	34.71		
IEEE 802.11n	20	40	16QAM	4	2.15	-32.49	34.64		
IEEE 802.11n	20	40	64QAM	5	2.08	-32.62	34.70		
IEEE 802.11n	20	40	64QAM	6	1.98	-33.20	35.18		
IEEE 802.11n	20	40	64QAM	7	2.29	-34.95	37.24		
IEEE 802.11ac	20	40	256QAM	8	2.23	-33.67	35.90		

FCC ID: A3LSMF711B	PCTEST* Proud to be part of \$	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dago 27 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 27 of 107

Table 6-14 IEEE 802.11ax SU 20MHz BW SNNR by Radio Configuration

ILLE 002.11ax 30 20Mill2 BW SMIN by Nadio Configuration									
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
IEEE 802.11ax SU	20	40	BPSK	0	2.41	-32.27	34.68		
IEEE 802.11ax SU	20	40	QPSK	1	2.37	-33.19	35.56		
IEEE 802.11ax SU	20	40	QPSK	2	2.59	-33.29	35.88		
IEEE 802.11ax SU	20	40	16QAM	3	2.44	-32.96	35.40		
IEEE 802.11ax SU	20	40	16QAM	4	2.39	-33.77	36.16		
IEEE 802.11ax SU	20	40	64QAM	5	2.25	-33.95	36.20		
IEEE 802.11ax SU	20	40	64QAM	6	2.55	-33.65	36.20		
IEEE 802.11ax SU	20	40	64QAM	7	2.26	-34.34	36.60		
IEEE 802.11ax SU	20	40	256QAM	8	2.30	-33.90	36.20		
IEEE 802.11ax SU	20	40	256QAM	9	2.31	-34.44	36.75		
IEEE 802.11ax SU	20	40	1024QAM	10	2.43	-34.29	36.72		
IEEE 802.11ax SU	20	40	1024QAM	11	2.32	-33.39	35.71		

Table 6-15 IEEE 802.11ax RU 20MHz BW SNNR by Radio Configuration

in the second se									
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	RU Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]	
IEEE 802.11ax RU	20	40	BPSK	0	0	2.49	-33.10	35.59	
IEEE 802.11ax RU	20	40	BPSK	0	8	2.26	-32.85	35.11	
IEEE 802.11ax RU	20	40	BPSK	0	37	2.47	-32.66	35.13	
IEEE 802.11ax RU	20	40	BPSK	0	40	2.20	-33.17	35.37	
IEEE 802.11ax RU	20	40	BPSK	0	53	2.46	-31.94	34.40	
IEEE 802.11ax RU	20	40	BPSK	0	54	2.17	-32.75	34.92	
IEEE 802.11ax RU	20	40	BPSK	0	61	2.22	-33.22	35.44	

Table 6-16 IEEE 802.11n/ac 40MHz BW SNNR by Radio Configuration

Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11n	40	38	BPSK	0	2.33	-33.96	36.29
IEEE 802.11n	40	38	QPSK	1	2.27	-34.21	36.48
IEEE 802.11n	40	38	QPSK	2	2.22	-33.62	35.84
IEEE 802.11n	40	38	16QAM	3	2.43	-34.28	36.71
IEEE 802.11n	40	38	16QAM	4	2.36	-33.72	36.08
IEEE 802.11n	40	38	64QAM	5	2.34	-35.02	37.36
IEEE 802.11n	40	38	64QAM	6	2.54	-34.51	37.05
IEEE 802.11n	40	38	64QAM	7	2.33	-35.54	37.87
IEEE 802.11ac	40	38	256QAM	8	2.38	-34.18	36.56
IEEE 802.11ac	40	38	256QAM	9	2.42	-34.23	36.65

FCC ID: A3LSMF711B	PCTEST Total to be port of the receiver	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 20 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 28 of 107

Table 6-17 IEEE 802.11ax SU 40MHz BW SNNR by Radio Configuration

TELE 002.11 ax 00 40 mile by Olivit by Itaalo Collingulation									
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
IEEE 802.11ax SU	40	38	BPSK	0	2.12	-33.28	35.40		
IEEE 802.11ax SU	40	38	QPSK	1	2.44	-32.94	35.38		
IEEE 802.11ax SU	40	38	QPSK	2	2.14	-33.27	35.41		
IEEE 802.11ax SU	40	38	16QAM	3	2.40	-33.22	35.62		
IEEE 802.11ax SU	40	38	16QAM	4	2.09	-33.74	35.83		
IEEE 802.11ax SU	40	38	64QAM	5	2.12	-33.73	35.85		
IEEE 802.11ax SU	40	38	64QAM	6	2.38	-34.32	36.70		
IEEE 802.11ax SU	40	38	64QAM	7	2.33	-34.15	36.48		
IEEE 802.11ax SU	40	38	256QAM	8	2.01	-34.30	36.31		
IEEE 802.11ax SU	40	38	256QAM	9	2.03	-34.42	36.45		
IEEE 802.11ax SU	40	38	1024QAM	10	2.22	-34.54	36.76		
IEEE 802.11ax SU	40	38	1024QAM	11	2.30	-33.55	35.85		

Table 6-18 IEEE 802.11ax RU 40MHz BW SNNR by Radio Configuration

Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	RU Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11ax RU	40	38	QPSK	1	0	2.13	-32.82	34.95
IEEE 802.11ax RU	40	38	QPSK	1	17	2.20	-32.49	34.69
IEEE 802.11ax RU	40	38	QPSK	1	37	2.36	-33.63	35.99
IEEE 802.11ax RU	40	38	QPSK	1	44	2.30	-33.53	35.83
IEEE 802.11ax RU	40	38	QPSK	1	53	2.15	-33.22	35.37
IEEE 802.11ax RU	40	38	QPSK	1	56	2.04	-32.68	34.72
IEEE 802.11ax RU	40	38	QPSK	1	61	2.37	-32.64	35.01
IEEE 802.11ax RU	40	38	QPSK	1	62	2.30	-32.33	34.63
IEEE 802.11ax RU	40	38	QPSK	1	65	2.25	-32.82	35.07

FCC ID: A3LSMF711B	PCTEST* Proud to be part of \$	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dago 20 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 29 of 107

4. Codec Configuration (Variant - Q)

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The NB AMR 4.75kbps setting was used for the audio codec on the CMW500 for VoWIFI over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

Table 6-19
AMR Codec Investigation – VoWIFI over IMS

	Amit Codec investigation – vovin i over imo											
Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band	Standard	Channel				
ABM1 (dBA/m)	8.58	7.82	2.45	2.16		vial 2.4GHz	IEEE 802.11b	6				
ABM2 (dBA/m)	-30.18	-29.61	-29.81	-29.97	Avial							
Frequency Response	Pass	Pass	Pass	Pass	Axial							
S+N/N (dB)	38.76	37.43	32.26	32.13								

Table 6-20
EVS Codec Investigation – VoWIFI over IMS

= 10 00000 initioning and in 101th 101th init												
Codec Setting:	EVS Primary SWB 128kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 128kbps	EVS Primary WB 5.9kbps	EVS Primary NB 24.4kbps	EVS Primary NB 5.9kbps	Orientation	Band	Standard	Channel		
ABM1 (dBA/m)	4.44	3.72	8.67	8.40	2.12	3.94			IEEE 802.11b	6		
ABM2 (dBA/m)	-30.71	-32.70	-30.85	-30.74	-31.53	-32.58	A . 2 - 1	2.4GHz				
Frequency Response	Pass	Pass	Pass	Pass	Pass	Pass	- Axial					
S+N/N (dB)	35.15	36.42	39.52	39.14	33.65	36.52						

Mute on; Backlight off; Max Volume; Max Contrast

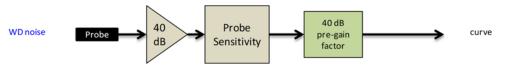


Figure 6-3
Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: A3LSMF711B	PCTEST* Proof to be part of ® secured	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 20 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 30 of 107

7. OTT VOIP TEST SYSTEM AND DUT CONFIGURATION

I. Test System Setup for OTT VoIP T-Coil Testing

1. OTT VoIP Application

Google Duo is a pre-installed application on the DUT which allows for VoIP calls in a held-to-ear scenario. Duo uses the OPUS audio codec and supports a bitrate range of 6kb/s to 75kb/s. All air interfaces capable of a data connection were evaluated with Google Duo.

2. Equipment Setup

A CMW500 callbox was used to perform OTT VoIP T-coil measurements. The Data Application Unit (DAU) of the CMW500 was connected to the internet and allowed for an IP data connection on the DUT. An auxiliary VoIP unit was used to initiate an OTT VoIP call to the DUT. The auxiliary VoIP unit allowed for the configuration and monitoring of the OTT VoIP codec bitrate during a call. Both high and low bitrate settings were evaluated in to determine the worst-case configuration.

3. Audio Level Settings

According to KDB 285076 D02, the average speech level of -20dBm0 shall be used for protocols not specifically listed in Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation³. The auxiliary VoIP unit allowed for monitoring the signal input level to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the OTT VoIP call.

Note: The green highlighted text is approved by FCC under the TCB PAG Re-Use Policy 388624 D01 IV. D. for T-Coil Testing for WI-FI calling and Google Duo.

II. DUT Configuration for OTT VoIP T-Coil Testing

1. Codec Configuration

An investigation was performed for each applicable data mode to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration for each applicable data mode was used for these investigations. The 6kbps codec setting was used for the audio codec on the auxiliary VoIP unit for OTT VoIP T-Coil testing. See below tables for comparisons between codec data rates on all applicable data modes:

Table 7-1
Codec Investigation – OTT VoIP (EDGE)

Codec Setting:	75kbps	6kbps	Orientation	Channel	
ABM1 (dBA/m)	15.80	16.04			
ABM2 (dBA/m)	-32.76	-30.32	Axial	661	
Frequency Response	Pass	Pass	Axiai		
S+N/N (dB)	48.56	46.36			

³ FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

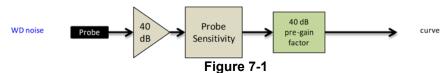
1 00 Office of Engineer	1 00 0 miles of Engineering and Testinology 112B; 200010 B02 1 Con Testing for Office it 100, 00 ptermiser 10, 2011									
FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager						
Filename: 1M2104130035-18-R1.A3L	Test Dates: 05/10/2021 - 06/05/2021	DUT Type: Portable Handset		Page 31 of 107						

Table 7-2
Codec Investigation – OTT VoIP (HSPA)

Oddec investigation – OTT voil (not A)									
Codec Setting:	75kbps 6kbps		Orientation	Channel					
ABM1 (dBA/m)	15.93	15.76							
ABM2 (dBA/m)	-41.33	-41.10	م م	9400					
Frequency Response	Pass	Pass	Axial						
S+N/N (dB)	57.26	56.86							

Table 7-3
Codec Investigation – OTT VoIP (LTE)

	400 III 100	0 1 1 0 11	\ - · - /			
Codec Setting:	75kbps	6kbps	Orientation	Band / BW	Channel	
ABM1 (dBA/m)	15.86	15.82			132322	
ABM2 (dBA/m)	-38.80	-38.24	Axial	LTE Band 66		
Frequency Response	Pass	Pass	Axiai	20MHz		
S+N/N (dB)	54.66	54.06				


Table 7-4
Codec Investigation – OTT VoIP (WIFI – Variant - N)

Godo myodigation Gil von (vin vanant iv)											
Codec Setting:	75kbps	6kbps	Orientation	Band	Standard	Channel					
ABM1 (dBA/m)	16.29	15.70									
ABM2 (dBA/m)	-33.83	-33.53	Axial	0.401 -	1555 000 441	6					
Frequency Response	Pass	Pass	Axiai	2.4GHz	IEEE 802.11b	6					
S+N/N (dB)	50.12	49.23				<u> </u>					

Table 7-5
Codec Investigation – OTT VoIP (WIFI – Variant - Q)

Could invocagation on von train variant a											
Codec Setting:	75kbps	6kbps	Orientation	Band	Standard	Channel					
ABM1 (dBA/m)	16.36	16.07									
ABM2 (dBA/m)	-31.43	-31.64	Axial	2.4GHz	IEEE 802.11b	6					
Frequency Response	Pass	Pass	Axiai								
S+N/N (dB)	47.79	47.71									

- Mute on; Backlight off; Max Volume; Max Contrast
- · Radio Configurations can be found in Section 9.II.H

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: A3LSMF711B	PCTEST . Road to be post of ® removed.	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 32 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 32 01 107

2. Radio Configuration for OTT VoIP (LTE)

An investigation was performed to determine the worst-case LTE FDD band to be used for OTT VoIP testing. LTE FDD Band 66 was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different LTE FDD bands:

Table 7-6
OTT VoIP (LTE FDD) SNNR by LTE Band

			- ,		· , _ · = _ - · · · · ·				
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
12	707.5	23095	10	16QAM	1	99	15.78	-40.53	56.31
13	782.0	23230	10	16QAM	1	99	15.69	-41.57	57.26
26	831.5	26865	15	16QAM	1	99	15.75	-41.36	57.11
5	836.5	20525	10	16QAM	1	99	15.67	-41.77	57.44
66	1745.0	132322	20	16QAM	1	99	15.72	-37.90	53.62
2	1880.0	18900	20	16QAM	1	99	15.79	-39.29	55.08
25	1882.5	26365	20	16QAM	1	99	15.73	-39.92	55.65

An investigation was performed to determine the worst-case LTE TDD band to be used for OTT VoIP testing. LTE TDD Band 41 (PC2) was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different LTE TDD bands:

Table 7-7
OTT VoIP (LTE TDD) SNNR by LTE Band

Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
41 (PC3)	2593.0	40620	20	16QAM	1	99	15.86	-33.70	49.56
41 (PC2)	2593.0	40620	20	16QAM	1	99	15.83	-31.77	47.60

FCC ID: A3LSMF711B	PCTEST* Proud to be part of \$	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dago 22 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 33 of 107

3. Interim Procedure for evaluation OTT VoIP (NR)

The following procedure is used to evaluate OTT VoIP (NR) given equipment limitations.

- a. This procedure is applicable for OTT VoIP (NR) voice calls that use the same protocol, codec(s), and reference level as OTT VoIP (LTE) (i.e. -20dBm0).
- Establish the ABM1_{NR} value by using the ABM1_{LTE} magnetic intensity for an LTE call using a correlating LTE band through existing procedures and test equipment.
- Establish an ABM2_{NR} value using factory test mode (FTM) to simulate a NR connection for the desired NR band and channel under test.
- d. The following information is documented in Section 9:
 - i. ABM2_{LTE} and ABM2_{NR} for respective tests.
 - ii. Calculate SNNR:
 - 1. ABM1 = ABM1LTE
 - 2. $ABM2 = ABM2_{NR}$
 - 3. $SNNR_{NR} = [ABM1_{LTE} ABM2_{NR}] 3dB$
 - a. A 3dB margin is built in to ensure conservative results with this interim procedure.

The above is only applicable for OTT VoIP scenarios, this device does not support VoNR over IMS.

The manufacturer has confirmed the handset as designed is expected to exhibit similar audio intensity levels between an OTT VoIP call placed over a 4G LTE and a 5G Sub-6GHz data connection.

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 24 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 34 of 107

4. Radio Configuration for OTT VoIP (NR)

An investigation was performed to determine the waveform, modulation, and RB configuration to be used for testing. Due to equipment limitations, the procedure outlined in 7.II.3 was used to evaluate the SNNR for each radio configuration below. CP-OFDM 256QAM, 1RB, 1RB offset was determined to be the worst-case configuration for the handset and will be used for full testing in Section 9.

> Table 7-8 NR OTT VolP SNNR by Radio Configuration (CP-OFDM)

	_				Vadio Con		() ()			
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Waveform	Modulation	RB Size	RB Offset	ABM1 _{LTE} [dB(A/m)]	ABM2 _{NR} [dB(A/m)]	SNNR _{NR} [dB]
n5	836.5	167300	20	CP-OFDM	QPSK	1	1	15.67	-46.43	62.10
n5	836.5	167300	20	CP-OFDM	QPSK	1	53	15.67	-45.75	61.42
n5	836.5	167300	20	CP-OFDM	QPSK	1	104	15.67	-46.11	61.78
n5	836.5	167300	20	CP-OFDM	QPSK	53	0	15.67	-46.33	62.00
n5	836.5	167300	20	CP-OFDM	QPSK	53	26	15.67	-46.52	62.19
n5	836.5	167300	20	CP-OFDM	QPSK	53	53	15.67	-46.42	62.09
n5	836.5	167300	20	CP-OFDM	QPSK	106	0	15.67	-46.55	62.22
n5	836.5	167300	20	CP-OFDM	16QAM	1	1	15.67	-46.19	61.86
n5	836.5	167300	20	CP-OFDM	16QAM	1	53	15.67	-46.81	62.48
n5	836.5	167300	20	CP-OFDM	16QAM	1	104	15.67	-46.35	62.02
n5	836.5	167300	20	CP-OFDM	16QAM	53	0	15.67	-46.54	62.21
n5	836.5	167300	20	CP-OFDM	16QAM	53	26	15.67	-46.49	62.16
n5	836.5	167300	20	CP-OFDM	16QAM	53	53	15.67	-46.41	62.08
n5	836.5	167300	20	CP-OFDM	16QAM	106	0	15.67	-46.50	62.17
n5	836.5	167300	20	CP-OFDM	64QAM	1	1	15.67	-46.53	62.20
n5	836.5	167300	20	CP-OFDM	64QAM	1	53	15.67	-45.82	61.49
n5	836.5	167300	20	CP-OFDM	64QAM	1	104	15.67	-46.21	61.88
n5	836.5	167300	20	CP-OFDM	64QAM	53	0	15.67	-45.98	61.65
n5	836.5	167300	20	CP-OFDM	64QAM	53	26	15.67	-46.26	61.93
n5	836.5	167300	20	CP-OFDM	64QAM	53	53	15.67	-46.28	61.95
n5	836.5	167300	20	CP-OFDM	64QAM	106	0	15.67	-46.34	62.01
n5	836.5	167300	20	CP-OFDM	256QAM	1	1	15.67	-45.45	61.12
n5	836.5	167300	20	CP-OFDM	256QAM	1	53	15.67	-46.38	62.05
n5	836.5	167300	20	CP-OFDM	256QAM	1	104	15.67	-45.62	61.29
n5	836.5	167300	20	CP-OFDM	256QAM	53	0	15.67	-45.75	61.42
n5	836.5	167300	20	CP-OFDM	256QAM	53	26	15.67	-46.12	61.79
n5	836.5	167300	20	CP-OFDM	256QAM	53	53	15.67	-46.21	61.88
n5	836.5	167300	20	CP-OFDM	256QAM	106	0	15.67	-46.12	61.79

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 35 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 35 of 107

Table 7-9 NR OTT VolP SNNR by Radio Configuration (DFT-s-OFDM)

	rd Frequency Channel Bandwidth Wounform Modulation BR Size BR Off							ABM1 _{LTE}	ABM2 _{NR}	SNNR _{NR}
Band	[MHz]	Channel	[MHz]	Waveform	Modulation	RB Size	RB Offset	[dB(A/m)]	IdB(A/m)1	[dB]
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	1	1	15.67	-45.54	61.21
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	1	53	15.67	-46.36	62.03
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	1	104	15.67	-45.97	61.64
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	50	0	15.67	-46.33	62.00
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	50	28	15.67	-46.24	61.91
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	50	56	15.67	-46.18	61.85
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	100	0	15.67	-46.16	61.83
n5	836.5	167300	20	DFT-s-OFDM	QPSK	1	1	15.67	-45.49	61.16
n5	836.5	167300	20	DFT-s-OFDM	QPSK	1	53	15.67	-45.47	61.14
n5	836.5	167300	20	DFT-s-OFDM	QPSK	1	104	15.67	-45.79	61.46
n5	836.5	167300	20	DFT-s-OFDM	QPSK	50	0	15.67	-45.86	61.53
n5	836.5	167300	20	DFT-s-OFDM	QPSK	50	28	15.67	-46.16	61.83
n5	836.5	167300	20	DFT-s-OFDM	QPSK	50	56	15.67	-46.08	61.75
n5	836.5	167300	20	DFT-s-OFDM	QPSK	100	0	15.67	-45.97	61.64
n5	836.5	167300	20	DFT-s-OFDM	16QAM	1	1	15.67	-45.62	61.29
n5	836.5	167300	20	DFT-s-OFDM	16QAM	1	53	15.67	-45.86	61.53
n5	836.5	167300	20	DFT-s-OFDM	16QAM	1	104	15.67	-45.67	61.34
n5	836.5	167300	20	DFT-s-OFDM	16QAM	50	0	15.67	-45.76	61.43
n5	836.5	167300	20	DFT-s-OFDM	16QAM	50	28	15.67	-45.57	61.24
n5	836.5	167300	20	DFT-s-OFDM	16QAM	50	56	15.67	-46.17	61.84
n5	836.5	167300	20	DFT-s-OFDM	16QAM	100	0	15.67	-45.90	61.57
n5	836.5	167300	20	DFT-s-OFDM	64QAM	1	1	15.67	-45.92	61.59
n5	836.5	167300	20	DFT-s-OFDM	64QAM	1	53	15.67	-45.87	61.54
n5	836.5	167300	20	DFT-s-OFDM	64QAM	1	104	15.67	-45.78	61.45
n5	836.5	167300	20	DFT-s-OFDM	64QAM	50	0	15.67	-45.81	61.48
n5	836.5	167300	20	DFT-s-OFDM	64QAM	50	28	15.67	-46.01	61.68
n5	836.5	167300	20	DFT-s-OFDM	64QAM	50	56	15.67	-45.98	61.65
n5	836.5	167300	20	DFT-s-OFDM	64QAM	100	0	15.67	-46.06	61.73
n5	836.5	167300	20	DFT-s-OFDM	256QAM	1	1	15.67	-46.14	61.81
n5	836.5	167300	20	DFT-s-OFDM	256QAM	1	53	15.67	-46.24	61.91
n5	836.5	167300	20	DFT-s-OFDM	256QAM	1	104	15.67	-46.19	61.86
n5	836.5	167300	20	DFT-s-OFDM	256QAM	50	0	15.67	-46.25	61.92
n5	836.5	167300	20	DFT-s-OFDM	256QAM	50	28	15.67	-46.19	61.86
n5	836.5	167300	20	DFT-s-OFDM	256QAM	50	56	15.67	-46.10	61.77
n5	836.5	167300	20	DFT-s-OFDM	256QAM	100	0	15.67	-46.23	61.90

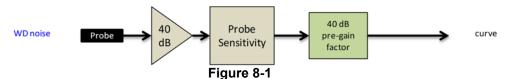
An investigation was performed to determine the worst-case NR FDD band to be used for OTT VoIP testing. NR n66 was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different NR FDD bands:

> **Table 7-10** OTT VoIP (NR FDD) SNNR by Band

Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Waveform	Modulation	RB Size	RB Offset	ABM1 _{LTE} [dB(A/m)]	ABM2 _{NR} [dB(A/m)]	SNNR _{NR} [dB]
n5	836.5	167300	20	CP-OFDM	256QAM	1	1	15.67	-45.20	60.87
n66	1745.0	349000	20	CP-OFDM	256QAM	1	1	15.72	-42.14	57.86

FCC ID: A3LSMF711B	PCTEST . Road to be post of ® removed.	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 36 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 30 of 107

FCC 3G MEASUREMENTS 8.


UMTS Test Configurations I.

AMR at 4.75kbps, 13.6kbps SRB was used for the testing as the worst-case configuration for the handset. See below table for ABM noise comparison between vocoder rates:

> Table 8-1 **Codec Investigation - UMTS**

		00000 11110	onganon on			
Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Channel
ABM1 (dBA/m)	12.98	12.14	7.07	6.68		
ABM2 (dBA/m)	-48.94	-49.15	-49.37	-49.39	Axial	9400
Frequency Response	Pass	Pass	Pass	Pass	Axiai	9400
S+N/N (dB)	61.92	61.29	56.44	56.07		

- Mute on; Backlight off; Max Volume; Max Contrast
- TPC="All 1s"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: A3LSMF711B	PCTEST* Proud to be part of \$	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dago 27 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 37 of 107

T-COIL TEST SUMMARY

Table 9-1 **Consolidated Tabled Results**

			JUIISUII						
			esponse rgin	•	netic / Verdict		SNNR dict	Margin from FCC Limit	C63.19-2011
C62 10	9 Section	8.3	3.2	8.3	3.1	8.3	3.4	(dB)	Rating
C03. 18	3 Section	Axial	Radial	Axial	Radial	Axial	Radial		
GSM	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-5.91	Т3
COM	PCS	PASS	NA	PASS	PASS	PASS	PASS	-3.91	13
EDGE	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-4.50	Т3
(OTT VoIP)	PCS	PASS	NA	PASS	PASS	PASS	PASS	-4.50	2
	Cellular	PASS	NA	PASS	PASS	PASS	PASS		
UMTS	AWS	PASS	NA	PASS	PASS	PASS	PASS	-25.54	T4
	PCS	PASS	NA	PASS	PASS	PASS	PASS		
	Cellular	PASS	NA	PASS	PASS	PASS	PASS		
HSPA (OTT VoIP)	AWS	PASS	NA	PASS	PASS	PASS	PASS	-27.48	T4
(011 10)	PCS	PASS	NA	PASS	PASS	PASS	PASS		
	B12	PASS	NA	PASS	PASS	PASS	PASS		
	B13	PASS	NA	PASS	PASS	PASS	PASS		
	B26	PASS	NA	PASS	PASS	PASS	PASS		
LTE FDD	B5	PASS	NA	PASS	PASS	PASS	PASS	-10.52	T4
	B66	PASS	NA	PASS	PASS	PASS	PASS		
	B2	PASS	NA	PASS	PASS	PASS	PASS		
	B25	PASS	NA	PASS	PASS	PASS	PASS		
LTE FDD (OTT VoIP)	B66	PASS	NA	PASS	PASS	PASS	PASS	-23.01	T4
LTE TOD	B41 (PC3)	PASS	NA	PASS	PASS	PASS	PASS	-6.76	Т3
LTE TDD	B41 (PC2)	PASS	NA	PASS	PASS	PASS	PASS	-0.70	13
LTE TDD (OTT VoIP)	B41 (PC2)	PASS	NA	PASS	PASS	PASS	PASS	-16.13	T4
NR FDD (OTT VoIP)	n66	NA	NA	PASS	PASS	PASS	PASS	-26.00	Т4

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 20 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 38 of 107

© 2021 PCTEST **REV 3.5.M**

				esponse rgin	_	netic / Verdict		SNNR dict	Margin from	C63.19-2011
	000.40.0		8.3	3.2	8.3	3.1	8.3	3.4	(dB)	Rating
	C63.19 S	ection	Axial	Radial	Axial	Radial	Axial	Radial		
		IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS		
	WLAN	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-6.14	Т3
		IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS		
	WLAN (OTT VoIP)	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-22.22	T4
7	(011 7011)	IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS		
ıt - I		IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS		
Variant - N		IEEE 802.11a	PASS	NA	PASS	PASS	PASS	PASS		
>		IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS		
	U-NII	IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS	-8.03	Т3
		IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11a	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS		
	U-NII (OTT VoIP)	IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS	-22.19	T4
		IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS		
	WLAN	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-7.81	Т3
		IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS		
	WLAN (OTT VoIP)	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-21.57	T4
~	(OTT VOIP)	IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS		
t-Q		IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS		
Variant		IEEE 802.11a	PASS	NA	PASS	PASS	PASS	PASS		
>		IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS		
	U-NII	IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS	-7.69	Т3
		IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11a	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS		
	U-NII	IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS	-25.01	T4
	(OTT VoIP)	IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS		
		IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS		

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 39 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 39 01 107

I. Raw Handset Data

Table 9-2
Raw Data Results for GSM

Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		128	M8080	7.50	-36.33		2.00	43.83	20.00	-23.83	T4	
	Axial	190	M8080	7.64	-36.50	-64.62	2.00	44.14	20.00	-24.14	T4	1.8, 1.4
GSM850		251	M8080	7.58	-36.62		2.00	44.20	20.00	-24.20	T4	
GSWI650		128	M8080	-1.39	-27.30			25.91	20.00	-5.91	Т3	
	Radial	190	M8080	-1.42	-27.95	-63.70	N/A	26.53	20.00	-6.53	Т3	1.8, 0.4
		251	M8080	-1.52	-27.82			26.30	20.00	-6.30	Т3	
		512	M8080	7.42	-28.09		2.00	35.51	20.00	-15.51	T4	
	Axial	661	M8080	7.44	-27.95	-64.62	2.00	35.39	20.00	-15.39	T4	1.8, 1.4
GSM1900		810	M8080	7.43	-28.24		2.00	35.67	20.00	-15.67	T4	
331411900		512	M8080	-1.18	-29.98		·	28.80	20.00	-8.80	Т3	
	Radial	661	M8080	-0.77	-29.99	-63.70	63.70 N/A	29.22	20.00	-9.22	Т3	1.8, 2.2
		810	M8080	-0.76	-30.43			29.67	20.00	-9.67	Т3	

Table 9-3 Raw Data Results for UMTS

Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
		4132	M8080	6.49	-50.74		1.83	57.23	20.00	-37.23	T4		
	Axial	4183	M8080	6.36	-49.08	-64.62	1.75	55.44	20.00	-35.44	T4	1.8, 1.4	
UMTS V		4233	M8080	6.47	-48.54		1.71	55.01	20.00	-35.01	T4		
OW 13 V		4132	M8080	-1.57	-47.31			45.74	20.00	-25.74	T4		
	Radial	4183	M8080	-1.64	-47.35	-63.70	N/A	45.71	20.00	-25.71	T4	1.8, 2.2	
		4233	M8080	-1.58	-47.20			45.62	20.00	-25.62	T4		
		1312	M8080	6.37	-49.19		1.95	55.56	20.00	-35.56	T4		
	Axial	1412	M8080	6.35	-49.26	-64.62	1.94	55.61	20.00	-35.61	T4	1.8, 1.4	
UMTS IV		1513	M8080	6.53	-49.34		1.86	55.87	20.00	-35.87	T4		
OWITO IV		1312	M8080	-1.68	-47.22				45.54	20.00	-25.54	T4	
	Radial	1412	M8080	-1.55	-47.71	-63.70	N/A	46.16	20.00	-26.16	T4	1.8, 2.2	
		1513	M8080	-1.60	-47.51			45.91	20.00	-25.91	T4		
		9262	M8080	6.55	-49.24		1.91	55.79	20.00	-35.79	T4		
	Axial	9400	M8080	6.65	-49.12	-64.62	1.81	55.77	20.00	-35.77	T4	1.8, 1.4	
UMTS II		9538	M8080	6.66	-48.91		1.84	55.57	20.00	-35.57	T4		
OWISI		9262	M8080	-1.36	-47.75			46.39	20.00	-26.39	T4		
	Radial	9400	M8080	-1.50	-47.78			46.28	20.00	-26.28	T4	1.8, 2.2	
		9538	M8080	-1.43	-47.79			46.36	20.00	-26.36	T4		

Table 9-4 Raw Data Results for LTE B12

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates																		
		10MHz	23095	0808M	6.33	-50.60		1.86	56.93	20.00	-36.93	T4																			
	Axial	5MHz	23095	0808M	6.40	-49.22	-64.62	1.64	55.62	20.00	-35.62	T4	1.8, 1.4																		
Axial	3MHz	23095	0808M	6.38	-50.20	-04.02	1.79	56.58	20.00	-36.58	T4	1.0, 1.4																			
LTE Band 12	1.TE D 1.40	1.4MHz	23095	0808M	6.37	-48.85		1.58	55.22	20.00	-35.22	T4																			
LIE Ballu 12		10MHz	23095	0808M	-2.02	-33.44			31.42	20.00	-11.42	T4																			
	Radial	5MHz	23095	0808M	-1.96	-33.98	-33.98	-63.70	-63.70	-63.70	-63.70	-63.70 N/A	62.70	62.70	62.70	33.98	-33.98	62.70	63.70	63.70	-63.70	-63.70	63.70	63.70	63.70	NVA	32.02	20.00	-12.02	T4	1.8. 2.2
		3MHz	23095	0808M	-1.75	-34.94	-63.70						IVA	33.19	20.00	-13.19	T4	1.0, 2.2													
		1.4MHz	23095	0808M	-1.97	-36.00						34.03	20.00	-14.03	T4																

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 40 of 407
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 40 of 107

Table 9-5 Raw Data Results for LTE B13

	Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		Axial	10MHz	23230	M8080	6.20	-49.78	-64.62	2.00	55.98	20.00	-35.98	T4	1.8, 1.4
	E Band 13		5MHz	23230	M8080	6.17	-49.14	-04.02	1.83	55.31	20.00	-35.31	T4	1.0, 1.4
-	E Band 13	Radial	10MHz	23230	M8080	-1.94	-32.46	-63.70	N/A	30.52	20.00	-10.52	T4	1.8. 2.2
		Natial	5MHz	23230	M8080	-1.89	-34.57	-03.70	IWA	32.68	20.00	-12.68	T4	1.0, 2.2

Table 9-6 Raw Data Results for LTE B26

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates														
		15MHz	26865	0808M	6.16	-46.59		1.85	52.75	20.00	-32.75	T4															
		10MHz	26865	M8080	6.35	-46.22		1.75	52.57	20.00	-32.57	T4															
	Axial	5MHz	26865	M8080	6.37	-44.16	-64.62	1.83	50.53	20.00	-30.53	T4	1.8, 1.4														
		3MHz	26865	M8080	6.25	-44.26		1.88	50.51	20.00	-30.51	T4															
LTE Band 26		1.4MHz	26865	0808M	6.15	-45.99		1.71	52.14	20.00	-32.14	T4															
LIE Ballu 26		15MHz	26865	0808M	-2.17	-35.35			33.18	20.00	-13.18	T4															
		10MHz	26865	0808M	-2.02	-35.64			33.62	20.00	-13.62	T4															
	Radial	5MHz	26865	0808M	-2.02	-35.45	-63.70	-63.70	-63.70	-63.70	-63.70 N/A	-63.70	-63.70	-63.70	-63.70	35.45 -63.70	-63.70	35.45 -63.70	-63.70	-63.70	-63.70	-35.45 -63.70 N/A	33.43	20.00	-13.43	T4	1.8, 2.2
		3MHz	26865	0808M	-1.96	-36.31						34.35	20.00	-14.35	T4												
		1.4MHz	26865	0808M	-2.09	-36.52			34.43	20.00	-14.43	T4															

Table 9-7 Raw Data Results for LTE B5

Мо	ode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
			10MHz	20525	M8080	6.61	-50.27		1.69	56.88	20.00	-36.88	T4	
	LTE Band 5	Axial	5MHz	20525	M8080	6.22	-48.25	-64.62	1.77	54.47	20.00	-34.47	T4	1.8. 1.4
		Axiai	3MHz	20525	M8080	6.38	-48.71	-04.02	1.49	55.09	20.00	-35.09	T4	1.0, 1.4
			1.4MHz	20525	M8080	6.60	-48.33		1.79	54.93	20.00	-34.93	T4	
LIE	sand s		10MHz	20525	M8080	-1.96	-35.03			33.07	20.00	-13.07	T4	
		Radial	5MHz	20525	M8080	-2.13	-34.43	-63.70	N/A	32.30	20.00	-12.30	T4	1.8, 2.2
		Nadiai	3MHz	20525	M8080	-2.09	-35.17	-03.70	IWA	33.08	20.00	-13.08	T4	1.0, 2.2
			1.4MHz	20525	M8080	-2.09	-35.32			33.23	20.00	-13.23	T4	

Table 9-8 Raw Data Results for LTE B66

					IW Data								
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	132322	M8080	6.46	-40.47		1.90	46.93	20.00	-26.93	T4	
		15MHz	132322	M8080	6.49	-40.57		1.87	47.06	20.00	-27.06	T4	
		10MHz	132322	M8080	6.29	-40.32		1.87	46.61	20.00	-26.61	T4	
	Axial	5MHz	132647	M8080	6.26	-38.71	-64.62	1.59	44.97	20.00	-24.97	T4	1.8, 1.4
	Axidi	5MHz	132322	M8080	6.32	-39.98	-04.02	1.85	46.30	20.00	-26.30	T4	1.0, 1.4
		5MHz	131997	M8080	6.21	-37.93		1.84	44.14	20.00	-24.14	T4	
LTE Daniel CC		3MHz	132322	M8080	6.20	-40.13		1.63	46.33	20.00	-26.33	T4	
LTE Band 66		1.4MHz	132322	M8080	6.31	-40.16		1.71	46.47	20.00	-26.47	T4	
		20MHz	132322	M8080	-2.07	-37.22			35.15	20.00	-15.15	T4	
		15MHz	132322	0808M	-2.07	-37.85			35.78	20.00	-15.78	T4	
	Dediel	10MHz	132322	0808M	-2.00	-37.74	62.70	NUA	35.74	20.00	-15.74	T4	40.00
	Radial	5MHz	132322	0808M	-1.93	-37.35	-63.70	N/A	35.42	20.00	-15.42	T4	1.8, 2.2
		3MHz	132322	0808M	-2.18	-37.65			35.47	20.00	-15.47	T4	
		1.4MHz	132322	0808M	-2.10	-37.80			35.70	20.00	-15.70	T4	

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 41 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 41 01 107

Table 9-9 **Raw Data Results for LTE B25**

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	26365	M8080	6.41	-43.31		1.90	49.72	20.00	-29.72	T4	
		15MHz	26365	M8080	6.61	-43.81		1.96	50.42	20.00	-30.42	T4	
	Axial	10MHz	26365	M8080	6.51	-44.10	-64.62	2.00	50.61	20.00	-30.61	T4	1.8, 1.4
	Axiai	5MHz	26365	M8080	6.61	-43.10	-04.02	1.77	49.71	20.00	-29.71	T4	1.0, 1.4
		3MHz	26365	M8080	6.67	-42.70		1.96	49.37	20.00	-29.37	T4	
LTE Band 25		1.4MHz	26365	M8080	6.78	-43.03		1.89	49.81	20.00	-29.81	T4	
LIE Band 25		20MHz	26365	M8080	-2.05	-39.82			37.77	20.00	-17.77	T4	
		15MHz	26365	0808M	-2.08	-40.43			38.35	20.00	-18.35	T4	
	Radial	10MHz	26365	0808M	-1.94	-40.25	-63.70	N/A	38.31	20.00	-18.31	T4	40.00
	Radiai	5MHz	26365	0808M	-1.81	-39.59	-03.70	IN/A	37.78	20.00	-17.78	T4	1.8, 2.2
		3MHz	26365	0808M	-2.02	-40.06			38.04	20.00	-18.04	T4	
		1.4MHz	26365	0808M	-2.03	-39.97			37.94	20.00	-17.94	T4	

Table 9-10 Raw Data Results for LTE B2

					un Dut								
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	18900	0808M	6.40	-43.53		1.68	49.93	20.00	-29.93	T4	
		15MHz	18900	0808M	6.28	-42.61	1 [1.84	48.89	20.00	-28.89	T4	
	Axial	10MHz	18900	0808M	6.31	-42.19	-64.62	1.77	48.50	20.00	-28.50	T4	1.8, 1.4
	Axidi	5MHz	18900	0808M	6.29	-42.78	-04.02	1.87	49.07	20.00	-29.07	T4	1.0, 1.4
		3MHz	18900	0808M	6.23	-41.62] [1.82	47.85	20.00	-27.85	T4	
LTE Band 2		1.4MHz	18900	M8080	6.36	-40.11		1.54	46.47	20.00	-26.47	T4	
LIE Ballu 2		20MHz	18900	0808M	-2.04	-40.13			38.09	20.00	-18.09	T4	
		15MHz	18900	0808M	-1.86	-40.19			38.33	20.00	-18.33	T4	
	Radial	10MHz	18900	0808M	-1.75	-40.26	-63.70	N/A	38.51	20.00	-18.51	T4	1.8, 2.2
	radiai	5MHz	18900	0808M	-1.83	-39.59	-03.70	IWA	37.76	20.00	-17.76	T4	1.0, 2.2
		3MHz	18900	0808M	-2.31	-39.77			37.46	20.00	-17.46	T4	
		1.4MHz	18900	0808M	-2.07	-40.49			38.42	20.00	-18.42	T4	

Table 9-11 Raw Data Results for LTE B41 Power Class 3

			110	IV Data	INCOURT	3 IUI L		OVVCI	Jiass 5				
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	40620	0808M	6.42	-33.67		1.86	40.09	20.00	-20.09	T4	
	Axial	15MHz	40620	0808M	6.36	-33.40	-64.62	1.68	39.76	20.00	-19.76	T4	1.8, 1.4
	Axiai	10MHz	40620	0808M	6.23	-33.82	-04.02	1.87	40.05	20.00	-20.05	T4	1.0, 1.4
LTE Band 41		5MHz	40620	0808M	6.16			1.70	40.46	20.00	-20.46	T4	
(PC3)		20MHz	40620	0808M	-1.80	-33.79			31.99	20.00	-11.99	T4	
	Radial	15MHz	40620	0808M	-1.89	-33.20	-63.70	N/A	31.31	20.00	-11.31	T4	1.8. 2.2
	radiai	10MHz	40620	0808M	-2.20	-33.45	-03.70	IWA	31.25	20.00	-11.25	T4	1.0, 2.2
		5MHz	40620	0808M	-1.97	-33.25			31.28	20.00	-11.28	T4	

Table 9-12 Raw Data Results for LTE B41 Power Class 2

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	40620	0808M	6.45	-31.78		1.93	38.23	20.00	-18.23	T4	
		15MHz	41490	0808M	6.48	-31.51		1.74	37.99	20.00	-17.99	T4	
		15MHz	41055	0808M	6.41	-31.92		1.84	38.33	20.00	-18.33	T4	
	Axial	15MHz	40620	0808M	6.39	-31.52	-64.62	1.93	37.91	20.00	-17.91	T4	1.8, 1.4
	Axiai	15MHz	40185	0808M	6.59	-32.21	-04.02	1.91	38.80	20.00	-18.80	T4	1.0, 1.4
		15MHz	39750	0808M	6.22	-30.57		1.57	36.79	20.00	-16.79	T4	
		10MHz	40620	0808M	6.60	-31.65		1.73	38.25	20.00	-18.25	T4	
LTE Band 41		5MHz	40620	0808M	6.55	-31.85		1.62	38.40	20.00	-18.40	T4	
(PC2)		20MHz	40620	0808M	-2.08	-29.22			27.14	20.00	-7.14	Т3	
		15MHz	40620	0808M	-2.08	-28.95			26.87	20.00	-6.87	Т3	
		10MHz	41490	0808M	-2.11	-29.75			27.64	20.00	-7.64	Т3	
	Dadial	10MHz	41055	0808M	-2.01	-29.70	-63.70	N/A	27.69	20.00	-7.69	Т3	40.00
	Radial	10MHz	40620	0808M	-2.06	-28.82	-03.70	IWA	26.76	20.00	-6.76	Т3	1.8, 2.2
		10MHz	40185	0808M	-2.03	-29.61			27.58	20.00	-7.58	Т3	
		10MHz	39750	0808M	-1.80	-29.02			27.22	20.00	-7.22	T3	
		5MHz	40620	0808M	-1.81	-28.58			26.77	20.00	-6.77	Т3	

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 42 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 42 01 107

Table 9-13 Raw Data Results for 2.4GHz WIFI - N

				tuii but	<u>u 1100ui</u>	13 101 2.4	<u> </u>					
Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	6	3724M	2.26	-33.99	-62.48	1.40	36.25	20.00	-16.25	T4	1.8, 1.4
IEEE		1	3724M	-5.78	-32.93			27.15	20.00	-7.15	Т3	
802.11b	Radial	6	3724M	-5.67	-33.64	-64.26	N/A	27.97	20.00	-7.97	Т3	1.8, 2.2
		11	3724M	-5.92	-32.06			26.14	20.00	-6.14	Т3	
IEEE	Axial	6	3724M	2.42	-35.24	-62.48	1.55	37.66	20.00	-17.66	T4	1.8, 1.4
802.11g	Radial	6	3724M	-5.57	-33.60	-64.26	N/A	28.03	20.00	-8.03	Т3	1.8, 2.2
IEEE	Axial	6	3724M	2.19	-34.68	-62.48	1.27	36.87	20.00	-16.87	T4	1.8, 1.4
802.11n	Radial	6	3724M	-5.53	-33.87	-64.26	N/A	28.34	20.00	-8.34	Т3	1.8, 2.2
		1	3724M	2.03	-34.26		1.33	36.29	20.00	-16.29	T4	
IEEE	Axial	6	3724M	2.38	-32.66	-62.48	1.45	35.04	20.00	-15.04	T4	1.8, 1.4
802.11ax SU		11	3724M	2.40	-32.86		1.24	35.26	20.00	-15.26	T4	
	Radial	6	3724M	-5.79	-34.41	-64.26	N/A	28.62	20.00	-8.62	T3	1.8, 2.2
IEEE	Axial	6	3724M	2.31	-34.52	-62.48	1.22	36.83	20.00	-16.83	T4	1.8, 1.4
802.11ax RU	Radial	6	3724M	-5.62	-34.22	-64.26	N/A	28.60	20.00	-8.60	T3	1.8, 2.2

Table 9-14 Raw Data Results for 5GHz WIFI IEEE 802.11a - N

Mod	le	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
		Axial	20MHz	1	40	3724M	2.33	-35.17	-62.48	1.29	37.50	20.00	-17.50	T4	1.8, 1.4
IEEE 80	2.11a														
		Radial	20MHz	1	40	3724M	-5.52	-33.56	-64.26	N/A	28.04	20.00	-8.04	Т3	1.8, 2.2

Table 9-15 Raw Data Results for 5GHz WIFI IEEE 802.11n - N

				<u> </u>	<u></u>			****						
Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	1	38	3724M	2.44	-34.77		1.40	37.21	20.00	-17.21	T4	
		40MHz	1	46	3724M	2.08	-35.28		1.44	37.36	20.00	-17.36	T4	
		20MHz	1	40	3724M	2.24	-35.48		1.29	37.72	20.00	-17.72	T4	
		40MHz	2A	54	3724M	2.22	-36.25		1.33	38.47	20.00	-18.47	T4	
	Axial	20MHz	2A	56	3724M	2.00	-36.49	-62.48	1.43	38.49	20.00	-18.49	T4	1.8, 1.4
		40MHz	2C	118	3724M	2.19	-35.47		1.34	37.66	20.00	-17.66	T4	
		20MHz	2C	120	3724M	2.16	-35.93		1.34	38.09	20.00	-18.09	T4	
		40MHz	3	151	3724M	2.42	-36.03		1.42	38.45	20.00	-18.45	T4	
IEEE		20MHz	3	157	3724M	2.10	-35.68		1.47	37.78	20.00	-17.78	T4	
802.11n														
002.1111		40MHz	1	38	3724M	-5.80	-33.83			28.03	20.00	-8.03	Т3	
		40MHz	1	46	3724M	-5.59	-34.15			28.56	20.00	-8.56	Т3	
		20MHz	1	40	3724M	-5.78	-34.32			28.54	20.00	-8.54	Т3	
		40MHz	2A	54	3724M	-5.56	-34.33			28.77	20.00	-8.77	Т3	
	Radial	20MHz	2A	56	3724M	-5.77	-34.07	-64.26	N/A	28.30	20.00	-8.30	Т3	1.8, 2.2
		40MHz	2C	118	3724M	-5.86	-34.47			28.61	20.00	-8.61	T3	
		20MHz	2C	120	3724M	-5.84	-34.27			28.43	20.00	-8.43	T3	
		40MHz	3	151	3724M	-5.80	-34.05			28.25	20.00	-8.25	Т3	
		20MHz	3	157	3724M	-5.76	-33.97			28.21	20.00	-8.21	Т3	

Table 9-16 Raw Data Results for 5GHz WIFI IEEE 802.11ac - N

				aw Dat	u ixesui	13 101 1	JOI 12 1	*** * **	L 002.	140 - 1	•			
Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	40MHz	1	38	3724M	2.16	-36.09	-62.48	1.45	38.25	20.00	-18.25	T4	1.8. 1.4
	Axiai	20MHz	1	40	3724M	2.20	-36.55	-02.40	1.46	38.75	20.00	-18.75	T4	1.0, 1.4
IEEE 802.11ac														
002.11ac	Radial	40MHz	1	38	3724M	-5.82	-34.81	-64.26	N/A	28.99	20.00	-8.99	T3	1.8, 2.2
	Radiai	20MHz	1	40	3724M	-5.87	-34.19	-04.20	IN/A	28.32	20.00	-8.32	Т3	1.0, 2.2

FCC ID: A3LSMF711B	PCTEST: Noted to be part of & secured	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 42 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 43 of 107

Table 9-17 Raw Data Results for 5GHz WIFI IEEE 802.11ax - N

Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
	Axial	40MHz	1	38	3724M	2.32	-36.11	-62.48	1.30	38.43	20.00	-18.43	T4	1.8, 1.4	
IEEE	Axiai	20MHz	1	40	3724M	2.32	-35.48	-02.40	1.30	37.80	20.00	-17.80	T4	1.0, 1.4	
	02.11ax SU														
002.11ax 30	Radial	40MHz	1	38	3724M	-5.64	-34.13	-64.26	NI/A	28.49	20.00	-8.49	Т3	1.8, 2.2	
	Radial	20MHz	1	40	3724M	-5.83	-34.66		NA	28.83	20.00	-8.83	Т3	1.0, 2.2	
	Avial	40MHz	1	38	3724M	2.33	-35.70	-62.48	1.40	38.03	20.00	-18.03	T4	1.8, 1.4	
.ccc	Axial	20MHz	1	40	3724M	2.22	-36.15	-02.40	1.30	38.37	20.00	-18.37	T4	1.0, 1.4	
IEEE 802.11ax RU															
OUZ. I TAX RU	Radial	40MHz	1	38	3724M	-5.77	-34.18	-64 26	-64 26	N/A	28.41	20.00	-8.41	T3	1.8, 2.2
	Radiai	20MHz	1	40	3724M	-5.81	-34.02			IW/A	28.21	20.00	-8.21	T3	1.0, 2.2

Table 9-18 Raw Data Results for 2.4GHz WIFI - Q

				-		13 101 2.7	O 11 - 111	1 1 – Q				
Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		1	0808M	1.87	-29.32		1.35	31.19	20.00	-11.19	T4	
	Axial	6	0808M	2.34	-29.78	-64.62	1.61	32.12	20.00	-12.12	T4	1.8, 1.4
IEEE		11	0808M	2.10	-28.90		1.05	31.00	20.00	-11.00	T4	
802.11b		1	0808M	-5.48	-33.29			27.81	20.00	-7.81	T3	
	Radial	6	0808M	-5.51	-33.46	-63.70	N/A	27.95	20.00	-7.95	Т3	1.8, 2.2
		11	0808M	-5.48	-33.85			28.37	20.00	-8.37	Т3	
IEEE	Axial	6	M8080	2.24	-32.11	-64.62	1.45	34.35	20.00	-14.35	T4	1.8, 1.4
802.11g	Radial	6	0808M	-5.49	-34.60	-63.70	N/A	29.11	20.00	-9.11	Т3	1.8, 2.2
IEEE	Axial	6	M8080	2.15	-32.08	-64.62	1.43	34.23	20.00	-14.23	T4	1.8, 1.4
802.11n	Radial	6	0808M	-5.76	-34.48	-63.70	N/A	28.72	20.00	-8.72	Т3	1.8, 2.2
IEEE	Axial	6	0808M	2.11	-30.23	-64.62	1.19	32.34	20.00	-12.34	T4	1.8, 1.4
802.11ax SU	Radial	6	0808M	-5.85	-34.16	-63.70	N/A	28.31	20.00	-8.31	T3	1.8, 2.2
IEEE	Axial	6	0808M	1.83	-30.77	-64.62	1.38	32.60	20.00	-12.60	T4	1.8, 1.4
802.11ax RU	Radial	6	0808M	-5.69	-34.53	-63.70	N/A	28.84	20.00	-8.84	Т3	1.8, 2.2

Table 9-19 Raw Data Results for 5GHz WIFI IEEE 802.11a - Q

М	ode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		Axial	20MHz	1	40	M8080	1.99	-33.50	-64.62	1.77	35.49	20.00	-15.49	T4	1.8, 1.4
IEEE 8	802.11a														
		Radial	20MHz	1	40	0808M	-5.49	-33.74	-63.70	N/A	28.25	20.00	-8.25	Т3	1.8, 2.2

Table 9-20 Raw Data Results for 5GHz WIFI IEEE 802.11n - Q

Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates		
	Avial	40MHz	1	38	M8080	2.03	-33.77	64.60	1.73	35.80	20.00	-15.80	T4	1.8, 1.4		
	Axial	20MHz	1	40	M8080	2.16	-34.26	-64.62	-64.62	-64.62	1.59	36.42	20.00	-16.42	T4	1.0, 1.4
802.11n																
002.1111		40MHz	1	38	M8080	-5.68	-35.67	00.70	NIA	29.99	20.00	-9.99	Т3	1.8. 2.2		
	Radial	20MHz	1	40	M8080	-5.64	-34.76	-63.70	-63.70 N/A	29.12	20.00	-9.12	Т3	1.8, 2.2		

FCC ID: A3LSMF711B	PCTEST Total to be post of Seminorial	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 44 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 44 01 107

Table 9-21 Raw Data Results for 5GHz WIFI IEEE 802.11ac - Q

Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	40MHz	1	38	0808M	2.29	-34.69	-64.62	1.50	36.98	20.00	-16.98	T4	1.8, 1.4
	Axiai	20MHz	1	40	0808M	2.23	-33.49	-04.02	1.50	35.72	20.00	-15.72	T4	1.0, 1.4
		40MHz	1	38	M8080	-5.50	-34.36			28.86	20.00	-8.86	Т3	
	IEEE 802.11ac	20MHz	1	36	M8080	-5.64	-35.59			29.95	20.00	-9.95	Т3	
IEEE		20MHz	1	40	M8080	-5.88	-33.57			27.69	20.00	-7.69	Т3	
		20MHz	1	48	M8080	-5.84	-35.36			29.52	20.00	-9.52	Т3	
002.1140	Radial	40MHz	2A	54	M8080	-5.77	-35.57	-63.70	N/A	29.80	20.00	-9.80	Т3	1.8, 2.2
	Raulai	20MHz	2A	56	0808M	-5.87	-34.28	-03.70	INA	28.41	20.00	-8.41	T3	1.0, 2.2
		40MHz	2C	118	0808M	-5.63	-34.39			28.76	20.00	-8.76	Т3	
		20MHz	2C	120	0808M	-5.80	-36.28	28 91		30.48	20.00	-10.48	T4	
		40MHz	3	151	0808M	-5.50	-34.91			29.41	20.00	-9.41	T3	
		20MHz	3	157	0808M	-5.88	-35.76			29.88	20.00	-9.88	T3	

Table 9-22 Raw Data Results for 5GHz WIFI IEEE 802.11ax - Q

Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	40MHz	1	38	0808M	2.02	-33.51	-64.62	1.58	35.53	20.00	-15.53	T4	1.8, 1.4
IEEE	Axiai	20MHz	1	40	0808M	2.13	-33.07	=04.02	1.40	35.20	20.00	-15.20	T4	1.0, 1.4
802.11ax SU														
002.11ax 00	Radial	40MHz	1	38	0808M	-5.76	-35.37	-63.70	N/Α	29.61	20.00	-9.61	Т3	1.8, 2.2
	Naulai	20MHz	1	40	0808M	-5.69	-34.88	-03.70	IVA	29.19	20.00	-9.19	Т3	1.0, 2.2
		40MHz	1	38	0808M	2.10	-33.32		1.62	35.42	20.00	-15.42	T4	
		20MHz	1	40	0808M	2.08	-33.05		1.37	35.13	20.00	-15.13	T4	
		40MHz	2A	54	0808M	2.11	-33.86	-33.86 -33.00 -32.68 -64.62	1.82	35.97	20.00	-15.97	T4	
		20MHz	2A	52	0808M	2.13	-33.00		1.64	35.13	20.00	-15.13	T4	
	Axial	20MHz	2A	56	0808M	1.98	-32.68		1.51	34.66	20.00	-14.66	T4	1.8, 1.4
IEEE	Axiai	20MHz	2A	64	0808M	2.06	-32.87	-04.02	1.51	34.93	20.00	-14.93	T4	1.0, 1.4
802.11ax RU		40MHz	2C	118	M8080	2.21	-33.89		1.39	36.10	20.00	-16.10	T4	
002.11dx RU		20MHz	2C	120	0808M	2.10	-33.84		1.52	35.94	20.00	-15.94	T4	
		40MHz	3	151	0808M	2.39	-34.11		1.47	36.50	20.00	-16.50	T4	
		20MHz	3	157	0808M	2.16	-32.54		1.51	34.70	20.00	-14.70	T4	
	Destin	40MHz	1	38	0808M	-5.52	-35.47	60.70	NIA	29.95	20.00	-9.95	Т3	40.00
	Radial	20MHz	1	40	0808M	-5.69	-35.47 -35.72 -63.70	N/A	30.03	20.00	-10.03	T4	1.8, 2.2	

Table 9-23 Raw Data Results for EDGE (OTT VolP)

				un Duc	· · · · · · · · · · · · · · · · · · ·	3 IOI ED	- 	v O.,				
Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
EDGE850	Axial	190	M8080	15.60	-36.53	-64.62	2.00	52.13	20.00	-32.13	T4	1.8, 1.4
EDGE030	Radial	190	M8080	8.12	-16.38	-63.70	N/A	24.50	20.00	-4.50	Т3	1.8, 2.2
EDGE1900	Axial	661	M8080	15.87	-30.23	-64.62	2.00	46.10	20.00	-26.10	T4	1.8, 1.4
EDGE1900	Radial	661	M8080	7.93	-31.15	-63.70	N/A	39.08	20.00	-19.08	T4	1.8, 2.2

Table 9-24 Raw Data Results for HSPA (OTT VoIP)

	Raw Data Results for HSPA (OTT VOIP)												
Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
HSPA V	Axial	4183	M8080	16.20	-40.38	-64.62	2.00	56.58	20.00	-36.58	T4	1.8, 1.4	
HOFA V	Radial	4183	M8080	7.95	-39.86	-63.70	N/A	47.81	20.00	-27.81	T4	1.8, 2.2	
HSPA IV	Axial	1412	M8080	15.73	-40.93	-64.62	2.00	56.66	20.00	-36.66	T4	1.8, 1.4	
nora IV	Radial	1412	M8080	8.03	-40.25	-63.70	N/A	48.28	20.00	-28.28	T4	1.8, 2.2	
HSPA II	Axial	9400	M8080	15.56	-41.18	-64.62	2.00	56.74	20.00	-36.74	T4	1.8, 1.4	
погап	Radial	9400	0808M	8.00	-39.48	-63.70	N/A	47.48	20.00	-27.48	T4	1.8, 2.2	

FCC ID: A3LSMF711B	PCTEST: Noted to be part of & secured	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 45 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 45 of 107

Table 9-25 Raw Data Results for LTE FDD B66 (OTT VolP)

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
		20MHz	132322	M8080	15.71	-38.24		1.97	53.95	20.00	-33.95	T4		
		15MHz	132597	M8080	16.00	-38.40	1 [2.00	54.40	20.00	-34.40	T4		
		15MHz	132322	M8080	15.65	-37.81	1 [2.00	53.46	20.00	-33.46	T4		
	Axial	15MHz	132047	M8080	16.27	-37.95	-64.62	2.00	54.22	20.00	-34.22	T4	1.8, 1.4	
	TE Band 66	10MHz	132322	M8080	16.13	-38.32	-04.02	2.00	54.45	20.00	-34.45	T4	1.0, 1.4	
		5MHz	132322	M8080	15.92	-38.43	1 [2.00	54.35	20.00	-34.35	T4		
		3MHz	132322	M8080	15.93	-38.22		2.00	54.15	20.00	-34.15	T4		
LTE Dand CC		1.4MHz	132322	M8080	16.17	-39.07	1 [2.00	55.24	20.00	-35.24	T4		
LIE Band 66		20MHz	132322	M8080	7.97	-35.49	2.00		43.46	20.00	-23.46	T4		
		15MHz	132322	0808M	8.09	-36.74			44.83	20.00	-24.83	T4		
		10MHz	132322	0808M	7.97	-36.44			44.41	20.00	-24.41	T4		
	Radial -	5MHz	132322	0808M	8.01	-35.74	62.70	N/A	43.75	20.00	-23.75	T4	40.00	
		3MHz	132657	0808M	7.88	-35.27	-63.70	IWA	43.15	20.00	-23.15	T4	1.8, 2.2	
		3MHz	132322	0808M	7.89	-35.12			43.01	20.00	-23.01	T4		
		3MHz	131987	0808M	7.72	-35.49				43.21	20.00	-23.21	T4	
		1.4MHz	132322	0808M	7.92	-35.60			43.52	20.00	-23.52	T4		

Table 9-26 Raw Data Results for LTE TDD B41 (PC2) (OTT VoIP)

			I LUIT D	utu itot	Juito 10		ו 4ט טט	(1 02)	OII VU	''' <i>j</i>			
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	40620	M8080	15.85	-31.53		2.00	47.38	20.00	-27.38	T4	
		15MHz	41490	M8080	15.75	-31.57		2.00	47.32	20.00	-27.32	T4	
		15MHz	41055	0808M	15.79	-31.93		2.00	47.72	20.00	-27.72	T4	
	Axial	15MHz	40620	0808M	15.77	-31.56	-64.62	2.00	47.33	20.00	-27.33	T4	1.8, 1.4
	Axidi	15MHz	40185	M8080	15.75	-30.93	-04.02	2.00	46.68	20.00	-26.68	T4	1.0, 1.4
		15MHz	39750	M8080	15.83	-31.84		2.00	47.67	20.00	-27.67	T4	
		10MHz	40620	M8080	15.99	-31.92		2.00	47.91	20.00	-27.91	T4	
LTE Band 41		5MHz	40620	M8080	15.81	-31.81		2.00	47.62	20.00	-27.62	T4	
(PC2)		20MHz	40620	0808M	7.79	-29.22			37.01	20.00	-17.01	T4	
		15MHz	40620	0808M	7.88	-28.97			36.85	20.00	-16.85	T4	
		10MHz	40620	M8080	7.83	-28.93			36.76	20.00	-16.76	T4	
	Radial	5MHz	41490	0808M	7.81	-28.88	-63.70	N/A	36.69	20.00	-16.69	T4	1.8, 2.2
	Radiai	5MHz	41055	0808M	7.84	-29.91	-03.70	IWA	37.75	20.00	-17.75	T4	1.0, 2.2
		5MHz	40620	0808M	7.81	-28.84			36.65	20.00	-16.65	T4	
		5MHz	40185	0808M	7.89	-29.73			37.62	20.00	-17.62	T4	
		5MHz	39750	0808M	7.77	-28.36			36.13	20.00	-16.13	T4	1

Table 9-27 Raw Data Results for NR n66 (OTT VoIP)

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 _{LTE} [dB(A/m)]	ABM2 _{NR} [dB(A/m)]	ABM2 _{LTE} [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N _{NR} (dB)	S+N/N _{NR} - 3 dB (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	349000	M8080	16.03	-42.36	-38.31			58.39	55.39	20.00	-35.39	T4	
		15MHz	354500	0808M	16.03	-41.46	-38.31			57.49	54.49	20.00	-34.49	T4	
	Axial	15MHz	349000	0808M	16.03	-41.10	-38.31	-64.61	N/A	57.13	54.13	20.00	-34.13	T4	1.8, 1.4
	Aviai	15MHz	343500	M8080	16.03	-41.14	-38.31	-04.01	IVA	57.17	54.17	20.00	-34.17	T4	1.0, 1.4
		10MHz	349000	0808M	16.03	-42.98	-38.31			59.01	56.01	20.00	-36.01	T4	
NR n66		5MHz	349000	M8080	16.03	-43.38	-38.31			59.41	56.41	20.00	-36.41	T4	
NK 1100		20MHz	354000	0808M	8.00	-41.00	-35.36			49.00	46.00	20.00	-26.00	T4	
		20MHz	349000	M8080	8.00	-41.32	-35.36			49.32	46.32	20.00	-26.32	T4	
	Radial	20MHz	344000	M8080	8.00	-41.13	-35.36	-63.82	N/A	49.13	46.13	20.00	-26.13	T4	1.8, 2.2
	Radiai	15MHz	349000	M8080	8.00	-42.07	-35.36	-03.02	IWA	50.07	47.07	20.00	-27.07	T4	1.0, 2.2
		10MHz	349000	0808M	8.00	-41.66	-35.36			49.66	46.66	20.00	-26.66	T4	
		5MHz	349000	0808M	8.00	-41.77	-35.36			49.77	46.77	20.00	-26.77	T4	

Table 9-28 Raw Data Results for LTE B66 (OTT VoIP – Additional Measurements for NR)

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 _{LTE} [dB(A/m)]	ABM2 _{NR} [dB(A/m)]	ABM2 _{LTE} [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N _{LTE} (dB)	S+N/N _{NR} - 3 dB (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
LTE Band	Axial	20MHz	132322	0808M	16.03	N/A	-38.31	-64.61		54.34		20.00	-34.34	T4	1.8, 1.4
66	Radial	20MHz	132322	0808M	8.00	N/A	-35.36	-63.82	N/A	43.36	N/A	20.00	-23.36	T4	1.8, 2.2

FCC ID: A3LSMF711B	PCTEST Total to be post of the received	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 46 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 40 of 107

Table 9-29 Raw Data Results for 2.4GHz WIFI – N (OTT VoIP)

			ING II	ata ixes	u113 101	2. 7 0112 1		(0:: •	J., ,			
Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		1	3724M	16.28	-34.79		2.00	51.07	20.00	-31.07	T4	
	Axial	6	3724M	16.07	-33.46	-62.48	2.00	49.53	20.00	-29.53	T4	1.8, 1.4
IEEE		11	3724M	15.85	-33.24		2.00	49.09	20.00	-29.09	T4	
802.11b		1	3724M	8.14	-34.11			42.25	20.00	-22.25	T4	
	Radial	6	3724M	8.17	-34.11	-64.26	N/A	42.28	20.00	-22.28	T4	1.8, 2.2
		11	3724M	8.23	-33.99			42.22	20.00	-22.22	T4	
IEEE	Axial	6	3724M	16.03	-35.60	-62.48	2.00	51.63	20.00	-31.63	T4	1.8, 1.4
802.11g	Radial	6	3724M	8.10	-35.34	-64.26	N/A	43.44	20.00	-23.44	T4	1.8, 2.2
IEEE	Axial	6	3724M	16.18	-35.26	-62.48	2.00	51.44	20.00	-31.44	T4	1.8, 1.4
802.11n	Radial	6	3724M	7.93	-34.59	-64.26	N/A	42.52	20.00	-22.52	T4	1.8, 2.2
IEEE	Axial	6	3724M	16.14	-35.85	-62.48	2.00	51.99	20.00	-31.99	T4	1.8, 1.4
802.11ax SU	Radial	6	3724M	8.07	-34.68	-64.26	N/A	42.75	20.00	-22.75	T4	1.8, 2.2
IEEE	Axial	6	3724M	16.02	-35.26	-62.48	2.00	51.28	20.00	-31.28	T4	1.8, 1.4
802.11ax RU	Radial	6	3724M	8.19	-34.85	-64.26	N/A	43.04	20.00	-23.04	T4	1.8, 2.2

Table 9-30

Raw Data Results for 5GHz WIFI IEEE 802.11a - N (OTT VoIP)

Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
IEEE	Axial	20MHz	1	40	3724M	16.17	-37.35	-62.48	2.00	53.52	20.00	-33.52	T4	1.8, 1.4
802.11														
002.11	Radial	20MHz	1	40	3724M	8.08	-36.12	-64.26	N/A	44.20	20.00	-24.20	T4	1.8, 2.2

Table 9-31

Raw Data Results for 5GHz WIFI IEEE 802.11n - N (OTT VoIP)

	Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		Axial	40MHz	1	38	3724M	16.16	-36.80	-62.48	2.00	52.96	20.00	-32.96	T4	1.8, 1.4
	IEEE	Axiai	20MHz	1	40	3724M	16.11	-36.36	-02.40	2.00	52.47	20.00	-32.47	T4	1.0, 1.4
	802.11n	Radial	40MHz	1	38	3724M	8.23	-34.27	-64.26	N/A	42.50	20.00	-22.50	T4	1.8. 2.2
		Raulai	20MHz	1	40	3724M	8.21	-35.71	-04.20	INA	43.92	20.00	-23.92	T4	1.0, 2.2

Table 9-32

Raw Data Results for 5GHz WIFI IEEE 802.11ac - N (OTT VoIP)

						u	· · · · · ·				(,		
	Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
ſ		Axial	40MHz	1	38	3724M	16.28	-36.87	-62.48	2.00	53.15	20.00	-33.15	T4	1.8, 1.4
	IEEE	Axiai	20MHz	1	40	3724M	16.24	-36.72	*02.40	2.00	52.96	20.00	-32.96	T4	1.0, 1.4
	802.11ac														
	002.11ac	Radial	40MHz	1	38	3724M	8.21	-35.37	-64.26	N/A	43.58	20.00	-23.58	T4	1.8. 2.2
	Radial —	20MHz	1	40	3724M	8.28	-35.77	-04.20	INA	44.05	20.00	-24.05	T4	1.0, 2.2	

FCC ID: A3LSMF711B	PCTEST: Houd to be port of @ recensor	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 47 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		raye 47 01 107

Table 9-33
Raw Data Results for 5GHz WIFI IEEE 802.11ax – N (OTT VoIP)

		110	*** 00	itu i tos	uito ioi	0011 <u>2</u>	****		. i iux	., (,		
Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	40MHz	1	38	3724M	16.27	-37.43	-62.48	2.00	53.70	20.00	-33.70	T4	1.8, 1.4
	Axiai	20MHz	1	40	3724M	16.15	-36.06	-02.40	2.00	52.21	20.00	-32.21	T4	1.0, 1.4
IEEE 802.11ax SU														
002. I lax 30	B	40MHz	1	38	3724M	8.26	-35.82	04.00		44.08	20.00	-24.08	T4	40.00
	Radial	20MHz	1	40	3724M	8.13	-34.99	-64.26	N/A	43.12	20.00	-23.12	T4	1.8, 2.2
						_								
		40MHz	1	38	3724M	16.18	-35.35		2.00	51.53	20.00	-31.53	T4	
		20MHz	1	40	3724M	16.23	-35.69		2.00	51.92	20.00	-31.92	T4	
		40MHz	2A	54	3724M	16.09	-36.04		2.00	52.13	20.00	-32.13	T4	1
		20MHz	2A	56	3724M	16.17	-35.59		2.00	51.76	20.00	-31.76	T4	
	Axial	40MHz	2C	118	3724M	16.11	-36.76	-62.48	2.00	52.87	20.00	-32.87	T4	1.8. 1.4
	Axiai	20MHz	2C	120	3724M	16.17	-35.38	-02.40	1.95	51.55	20.00	-31.55	T4	1.0, 1.4
		40MHz	3	151	3724M	16.03	-36.46		2.00	52.49	20.00	-32.49	T4	
		20MHz	3	149	3724M	15.89	-36.17		2.00	52.06	20.00	-32.06	T4	
		20MHz	3	157	3724M	16.20	-35.30		2.00	51.50	20.00	-31.50	T4	
IEEE		20MHz	3	165	3724M	16.10	-36.14		2.00	52.24	20.00	-32.24	T4	
802.11ax RU														
002. I Tax NO		40MHz	1	38	3724M	8.18	-35.78			43.96	20.00	-23.96	T4	
		20MHz	1	40	3724M	8.26	-34.13			42.39	20.00	-22.39	T4]
		40MHz	2A	54	3724M	8.25	-35.54			43.79	20.00	-23.79	T4	
		20MHz	2A	56	3724M	8.16	-35.52			43.68	20.00	-23.68	T4	
	Radial	40MHz	2C	118	3724M	8.07	-35.19	-64.26	N/A	43.26	20.00	-23.26	T4	1.8, 2.2
	radiai	20MHz	2C	120	3724M	8.19	-34.91	-04.20	1975	43.10	20.00	-23.10	T4	1.0, 2.2
		40MHz	3	151	3724M	8.21	-35.01			43.22	20.00	-23.22	T4	l
		20MHz	3	149	3724M	8.23	-35.08			43.31	20.00	-23.31	T4	l
		20MHz	3	157	3724M	8.06	-34.13			42.19	20.00	-22.19	T4	
		20MHz	3	165	3724M	8.11	-34.87			42.98	20.00	-22.98	T4	

Table 9-34
Raw Data Results for 2.4GHz WIFI – Q (OTT VoIP)

						2.70112 1		, •	··· ,			
Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		1	0808M	16.15	-29.14		2.00	45.29	20.00	-25.29	T4	
	Axial	6	0808M	16.13	-29.38	-64.62	2.00	45.51	20.00	-25.51	T4	1.8, 1.4
IEEE		11	0808M	16.01	-29.59		2.00	45.60	20.00	-25.60	T4	
802.11b		1	0808M	8.04	-34.25			42.29	20.00	-22.29	T4	
	Radial	6	0808M	8.12	-33.45	-63.70	N/A	41.57	20.00	-21.57	T4	1.8, 2.2
		11	0808M	8.14	-34.98			43.12	20.00	-23.12	T4	
IEEE	Axial	6	0808M	16.04	-32.94	-64.62	2.00	48.98	20.00	-28.98	T4	1.8, 1.4
802.11g	Radial	6	0808M	8.04	-35.22	-63.70	N/A	43.26	20.00	-23.26	T4	1.8, 2.2
IEEE	Axial	6	0808M	15.87	-32.52	-64.62	2.00	48.39	20.00	-28.39	T4	1.8, 1.4
802.11n	Radial	6	0808M	8.11	-34.85	-63.70	N/A	42.96	20.00	-22.96	T4	1.8, 2.2
IEEE	Axial	6	0808M	16.17	-30.68	-64.62	2.00	46.85	20.00	-26.85	T4	1.8, 1.4
802.11ax SU	Radial	6	0808M	8.07	-34.38	-63.70	N/A	42.45	20.00	-22.45	T4	1.8, 2.2
IEEE	Axial	6	0808M	16.09	-30.84	-64.62	2.00	46.93	20.00	-26.93	T4	1.8, 1.4
802.11ax RU	Radial	6	0808M	8.19	-34.97	-63.70	N/A	43.16	20.00	-23.16	T4	1.8, 2.2

Table 9-35
Raw Data Results for 5GHz WIFI IEEE 802.11a – Q (OTT VoIP)

										~ <i>(</i> ~ · ·	,			
Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
IEEE	Axial	20MHz	1	40	0808M	16.10	-33.71	-64.62	2.00	49.81	20.00	-29.81	T4	1.8, 1.4
802.11a														
002.11a	Radial	20MHz	1	40	0808M	8.06	-37.67	-63.70	N/A	45.73	20.00	-25.73	T4	1.8, 2.2

Table 9-36
Raw Data Results for 5GHz WIFI IEEE 802.11n - Q (OTT VoIP)

			utt D	utu i tos	aito ioi	00: IZ	****			Q (O : :	• • • • •			
Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	40MHz	1	38	0808M	15.89	-32.20	-64.62	2.00	48.09	20.00	-28.09	T4	1.8, 1.4
IEEE	Axiai	20MHz	1	40	M8080	15.99	-32.68	-32.68	2.00	48.67	20.00	-28.67	T4 1.0, 1.4	
802.11n														
002.1111	Radial	40MHz	1	38	0808M	8.11	-38.22	-63.70	N/A	46.33	20.00	-26.33	T4	1.8. 2.2
	Raulai	20MHz	1	40	0808M	8.07	-37.64	-03.70	-03.70 NA	45.71	20.00	-25.71	T4	1.0, 2.2

FCC ID: A3LSMF711B	PCTEST* Proof to be part of ® secured	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dago 49 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 48 of 107

Table 9-37 Raw Data Results for 5GHz WIFI IEEE 802.11ac - Q (OTT VoIP)

					a.to .o.	· · · · ·		002		Q (O 1		,		
Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	1	38	M8080	15.97	-33.14		2.00	49.11	20.00	-29.11	T4	
		20MHz	1	36	M8080	16.03	-32.71		2.00	48.74	20.00	-28.74	T4	
		20MHz	1	40	0808M	16.05	-31.64		2.00	47.69	20.00	-27.69	T4	1.8, 1.4
		20MHz	1	48	0808M	15.98	-33.04	-33.04 -34.39 -33.16 -33.20 -33.65 -34.73 -35.46	2.00	49.02	20.00	-29.02	T4	
	Axial	40MHz	2A	54	0808M	16.06	-34.39		2.00	50.45	20.00	-30.45	T4	
	Axiai	20MHz	2A	56	0808M	16.07	-33.16		2.00	49.23	20.00	-29.23	T4	
		40MHz	2C	118	0808M	15.89	-33.20		2.00	49.09	20.00	-29.09	T4	
		20MHz	2C	120	0808M	15.96	-33.65		2.00	49.61	20.00	-29.61	T4	
		40MHz	3	151	0808M	15.98	-34.73		2.00	50.71	20.00	-30.71	T4	
IEEE		20MHz	3	157	0808M	16.01	-35.46		2.00	51.47	20.00	-31.47	T4	
802.11ac														
002.1140		40MHz	1	38	0808M	7.95	-37.90			45.85	20.00	-25.85	T4	
		20MHz	1	40	0808M	7.94	-37.08			45.02	20.00	-25.02	T4	
		40MHz	2A	54	0808M	7.89	-37.23			45.12	20.00	-25.12	T4	
		20MHz	2A	56	0808M	8.18	-37.50			45.68	20.00	-25.68	T4	
	Radial	40MHz	2C	102	0808M	8.13	-37.17	-63.70	N/A	45.30	20.00	-25.30	T4	1.8, 2.2
	Naulai	40MHz	2C	118	0808M	8.06	-36.95	-03.70	IVA	45.01	20.00	-25.01	T4	1.0, 2.2
		40MHz	2C	142	0808M	8.24	-37.91			46.15	20.00	-26.15	T4	
		20MHz	2C	120	0808M	8.08	-37.87			45.95	20.00	-25.95	T4	
		40MHz	3	151	0808M	8.04	-37.78			45.82	20.00	-25.82	T4	
		20MHz	3	157	0808M	7.88	-38.11			45.99	20.00	-25.99	T4	

Table 9-38 Raw Data Results for 5GHz WIFI IEEE 802.11ax - Q (OTT VoIP)

			*** 00	itu itosi	uito ioi	00112	••••		···ux	Q (O :		,		
Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	40MHz	1	38	0808M	16.18	-31.99	-64.62	2.00	48.17	20.00	-28.17	T4	1.8, 1.4
.ccc	Axiai	20MHz	1	40	0808M	16.21	-32.30	-04.02	2.00	48.51	20.00	-28.51	T4	
802.11ax SU	THE COUNTY OF TH													
002.11ax 30	Radial	40MHz	1	38	0808M	7.88	-38.59	-63.70	N/A	46.47	20.00	-26.47	T4	1.8, 2.2
	Radiai	20MHz	1	40	0808M	8.18	-37.28	-63.70		45.46	20.00	-25.46	T4	
	Axial	40MHz	1	38	0808M	16.15	-32.04	-64.62	2.00	48.19	20.00	-28.19	T4	1.8, 1.4
IEEE	Axiai	20MHz	1	40	M8080	15.97	-32.78	-04.02	2.00	48.75	20.00	-28.75	T4	1.0, 1.4
802.11ax RU														
002.11ax RO	Radial	40MHz	1	38	M8080	8.12	-37.73	-63.70	N/A	45.85	20.00	-25.85	T4	1.8, 2.2
	rediai	20MHz	1	40	M8080	8.13	-37.27	-00.70	IN/A	45.40	20.00	-25.40	T4	1.0, 2.2

II. **Test Notes**

A. General

- 1. Phone Condition: Mute on; Backlight off; Max Volume; Max Contrast
- 2. 'Radial' orientation refers to radial transverse.
- 3. Hearing Aid Mode (Phone→Call Settings→ Other Call Settings→ Hearing Aid Compatibility) was set to ON for Frequency Response compliance
- 4. Speech Signal: 3GPP2 Normal Test Signal
- 5. Bluetooth and WIFI were disabled while testing 2G/3G/4G/5G modes.
- 6. Licensed data modes and Bluetooth were disabled while testing WIFI modes.
- 7. The Margin from FCC limit column indicates a margin from the FCC limit for compliance (T3).

B. GSM

- 1. Power Configuration: GSM850: PCL=5, GSM1900: PCL=0;
- 2. Vocoder Configuration: EFR (GSM);

C. UMTS

- 1. Power Configuration: TPC= "All 1s":
- 2. Vocoder Configuration: NB AMR 4.75 kbps (UMTS);

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 49 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 49 01 107

D. LTE FDD

- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: 16QAM, 1RB, 99%RB offset
- Vocoder Configuration: NB AMR 4.75kbps
- 4. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 66 at 5MHz is the worst-case for the Axial probe orientation. LTE Band 13 at 10MHz bandwidth is the worst-case for the Radial probe orientation; however, because Band 13 at 10MHz bandwidth supports only one channel, additional testing was not performed for Radial.

E. LTE TDD

- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: 16QAM, 1RB, 99%RB offset
- 3. Power Class 3 Uplink-Downlink configuration: 0
- 4. Power Class 2 Uplink-Downlink configuration: 1
- 5. Vocoder Configuration: NB AMR 4.75kbps
- 6. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, high-mid, and high channels for those combinations. LTE Band 41 (Power Class 2) at 15MHz is the worst-case for the Axial probe orientation. LTE Band 41 (Power Class 2) at 10MHz is the worst-case for the Radial probe orientation.

F. WIFI (Variant N)

- 1. Radio Configuration
 - a. IEEE 802.11b: DSSS, 1Mbps
 - b. IEEE 802.11q/a: BPSK, 6Mbps
 - c. IEEE 802.11n/ac 20MHz: BPSK, MCS 0
 - d. IEEE 802.11ax SU 20MHz: QPSK, MCS 1
 - e. IEEE 802.11n/ac 40MHz: QPSK, MCS 1
 - IEEE 802.11ax SU 40MHz: BPSK, MCS 0 f.
- 2. RU Index
 - a. IEEE 802.11ax RU 20MHz: 53
 - b. IEEE 802.11ax RU 40MHz: 17
- Vocoder Configuration: NB AMR 4.75kbps
- 4. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11ax SU is the worst-case for the Axial probe orientation. IEEE 802.11b is the worst-case for the Radial probe orientation.
- 5. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. IEEE 802.11n 40MHz BW (U-NII 1) is the worst-case for both the Axial and Radial probe orientations.

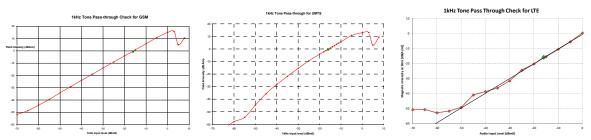
G. WIFI (Variant Q)

- 1. Radio Configuration
 - a. IEEE 802.11b: DSSS, 1Mbps
 - b. IEEE 802.11g/a: BPSK, 6Mbps
 - c. IEEE 802.11n/ac 20MHz: BPSK, MCS 0
 - d. IEEE 802.11ax SU 20MHz; BPSK, MCS 0
 - e. IEEE 802.11n/ac 40MHz; QPSK, MCS 2
 - IEEE 802.11ax SU 40MHz: QPSK, MCS 1

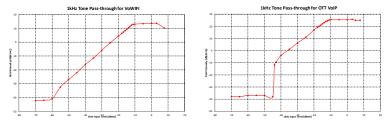
FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 50 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 50 of 107

- 2. RU Index
 - a. IEEE 802.11ax RU 20MHz: 53
 - b. IEEE 802.11ax RU 40MHz: 62
- 3. Vocoder Configuration: NB AMR 4.75kbps
- 4. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11b is the worst-case for both the Axial and Radial probe orientations.
- 5. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. IEEE 802.11ax RU 20MHz BW (U-NII 2A) is the worst-case for the Axial probe orientation. IEEE 802.11ac 20MHz BW (U-NII 1) is the worst-case for the Radial probe orientation.

H. OTT VoIP


- 1. Vocoder Configuration: 6kbps
- 2. EDGE Configuration
 - a. MCS Index: 7
 - b. Number of TX slots: 2
- 3. HSPA Configuration:
 - a. Release: 6
 - b. 3GPP 34.121 Subtest 1
- 4. LTE FDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 99%RB offset
 - LTE Band 66 was the worst-case band from Table 7-6 and was used to test both Axial and Radial probe orientations.
 - d. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 66 at 15MHz is the worst-case for the Axial probe orientation. LTE Band 66 at 3MHz bandwidth is the worst-case for the Radial probe orientation.
- 5. LTE TDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 99%RB offset
 - c. Power Class 2 Uplink-Downlink configuration: 1
 - d. LTE Band 41 (PC2) was the worst-case band from Table 7-7 and was used to test both Axial and Radial probe orientations.
 - e. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, high-mid, and high channels for those combinations. LTE Band 41 (Power Class 2) at 15MHz is the worst-case for the Axial probe orientation. LTE Band 41 (Power Class 2) at 5MHz is the worst-case for the Radial probe orientation.
- 6. NR FDD Configuration
 - a. Power Configuration: TxAGC is set such that the DUT operates at max power.
 - b. Radio Configuration: CP-OFDM, 256QAM, 1RB, 1RB Offset
 - c. Due to equipment limitations, ABM1 measurements were not possible. Therefore, the procedure outlined in Section 7.II.3 was followed to obtain SNNR values. Additionally, Frequency Response measurements were not possible due to equipment limitations.
 - d. NR Band 66 was the worst-case band from Table 7-10 and was used to test both Axial and Radial probe orientations.
 - e. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. NR n66 at 15MHz is the worst-case for the Axial probe orientation. NR n66 at 20MHz bandwidth is the worst-case for the Radial probe orientation.

FCC ID: A3LSMF711B	PCTEST Total to be port of the receiver	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 51 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 51 of 107


- 7. WIFI Configuration (Variant N):
 - a. Radio Configuration
 - i. IEEE 802.11b: DSSS, 1Mbps
 - ii. IEEE 802.11g/a: BPSK, 6Mbps
 - iii. IEEE 802.11n/ac 20MHz: BPSK, MCS 0
 - iv. IEEE 802.11ax SU 20MHz: QPSK, MCS 1
 - v. IEEE 802.11n/ac 40MHz: QPSK, MCS 1
 - vi. IEEE 802.11ax SU 40MHz: BPSK, MCS 0
 - b. RU Index
 - i. IEEE 802.11ax RU 20MHz: 53
 - ii. IEEE 802.11ax RU 40MHz: 17
 - c. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11b is the worst-case for both the Axial and Radial probe orientations.
 - d. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. IEEE 802.11ax RU 20MHz BW (U-NII 3) is the worst-case for both the Axial and Radial probe orientations.
- 8. WIFI Configuration (Variant Q):
 - a. Radio Configuration
 - i. IEEE 802.11b: DSSS, 1Mbps
 - ii. IEEE 802.11g/a: BPSK, 6Mbps
 - iii. IEEE 802.11n/ac 20MHz: BPSK, MCS 0
 - iv. IEEE 802.11ax SU 20MHz: BPSK, MCS 0
 - v. IEEE 802.11n/ac 40MHz: QPSK, MCS 2
 - vi. IEEE 802.11ax SU 40MHz: QPSK, MCS 1
 - b. RU Index
 - i. IEEE 802.11ax RU 20MHz: 53
 - ii. IEEE 802.11ax RU 40MHz: 62
 - c. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11b is the worst-case for both the Axial and Radial probe orientations.
 - d. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. IEEE 802.11ac 20MHz BW (U-NII 1) is the worst-case for the Axial probe orientation. IEEE 802.11ac 40MHz BW (U-NII 2C) is the worst-case for the Radial probe orientation.

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags E2 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 52 of 107

1 kHz Vocoder Application Check III.

This model was verified to be within the linear region for ABM1 measurements at -16 dBm0 for GSM, UMTS, and VoLTE over IMS. This measurement was taken in the axial configuration above the maximum location.

This model was verified to be within the linear region for ABM1 measurements at -20 dBm0 for VoWIFI over IMS and OTT VoIP. This measurement was taken in the axial configuration above the maximum location.

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 52 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 53 of 107

IV. T-Coil Validation Test Results

Table 9-39
Helmholtz Coil Validation Table of Results - 05/10/2021

ltem	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.493	PASS
Environmental Noise	< -58 dBA/m	-64.62	PASS
Frequency Response, from limits	> 0 dB 0.80		PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.313	PASS
Environmental Noise	< -58 dBA/m	-63.70	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS

Table 9-40 Helmholtz Coil Validation Table of Results - 05/17/2021

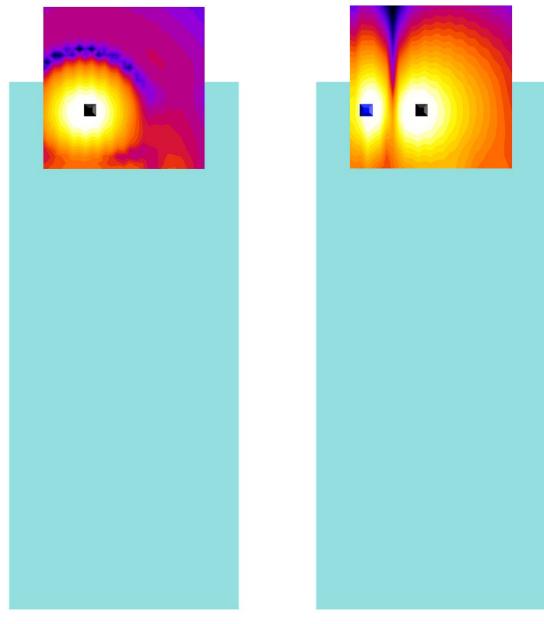

Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.127	PASS
Environmental Noise	< -58 dBA/m	-64.61	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.092	PASS
Environmental Noise	< -58 dBA/m	-63.82	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS

Table 9-41
Helmholtz Coil Validation Table of Results – 05/31/2021

Tioniniotz con vandation rabio of records contract							
ltem	Target	Result	Verdict				
Axial							
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.941	PASS				
Environmental Noise	< -58 dBA/m	-62.48	PASS				
Frequency Response, from limits	> 0 dB	0.60	PASS				
Radial							
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.012	PASS				
Environmental Noise	< -58 dBA/m	-64.26	PASS				
Frequency Response, from limits	> 0 dB	0.70	PASS				

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 54 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 34 01 107

٧. **ABM1 Magnetic Field Distribution Scan Overlays**

Axial Radial (Transverse)

Figure 9-1 **T-Coil Scan Overlay Magnetic Field Distributions**

Notes:

- 1. Final measurement locations are indicated by a cursor on the contour plots. The GSM 850 radial measurement location is indicated by a blue cursor.
- 2. See Test Setup Photographs for actual WD overlay.

FCC ID: A3LSMF711B	PCTEST Total to be port of the receiver	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg FF of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 55 of 107

© 2021 PCTEST **REV 3.5.M**

MEASUREMENT UNCERTAINTY 10.

Table 10-1 Uncertainty Estimation Table

Contribution	Data +/- %	Data +/- dB	Data Type	Probability distribution	Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty, uc (k=1)						17.7%	0.71
Expanded uncertainty (k=2), 95% confidence level						35.3%	1.31

Notes:

- Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.
- All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement, the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement uncertainty. Another component of the overall uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: A3LSMF711B	PCTEST Total to be port of the receiver	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg F6 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 56 of 107

11. EQUIPMENT LIST

Table 11-1 Equipment List

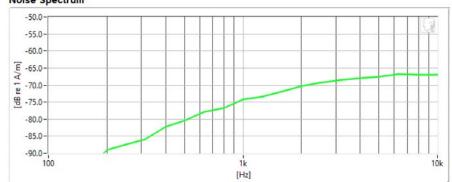
=qa.p.ment =iet						
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
RME	Fireface UC	Acoustic Analyzer External Audio Interface	9/29/2020	Biennial	9/29/2022	23792992
RME	Fireface UC	Acoustic Analyzer External Audio Interface	3/29/2021	Biennial	3/29/2023	23857555
Listen	SoundConnect	Microphone Power Supply	3/29/2021	Biennial	3/29/2023	PS3099
Listen	SoundConnect	Microphone Power Supply	9/24/2020	Biennial	9/24/2022	0899-PS150
Rohde & Schwarz	CMW500	Radio Communication tester	9/4/2020	Annual	9/4/2021	140144
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	3/22/2021	Annual	3/22/2022	162125
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	2/10/2021	Annual	2/10/2022	161662
Seekonk	NC-100	Torque Wrench (8" lb)	8/4/2020	Biennial	8/4/2022	21053
TEM	Axial T-Coil Probe	Axial T-Coil Probe	9/23/2020	Biennial	9/23/2022	TEM-1123
TEM	Radial T-Coil Probe	Radial T-Coil Probe	9/23/2020	Biennial	9/23/2022	TEM-1129
TEM	Axial T-Coil Probe	Axial T-Coil Probe	3/29/2021	Biennial	3/29/2023	TEM-1139
TEM	Radial T-Coil Probe	Radial T-Coil Probe	3/29/2021	Biennial	3/29/2023	TEM-1133
TEM		HAC Positioner	N/A		N/A	N/A
TEM		HAC System Controller with Software	N/A		N/A	N/A
TEM	Helmholtz Coil	Helmholtz Coil	9/23/2020	Biennial	9/23/2022	SBI 1052
TEM	C63.19	Helmholtz Coil	3/29/2021	Biennial	3/29/2023	925

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 57 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		raye 37 01 107

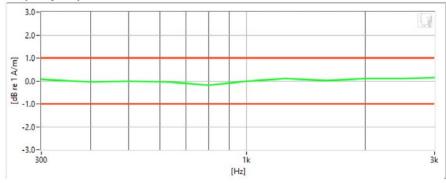
12. TEST DATA

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 50 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 58 of 107

DUT: HH Coil - SN: 925 Type: HH Coil


Serial: 925

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1139; Calibrated: 3/29/2021
- Helmholtz Coil SN: 925; Calibrated: 3/29/2021

Noise Spectrum

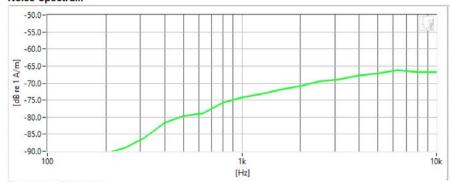
Frequency Response

Results

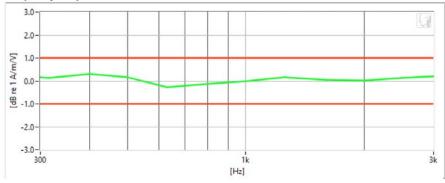
Verification 1kHz Intensity	-10.493	dB	\checkmark	Max/Min	-9.5/-10.5
Verification ABM2	-64.62	dB	•	Maximum	-58.0
Frequency Response Margin	800m	dB	•	Tolerance curves	Aligned Data

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 59 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 59 01 107

DUT: HH Coil - SN: 925 Type: HH Coil


Serial: 925

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1139; Calibrated: 3/29/2021
- Helmholtz Coil SN: 925; Calibrated: 3/29/2021

Noise Spectrum

Frequency Response

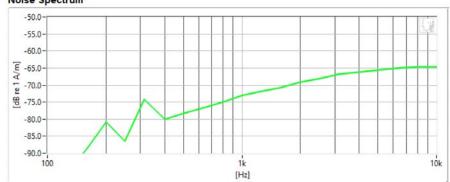
Results

Verification 1kHz Intensity	-10.127	dB	\checkmark	Max/Min	-9.5/-10.5
Verification ABM2	-64.61	dB	•	Maximum	-58.0
Frequency Response Margin	700m	dB	•	Tolerance curves	Aligned Data

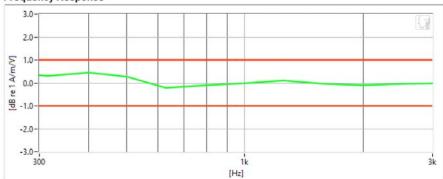
FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 60 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 60 01 107

PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1123; Calibrated: 9/23/2020
- Helmholtz Coil SN: SBI 1052; Calibrated: 9/23/2020

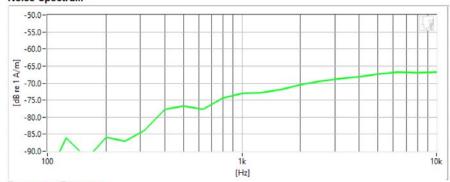
Noise Spectrum

Frequency Response

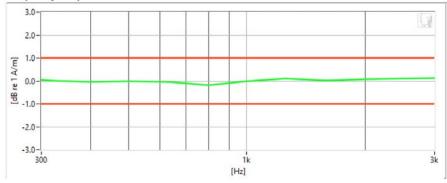
Results

Verification 1kHz Intensity	-9.941	dB		Max/Min	-9.5/-10.5
Verification ABM2	-62.48	dB	•	Maximum	-58.0
Frequency Response Margin	600m	dB	•	Tolerance curves	Aligned Data

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 61 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage of or for


DUT: HH Coil - SN: 925 Type: HH Coil Serial: 925

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1133; Calibrated: 3/29/2021
- Helmholtz Coil SN: 925; Calibrated: 3/29/2021

Noise Spectrum

Frequency Response

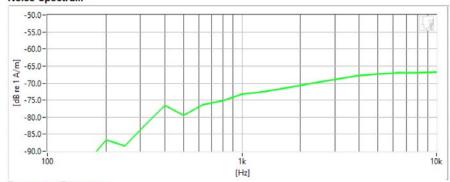
Results

Verification 1kHz Intensity	-10.313	dB		Max/Min	-9.5/-10.5
Verification ABM2	-63.7	dB	•	Maximum	-58.0
Frequency Response Margin	800m	dB	•	Tolerance curves	Aligned Data

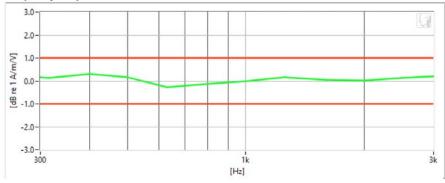
FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 62 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 02 01 107

REV 3.5.M

DUT: HH Coil - SN: 925 Type: HH Coil


Serial: 925

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1133; Calibrated: 3/29/2021
- Helmholtz Coil SN: 925; Calibrated: 3/29/2021

Noise Spectrum

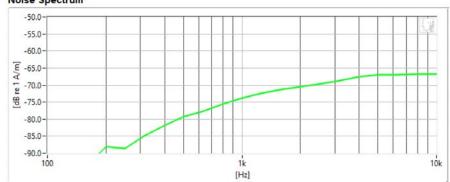
Frequency Response

Results

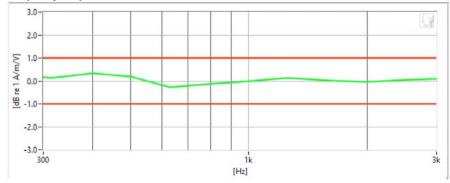
Verification 1kHz Intensity	-10.092	dB	\checkmark	Max/Min	-9.5/-10.5
Verification ABM2	-63.82	dB	•	Maximum	-58.0
Frequency Response Margin	700m	dB	•	Tolerance curves	Aligned Data

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 63 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 03 01 107

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1129; Calibrated: 9/23/2020
- Helmholtz Coil SN: SBI 1052; Calibrated: 9/23/2020

Noise Spectrum

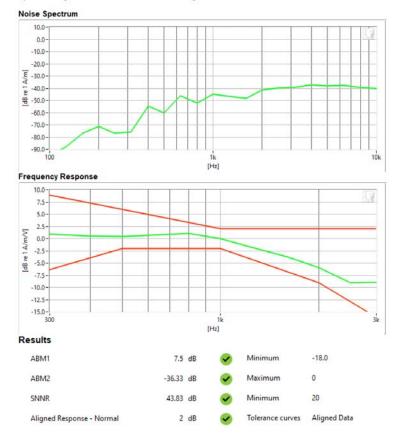
Frequency Response

Results

Verification 1kHz Intensity	-10.012	dB	•	Max/Min	-9.5/-10.5
Verification ABM2	-64.26	dB	•	Maximum	-58.0
Frequency Response Margin	700m	dB	•	Tolerance curves	Aligned Data

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 64 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 04 01 107

Type: Portable Handset Serial: 0808M


Measurement Standard: ANSI C63.19-2011

Equipment:

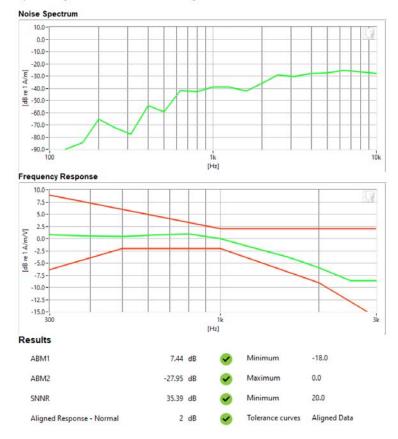
Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:

- Mode: GSM850 Channel: 128
- Speech Signal: 3GPP2 Normal Test Signal

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 65 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 03 01 107

Type: Portable Handset Serial: 0808M


Measurement Standard: ANSI C63.19-2011

Equipment:

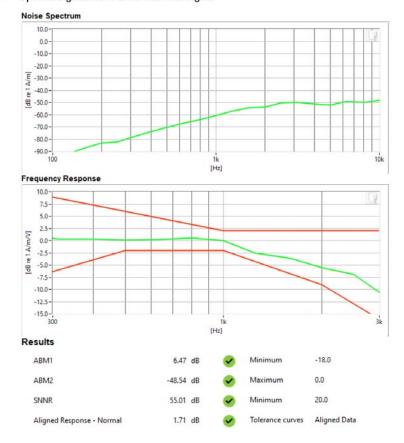
Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:

- Mode: GSM1900 Channel: 661
- Speech Signal: 3GPP2 Normal Test Signal

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 66 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 00 01 107

Type: Portable Handset Serial: 0808M


Measurement Standard: ANSI C63.19-2011

Equipment:

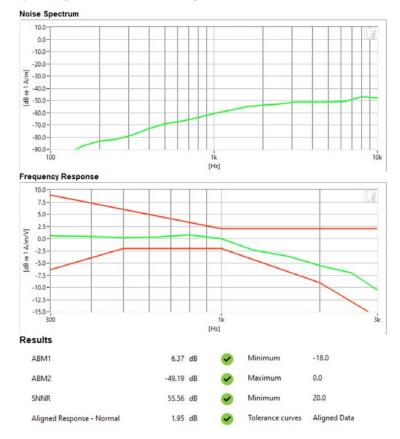
Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:

- Mode: UMTS V Channel: 4233
- Speech Signal: 3GPP2 Normal Test Signal

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 67 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage of or 107

Type: Portable Handset Serial: 0808M


Measurement Standard: ANSI C63.19-2011

Equipment:

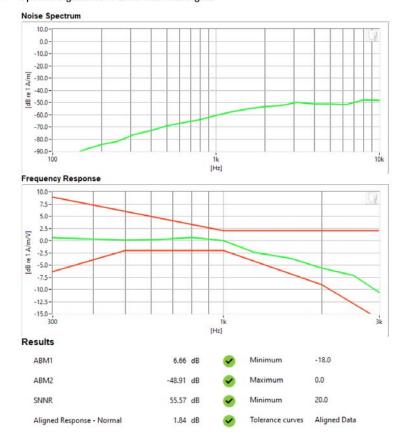
Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:

- Mode: UMTS IV Channel: 1312
- Speech Signal: 3GPP2 Normal Test Signal

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 68 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 00 01 107

Type: Portable Handset Serial: 0808M


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:

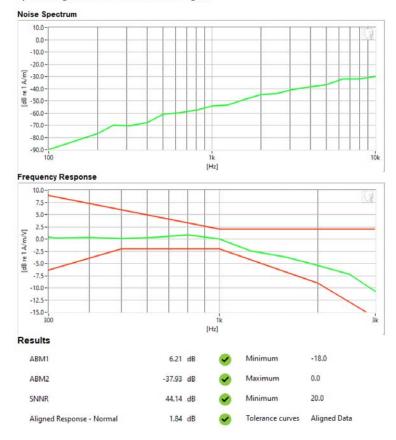
- Mode: UMTS II Channel: 9538
- Speech Signal: 3GPP2 Normal Test Signal

FCC ID: A3LSMF711B	PCTEST'	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 69 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 09 01 107

Type: Portable Handset Serial: 0808M

Measurement Standard: ANSI C63.19-2011

Equipment:


Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:

Mode: LTE FDD Band 66

Bandwidth: 5MHz Channel: 131997

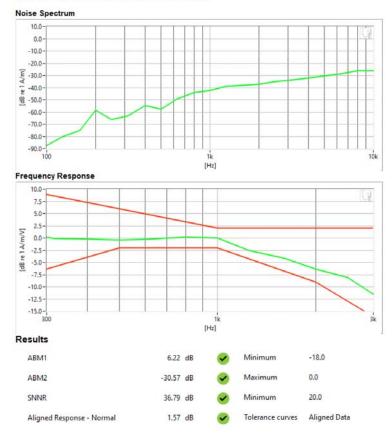
Speech Signal: 3GPP2 Normal Test Signal

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 70 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		

Type: Portable Handset Serial: 0808M

Measurement Standard: ANSI C63.19-2011

Equipment:


Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:

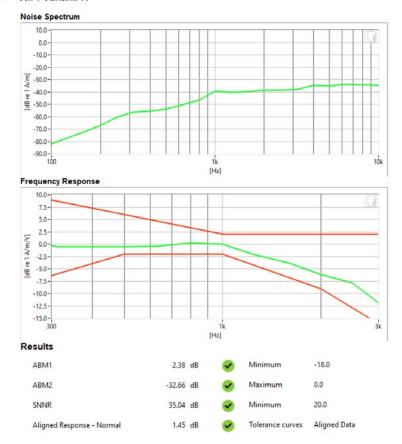
Mode: LTE TDD Band 41 (PC2)

Bandwidth: 15MHz Channel: 39750

Speech Signal: 3GPP2 Normal Test Signal

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 71 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		

Type: Portable Handset Serial: 3724M


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 9/23/2020

Test Configuration:

- Mode: 2.4GHz WLAN
- Standard: IEEE 802.11ax (SU)
- Channel: 6
- · Speech Signal: 3GPP2 Normal Test Signal
- WFI Variant: N

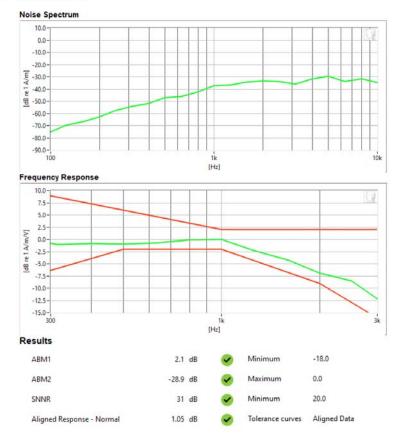
FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 72 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		

Type: Portable Handset Serial: 0808M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021


Test Configuration:

Mode: 2.4GHz WLAN Standard: IEEE 802.11b

Channel: 11

Speech Signal: 3GPP2 Normal Test Signal

WIFI Variant: Q

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 73 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 73 01 107

Type: Portable Handset Serial: 3724M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 9/23/2020

Test Configuration:

Mode: 5GHz WLAN Standard: IEEE 802.11n Bandwidth: 40MHz

Channel: 38

Speech Signal: 3GPP2 Normal Test Signal

WIFI Variant: N

FCC ID: A3LSMF711B	PCTEST Total to be port of Serverses	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 74 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 74 of 107

Type: Portable Handset Serial: 0808M

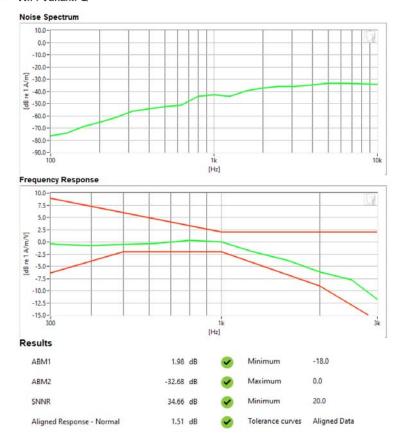
Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:

Mode: 5GHz WLAN


Standard: IEEE 802.11ax (RU)

Bandwidth: 20MHz

Channel: 56

Speech Signal: 3GPP2 Normal Test Signal

WIFI Variant: Q

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 75 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage /3 01 10/

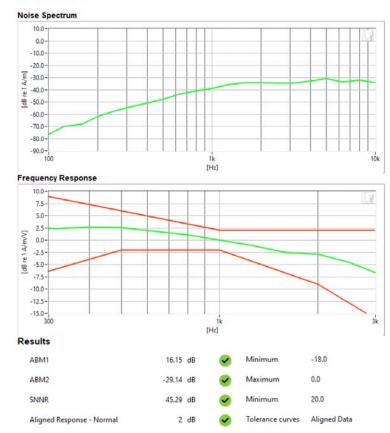
Type: Portable Handset Serial: 0808M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:


· VolP Application: Google Duo Mode: 2.4GHz WLAN

Standard: IEEE 802.11b

Channel: 1

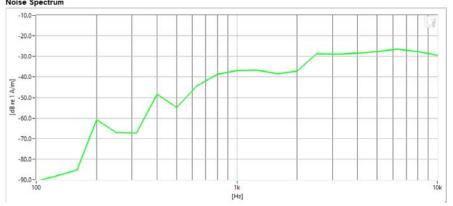
Speech Signal: 3GPP2 Normal Test Signal

WIFI Variant: Q

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 76 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 70 01 107

Type: Portable Handset Serial: 0808M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

 Mode: GSM850 · Channel: 128

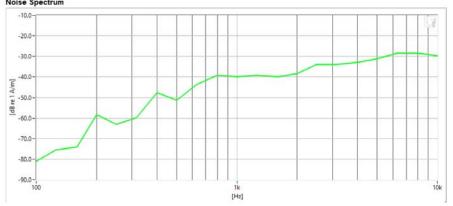
Results

ABM1	-1.39	dB	\checkmark	Minimum	-18.0
ABM2	-27.3	dB	②	Maximum	0.0
SNNR	25.91	dB	•	Minimum	20.0

FCC ID: A3LSMF711B	PCTEST . Road to be post of ® removed.	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 77 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage // Oi 10/

Type: Portable Handset Serial: 0808M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

 Mode: GSM1900 · Channel: 512

Noise Spectrum

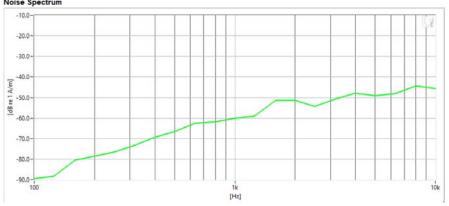
Results

ABM1	-1.18	dB	\checkmark	Minimum	-18.0
ABM2	-29.98	dB	②	Maximum	0.0
SNNR	28.8	dB	~	Minimum	20.0

FCC ID: A3LSMF711B	PCTEST . Road to be post of ® removed.	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 78 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage / 6 01 10/

Type: Portable Handset Serial: 0808M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

 Mode: UMTS V Channel: 4233

Noise Spectrum

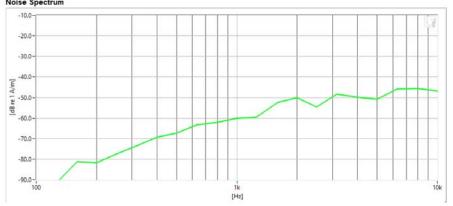
Results

ABM1	-1.58	dB	$ \checkmark $	Minimum	-18.0
ABM2	-47.2	dB		Maximum	0.0
SNNR	45.62	dB	~	Minimum	20.0

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:	•	Page 79 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 19 01 101

Type: Portable Handset Serial: 0808M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

 Mode: UMTS IV Channel: 1312

Noise Spectrum

Results

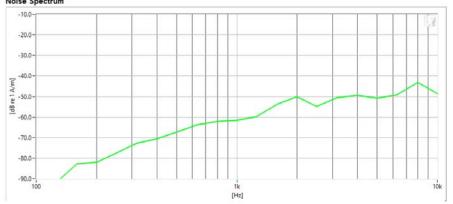
ABM1	-1.68	dB	$ \checkmark $	Minimum	-18.0
ABM2	-47.22	dB	•	Maximum	0.0
SNNR	45.54	dB	~	Minimum	20.0

FCC ID: A3LSMF711B	PCTEST . Road to be post of ® removed.	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 80 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage ou oi 107

DUT: A3LSMF711B Type: Portable Handset

Serial: 0808M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

 Mode: UMTS II Channel: 9400

Noise Spectrum

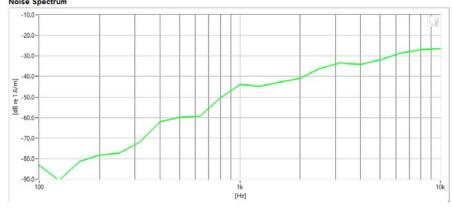
Results

ABM1	-1.5	dB	$ \checkmark $	Minimum	-18.0
ABM2	-47.78	dB	•	Maximum	0.0
SNNR	46.28	dB	•	Minimum	20.0

FCC ID: A3LSMF711B	PCTEST . Road to be post of ® removed.	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 81 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage of of 107

Type: Portable Handset Serial: 0808M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

. Mode: LTE FDD Band 13 Bandwidth: 10MHz Channel: 23230

Noise Spectrum

Results

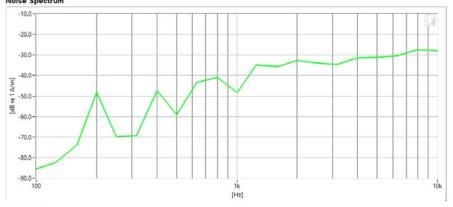
ABM1	-1.94	dB	9	Minimum	-18.0
ABM2	-32.47	dB	•	Maximum	0.0
SNNR	30.52	dB	~	Minimum	20.0

FCC ID: A3LSMF711B	D: A3LSMF711B HAC (T-COIL) TEST REPORT		SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 82 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 62 01 107

Type: Portable Handset Serial: 0808M

Measurement Standard: ANSI C63.19-2011

Equipment:


Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

Mode: LTE TDD Band 41 (PC2)

Bandwidth: 10MHzChannel: 40620

Results

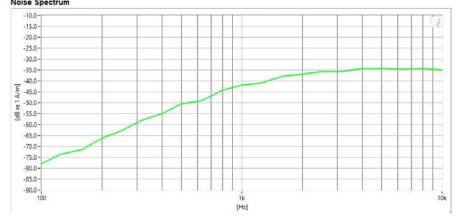
ABM1	-2.06	dB	9	Minimum	-18.0
ABM2	-28.82	dB	•	Maximum	0.0
SNNR	26.76	dB	~	Minimum	20.0

FCC ID: A3LSMF711B	PCTEST . Thought to be post of @ second	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 92 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 83 of 107

Type: Portable Handset Serial: 3724M

Measurement Standard: ANSI C63.19-2011

Equipment:


Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 9/23/2020

Test Configuration:

Mode: 2.4GHz WLAN Standard: IEEE 802.11b

Channel: 11 Variant - N

Noise Spectrum

Results

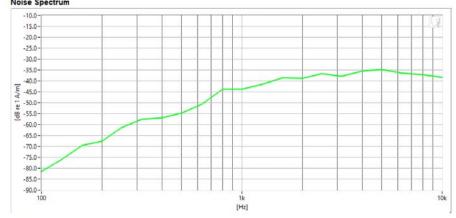
ABM1	-5.92	dB	\checkmark	Minimum	-18.0
ABM2	-32.06	dB	•	Maximum	0.0
SNNR	26.14	dB	•	Minimum	20.0

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 84 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 64 01 107

Type: Portable Handset Serial: 0808M

Measurement Standard: ANSI C63.19-2011

Equipment:


Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

Mode: 2.4GHz WLAN Standard: IEEE 802.11b

Channel: 1 Variant - Q

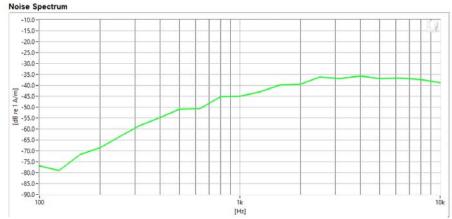
Noise Spectrum

Results

ABM1	-5.48	dB	\checkmark	Minimum	-18.0
ABM2	-33.29	dB	•	Maximum	0.0
SNNR	27.81	dB	•	Minimum	20.0

FCC ID: A3LSMF711B	PCTEST: Hood to be part of & secured	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 05 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 85 of 107

Type: Portable Handset Serial: 3724M


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 9/23/2020

Test Configuration:

Mode: 5GHz WLAN Standard: IEEE 802.11n Bandwidth: 40MHz Channel: 38 Variant - N

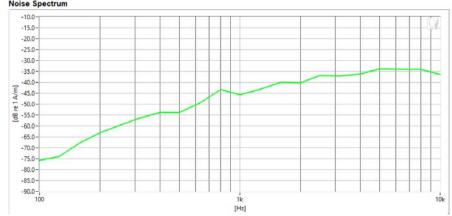
Results

ABM1	-5.8	dB	~	Minimum	-18.0
ABM2	-33.83	dB	•	Maximum	0.0
SNNR	28.03	dB	~	Minimum	20.0

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 86 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage oo or 107

Type: Portable Handset Serial: 0808M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

 Mode: 5GHz WLAN Standard: IEEE 802.11ac Bandwidth: 20MHz Channel: 40 Variant - Q

Noise Spectrum

Results

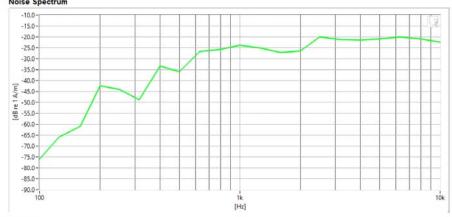
ABM1	-5.88	dB	~	Minimum	-18.0
ABM2	-33.57	dB	•	Maximum	0.0
SNNR	27.69	dB	~	Minimum	20.0

FCC ID: A3LSMF711B	PCTEST: Hood to be part of & senser	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 97 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 87 of 107

Type: Portable Handset Serial: 0808M

Measurement Standard: ANSI C63.19-2011

Equipment:


Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

VolP Application: Google Duo

Mode: EDGE850 Channel: 190

Noise Spectrum

Results

ABM1	8.12	dB	$ \bigcirc $	Minimum	-18.0
ABM2	-16.39	dB	~	Maximum	0.0
SNNR	24.5	dB	~	Minimum	20.0

FCC ID: A3LSMF711B	PCTEST . Road to be post of ® removed.	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 88 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 00 01 107

CALIBRATION CERTIFICATES 13.

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dago 90 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 89 of 107

© 2021 PCTEST **REV 3.5.M**

West Caldwell Calibration Laboratories Inc.

Certificate of Calibration

for

AXIAL T COIL PROBE

Manufactured by:

TEM CONSULTING, LP AXIAL T COIL PROBE

Model No: Serial No:

TEM-1139

Calibration Recall No:

1 EM-113

41-shor

Customer:

ANDREW HARWELL

Submitted By:

Company:

PCTEST ENGINEERING LAB

Address:

7185 OAKLAND MILLS ROAD

COLUMBIA

MD 21046

The subject instrument was calibrated to the indicated specification using standards traceable to the SI through the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

AXIAL T C TEM C

Upon receipt for Calibration, the instrument was found to be:

Within (X

tolerance of the indicated specification. See attached Report of Calibration.

The information supplied relates to the calibrated item listed above and statement of conformance for ALL given specifications and standards fall under the decision rule: A= (L-(U95)*M), where A is acceptance limit, L is manufacturer specifications, U95 is confidence level of 95% at k=2, and M is managed guard-band mulitiplier. The guard-band multiplier increases false-accept risk in favor of decreasing false-reject risk. Although the false accept risk increases, it is still below the Z540.3 2% risk requirement. The decision rule has been communicated and approved by customer during contract review.

West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2015, and ISO 17025

Note: With this Certificate, Report of Calibration is included.

Approved by:

Calibration Date:

29-Mar-21

James Zhu

Certificate No:

31813 -3

Quality Manager ISO/IEC 17025:2017

QA Doc. #1051 Rev. 3.0 5/29/20

Certificate Page 1 of 1

West Caldwell Calibration uncompromised calibration Laboratories, Inc.

1575 State Route 96, Victor, NY 14564, U.S.A.

Calibration Lab. Cert. # 1533.01

FCC ID: A3LSMF711B

PCTEST
HAC (T-COIL) TEST REPORT

Approved by:
Quality Manager

Filename:

1M2104130035-18-R1.A3L

O5/10/2021 - 06/05/2021

Portable Handset

Approved by:
Quality Manager

Page 90 of 107

© 2021 PCTEST

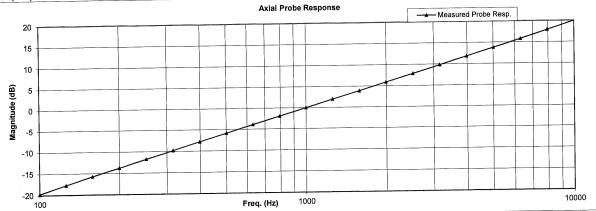
REV 3.5.M

West Caldwell Calibration uncompromised calibration Laboratories, Inc. ISO/IEC 17025: 2017

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

TEM Consulting LP Axial T Coil Probe Company: PCTest Engineering Lab


Model No.: Axial T Coil Probe

Serial No.: TEM-1139

I. D. No.: XXXX

Calibration results: Probe Sensitivity measured with Helmholtz Coil Before & after data same: ... X ... Helmholtz Coil; 10 No. the number of turns on each coil; Laboratory Environment: the radius of each coil, in meters; 0.204 m °C 20.4 Α Ambient Temperature: 0.08 the current in the coils, in amperes.; 29.3 % RH Ambient Humidity: Helmholtz Coil Constant; 7.09 A/m/V 99.394 kPa Ambient Pressure: Helmholtz Coil magnetic field; 5.92 A/m 29-Mar-2021 Calibration Date: Calibration Due: Probe Sensitivity at 1000 Hz. 31813 -3 Report Number: dBV/A/m -60.26 was 31813 Control Number: mV/A/m 0.970 Ohms 873 Probe resistance The above listed instrument meets or exceeds the tested manufacturer's specifications. 684.07/O-0000001126-20 This Calibration is traceable through NIST test numbers: The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure : Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2015/150 17025

Cal. Date: 29-Mar-2021

Measurements performed by:

James Zhu

Calibrated on WCCL system type 9700 This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 1 of 2

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 91 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 91 01 107

HCATEMC_TEM-1139_Mar-29-2021.xls

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe Company: PCTest Engineering Lab

Model No.: Axial T Coil Probe

Serial No.: TEM-1139

Function	Tolerance		Measured values			
			Before	Out	Remarks	
Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.26			
		dB		- All III		
Probe Level Linearity		6	5.94			
	Ref. (0 dB)	0	0.00			
		-6	-6.03			
		-12	-12.04			
		Hz				
3.0 Probe Frequency Response		100	1			
		126				
		200	1			
		251				
		316				
		398				
		501				
		631				
		794				
	Ref. (0 dB)	1000				
		1259				
		1585	3.9			
		1995	5.9			
		2512	7.9			
		3162	9.8			
		3981	11.8			
		5012	13.8			
		6310	15.8			
		7943	17.9			
		10000	20.0			
	Probe Sensitivity at	Probe Sensitivity at 1000 Hz. Probe Level Linearity Ref. (0 dB) Probe Frequency Response	Probe Sensitivity at 1000 Hz. dBV/A/m Probe Level Linearity	Probe Sensitivity at 1000 Hz. dBV/A/m -60.26 Probe Level Linearity	Probe Sensitivity at 1000 Hz. dBV/A/m -60.26 Probe Level Linearity Ref. (0 dB) R	

Instruments used for ca HP HP HP	34401A 34401A 33120A	S/N US360641 S/N US361024 S/N US360437	Date of Cal. 2-Jul-2020 2-Jul-2020 2-Jul-2020	Traceability No. ,610119 ,610119 ,610119	Due Date 2-Jul-202° 2-Jul-202° 2-Jul-202°
B&K	2133	S/N 1583254	1-Jul-2020	684.07/O-0000001126-20	1-Jul-202

Cal. Date: 29-Mar-2021

Calibrated on WCCL system type 9700 This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc. Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 2 of 2

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 92 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 92 01 107

Certificate of Conformance

for

AXIAL T COIL PROBE

Manufactured by: TEM CONSULTING
Model No: AXIAL T COIL PROBE

Serial No: TEM-1123 Calibration Recall No: 31288

Submitted By:

Customer: ANDREW HARWELL

Company: PCTEST ENGINEERING LAB

Address: 6660-B DOBBIN ROAD

COLUMBIA MD 21045

The subject instrument was calibrated to the indicated specification using standards traceable to the SI through the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

AXIALT C TEM C VOC

Upon receipt for Calibration, the instrument was found to be:

Within (X)

tolerance of the indicated specification. See attached Report of Calibration.

The information supplied relates to the calibrated item listed above and statment of conformance for ALL given specifications and standards fall under the decision rule: A=(L-(U95)), where A is acceptance limit, L is manufacturer specifications and U95 is confidence level of 95% at k=2. This includes but not limited to:1. Measured value does not meet manufacturer's tolerance, 2.Manufacturer's tolerance is too small compared to calibration and measurment capability uncertainties, 3. Test uncertainty ratio does not meet the 4:1 ratio due to test instrumentation limitations. The decision rule has been communicated and approved by customer during contract

West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2015, and ISO 17025

Certificate Page 1 of 1

Note: With this Certificate, Report of Calibration is included.

Approved by:

Calibration Date: 23-Sep-20

James Zhu

Certificate No: 31288 -2

Quality Manager ISO/IEC 17025:2017

QA Doc. #1051 Rev. 3.0 5/29/20

ACCREDITED

åWest Caldwell

Calibration

Calibration Lab. Cert. # 1533.01

uncompromised calibration Laboratories, Inc.

1575 State Route 96, Victor, NY 14564, U.S.A.

 FCC ID: A3LSMF711B
 PCTEST
 HAC (T-COIL) TEST REPORT
 Approved by: Quality Manager

 Filename:
 Test Dates:
 DUT Type:

 1M2104130035-18-R1.A3L
 05/10/2021 - 06/05/2021
 Portable Handset

1M2104130035-18-R1.A3L | 05/10/2021 - 06/05/2021 | Portable Handset © 2021 PCTEST

REV 3.5.N

ISO/IEC 17025: 2017 ACCREDITED Calibration Lab. Cert. # 1533.01

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

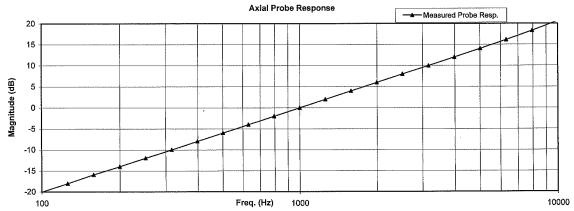
TEM Consulting LP Axial T Coil Probe Company: PCTest Engineering Lab

Model No.: Axial T Coil Probe

Serial No.: TEM-1123

I. D. No.: XXXX

Probe Sensitivity measured wit	h Helmhol	tz Coil			
Helmholtz Coil;			Before & after data same:	X	
the number of turns on each coil;	10	No.			
the radius of each coil, in meters;	0.204	m	Laboratory Environment:		
the current in the coils, in amperes.;	0.08	Α	Ambient Temperature:	20.7	°C
Helmholtz Coil Constant;	7.04	A/m/V	Ambient Humidity:	42.1	% RH
Helmholtz Coil magnetic field;	5.71	A/m	Ambient Pressure:	99.094	kPa
			Calibration Date:	23-Sep-2020	
Probe Sensitivity at	1000	Hz.	Calibration Due:		
was	-60.24	dBV/A/m	Report Number:	31288	-2
	0.972	mV/A/m	Control Number:	31288	
Probe resistance	898	Ohms			


This Calibration is traceable through NIST test numbers:

684.07/Q-0000001126-20

The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

The above listed instrument meets or exceeds the tested manufacturer's specifications.

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure:

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MiL-STD-45662A) and ISO 9001:2015) ISO 17025

Cal. Date: 23-Sep-2020 Calibrated on WCCL system type 9700

Measurements performed by:

James Zhu

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 1 of 2

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 94 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 94 01 107

HCATEMC_TEM-1123_Sep-23-2020

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

for

TEM Consulting LP Axial T Coil Probe Company: PCTest Engineering Lab

Model No.: Axial T Coil Probe

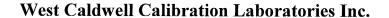
Serial No.: TEM-1123

Test	Function	Tolera	Measured values			
				Before	Out	Remarks
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.24		
			dB			
2.0	Probe Level Linearity		6	6.03		
		Ref. (0 dB)	0	0.00		
			-6	-6.03		
			-12	-12.05		
			Hz			
3.0	Probe Frequency Response		100	-20.0		1
			126	-18.0		
			158	-15.9		
			200	-14.0		
		251	-12.0			
			316	-10.0		
			398	-8.0		
			501	-6.0		
			631	-4.0		
			794	-2.0		
		Ref. (0 dB)	1000	0.0		
			1259	2.0		
			1585	4.0		
			1995	6.0		
			2512	8.0		
			3162	10.0		
			3981	12.0		
			5012	14.0		
			6310	16.1		
			7943	18.3		
			10000	20.7		

Instruments u	sed for calibration:		Date of Cal.	Traceablity No.	Due Date
HP	34401A	S/N US360641	2-Jul-2020	,610119	2-Jul-2021
HP	34401A	S/N US361024	2-Jul-2020	,610119	2-Jul-2021
HP	33120A	S/N US360437	2-Jul-2020	.610119	2-Jul-2021
B&K	2133	S/N 1583254	1-Jul-2020	684.07/O-0000001126-20	1-Jul-2021

Cal. Date: 23-Sep-2020

Calibrated on WCCL system type 9700


This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal, Labs, Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 2 of 2

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 95 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Fage 95 01 107

Certificate of Calibration

for

RADIAL T COIL PROBE

Manufactured by: TEM CONSULTING, LP Model No: RADIAL T COIL PROBE

Serial No: TEM-1133
Calibration Recall No: 31813

Submitted By:

Customer: ANDREW HARWELL

Company: PCTEST ENGINEERING LAB
Address: 7185 OAKLAND MILLS ROAD

COLUMBIA MD 21046

The subject instrument was calibrated to the indicated specification using standards traceable to the SI through the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No. RADIAL T TEM C

Upon receipt for Calibration, the instrument was found to be:

Within (X)

tolerance of the indicated specification. See attached Report of Calibration.

The information supplied relates to the calibrated item listed above and statement of conformance for ALL given specifications and standards fall under the decision rule: A= (L-(U95)*M), where A is acceptance limit, L is manufacturer specifications, U95 is confidence level of 95% at k=2, and M is managed guard-band mulitiplier. The guard-band multiplier increases false-accept risk in favor of decreasing false-reject risk. Although the false accept risk increases, it is still below the Z540.3 2% risk requirement. The decision rule has been communicated and approved by customer during contract review.

West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2015, and ISO 17025

Certificate Page 1 of 1

Note: With this Certificate, Report of Calibration is included.

Approved by:

Calibration Date: 29-Mar-21

James Zhu

Certificate No: 31813 - 2

Quality Manager ISO/IEC 17025:2017

QA Doc. #1051 Rev. 3.0 5/29/20

West Caldwell
Calibration

Calibration Lab. Cert. # 1533.01

uncompromised calibration **Laboratories, Inc.** 1575 State Route 96, Victor, NY 14564, U.S.A.

 FCC ID: A3LSMF711B
 PCTEST
 HAC (T-COIL) TEST REPORT
 SAMSUNG
 Approved by: Quality Manager

 Filename:
 Test Dates:
 DUT Type:
 Page 96 of 107

 1M2104130035-18-R1.A3L
 05/10/2021 - 06/05/2021
 Portable Handset
 Page 96 of 107

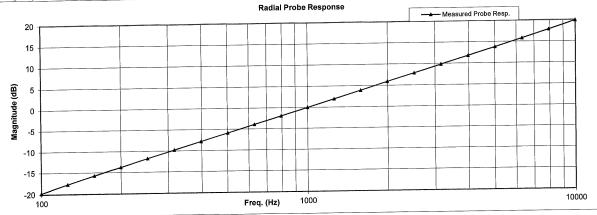
© 2021 PCTEST

REV 3.5.M

ISO/IEC 17025: 2017

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION


TEM Consulting LP Radial T Coil Probe Company: PCTest Engineering Lab

Model No.: Radial T Coil Probe

Serial No.: TEM-1133 I. D. No.: XXXX

Calibration results: Probe Sensitivity measured with Helmholtz Coil Before & after data same: ...X... Helmholtz Coil; the number of turns on each coil; 10 No. Laboratory Environment: 0.204 m the radius of each coil, in meters; Ambient Temperature: 20.4 °C the current in the coils, in amperes.; 0.09 Α 29.3 % RH A/m/V Ambient Humidity: 7.09 Helmholtz Coil Constant; 99.394 Ambient Pressure: A/m Helmholtz Coil magnetic field; 5.97 29-Mar-2021 Calibration Date: Re-calibration Due: Probe Sensitivity at 1000 Hz. 31813 -2 Report Number: dBV/A/m was -60.18 31813 Control Number: 0.980 mV/A/m Ohms Probe resistance 896 The above listed instrument meets or exceeds the tested manufacturer's specifications. 684.07/O-0000001126-20 This Calibration is traceable through NIST test numbers: The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2015, ISO 17025

Cal. Date: 29-Mar-2021

Measurements performed by:

Calibrated on WCCL system type 9700

James Zhu

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 1 of 2

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dago 07 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 97 of 107

HCRTEMC_TEM-1133_Mar-29-2021.xls

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe Company: PCTest Engineering Lab

for Model No.: Radial T Coil Probe

Serial No.: TEM-1133

Test	Function	Tolera	nce		Measured value	
				Before	Out	Remarks
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.18		
			dB			
2.0	Probe Level Linearity		6	6.04		
		Ref. (0 dB)	0	0.00		
			-6	-6.03		
			-12	-12.06		
			Hz			
3.0	Probe Frequency Response		100	-19.8		
			126	-17.8		
			158	-15.7		
			200	-13.8		
			251	-11.8		
			316	-9.8		
			398	-7.8		
			501	-5.9		
			631	-3.9		
			794	-2.0		
		Ref. (0 dB)	1000	0.0		
			1259	2.0		
			1585	3.9		İ
			1995	5.9		
			2512	7.8		İ
			3162	9.8		-
			3981	11.8		
			5012	13.8		
			6310	15.8		
			7943	17.8		
			10000	20.0		

			Date of Cal.	Traceability No.	Due Date
Instruments used for calib				•	2-Jul-2021
HP	34401A	S/N US360641	2-Jul-2020	,610119	
l HP	34401A	S/N US361024	2-Jul-2020	,610119	2-Jul-2021
HP	33120A	S/N US360437	2-Jul-2020	.610119	2-Jul-2021
1		S/N 1583254	1-Jul-2020	684.07/O-0000001126-20	1-Jul-2021
B&K	2133	3/N 1003204	1-341-2020	004.07/0-0000001120-20	1-041-202.

Cal. Date: 29-Mar-2021

Calibrated on WCCL system type 9700 This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. inc. Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 98 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 90 01 107

Certificate of Conformance

for

RADIAL T COIL PROBE

Manufactured by:

TEM CONSULTING

Model No:

RADIAL T COIL PROBE

Serial No:

TEM-1129

Calibration Recall No:

Submitted By:

Customer:

ANDREW HARWELL

31288

Company: Address: PCTEST ENGINEERING LAB

6660-B DOBBIN ROAD

COLUMBIA

MD 21045

The subject instrument was calibrated to the indicated specification using standards traceable to the SI through the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

RADIAL T TEM C

Upon receipt for Calibration, the instrument was found to be:

10/13/2020

Within (X

tolerance of the indicated specification. See attached Report of Calibration.

The information supplied relates to the calibrated item listed above and statment of conformance for ALL given specifications and standards fall under the decision rule: A=(L-(U95)), where A is acceptance limit, L is manufacturer specifications and U95 is confidence level of 95% at k=2. This includes but not limited to:1. Measured value does not meet manufacturer's tolerance, 2.Manufacturer's tolerance is too small compared to calibration and measurment capability uncertainties, 3. Test uncertainty ratio does not meet the 4:1 ratio due to test instrumentation limitations. The decision rule has been communicated and approved by customer during contract

West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2015, and ISO 17025

Note: With this Certificate, Report of Calibration is included.

Approved by:

Calibration Date:

23-Sep-20

James Zhu

Certificate No:

31288 - 1

West Caldwell

Quality Manager ISO/IEC 17025:2017

QA Doc. #1051 Rev. 3.0 5/29/20

Certificate Page 1 of 1

ACCREDITED

Calibration uncompromised calibration Laboratories. Inc.

1575 State Route 96, Victor, NY 14564, U.S.A.

Calibration Lab. Cert. # 1533.01

 FCC ID: A3LSMF711B
 PCTEST
 HAC (T-COIL) TEST REPORT
 Approved by: Quality Manager

 Filename:
 1M2104130035-18-R1.A3L
 DUT Type:
 Page 99 of 107

 1M2104130035-18-R1.A3L
 05/10/2021 - 06/05/2021
 Portable Handset
 Page 99 of 107

© 2021 PCTEST

REV 3.5.M

ISO/IEC 17025: 2017

ACCREDITED

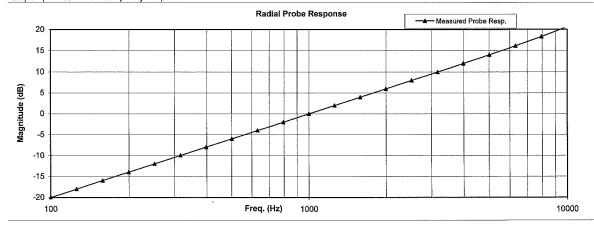
Calibration Lab. Cert. # 1533.01

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

for

TEM Consulting LP Radial T Coil Probe Company: PCTest Engineering Lab


Model No.: Radial T Coil Probe

Serial No.: TEM-1129

I. D. No.: XXXX

Calibration results:					
Probe Sensitivity measured wit	th Helmhol	tz Coil			
Helmholtz Coil;			Before & after data same:	X	
the number of turns on each coil;	10	No.			
the radius of each coil, in meters;	0.204	m	Laboratory Environment:		
the current in the coils, in amperes.;	0.08	Α	Ambient Temperature:	20.7	∘C
Helmholtz Coil Constant;	7.04	A/m/V	Ambient Humidity:	42.1	% RH
Helmholtz Coil magnetic field;	5.70	A/m	Ambient Pressure:	99.094	kPa
			Calibration Date:	23-Sep-2020)
Probe Sensitivity at	1000	Hz.	Re-calibration Due:		
was	-60.37	dBV/A/m	Report Number:	3128	8 -1
	0.959	mV/A/m	Control Number:	3128	8
Probe resistance	897	Ohms			
The above listed instrument meets or exceeds	the tested	manufacturer's s	pecifications.		
This Calibration is traceable through NIST test numbers	s:	684.07/O-00000	001126-20		
The expanded uncertainty of calibration: 0,30dB at 95% c	onfidence leve	el with a coverage fact	or of k=2.		

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2015, ISO 17925

Cal. Date: 23-Sep-2020

Measurements performed by:

Calibrated on WCCL system type 9700

James Zhu

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal, Labs. Inc.

Page 1 of 2

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 100 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 100 of 107

HCRTEMC_TEM-1129_Sep-23-2020

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

for

TEM Consulting LP Radial T Coil Probe Company: PCTest Engineering Lab

Model No.: Radial T Coil Probe

Serial No.: TEM-1129

Function	Tolera	Tolerance		Measured values		
			Before	Out	Remarks	
Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.37			
		dB			-	
Probe Level Linearity		6	6.04			
	Ref. (0 dB)	0	0.00			
		-6	-6.03			
		-12	-12.05			
		Hz				
Probe Frequency Response			1			
•						
]	
	Ref. (0 dB)				•	
		10000	20.7			
	**************************************	Probe Sensitivity at 1000 Hz. Probe Level Linearity Ref. (0 dB)	Probe Sensitivity at 1000 Hz. dBV/A/m Probe Level Linearity 6 Ref. (0 dB) 0 -6 -12 Probe Frequency Response 100 126 158 200 251 316 398 501 631 794	Probe Sensitivity at 1000 Hz. dBV/A/m -60.37 Probe Level Linearity 6 6 6.04 Ref. (0 dB) 0 0.00 -6 -6.03 -12 -12.05 Probe Frequency Response 100 -20.0 158 -16.0 200 -14.0 251 -12.0 316 -10.0 398 -8.0 501 -6.0 631 -4.0 794 -2.0 Ref. (0 dB) 1000 0.0 1259 2.0 Ref. (0 dB) 1000 0.0 1259 2.0 1585 4.0 1995 6.0 2512 8.0 3162 10.0 3981 12.0 5012 14.0 5012 14.0 6310 16.1 7943 18.3	Probe Sensitivity at 1000 Hz. dBV/A/m -60.37 Probe Level Linearity 6	

Instrumen	ts used for calibration:		Date of Cal.	Traceability No.	Due Date
HP	34401A	S/N US360641	2-Jul-2020	,610119	2-Jul-2021
HP	34401A	S/N US361024	2-Jul-2020	,610119	2-Jul-2021
HP	33120A	S/N US360437	2-Jul-2020	.610119	2-Jul-2021
B&K	2133	S/N 1583254	1-Jul-2020	684.07/O-0000001126-20	1-Jul-2021

Cal. Date: 23-Sep-2020

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

FCC ID: A3LSMF711B	PCTEST	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 101 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		rage 101 01 107

14. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: A3LSMF711B	PCTEST:	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 100 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		Page 102 of 107

15. REFERENCES

- ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v05," September 13, 2017
- 3. FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017
- FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 5. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 7. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 8. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 10. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells, "U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- 13. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 14. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 16. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.

FCC ID: A3LSMF711B	PCTEST . Road to be port of ® memorial	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 103 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		

- 17. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 18. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 21. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- 22. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- 23. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 24. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- 25. Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 26. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 27. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 28. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 29. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 30. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: A3LSMF711B	PCTEST Total to be post of the recent	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 104 of 107
1M2104130035-18-R1.A3L	05/10/2021 - 06/05/2021	Portable Handset		