

## PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com



# PART 27 MEASUREMENT REPORT

A3LSMF711B

Samsung Electronics Co., Ltd.

### **Applicant Name:**

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

### Date of Testing: 4/21/2021 - 6/25/2021 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.:

1M2104130035-05.A3L

# FCC ID:

### Application Type: Model: EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s):

Applicant Name:

### Certification SM-F711B Portable Handset PCS Licensed Transmitter Held to Ear (PCE) 27 ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03r01, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President



| FCC ID: A3LSMF711B  | Proved to be prot of @ element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|--------------------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                    | EUT Type:                  |         | Dogo 1 of 52                      |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021          | Portable Handset           |         | Page 1 of 53                      |
| © 2021 PCTEST       | ·                              | ·                          |         | V2 3/28/2021                      |



# TABLE OF CONTENTS

| 1.0 | INTF | RODUCTION                                           | 4  |
|-----|------|-----------------------------------------------------|----|
|     | 1.1  | Scope                                               | 4  |
|     | 1.2  | PCTEST Test Location                                | 4  |
|     | 1.3  | Test Facility / Accreditations                      | 4  |
| 2.0 | PRO  | DUCT INFORMATION                                    | 5  |
|     | 2.1  | Equipment Description                               | 5  |
|     | 2.2  | Device Capabilities                                 | 5  |
|     | 2.3  | Test Configuration                                  | 5  |
|     | 2.4  | EMI Suppression Device(s)/Modifications             | 5  |
| 3.0 | DES  | CRIPTION OF TESTS                                   | 6  |
|     | 3.1  | Evaluation Procedure                                | 6  |
|     | 3.2  | Radiated Power and Radiated Spurious Emissions      | 6  |
| 4.0 | MEA  | SUREMENT UNCERTAINTY                                | 7  |
| 5.0 | TES  | T EQUIPMENT CALIBRATION DATA                        | 8  |
| 6.0 | SAM  | IPLE CALCULATIONS                                   | 9  |
| 7.0 | TES  | T RESULTS                                           | 10 |
|     | 7.1  | Summary                                             | 10 |
|     | 7.2  | Occupied Bandwidth                                  | 11 |
|     | 7.3  | Spurious and Harmonic Emissions at Antenna Terminal | 20 |
|     | 7.4  | Band Edge Emissions at Antenna Terminal             | 31 |
|     | 7.5  | Radiated Power (EIRP)                               | 41 |
|     | 7.6  | Radiated Spurious Emissions Measurements            | 44 |
|     | 7.7  | Frequency Stability / Temperature Variation         | 51 |
| 8.0 | CON  | ICLUSION                                            | 53 |

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Page 2 of 53                      |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           | Fage 2 01 55                      |
| © 2021 PCTEST       | •                     | ·                          | V2 3/28/2021                      |





# PART 27 MEASUREMENT REPORT



|                   |            |            |                             | EI                | RP                  |                        |
|-------------------|------------|------------|-----------------------------|-------------------|---------------------|------------------------|
| Mode              | Bandwidth  | Modulation | Tx Frequency<br>Range [MHz] | Max. Power<br>[W] | Max. Power<br>[dBm] | Emission<br>Designator |
|                   | 20 MHz     | QPSK       | 2506.0 - 2680.0             | 0.348             | 25.41               | 18M0G7D                |
|                   | 20 1011 12 | 16QAM      | 2506.0 - 2680.0             | 0.286             | 24.56               | 18M0W7D                |
|                   | 15 MHz     | QPSK       | 2503.5 - 2682.5             | 0.401             | 26.03               | 13M5G7D                |
| ITE Rond (11/DC2) |            | 16QAM      | 2503.5 - 2682.5             | 0.327             | 25.15               | 13M5W7D                |
| LTE Band 41(PC2)  | 10 MHz     | QPSK       | 2501.0 - 2685.0             | 0.396             | 25.97               | 9M00G7D                |
|                   |            | 16QAM      | 2501.0 - 2685.0             | 0.311             | 24.93               | 8M99W7D                |
|                   | 5 MHz      | QPSK       | 2498.5 - 2687.5             | 0.395             | 25.97               | 4M52G7D                |
|                   |            | 16QAM      | 2498.5 - 2687.5             | 0.344             | 25.37               | 4M51W7D                |
|                   | 20 MH-     | QPSK       | 2506.0 - 2680.0             | 0.191             | 22.82               | 18M0G7D                |
|                   | 20 MHz     | 16QAM      | 2506.0 - 2680.0             | 0.148             | 21.71               | 18M0W7D                |
|                   | 15 MHz     | QPSK       | 2503.5 - 2682.5             | 0.186             | 22.70               | 13M6G7D                |
| LTE Band 41(PC3)  |            | 16QAM      | 2503.5 - 2682.5             | 0.163             | 22.13               | 13M5W7D                |
|                   | 10 MH-     | QPSK       | 2501.0 - 2685.0             | 0.176             | 22.46               | 9M03G7D                |
|                   | 10 MHz     | 16QAM      | 2501.0 - 2685.0             | 0.142             | 21.52               | 8M99W7D                |
|                   |            | QPSK       | 2498.5 - 2687.5             | 0.191             | 22.82               | 4M51G7D                |
|                   | 5 MHz      | 16QAM      | 2498.5 - 2687.5             | 0.150             | 21.77               | 4M51W7D                |

**EUT Overview** 

| FCC ID: A3LSMF711B  | Potest<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                  |         | Page 3 of 53                      |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                   | Portable Handset           |         | Fage 5 01 55                      |
| © 2021 PCTEST       |                                         |                            |         | \/2 3/28/2021                     |



# **1.0 INTRODUCTION**

### 1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

## 1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

### 1.3 Test Facility / Accreditations

### Measurements were performed at PCTEST located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

| FCC ID: A3LSMF711B  | Proved to be part of the element | PART 27 MEASUREMENT REPORT | MSUNG | Approved by:<br>Technical Manager |
|---------------------|----------------------------------|----------------------------|-------|-----------------------------------|
| Test Report S/N:    | Test Dates:                      | EUT Type:                  |       | Page 4 of 53                      |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021            | Portable Handset           |       | Fage 4 01 55                      |
| © 2021 PCTEST       |                                  |                            |       | 1/2 2/28/2021                     |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.



# 2.0 PRODUCT INFORMATION

### 2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMF711B**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 27.

The Equipment Under Test (EUT) can operate in one of three physical configurations – "Open", "Half open" and "Closed". All emissions are investigated in three modes for compliance.

Test Device Serial No.: 0044M, 0050M, 0065M, 0069M, 0086M, 0089M, 0100M

### 2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (n5, n66), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer

### 2.3 Test Configuration

The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) Model: EP-N5100 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

### 2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Dage E of E2                      |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Page 5 of 53                      |
| © 2021 PCTEST       |                       | •                          |         | V2 3/28/2021                      |



# 3.0 DESCRIPTION OF TESTS

### 3.1 Evaluation Procedure

The measurement procedures described in the "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-E-2016) and "Measurement Guidance for Certification of Licensed Digital Transmitters" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

Deviation from Measurement Procedure.....None

### 3.2 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated power measurements, substitution method is used per the guidance of ANSI/TIA-603-E-2016. A halfwave dipole is substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

P<sub>d [dBm]</sub> = P<sub>g [dBm]</sub> - cable loss [dB] + antenna gain [dBd/dBi];

where  $P_d$  is the dipole equivalent power,  $P_g$  is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to  $P_{g \text{ [dBm]}}$  – cable loss [dB].

For radiated spurious emissions measurements and calculations, conversion method is used per the formulas in KDB 971168 Section 5.8.4. Field Strength (EIRP) is calculated using the following formulas:

$$\begin{split} E_{[dB\mu V/m]} &= Measured \ amplitude \ level_{[dBm]} + 107 + Cable \ Loss_{[dB]} + Antenna \ Factor_{[dB/m]} \\ And \\ EIRP_{[dBm]} &= E_{[dB\mu V/m]} + 20logD - 104.8; \ where \ D \ is the measurement \ distance \ in \ meters. \end{split}$$

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI/TIA-603-E-2016.

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 6 of 53                      |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Fage 0 01 55                      |
| © 2021 PCTEST       |                       |                            |         | \/2 3/28/2021                     |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.



# 4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the  $U_{CISPR}$  measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

| Contribution                        | Expanded Uncertainty (±dB) |
|-------------------------------------|----------------------------|
| Conducted Bench Top<br>Measurements | 1.13                       |
| Radiated Disturbance (<1GHz)        | 4.98                       |
| Radiated Disturbance (>1GHz)        | 5.07                       |
| Radiated Disturbance (>18GHz)       | 5.09                       |

| FCC ID: A3LSMF711B  | PCTEST.<br>Proud to be part of @element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                  |         | Dogo 7 of 52                      |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                   | Portable Handset           |         | Page 7 of 53                      |
| © 2021 PCTEST       | ·                                       | •                          |         | V2 3/28/2021                      |



# 5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurement antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

### Table 5-1. Test Equipment

### Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 8 of 53                      |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Fage 6 01 55                      |
| © 2021 PCTEST       |                       |                            |         | \/2 3/28/2021                     |



# 6.0 SAMPLE CALCULATIONS

### **QPSK Modulation**

### Emission Designator = 8M62G7D

LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

### **QAM Modulation**

### Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

### **Spurious Radiated Emission**

### Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Dogo 0 of 52                      |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Page 9 of 53                      |
| © 2021 PCTEST       |                       |                            |         | V2 3/28/2021                      |



# 7.0 TEST RESULTS

### 7.1 Summary

| Company Name:       | Samsung Electronics Co., Ltd.              |
|---------------------|--------------------------------------------|
| FCC ID:             | A3LSMF711B                                 |
| FCC Classification: | PCS Licensed Transmitter Held to Ear (PCE) |

LTE

Mode(s):

| Test<br>Condition | Test Description                                                                   | FCC Part Section(s) | RSS Section(s) | Test Limit                                                      | Test Result | Reference                    |
|-------------------|------------------------------------------------------------------------------------|---------------------|----------------|-----------------------------------------------------------------|-------------|------------------------------|
|                   | Occupied Bandwidth                                                                 | 2.1049              | RSS-Gen(6.7)   | N/A                                                             | PASS        | Section 7.2                  |
| ED                | Conducted Band Edge / Spurious Emissions<br>(LTE Band 41)                          | 2.1051, 27.53(m)    | RSS-199(4.5)   | Undesirable emissions must meet the                             | PASS        | Sections<br>7.3, 7.4         |
| CONDUCTED         | Conducted Band Edge / Spurious Emissions<br>(LTE Band 38)                          | 2.1051, 27.55(m)    | K33-199(4.5)   | limits detailed in 27.53(m)                                     | PASS        | Sections<br>7.3, 7.4         |
| CON               | Transmitter Conducted Output Power                                                 | 2.1046              | RSS-199(4.4)   | N/A                                                             | PASS        | See RF<br>Exposure<br>Report |
|                   | Frequency Stability                                                                | 2.1055, 27.54       | RSS-199(4.3)   | Fundamental emissions stay within<br>authorized frequency block | PASS        | Section 7.8                  |
|                   | Effective Radiated Power / Equivalent Isotropic<br>Radiated Power<br>(LTE Band 41) | 27.50(h)(2)         | RSS-199(4.4)   | < 2 Watts max FIRP                                              | PASS        | Section 7.6                  |
| RADIATED          | Effective Radiated Power / Equivalent Isotropic<br>Radiated Power<br>(LTE Band 38) | 27.50(1)(2)         | K33-199(4.4)   | < 2 Walls max. Eike                                             | PASS        | Section 7.6                  |
| RAI               | Radiated Spurious Emissions<br>(LTE Band 41)                                       | 2.1053, 27.53(m)    | RSS-199(4.5)   | Undesirable emissions must meet the                             | PASS        | Section 7.7                  |
|                   | Radiated Spurious Emissions<br>(LTE Band 38)                                       | 2.1033, 27.33(11)   | R33-199(4.3)   | limits detailed in 27.53(m)                                     | PASS        | Section 7.7                  |

Table 7-1. Summary of Test Results

### Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST EMC Software Tool Beta 8.

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 10 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Fage 10 01 55                     |
| © 2021 PCTEST       |                       |                            |         | \/2 3/28/2021                     |



### 7.2 Occupied Bandwidth

### **Test Overview**

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

### Test Procedure Used

KDB 971168 D01 v03r01 - Section 4.2

### **Test Settings**

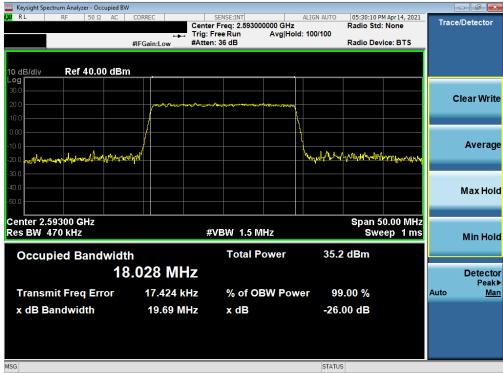
- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW  $\geq$  3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
  - 1-5% of the 99% occupied bandwidth observed in Step 7

### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-1. Test Instrument & Measurement Setup


### Test Notes

None.


| FCC ID: A3LSMF711B  | Proved to be part of the element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |  |
|---------------------|----------------------------------|----------------------------|---------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                      | EUT Type:                  |         | Page 11 of 53                     |  |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021            | Portable Handset           |         | Page 11 01 53                     |  |
| © 2021 PCTEST       |                                  |                            |         | V2 3/28/2021                      |  |

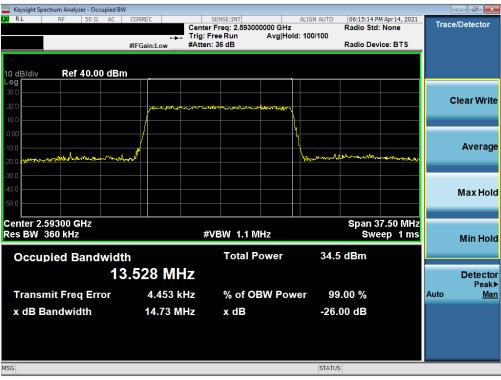


## LTE Band 41(PC2)



Plot 7-1. Occupied Bandwidth Plot (LTE Band 41(PC2) - 20MHz QPSK - Full RB)




Plot 7-2. Occupied Bandwidth Plot (LTE Band 41(PC2) - 20MHz 16-QAM - Full RB)

| FCC ID: A3LSMF711B  | Proved to be part of & element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|--------------------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                    | EUT Type:                  |         |                                   |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021          | Portable Handset           |         | Page 12 of 53                     |
| © 2021 PCTEST       | ·                              | •                          |         | V2 3/28/2021                      |



| Keysight Spectrum Analyze |        |          |         |                                        |                         |                                                   |           |            |               |                     |      | - # ×               |
|---------------------------|--------|----------|---------|----------------------------------------|-------------------------|---------------------------------------------------|-----------|------------|---------------|---------------------|------|---------------------|
| XIRL RF                   | 50 Ω   | AC       | CORREC  |                                        |                         | ISE:INT                                           | 00000 GHz | ALIGN AUTO | 06:14:57 P    | M Apr 14, 2021      | Trac | e/Detector          |
|                           |        |          | #IFGain | i ou                                   | Trig: Free<br>#Atten: 3 | Run                                               |           | d: 100/100 | Radio Dev     |                     |      |                     |
|                           |        |          | #IFGain | :LOW                                   | #Atten. o               | 000                                               |           |            | Radio Dev     | ice. DT3            |      |                     |
|                           |        | dBm      |         |                                        |                         |                                                   |           |            |               |                     |      |                     |
| 10 dB/div Ref 4           | 0.00   | авт      |         |                                        |                         |                                                   |           |            |               |                     |      |                     |
| 30.0                      |        |          |         |                                        |                         |                                                   |           |            |               |                     |      | Clear Write         |
| 20.0                      |        |          |         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                         | ~~~~ <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del> | mon       |            |               |                     |      | Clear write         |
| 10.0                      |        |          | -+      |                                        |                         |                                                   |           | <u> </u>   |               |                     |      |                     |
| 0.00                      |        |          |         |                                        |                         |                                                   |           | $\left\{$  |               |                     |      |                     |
| -10.0                     |        |          |         |                                        |                         |                                                   |           | 1.         |               |                     |      | Average             |
| 20.0 Margh Mary           | NUTRAN | 1 willow | <b></b> |                                        |                         |                                                   |           | mallinger  | ᠳᡶᡁ᠉ᢦᢦᠰᠰᢑᡙᠬᡨ᠉ | hombrow             | _    |                     |
| -30.0                     |        |          |         |                                        |                         |                                                   |           |            |               |                     |      |                     |
| -40.0                     |        |          |         |                                        |                         |                                                   |           |            |               |                     |      | Max Hold            |
| -50.0                     |        |          |         |                                        |                         |                                                   |           |            |               |                     |      |                     |
| Center 2.59300 GH         | 1-     |          |         |                                        |                         |                                                   |           |            | Crop 2        | 7.50 MILL-          |      |                     |
| Res BW 360 kHz            | 12     |          |         |                                        | #VE                     | SW 1.1 M                                          | ЛНz       |            |               | 7.50 MHz<br>ep 1 ms |      |                     |
|                           |        |          |         |                                        |                         |                                                   |           |            |               |                     |      | Min Hold            |
| Occupied Ba               | Indv   | width    | 1       |                                        |                         | Total F                                           | ower      | 35.4       | 4 dBm         |                     |      |                     |
|                           |        | 13       | .528    | 3 MH                                   | Z                       |                                                   |           |            |               |                     |      | Detector            |
| Transmit Freq             | Erro   | or       | 9       | .349 kH                                | z                       | % of O                                            | BW Pow    | ver 99     | 9.00 %        |                     | Auto | Peakl<br><u>Mar</u> |
| x dB Bandwidt             |        |          |         | 1.73 MF                                |                         | x dB                                              |           |            | .00 dB        |                     |      |                     |
|                           | 111    |          | 14      |                                        | 12                      | хив                                               |           | -20        | .00 UB        |                     |      |                     |
|                           |        |          |         |                                        |                         |                                                   |           |            |               |                     |      |                     |
|                           |        |          |         |                                        |                         |                                                   |           |            |               |                     |      |                     |
| SG                        |        |          |         |                                        |                         |                                                   |           | STATU      |               |                     |      |                     |
| 50                        |        |          |         |                                        |                         |                                                   |           | STATU      | 5             |                     |      |                     |

Plot 7-3. Occupied Bandwidth Plot (LTE Band 41(PC2) - 15MHz QPSK - Full RB)



Plot 7-4. Occupied Bandwidth Plot (LTE Band 41(PC2) - 15MHz 16-QAM - Full RB)

| FCC ID: A3LSMF711B  | Post to be part of @ element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|------------------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                  | EUT Type:                  |         |                                   |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021        | Portable Handset           |         | Page 13 of 53                     |
| © 2021 PCTEST       | ·                            |                            |         | V2 3/28/2021                      |



| Keysight Spectrum Analyzer - Occupied BV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                       |               |                           |              |       | - 0 ×      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|---------------|---------------------------|--------------|-------|------------|
| CIRL RF 50Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CORREC           | SENSE:INT<br>ter Freg: 2.593000000 GH | ALIGN AUTO    | 06:17:49 PI<br>Radio Std: | Apr 14, 2021 | Trace | /Detector  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 🛶 Trig           | :Free Run Avg ⊦                       | lold: 100/100 |                           |              |       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #IFGain:Low #Att | en: 36 dB                             |               | Radio Dev                 | ice: BTS     |       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |               |                           |              |       |            |
| IO dB/div Ref 40.00 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                |                                       |               |                           |              |       |            |
| - <b>0</b> g<br>30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                       |               |                           |              |       |            |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                       |               |                           |              | С     | lear Writ  |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | and the dama of the statement         |               |                           |              |       |            |
| 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /                |                                       | \             |                           |              |       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                |                                       | N N           |                           |              |       | Averag     |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AL IN            |                                       | าก ๙ฃ๛๛ากค่า  | www.wllywalan             | 1 Acres 6    |       | Averag     |
| And A state of the |                  |                                       |               | AND A ALL HOUSE           | AA AMMONTAPA |       |            |
| 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                       |               |                           |              |       |            |
| 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                       |               |                           |              |       | Max Hol    |
| 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                       |               |                           |              |       |            |
| Center 2.59300 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                       |               | Span 2                    | 5.00 MHz     |       |            |
| Res BW 240 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | #VBW 750 kHz                          |               |                           | ep 1 ms      |       | Min Hol    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | T- t- I D                             | 25.4          |                           |              |       |            |
| Occupied Bandwidt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | Total Power                           | 35.0          | ) dBm                     |              |       |            |
| 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9984 MHz         |                                       |               |                           |              |       | Detecto    |
| Transmit Frog Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.810 kHz        | % of OBW Po                           |               | .00 %                     |              | Auto  | Peak<br>Ma |
| Transmit Freq Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                       |               |                           |              | Auto  | IVIA       |
| x dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.868 MHz        | x dB                                  | -26.          | 00 dB                     |              |       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |               |                           |              |       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |               |                           |              |       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |               |                           |              |       |            |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                       | STATU         | S                         |              |       |            |

Plot 7-5. Occupied Bandwidth Plot (LTE Band 41(PC2) - 10MHz QPSK - Full RB)



Plot 7-6. Occupied Bandwidth Plot (LTE Band 41(PC2) - 10MHz 16-QAM - Full RB)

| FCC ID: A3LSMF711B  | Postest:<br>Prout to be part of @element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |  |
|---------------------|------------------------------------------|----------------------------|---------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                              | EUT Type:                  |         | Dego 14 of 52                     |  |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                    | Portable Handset           |         | Page 14 of 53                     |  |
| © 2021 PCTEST       | ·                                        | ·                          |         | V2 3/28/2021                      |  |



| Keysight Spectrum Analyze |      |           |             |           |           |                                        |            |             |                         |                |      | - 0 ×            |
|---------------------------|------|-----------|-------------|-----------|-----------|----------------------------------------|------------|-------------|-------------------------|----------------|------|------------------|
| XIRL RF                   | 50 Ω | AC C      | ORREC       |           |           | NSE:INT                                | 000000 GHz | ALIGN AUTO  | 06:20:15 P<br>Radio Std | M Apr 14, 2021 | Trac | e/Detector       |
|                           |      |           |             |           | Trig: Fre | e Run                                  |            | ld: 100/100 | Radio Stu               | . None         |      |                  |
|                           |      | #         | IFGain:     | Low       | #Atten: 3 | 6 dB                                   |            |             | Radio Dev               | rice: BTS      |      |                  |
|                           |      |           |             |           |           |                                        |            |             |                         |                |      |                  |
|                           | 0.00 | dBm       |             |           |           |                                        |            |             |                         |                |      |                  |
| Log                       |      |           |             |           |           |                                        |            |             |                         |                |      |                  |
| 30.0                      |      |           |             |           |           |                                        |            |             |                         |                |      | Clear Write      |
| 20.0                      |      |           | 1           | ~~~~~     |           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |            |             |                         |                |      |                  |
| 10.0                      |      |           |             |           |           |                                        |            |             |                         |                |      |                  |
| 0.00                      |      |           |             |           |           |                                        |            | 1           |                         |                |      |                  |
| -10.0                     |      |           | 4           |           |           |                                        |            |             |                         |                |      | Average          |
| -20.0 manan               | waw  | -<br>Mart |             |           |           |                                        |            | ~~~~        | marin                   | ᢣᡁᠬᡗ᠆ᢣᢦ᠆ᡥᠯᡐᠰ   |      |                  |
| -30.0                     |      |           |             |           |           |                                        |            |             |                         |                |      |                  |
| -40.0                     |      |           |             |           |           |                                        |            |             |                         |                |      | Max Hold         |
| -50.0                     |      |           |             |           |           |                                        |            |             |                         |                |      | Max Hold         |
|                           |      |           |             |           |           |                                        |            |             |                         |                |      |                  |
| Center 2.593000 G         | Hz   |           |             |           |           |                                        |            |             |                         | 2.50 MHz       |      |                  |
| Res BW 120 kHz            |      |           |             |           | #VE       | SW 390                                 | KHZ        |             | SWe                     | eep 1 ms       |      | Min Hold         |
| Occupied Ba               | ndu  | vidth     |             |           |           | Total                                  | Power      | 34 9        | 3 dBm                   |                |      |                  |
| Occupied Ba               |      |           | 407         |           |           |                                        |            | 0 11        |                         |                |      |                  |
|                           |      | 4.5       | 197         | ' MH      | Z         |                                        |            |             |                         |                |      | Detector<br>Peak |
| Transmit Freq             | Erro | r         | -5          | .358 kl   | Iz        | % of C                                 | BW Pov     | ver 99      | 9.00 %                  |                | Auto | Mai              |
| x dB Bandwid              |      |           |             | 014 MH    |           | x dB                                   |            |             |                         |                |      |                  |
|                           | un   |           | <b>ə.</b> ( | U'14 IVIF | 12        | хав                                    |            | -20.        | .00 dB                  |                |      |                  |
|                           |      |           |             |           |           |                                        |            |             |                         |                |      |                  |
|                           |      |           |             |           |           |                                        |            |             |                         |                |      |                  |
|                           |      |           |             |           |           |                                        |            |             |                         |                |      |                  |
| ISG                       |      |           |             |           |           |                                        |            | STATU       | s                       |                |      |                  |

Plot 7-7. Occupied Bandwidth Plot (LTE Band 41(PC2) - 5MHz QPSK - Full RB)



Plot 7-8. Occupied Bandwidth Plot (LTE Band 41(PC2) - 5MHz 16-QAM - Full RB)

| FCC ID: A3LSMF711B  | Post to be part of @ element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |  |
|---------------------|------------------------------|----------------------------|---------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                  | EUT Type:                  |         | Dogo 15 of 52                     |  |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021        | Portable Handset           |         | Page 15 of 53                     |  |
| © 2021 PCTEST       | ·                            |                            |         | V2 3/28/2021                      |  |

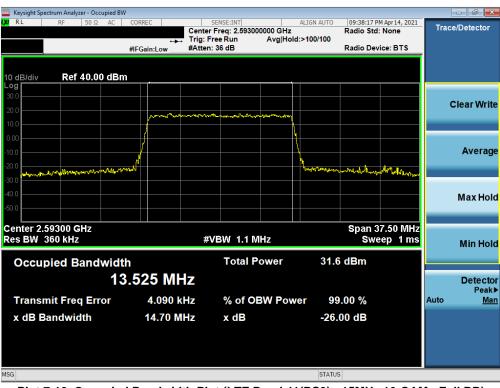


# LTE Band 41(PC3)

| Keysight Spectrum Analyzer - Occupied BW | 1             |                                                           |                                                 |                          |                 |
|------------------------------------------|---------------|-----------------------------------------------------------|-------------------------------------------------|--------------------------|-----------------|
| LXURL RF 50Ω AC                          |               | SENSE:INT<br>r Freq: 2.593000000 GHz<br>Free Run Avg Hold | ALIGN AUTO 09:10:29 P<br>Radio Std<br>:>100/100 | M Apr 14, 2021<br>: None | Trace/Detector  |
|                                          |               | n: 36 dB                                                  | Radio Dev                                       | vice: BTS                |                 |
|                                          |               |                                                           |                                                 |                          |                 |
| 10 dB/div Ref 40.00 dBm<br>Log           | <u>ا</u>      |                                                           |                                                 |                          |                 |
| 30.0                                     |               |                                                           |                                                 |                          |                 |
| 20.0                                     | apatra and an | when the second second                                    |                                                 |                          | Clear Write     |
| 10.0                                     |               |                                                           |                                                 |                          |                 |
| 0.00                                     |               |                                                           |                                                 |                          |                 |
| -10.0                                    |               |                                                           |                                                 |                          | Average         |
| -20.0                                    | w di          |                                                           | how when the the second                         |                          |                 |
| -30.0                                    |               |                                                           |                                                 |                          |                 |
| -40.0                                    |               |                                                           |                                                 |                          | Max Hold        |
| -30.0                                    |               |                                                           |                                                 |                          |                 |
| Center 2.59300 GHz                       |               |                                                           |                                                 | 0.00 MHz                 |                 |
| Res BW 470 kHz                           | #             | VBW 1.5 MHz                                               | SWO                                             | eep 1 ms                 | Min Hold        |
| Occupied Bandwidt                        | h             | Total Power                                               | 32.6 dBm                                        |                          |                 |
|                                          | .004 MHz      |                                                           |                                                 |                          | Detector        |
|                                          |               |                                                           |                                                 |                          | Peak►           |
| Transmit Freq Error                      | 22.674 kHz    | % of OBW Pow                                              | er 99.00 %                                      |                          | Auto <u>Man</u> |
| x dB Bandwidth                           | 19.63 MHz     | x dB                                                      | -26.00 dB                                       |                          |                 |
|                                          |               |                                                           |                                                 |                          |                 |
|                                          |               |                                                           |                                                 |                          |                 |
|                                          |               |                                                           |                                                 |                          |                 |
| MSG                                      |               |                                                           | STATUS                                          |                          |                 |

Plot 7-9. Occupied Bandwidth Plot (LTE Band 41(PC3) - 20MHz QPSK - Full RB)




Plot 7-10. Occupied Bandwidth Plot (LTE Band 41(PC3) - 20MHz 16-QAM - Full RB)

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Dogo 16 of 52                     |  |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Page 16 of 53                     |  |
| © 2021 PCTEST       |                       | ·                          |         | V2 3/28/2021                      |  |



| Keysight Spectrum Analyzer - Occupied |                                        |                                 |                   |                                             |                   |
|---------------------------------------|----------------------------------------|---------------------------------|-------------------|---------------------------------------------|-------------------|
| XI RL RF 50 Ω AC                      | CORREC                                 | SENSE:INT<br>ter Freg: 2.593000 | ALIGN AUTO        | 09:37:35 PM Apr 14, 202:<br>Radio Std: None | Trace/Detector    |
|                                       | 🛶 Trig                                 | g: Free Run                     | Avg Hold:>100/100 |                                             |                   |
|                                       | #IFGain:Low #At                        | ten: 36 dB                      |                   | Radio Device: BTS                           | _                 |
|                                       |                                        |                                 |                   |                                             |                   |
| 10 dB/div Ref 40.00 dB                | m                                      |                                 |                   |                                             |                   |
| Log                                   |                                        |                                 |                   |                                             |                   |
| 30.0                                  |                                        |                                 |                   |                                             | Clear Write       |
| 20.0                                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                 | www               |                                             |                   |
| 10.0                                  |                                        |                                 |                   |                                             |                   |
| 0.00                                  | /                                      |                                 | <u>\</u>          |                                             |                   |
| 10.0                                  |                                        |                                 |                   |                                             | Average           |
| 20.0 mary mary Mary Mary Mary         | ment                                   |                                 | Johnson           | marrish males of the married                | a.                |
| -30.0                                 |                                        |                                 |                   |                                             |                   |
| -40.0                                 |                                        |                                 |                   |                                             | Max Hold          |
| -50.0                                 |                                        |                                 |                   |                                             |                   |
|                                       |                                        |                                 |                   |                                             |                   |
| Center 2.59300 GHz                    |                                        |                                 |                   | Span 37.50 MH                               |                   |
| Res BW 360 kHz                        |                                        | #VBW 1.1 M                      | Hz                | Sweep 1 m                                   | Min Hold          |
| Occurried Develutio                   |                                        | Total P                         | owor 22           | 9 dBm                                       |                   |
| Occupied Bandwid                      |                                        | Total I G                       | JWCI J2.          | 3 ubm                                       |                   |
| 1                                     | 3.550 MHz                              |                                 |                   |                                             | Detector          |
| Transmit Freq Error                   | 22.847 kHz                             | % of OF                         | W Power 9         | 9.00 %                                      | Peak)<br>Auto Mar |
|                                       |                                        |                                 |                   |                                             | Auto <u>mar</u>   |
| x dB Bandwidth                        | 14.82 MHz                              | x dB                            | -26               | .00 dB                                      |                   |
|                                       |                                        |                                 |                   |                                             |                   |
|                                       |                                        |                                 |                   |                                             |                   |
|                                       |                                        |                                 |                   |                                             |                   |
| SG                                    |                                        |                                 | STAT              | JS                                          |                   |

Plot 7-11. Occupied Bandwidth Plot (LTE Band 41(PC3) - 15MHz QPSK - Full RB)



Plot 7-12. Occupied Bandwidth Plot (LTE Band 41(PC3) - 15MHz 16-QAM - Full RB)

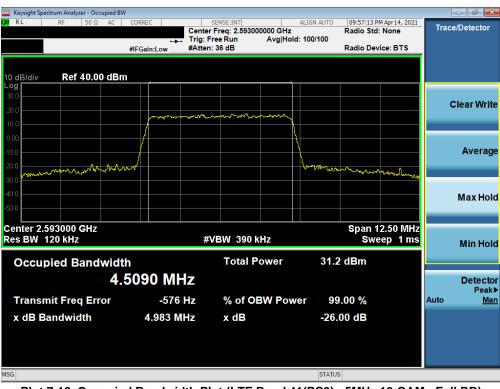
| FCC ID: A3LSMF711B  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                             | EUT Type:                  | Page 17 of 53                     |  |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                   | Portable Handset           | Page 17 01 53                     |  |
| © 2021 PCTEST       | •                                       |                            | V2 3/28/2021                      |  |



| Keysight Spectrum Analyzer -       |              |             |           |                |                                                                                                                 |                       |          |               |
|------------------------------------|--------------|-------------|-----------|----------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|----------|---------------|
| RL RF 5                            | OΩ AC        | CORREC      | SENSE:INT | ALIGN          | Radio Std                                                                                                       | M Apr 14, 2021        | Trace/De | tector        |
|                                    |              | ₩IFGain:Low |           | Avg Hold: 100/ |                                                                                                                 |                       |          |               |
|                                    | 0.00 dBn     | n           |           |                |                                                                                                                 |                       |          |               |
| <b>og</b><br>30.0<br>20.0          |              |             |           |                |                                                                                                                 |                       | Clea     | ar Writ       |
| 0.00                               |              |             |           |                |                                                                                                                 |                       |          |               |
| 0.0<br>0.0<br>0.0<br>0.0           | v-v-v-lipphu | w           |           | - land         | and the stand of the | -Ashraphy             | 4        | verag         |
| 0.0                                |              |             |           |                |                                                                                                                 |                       | M        | ax Ho         |
| enter 2.59300 GHz<br>es BW 240 kHz | z            |             | #VBW 750  | kHz            |                                                                                                                 | 25.00 MHz<br>eep 1 ms | м        | in Ho         |
| Occupied Bar                       |              |             | Total I   | Power          | 32.9 dBm                                                                                                        |                       |          | _             |
|                                    | 9.           | 0334 MH     | lz        |                |                                                                                                                 |                       | D        | etect<br>Peak |
| Transmit Freq E                    | Irror        | 13.024 k    | Hz % of O | BW Power       | 99.00 %                                                                                                         |                       | Auto     | Ma            |
| x dB Bandwidth                     | 1            | 9.921 M     | lHz x dB  |                | -26.00 dB                                                                                                       |                       |          |               |
| G                                  |              |             |           |                | STATUS                                                                                                          |                       |          |               |

Plot 7-13. Occupied Bandwidth Plot (LTE Band 41(PC3) - 10MHz QPSK - Full RB)




Plot 7-14. Occupied Bandwidth Plot (LTE Band 41(PC3) - 10MHz 16-QAM - Full RB)

| FCC ID: A3LSMF711B  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                             | EUT Type:                  | Page 18 of 53                     |  |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                   | Portable Handset           | Fage to 0155                      |  |
| © 2021 PCTEST       | •                                       |                            | V2 3/28/2021                      |  |



| Keysight Spectrum Analyze          | er - Οccu<br>50 Ω | · · · · · · · · · · · · · · · · · · · | CODDE  |         |        | NOT INT  |           |             | 00.50.50.0    | M A14 2021          | _    |                 |
|------------------------------------|-------------------|---------------------------------------|--------|---------|--------|----------|-----------|-------------|---------------|---------------------|------|-----------------|
| RL RF                              | 50 Ω              | AC                                    | CORRE  |         |        | INSE:INT | 00000 GHz | ALIGN AUTO  | Radio Std     | M Apr 14, 2021      | Trac | e/Detector      |
|                                    |                   |                                       | #IFGai | n:Low   |        | e Run    |           | ld: 100/100 | Radio Dev     |                     |      |                 |
|                                    | 10.00             | dBm                                   |        |         |        |          |           |             |               |                     |      |                 |
| .og<br>30.0<br>20.0                |                   |                                       |        |         |        |          |           |             |               |                     |      | Clear Writ      |
| 10.0                               |                   |                                       | /      | ,       | ᠕᠆ᠬ᠕᠕᠕ | ~~~~     | mont      |             |               |                     |      |                 |
| 0.00                               |                   |                                       | ~      |         |        |          |           | hy .        |               |                     |      | Average         |
| 20.0 mm/mm/ml/mm/m<br>30.0         | محلفصه            | manthy                                | M      |         |        |          |           |             | ᡟ᠊ᠧᠳ᠇ᡟᠬᠴ᠉ᢛᢪᠰᠧ |                     |      |                 |
| 40.0<br>50.0                       |                   |                                       |        |         |        |          |           |             |               |                     |      | Max Hol         |
| enter 2.593000 G<br>tes BW 120 kHz | SHz               |                                       |        |         | #VI    | BW 390   | kHz       |             |               | 2.50 MHz<br>ep 1 ms |      | Min Hol         |
| Occupied Ba                        | and               |                                       |        |         |        | Total    | Power     | 32.3        | 3 dBm         |                     |      |                 |
|                                    |                   | 4.                                    | 506    | 5 MF    | Z      |          |           |             |               |                     |      | Detecto<br>Peak |
| Transmit Freq                      | Erro              | or                                    | •      | 1.403 k | Hz     | % of C   | BW Pov    | ver 99      | 9.00 %        |                     | Auto | <u>Ma</u>       |
| x dB Bandwid                       | th                |                                       | 4      | .988 M  | Hz     | x dB     |           | -26         | .00 dB        |                     |      |                 |
|                                    |                   |                                       |        |         |        |          |           |             |               |                     |      |                 |
| SG                                 |                   |                                       |        |         |        |          |           | STATU       | IS            |                     |      |                 |

Plot 7-15. Occupied Bandwidth Plot (LTE Band 41(PC3) - 5MHz QPSK - Full RB)



Plot 7-16. Occupied Bandwidth Plot (LTE Band 41(PC3) - 5MHz 16-QAM - Full RB)

| FCC ID: A3LSMF711B  | Postest de Beleser    | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Dogo 10 of 52                     |  |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Page 19 of 53                     |  |
| © 2021 PCTEST       | · · · · ·             |                            |         | V2 3/28/2021                      |  |



## 7.3 Spurious and Harmonic Emissions at Antenna Terminal

### **Test Overview**

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10<sup>th</sup> harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

### For Band 41, the minimum permissible attenuation level of any spurious emission is 55 + 10log<sub>10</sub>(P<sub>[Watts]</sub>).

### Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

### **Test Settings**

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

### Test Setup

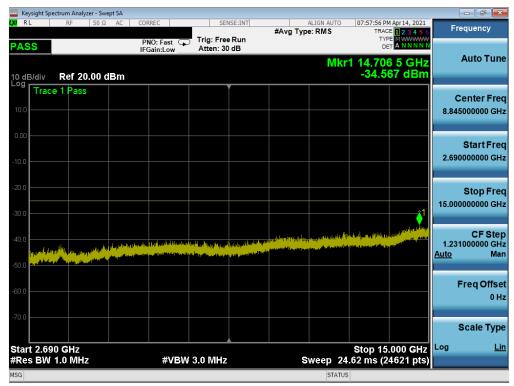
The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-2. Test Instrument & Measurement Setup

### Test Notes

 Per Part 27, RSS-195 and RSS-199, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.


| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG       | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |               | Page 20 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           | Fage 20 01 53 |                                   |
| © 2021 PCTEST       | ·                     | •                          |               | V2 3/28/2021                      |

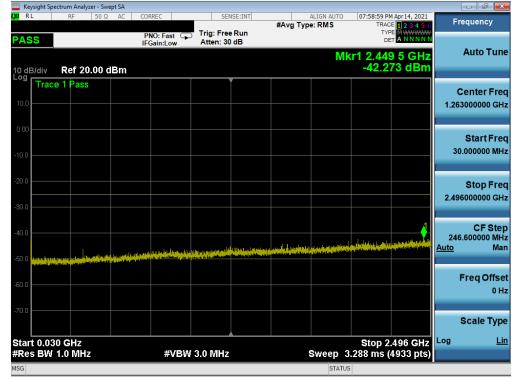


# LTE Band 41(PC2)

|                  | pectrum Analy              |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      |                   |
|------------------|----------------------------|-------------|--------------|-------------------------|--------|-----------|--------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------|------|-------------------|
| 🗶 RL             | RF                         | 50 Ω        | AC (         | CORREC                  |        | SEN       | ISE:INT            |                                          | ALIGN AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | M Apr 14, 2021 | E    | requency          |
|                  |                            |             |              |                         | т.     | rig: Free | Dun                | #Avg Typ                                 | e:RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRA                                                     |                |      | requeitcy         |
| PASS             |                            |             |              | PNO: Fast<br>IFGain:Low | ÷      | tten: 30  |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      |                   |
|                  |                            |             |              | II Guill.LOW            | -      |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Alen4 0 47                                              | E A CUL        |      | Auto Tune         |
|                  |                            |             |              |                         |        |           |                    |                                          | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /kr1 2.47                                               | 5 U GHZ        |      |                   |
| 10 dB/div<br>Log | Ref 20                     | ).00 dE     | 3m           |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -35.6                                                   | 25 dBm         |      |                   |
| Tra              | ce 1 Pass                  |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      |                   |
|                  |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      | Center Fre        |
| 10.0             |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | +              | 1.25 | 2500000 GH        |
|                  |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      |                   |
| 0.00             |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      | _                 |
|                  |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      | Start Fre         |
|                  |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                | 3    | 0.000000 MH       |
| 10.0             |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | +1             |      |                   |
|                  |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      |                   |
| 20.0             |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      | Stop Fre          |
|                  |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      | •                 |
| 30.0             |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                | 2.47 | '5000000 GH       |
| .0.0             |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 7              |      |                   |
|                  |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 1              |      | CF Ste            |
| 40.0             |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                | 24   | 4.500000 MH       |
|                  |                            |             |              |                         |        |           |                    | للمتعالية ومروع فيروان                   | والدار ومرابع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of A Hardwood Based                                     |                | Auto | Ma                |
| 50.0 <b></b>     | te I na had na sa dha      | asta Leenas |              | his show the            |        |           | allester orte alle | alle a leader of the state of the leader | and the second s | del e la Daulfan yn Dessin<br>Anter Statister yn Dessin |                |      |                   |
| 100,000          | State of the second second |             | (particular) |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      |                   |
|                  |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      | <b>Freq Offse</b> |
| 60.0             |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      | 0 H               |
|                  |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      |                   |
| 70.0             |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      |                   |
|                  |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      | Scale Type        |
|                  |                            |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |      |                   |
| Start 0.0        | 30 GHz                     |             |              |                         |        |           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 2                                                  | 2.475 GHz      | Log  | Lii               |
| ¢Res B₩          | 1.0 MH;                    | z           |              | #V                      | BW 3.0 | 0 MHz     |                    |                                          | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.260 ms                                                | (4891 pts)     |      |                   |
| SG               |                            |             |              |                         |        |           |                    |                                          | STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |                |      |                   |
|                  |                            |             |              |                         |        |           |                    |                                          | STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |                |      |                   |

Plot 7-17. Conducted Spurious Plot (LTE Band 41(PC2) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)




Plot 7-18. Conducted Spurious Plot (LTE Band 41(PC2) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

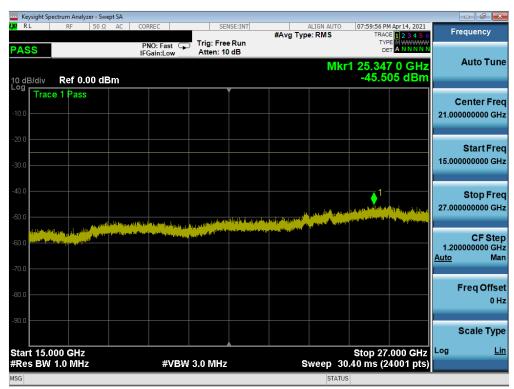
| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 21 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Fage 21 01 55                     |
| © 2021 PCTEST       |                       | ·                          |         | V2 3/28/2021                      |



|                      | sight Spectre                      | um Analyzer | - Swept       | SA                     |          |                 |                                                                                                                 |                                         |        |            |                                                                              |                                                                                                                  |                |                  |
|----------------------|------------------------------------|-------------|---------------|------------------------|----------|-----------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------|------------------|
| l <mark>XI</mark> RL |                                    | RF          | 50 Ω          | AC                     | CORREC   |                 | SEI                                                                                                             | ISE:INT                                 | #Ava 1 | ALIGN AU   | TO 07:5                                                                      | 8:25 PM Apr 14, 2021<br>TRACE 1 2 3 4 5 6                                                                        | Freq           | uency            |
| PAS                  | S                                  |             |               |                        | PNO: Fa  | ast 🖵<br>.ow    | Trig: Free<br>Atten: 10                                                                                         |                                         |        | Jpc. ruite |                                                                              |                                                                                                                  |                |                  |
|                      |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        | Ν          | lkr1 25                                                                      | .036 0 GHz                                                                                                       |                | uto Tune         |
| 10 dB<br>Log r       | 3/div                              | Ref 0.00    | ) dBn         | n                      |          |                 |                                                                                                                 |                                         |        |            | -4                                                                           | 4.630 dBm                                                                                                        |                |                  |
|                      | Trace 1                            | Pass        |               |                        |          |                 | ,                                                                                                               |                                         |        |            |                                                                              |                                                                                                                  | Ce             | nter Freq        |
| -10.0                |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        |            |                                                                              |                                                                                                                  |                | 00000 GHz        |
|                      |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        |            |                                                                              |                                                                                                                  |                |                  |
| -20.0                |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        |            |                                                                              |                                                                                                                  | s              | start Freq       |
| -30.0                |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        |            |                                                                              |                                                                                                                  |                | 00000 GHz        |
|                      |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        |            |                                                                              |                                                                                                                  |                |                  |
| -40.0                |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        |            | 1                                                                            |                                                                                                                  | s              | Stop Freq        |
|                      |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        |            | and the second second                                                        | and the second |                | 00000 GHz        |
| -50.0                |                                    |             | والمتلجار     | d <sub>ind</sub> tras- | had webs | د. روباير اختنا | and the state of the state                                                                                      | ang |        |            | 1999 (1999)<br>1999 (1999) (1999) (1999)<br>1999 (1999) (1999) (1999) (1999) |                                                                                                                  |                |                  |
| -60.0                | موردا بالتقريرية<br>مرجعاته فتتحمت |             | and should be | alle a baile f         |          | and the state   | and a start of the second s |                                         |        |            |                                                                              |                                                                                                                  |                | CF Step          |
|                      |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        |            |                                                                              |                                                                                                                  | 1.2000<br>Auto | 00000 GHz<br>Man |
| -70.0                |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        |            |                                                                              |                                                                                                                  |                |                  |
|                      |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        |            |                                                                              |                                                                                                                  | Fr             | eq Offset        |
| -80.0                |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        |            |                                                                              |                                                                                                                  |                | 0 Hz             |
| -90.0                |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        |            |                                                                              |                                                                                                                  |                |                  |
|                      |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        |            |                                                                              |                                                                                                                  | Sc             | ale Type         |
| Star                 | 15.000                             |             |               |                        |          |                 | ,                                                                                                               |                                         |        |            | Sto                                                                          | p 27.000 GHz                                                                                                     | Log            | Lin              |
|                      | BW 1.                              |             |               |                        | ;        | #VBW            | 3.0 MHz                                                                                                         |                                         |        | Sweep      | 30.40 m                                                                      | ns (24001 pts)                                                                                                   |                |                  |
| MSG                  |                                    |             |               |                        |          |                 |                                                                                                                 |                                         |        | ST         | ATUS                                                                         |                                                                                                                  |                |                  |

Plot 7-19. Conducted Spurious Plot (LTE Band 41(PC2) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)




Plot 7-20. Conducted Spurious Plot (LTE Band 41(PC2) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

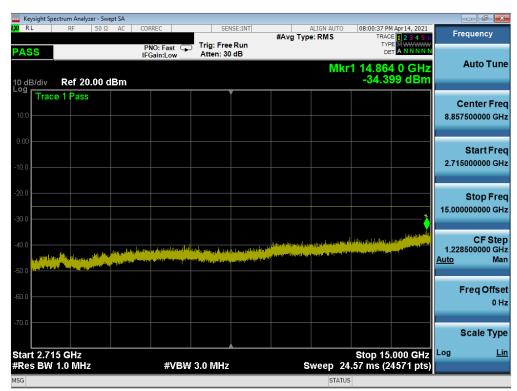
| FCC ID: A3LSMF711B  | PCTEST.<br>Prozet to be part of @ element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |  |
|---------------------|-------------------------------------------|----------------------------|---------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                               | EUT Type:                  |         | Dogo 22 of 52                     |  |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                     | Portable Handset           |         | Page 22 of 53                     |  |
| © 2021 PCTEST       | -                                         | ·                          |         | V2 3/28/2021                      |  |



|                     |                                          | trum Analyz                           | er - Swe | pt SA      |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
|---------------------|------------------------------------------|---------------------------------------|----------|------------|---------------------|------------------------|------------------------|---------------------------|------|--------------------------|-------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|
| l <mark>xi</mark> R | L                                        | RF                                    | 50 Ω     | AC         | CORREC              | 2                      | SE                     | NSE:INT                   | #Ava | ALIGN A                  |       |                                             | M Apr 14, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F    | requency     |
| PAS                 | SS                                       |                                       |          |            | PNO:<br>IFGair      | Fast 🖵                 | Trig: Fre<br>Atten: 30 |                           |      | rype. Kina               | •     | TYP                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
|                     |                                          |                                       |          |            |                     |                        |                        |                           |      |                          | Mkr1  | 14.95                                       | 4 0 GHz<br>51 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | Auto Tune    |
| 10 di<br>Log        | B/div                                    | Ref 20                                | .00 d    | Bm         |                     |                        |                        |                           |      |                          |       | -35.1                                       | ыавш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |              |
|                     | Trace                                    | 1 Pass                                |          |            |                     |                        |                        | Ĩ                         |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Center Freq  |
| 10.0                | <u> </u>                                 |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 45000000 GHz |
|                     |                                          |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
| 0.00                | <u> </u>                                 |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
|                     |                                          |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Start Freq   |
| -10.0               |                                          |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6  | 90000000 GHz |
|                     |                                          |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
| -20.0               |                                          |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Stop Freq    |
|                     |                                          |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.0 | 00000000 GHz |
| -30.0               |                                          |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |              |
|                     |                                          |                                       |          |            |                     |                        |                        |                           |      | ulpon (start st          | ي الم | o Luddet allan                              | La hereiten and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | CF Step      |
| -40.0               | lan a                                    | . <b>Ma</b>                           |          | ուսներ     | here all all        | the stand of the stand | and a papel of         | lastalstated              |      | enterieren (han eine aus |       | ىرى يەرىپى<br>بىر <del>ە</del> ھەتلەرلىرىيە | and a state of the |      | 31000000 GHz |
| -50.0               | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | n opportunger og<br>Skala skala skala |          | al patient | ALC: NO DECISION OF | وأدادا الدن            | and the second second  | and the same of the state |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Auto | Man          |
| -50.0               | í i                                      |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
| -60.0               |                                          |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Freq Offset  |
| 00.0                |                                          |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 0 Hz         |
| -70.0               |                                          |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
|                     |                                          |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Scale Type   |
|                     |                                          |                                       |          |            |                     |                        |                        |                           |      |                          |       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Log  | Lin          |
|                     | t 2.690<br>s BM 1                        | ) GHZ<br>1.0 MHZ                      |          |            |                     | #\/R\M                 | 3.0 MHz                |                           |      | Sween                    | 24.6  | Stop 15                                     | .000 GHz<br>4621 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Lin          |
| MSG                 | 5-10/14                                  |                                       |          |            |                     | # V LJVV               | 5.0 10112              |                           |      |                          | TATUS |                                             | 402 i pisj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |              |
| MSG                 |                                          |                                       |          |            |                     |                        |                        |                           |      | 5                        | TATUS |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |

Plot 7-21. Conducted Spurious Plot (LTE Band 41(PC2) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)




Plot 7-22. Conducted Spurious Plot (LTE Band 41(PC2) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Page 23 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           | Fage 23 01 55                     |
| © 2021 PCTEST       |                       | ·                          | V2 3/28/2021                      |



|                       | ctrum Analyz     |          |            |           |                |                         |         |      |         |        |                  |                                                                                                                     |                   |                                 |
|-----------------------|------------------|----------|------------|-----------|----------------|-------------------------|---------|------|---------|--------|------------------|---------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|
| LXI RL                | RF               | 50 Ω     | AC         | CORREC    |                | SEI                     | ISE:INT | #Avg | ALIGN A |        |                  | M Apr 14, 2021<br>CE 1 2 3 4 5 6                                                                                    |                   | Frequency                       |
| PASS                  |                  |          |            | PNO: Fa   | ast 🖵<br>.ow   | Trig: Free<br>Atten: 30 |         | Ū    |         |        | TY               |                                                                                                                     |                   |                                 |
| 10 dB/div             | Ref 20           | .00 d    | Bm         |           |                |                         |         |      |         | Mkı    | 1 2.44<br>-42.0  | 2 0 GHz<br>09 dBm                                                                                                   |                   | Auto Tune                       |
| Log<br>Trace          | e 1 Pass         |          |            |           |                |                         |         |      |         |        |                  |                                                                                                                     | 1.2               | Center Freq<br>63000000 GHz     |
| -10.0                 |                  |          |            |           |                |                         |         |      |         |        |                  |                                                                                                                     | :                 | Start Freq<br>30.000000 MHz     |
| -20.0                 |                  |          |            |           |                |                         |         |      |         |        |                  |                                                                                                                     | 2.4               | Stop Freq<br>96000000 GHz       |
| -40.0                 |                  | أحاليهما |            | unin sola | d burger and a |                         |         |      |         |        |                  | 1<br>An an attack of the state of the | 24<br><u>Auto</u> | CF Step<br>46.600000 MHz<br>Mar |
| -50.0                 |                  |          | Malath IIA |           |                |                         |         |      |         |        |                  |                                                                                                                     |                   | Freq Offset<br>0 Hz             |
| -70.0                 |                  |          |            |           |                |                         |         |      |         |        |                  |                                                                                                                     |                   | Scale Type                      |
| Start 0.03<br>#Res BW | 0 GHz<br>1.0 MHz |          |            | 4         | #VBW           | 3.0 MHz                 |         |      | Swee    | ep 3.  | Stop 2<br>288 ms | 2.496 GHz<br>(4933 pts)                                                                                             | Log               | <u>Lin</u>                      |
| MSG                   |                  |          |            |           |                |                         |         |      |         | STATUS |                  |                                                                                                                     |                   |                                 |

Plot 7-23. Conducted Spurious Plot (LTE Band 41(PC2) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)



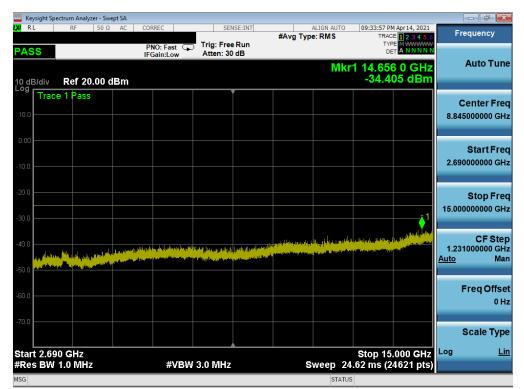
Plot 7-24. Conducted Spurious Plot (LTE Band 41(PC2) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 24 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Page 24 01 55                     |
| © 2021 PCTEST       |                       |                            |         | V2 3/28/2021                      |




|                       | ectrum Analyze         | r - Swep    | ot SA                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           |                         |                                     |                     |                                                                                        |                                                   |                     |                               |
|-----------------------|------------------------|-------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|-------------------------|-------------------------------------|---------------------|----------------------------------------------------------------------------------------|---------------------------------------------------|---------------------|-------------------------------|
| K <mark>I</mark> RL   | RF                     | 50 <u>Ω</u> | AC                           | CORREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | SEN       | SE:INT                  | #Avg Typ                            | ALIGN AUT<br>e: RMS | TR                                                                                     | PM Apr 14, 2021<br>ACE 1 2 3 4 5 6<br>YPE M WWWWW | F                   | requency                      |
| PASS                  | Ref 0.00               | 0 dB        | m                            | PNO: Fa<br>IFGain:L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | Atten: 10 |                         |                                     | М                   | lkr1 25.6                                                                              | 68 5 GHz<br>163 dBm                               |                     | Auto Tune                     |
| - Trac                | e 1 Pass               |             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           |                         |                                     |                     |                                                                                        |                                                   |                     | Center Fred                   |
| 30.0                  |                        |             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           |                         |                                     |                     |                                                                                        |                                                   | 15.00               | Start Free                    |
| -40.0                 |                        | الفائد ،    | والبناء والتلاء              | مراجعة المراجع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |           |                         | And and Apple to Apple of the state | J. J. Andrews       | Avertige of all and the strend of a local<br>Transformer and a strend of a strend of a |                                                   | 27.00               | Stop Free                     |
| -60.0                 | Halettyna den gelenen. |             | ntgi <sup>ff</sup> haastaab. | the state of the s |     |           | italig biraya ng birati |                                     |                     |                                                                                        |                                                   | 1.20<br><u>Auto</u> | CF Step<br>0000000 GH:<br>Mar |
| 80.0                  |                        |             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           |                         |                                     |                     |                                                                                        |                                                   |                     | Freq Offse<br>0 Ha            |
| .90.0                 |                        |             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           |                         |                                     |                     |                                                                                        |                                                   | Log                 | Scale Type                    |
| Start 15.0<br>#Res BW |                        |             |                              | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VBW | 3.0 MHz   |                         | s                                   | weep                | Stop 2<br>30.40 ms                                                                     | 27.000 GHz<br>(24001 pts)                         | LUg                 |                               |
| ISG                   |                        |             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           |                         |                                     | ST                  | ATUS                                                                                   |                                                   |                     |                               |

Plot 7-25. Conducted Spurious Plot (LTE Band 41(PC2) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)


| FCC ID: A3LSMF711B  | PCTEST.<br>Proud to be part of @element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                  |         | Page 25 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                   | Portable Handset           |         | Fage 25 01 55                     |
| © 2021 PCTEST       |                                         |                            |         | V2 3/28/2021                      |



# LTE Band 41(PC3)



Plot 7-26. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)



Plot 7-27. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 26 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Fage 20 01 55                     |
| © 2021 PCTEST       |                       |                            |         | V2 3/28/2021                      |

© 2021 PCTEST

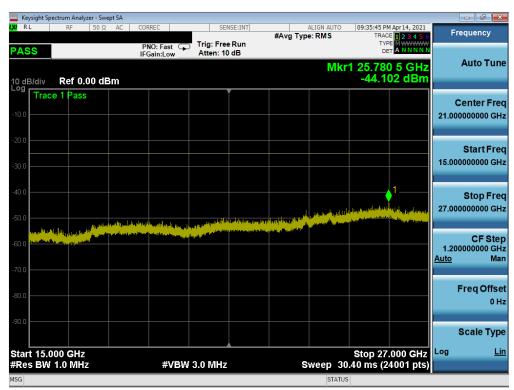
W solve transmission of the second of the se assembly of contents thereof, please contact INFO@PCTEST.COM.



|                      | sight Spectr                    | um Analy                        | zer - Swej | pt SA           |                      |                |                    |         |                            |                |                                                                                                                  |                |                           |             |                           |
|----------------------|---------------------------------|---------------------------------|------------|-----------------|----------------------|----------------|--------------------|---------|----------------------------|----------------|------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|-------------|---------------------------|
| L <mark>XI</mark> RL | -                               | RF                              | 50 Ω       | AC              | CORREC               |                | SE                 | NSE:INT | #Ava                       | ALIGN A        |                                                                                                                  |                | M Apr 14, 2021            | F           | requency                  |
| PAS                  | •                               |                                 |            |                 |                      | ast 🖵          | Trig: Fre          |         |                            | i jpe. i tilit | •                                                                                                                | TYP            |                           |             |                           |
| PAS                  | <u> </u>                        |                                 |            |                 | IFGain:              | Low            | Atten: 10          | dB      |                            |                |                                                                                                                  |                |                           |             | Auto Tune                 |
|                      |                                 |                                 |            |                 |                      |                |                    |         |                            |                | MKM                                                                                                              | 25.81          | 90 GHz<br>67 dBm          |             | / late / alle             |
| 10 dE<br>Log r       |                                 | Ref 0.                          |            | m               |                      |                |                    |         | _                          |                |                                                                                                                  | -40.0          |                           |             |                           |
|                      | Trace                           | 1 Pass                          |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           |             | Center Freq               |
| -10.0                |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           | 21.0        | 00000000 GHz              |
|                      |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           |             |                           |
| -20.0                |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           |             | Otort Eron                |
|                      |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           | 15.0        | Start Freq<br>0000000 GHz |
| -30.0                |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           | 15.00       |                           |
|                      |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           |             |                           |
| -40.0                |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  | (              |                           |             | Stop Freq                 |
| 50.0                 |                                 |                                 |            |                 |                      |                |                    |         |                            | h              | -                                                                                                                | plantie wee    | and a start of the starts | 27.0        | 00000000 GHz              |
| -50.0                | . 4.10                          |                                 | A. A.A.    | alkeler.        | ilde all south       | deservati e e  | أقلعه المربية      |         | a <b>de</b> se de la sella | and a second   | i de la competition de | No. Statistics | and the second second     |             |                           |
| -60.0                | rangegengeren<br>Att is dat die | n de la constant<br>La constant |            | al a the street | والمرونات الأوريالية | and a state of | Call of the second |         |                            |                |                                                                                                                  |                |                           |             | CF Step                   |
| -00.0                |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           | 1.2<br>Auto | 00000000 GHz<br>Man       |
| -70.0                |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           | Auto        | wan                       |
|                      |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           |             |                           |
| -80.0                |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           |             | Freq Offset               |
|                      |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           |             | 0 Hz                      |
| -90.0                |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           |             |                           |
|                      |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           |             | Scale Type                |
| Star                 | t 15.000                        |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  | Stop 27        | .000 GHz                  | Log         | Lin                       |
|                      | BW 1.                           |                                 |            |                 |                      | #VBW           | 3.0 MHz            |         |                            | Sweep          | p 30.4                                                                                                           | 0 ms <u>(2</u> | 4001 pts)                 | -           |                           |
| MSG                  |                                 |                                 |            |                 |                      |                |                    |         |                            |                | STATUS                                                                                                           |                |                           | _           |                           |
|                      |                                 |                                 |            |                 |                      |                |                    |         |                            |                |                                                                                                                  |                |                           |             |                           |

Plot 7-28. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)




Plot 7-29. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

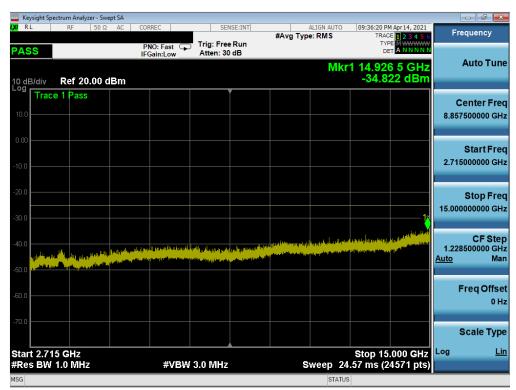
| FCC ID: A3LSMF711B  | PCTEST<br>Proud to be part of @ sterment | PART 27 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|------------------------------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                  | Page 27 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                    | Portable Handset           | Fage 27 01 55                     |
| © 2021 PCTEST       |                                          |                            | V2 3/28/2021                      |



| 🔤 Keysight Spectrum Analyzer - Swept SA |                                                                                          |                                |                                                                                                                                                                                                                                    |                                  |                                               |
|-----------------------------------------|------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------|
| LXIRL RF 50Ω AC                         | CORREC                                                                                   | SENSE:INT                      | ALIGN AL<br>#Avg Type: RMS                                                                                                                                                                                                         |                                  | Frequency                                     |
| PASS                                    | PNO: Fast 🖵<br>IFGain:Low                                                                | Trig: Free Run<br>Atten: 30 dB |                                                                                                                                                                                                                                    | TYPE M WWWW<br>DET A N N N N N   | Auto Tune                                     |
| 10 dB/div Ref 20.00 dBm                 |                                                                                          |                                | N                                                                                                                                                                                                                                  | /kr1 14.814 5 GHz<br>-34.783 dBm | Auto Tune                                     |
| 10.0                                    |                                                                                          |                                |                                                                                                                                                                                                                                    |                                  | Center Freq<br>8.845000000 GHz                |
| -10.0                                   |                                                                                          |                                |                                                                                                                                                                                                                                    |                                  | Start Freq<br>2.690000000 GHz                 |
| -20.0                                   |                                                                                          |                                |                                                                                                                                                                                                                                    |                                  | Stop Freq<br>15.000000000 GHz                 |
| -40.0                                   | an ya ka kata ana kana da aya ka aya<br>Manazar wa kata da kata kata kata kata kata kata |                                | and a standard stand<br>Standard standard stan |                                  | CF Step<br>1.231000000 GHz<br><u>Auto</u> Man |
| -60.0                                   |                                                                                          |                                |                                                                                                                                                                                                                                    |                                  | Freq Offset<br>0 Hz                           |
| -70.0<br>Start 2.690 GHz                |                                                                                          |                                |                                                                                                                                                                                                                                    | Stop 15.000 GHz                  | Scale Type                                    |
| #Res BW 1.0 MHz                         | #VBW                                                                                     | 3.0 MHz                        | Sweep                                                                                                                                                                                                                              | 24.62 ms (24621 pts)             |                                               |
| MSG                                     |                                                                                          |                                |                                                                                                                                                                                                                                    | TATUS                            |                                               |

Plot 7-30. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)




Plot 7-31. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Page 28 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           | Fage 20 01 55                     |
| © 2021 PCTEST       |                       | ·                          | V2 3/28/2021                      |



|                      | ctrum Analyz |                   | ot SA               |                   |                     |                                                                 |                    |      |                       |                  |                                       |                   |                                |
|----------------------|--------------|-------------------|---------------------|-------------------|---------------------|-----------------------------------------------------------------|--------------------|------|-----------------------|------------------|---------------------------------------|-------------------|--------------------------------|
| L <mark>XI</mark> RL | RF           | 50 Ω              | AC                  | CORREC            |                     | SEN                                                             | ISE:INT            | #Ava | ALIGN AL<br>Type: RMS |                  | 2 PM Apr 14, 2021<br>RACE 1 2 3 4 5 6 | F                 | requency                       |
| PASS                 |              |                   |                     | PNO: Fa           | ast 😱<br>.ow        | Trig: Free<br>Atten: 30                                         |                    |      | .,,                   |                  |                                       |                   |                                |
| 10 dB/div            | Ref 20       | .00 di            | Bm                  |                   |                     |                                                                 |                    |      |                       | Mkr1 2.4<br>-40. | 80 0 GHz<br>774 dBm                   |                   | Auto Tune                      |
| Log<br>Trace         | e 1 Pass     |                   |                     |                   |                     |                                                                 |                    |      |                       |                  |                                       |                   | Center Freq<br>3000000 GHz     |
| -10.0                |              |                   |                     |                   |                     |                                                                 |                    |      |                       |                  |                                       | 3                 | Start Freq<br>0.000000 MHz     |
| -20.0                |              |                   |                     |                   |                     |                                                                 |                    |      |                       |                  |                                       | 2.49              | Stop Fred                      |
| -40.0                | a            | و المراجع المراجع | المراجع والمراجع    | والتعراق أرأه وال | last for copiles de | (names) (na kala da pang kalakata)<br>Sana ng Kanang kana sa sa | a, julija postalju |      |                       |                  | 1<br>Alternational Action             | 24<br><u>Auto</u> | CF Step<br>6.600000 MHz<br>Man |
| -50.0                |              |                   | A (for ) of it also |                   |                     |                                                                 |                    |      |                       |                  |                                       |                   | Freq Offset<br>0 Hz            |
| -70.0<br>Start 0.03  | 0.047        |                   |                     |                   |                     |                                                                 |                    |      |                       | Ston             | 2.496 GHz                             | Log               | Scale Type                     |
| #Res BW              |              |                   |                     | #                 | ¢VB₩                | 3.0 MHz                                                         |                    |      | Swee                  |                  | s (4933 pts)                          |                   |                                |
| MSG                  |              |                   |                     |                   |                     |                                                                 |                    |      | ST                    | ATUS             |                                       | _                 |                                |

Plot 7-32. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)



Plot 7-33. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

| FCC ID: A3LSMF711B  | PCTEST<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:                             | EUT Type:                  | Page 29 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                   | Portable Handset           | Fage 29 01 33                     |
| © 2021 PCTEST       |                                         |                            | V2 3/28/2021                      |



| PASS     PNO: Fast<br>IFGain:Low     Trig: Free Run<br>Atten: 10 dB     TRACE     2.34.50<br>TYPE     Frequency       Auto Tune     0 dB/div     Ref 0.00 dBm     0 dE/div     Center Freq<br>21.000000000 GHz     Auto Tune       0 dB/div     Ref 0.00 dBm     0 dE/div     Start Freq<br>10.0     Start Freq<br>10.0     Start Freq<br>15.000000000 GHz       0 dB/div     Ref 0.00 dBm     0 dE/div     Start Freq<br>10.0     Start Freq<br>15.000000000 GHz       0 dB/div     Ref 0.00 dBm     0 dE/div     Start Freq<br>15.000000000 GHz       0 dB/div     Ref 0.00 dBm     0 dE/div     Start Freq<br>15.000000000 GHz       0 dD     1 dE/div     1 dE/div     1 dE/div                         |                |       | trum Ana   | lyzer - Swe |    |                               |                       |          |          |               |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|------------|-------------|----|-------------------------------|-----------------------|----------|----------|---------------|---------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------|
| PRO: Fast<br>(FGain:Low       Trig: Free Run<br>Atten: 10 dB       Mkr1 25,512 5 GHz<br>-45,291 dBm       Auto Tune         0 dB/div       Ref 0.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LXI RL         |       | RF         | 50 Ω        | AC | CORREC                        |                       | SEN      | ISE:INT  |               |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F     | requency                 |
| Call div       Ref 0.00 dBm       Center Freq<br>21.00000000 GHz         Call div       Trace 1 Pass       Center Freq<br>21.00000000 GHz         Call div       Start Freq<br>15.00000000 GHz       Start Freq<br>27.00000000 GHz         Call div       Start Freq<br>15.00000000 GHz       Start Freq<br>27.00000000 GHz         Call div       Start Freq<br>15.00000000 GHz       Start Freq<br>27.0000000 GHz         Start Freq<br>27.0000000 GHz       Start Freq<br>27.0000000 GHz       Start Freq<br>27.0000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PAS            | S     |            |             |    |                               |                       |          |          |               |                     | TY                          | PE M WWWWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                          |
| Trace 1 Pass       Center Freq         100       Center Freq         200       Center Freq         200       Start Freq         300       Start Freq         400       Start Freq         500                                                                                                                                                                                                                                                                              |                | 3/div | Ref 0      | ).00 dE     | 3m |                               |                       |          |          |               | M                   | kr1 25.51<br>-45.2          | 2 5 GHz<br>91 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Auto Tune                |
| 300       Start Freq         400       Start Freq </td <td>-10.0</td> <td>Trace</td> <td>1 Pas</td> <td>S</td> <td></td> <td>•</td>                                                                                             | -10.0          | Trace | 1 Pas      | S           |    |                               |                       |          |          |               |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | •                        |
| 500       Stop Freq         500       Stop 27.000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20.0<br>-30.0 |       |            |             |    |                               |                       |          |          |               |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.00 | Start Freq               |
| 60.0         CF Step           70.0         CF Step           90.0         CF Step <td>-40.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>later to</td> <td>al. al. frage</td> <td></td> <td>naprolestes al Antonio Inst</td> <td></td> <td>27.00</td> <td>Stop Freq<br/>0000000 GHz</td> | -40.0          |       |            |             |    |                               |                       |          | later to | al. al. frage |                     | naprolestes al Antonio Inst |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.00 | Stop Freq<br>0000000 GHz |
| 70.0       1.20000000 GHz         80.0       Freq Offset         90.0       Scale Type         Start 15.000 GHz       Stop 27.000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~~~~           |       | in the set |             |    | da, ka magana<br>Minang kaing | angeregene<br>Planten |          |          |               | الار فالعامين المعر |                             | and the state of t |       | CF Step                  |
| eeuo Hz Stop 27.000 GHz Cog Ling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -70.0          |       |            |             |    |                               |                       |          |          |               |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                          |
| 90.0 Scale Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -80.0          |       |            |             |    |                               |                       |          |          |               |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | -                        |
| Start 15.000 GHz Stop 27.000 GHz Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -90.0          |       |            |             |    |                               |                       |          |          |               |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | UHZ                      |
| Start 15.000 GHz Stop 27.000 GHz Log Lin<br>Res BW 1.0 MHz #VBW 3.0 MHz Sweep 30.40 ms (24001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |       |            |             |    |                               |                       |          |          |               |                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |       |            |             |    |                               | ۶\/B)۸(               | 3.0 MHz  |          |               | woon                | Stop 27                     | .000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Log   | Lin                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #IRC+S         |       |            | 12          |    | +                             | FVDVV                 | 3.0 WIN2 |          |               |                     | `                           | 400 T pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                          |

Plot 7-34. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 30 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Fage 30 01 55                     |
| © 2021 PCTEST       |                       |                            |         | V2 3/28/2021                      |



### 7.4 Band Edge Emissions at Antenna Terminal

### **Test Overview**

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

# The minimum permissible attenuation level for Band 41 is as noted in the Test Notes on the following page.

### Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

### Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW  $\geq$  1% of the emission bandwidth
- 4. VBW > 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points  $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

### Test Setup

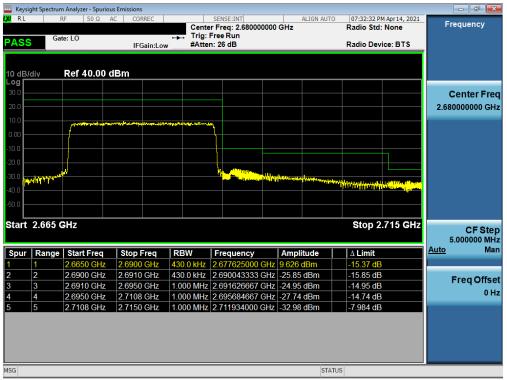
The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-3. Test Instrument & Measurement Setup

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Dogo 21 of 52                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Page 31 of 53                     |
| © 2021 PCTEST       |                       |                            |         | V2 3/28/2021                      |




# Per 27.53(m) for operations in the BRS/EBS bands, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz.

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 22 of 52                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           | Page 32 of 53                     |
| © 2021 PCTEST       |                       |                            | V2 3/28/2021                      |

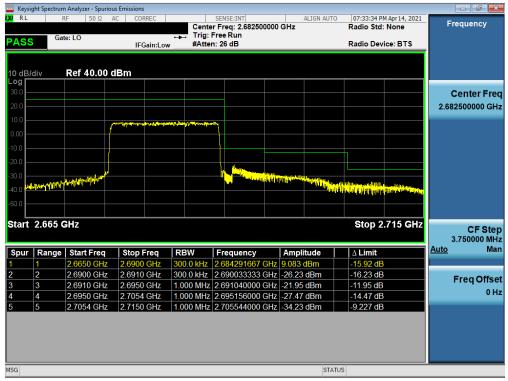


|                            | ectrum Analyzer - Spur   |                            |                         |                                     |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|----------------------------|--------------------------|----------------------------|-------------------------|-------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| RL                         | RF 50 Ω                  | AC CO                      | DRREC                   | Cente                               | SENSE:INT<br>r Freq: 2.50600 | 0000 GHz                                                                                                        | ALIGN AUTO                                                                                                       | 07:29:22 P<br>Radio Std                                                                                          | M Apr 14, 2021<br>: None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frequency       |
| ASS                        | Gate: LO                 |                            |                         | Trig:                               | Free Run<br>1: 26 dB         |                                                                                                                 |                                                                                                                  | Radio Dev                                                                                                        | in DTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| <u> </u>                   |                          | , IF                       | Gain:Low                | #Atter                              | 1: 20 00                     |                                                                                                                 |                                                                                                                  | Radio Dev                                                                                                        | ICE: DIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
|                            |                          |                            |                         |                                     |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 0 dB/div<br>.og            | Ref 40.00                | dBm                        |                         |                                     |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 30.0                       |                          |                            |                         |                                     |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center Fred     |
| 20.0                       |                          |                            |                         |                                     |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.506000000 GHz |
| 10.0                       |                          |                            |                         |                                     |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.300000000 GHz |
|                            |                          |                            |                         |                                     | pharman                      | alaran de la parte de la pa | and the second | and the second | and the state of t |                 |
| 0.00                       |                          |                            |                         |                                     |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 10.0                       |                          |                            |                         |                                     |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 20.0                       |                          |                            |                         |                                     |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 30.0                       |                          |                            |                         | (Discontinues of the last           |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| 40.0 <mark>minihihi</mark> | waget White warman       | ****                       | - Arristan (Arrista)    | and the second second               | <u></u>                      |                                                                                                                 |                                                                                                                  |                                                                                                                  | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| 50.0                       |                          |                            |                         |                                     |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                            |                          |                            |                         |                                     |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| Start 2.4                  | 75 GHz                   |                            |                         |                                     |                              |                                                                                                                 |                                                                                                                  | Stop 2                                                                                                           | .517 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CF Step         |
|                            |                          |                            |                         |                                     |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                            |                          |                            |                         |                                     |                              |                                                                                                                 |                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.000000 MHz    |
| Spur   Ra                  | nge   Start Freq         | Stop                       | Freq                    | RBW                                 | Frequency                    | Amp                                                                                                             | litude                                                                                                           | ∆ Limit                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 1                          | 2.4750 GHz               | 2.4905                     |                         | 1.000 MHz                           | 2.489673333                  | GHz -31.2                                                                                                       | 6 dBm                                                                                                            | ∆ Limit<br>-6.265 dE                                                                                             | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| 1<br>2 2                   | 2.4750 GHz<br>2.4905 GHz | 2.4905<br>2.4950           | 5 GHz<br>0 GHz          | 1.000 MHz<br>1.000 MHz              | 2.489673333<br>2.494377500   | GHz -31.2<br>GHz -28.4                                                                                          | 6 dBm<br>4 dBm                                                                                                   | -6.265 dE<br>-15.44 dE                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| 1                          | 2.4750 GHz               | 2.4905<br>2.4950<br>2.4960 | 5 GHz<br>0 GHz<br>0 GHz | 1.000 MHz<br>1.000 MHz<br>430.0 kHz | 2.489673333                  | GHz -31.2<br>GHz -28.4<br>GHz -29.7                                                                             | 6 dBm<br>4 dBm<br>6 dBm                                                                                          | -6.265 dE                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |

Plot 7-35. Lower ACP Plot (LTE Band 41(PC2) - 20MHz QPSK - Full RB)



Plot 7-36. Upper ACP Plot (LTE Band 41(PC2) - 20MHz QPSK – Full RB)


| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Dogo 22 of 52                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Page 33 of 53                     |
| © 2021 PCTEST       | •                     | ·                          |         | V2 3/28/2021                      |

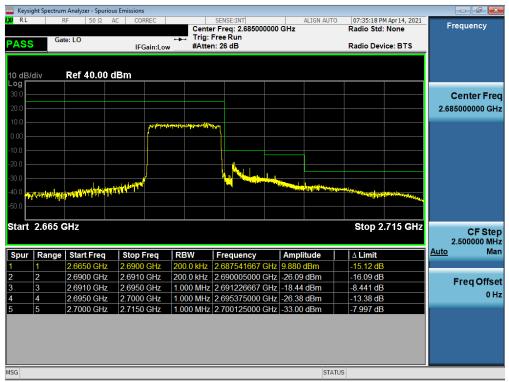
© 2021 PCTEST



|               | ectrum Analyz   |             |                | ons      |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             |                    |
|---------------|-----------------|-------------|----------------|----------|-------|------------------------|---------|------------------------------------------|------|----------------------|------------------------|-----------------|----------------------|--------------------------|-------------|--------------------|
| LXU RL        | RF<br>Gate: LO  | 50 Ω        | AC (           | CORREC   |       | -                      |         | 1: 2.50350                               | 0000 |                      | ALIGN AUT              |                 | 7:33:17 P<br>dio Std | M Apr 14, 2021<br>: None |             | Frequency          |
| PASS          | Gale. EO        |             |                | IFGain:L | .ow   | #Atte                  | n: 26 d | B                                        |      |                      |                        | Ra              | dio Dev              | ice: BTS                 |             |                    |
|               |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             |                    |
| 10 dB/div     | Ref             | 40.00       | dBm            |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             |                    |
| Log<br>30.0   |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             | <b>Center Freq</b> |
| 20.0          |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          | 2.5         | 03500000 GHz       |
| 10.0          |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             |                    |
| 0.00          |                 |             |                |          |       |                        |         | nan nan nan na na na na na na na na na n |      | ₩ <del>₩</del> ₩₩₩₩₩ | ALCON (STORY ) and the | al market and a | ł                    |                          |             |                    |
|               |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 | ţ                    |                          |             |                    |
| -10.0         |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             |                    |
| -20.0         |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             |                    |
| -30.0         |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 | N.,                  |                          |             |                    |
| -40.0 <b></b> | it in which the | n weith the | delare pietelo | - Helena |       | and the second line of | 4       |                                          |      |                      |                        |                 | Jher                 | (Wielsonne) provide      |             |                    |
| -50.0         | dan u sa        |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             |                    |
|               |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             |                    |
| Start 2.4     | 75 GHz          |             |                |          |       |                        |         |                                          |      |                      |                        | ş               | Stop 2               | 2.517 GHz                |             | CF Step            |
|               |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             | 3.750000 MHz       |
| Spur   Ra     | nge Star        | t Freq      | Sto            | p Freq   | R     | BW                     | Free    | quency                                   |      | Ampl                 | itude                  | Δ               | Limit                |                          | <u>Auto</u> | Man                |
| 1 1           | 2.47            | 50 GHz      | 2.49           | 05 GHz   | . 1.0 | 000 MHz                | 2.48    | 4041667                                  | GHz  | -33.69               | dBm                    | -8              | .686 dE              | 3                        |             |                    |
| 2 2           | 2.490           | )5 GHz      | 2.49           | 50 GHz   |       |                        |         | 4632500                                  |      |                      |                        | -1              | 5.88 dE              | 3                        |             | <b>Freq Offset</b> |
| 3 3           |                 | 50 GHz      | 2.49           | 60 GHz   |       |                        |         | 5993333                                  |      |                      |                        | -1              | 8.35 dE              | 3                        |             | •                  |
| 4 4           | 2.496           | 60 GHz      | 2.51           | 70 GHz   | 30    | 0.0 kHz                | 2.50    | 55 <mark>2000</mark> 0                   | GHz  | 9.313                | dBm                    | -1              | 5.69 dE              | 3                        |             | 0 Hz               |
|               |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             |                    |
|               |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             |                    |
|               |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             |                    |
|               |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             |                    |
|               |                 |             |                |          |       |                        |         |                                          |      |                      |                        |                 |                      |                          |             |                    |
| MSG           |                 |             |                |          |       |                        |         |                                          |      |                      | STA                    | TUS             |                      |                          |             |                    |
|               |                 |             |                |          |       |                        |         |                                          | _    |                      |                        |                 |                      |                          | _           |                    |

Plot 7-37. Lower ACP Plot (LTE Band 41(PC2) - 15MHz QPSK - Full RB)



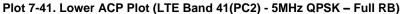

Plot 7-38. Upper ACP Plot (LTE Band 41(PC2) - 15MHz QPSK - Full RB)

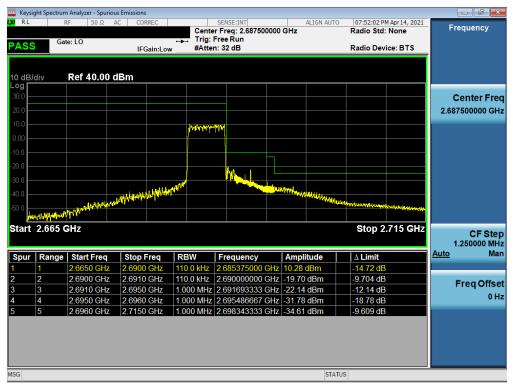
| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 34 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Fage 34 01 55                     |
| © 2021 PCTEST       | ·                     | ·                          |         | V2 3/28/2021                      |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |            |                                          |                        |                        |          |                          | ght Spectrun    |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------|------------------------------------------|------------------------|------------------------|----------|--------------------------|-----------------|---------------------|
| SENSE:INT ALIGN AUTO 07:54:57 PM Apr14, 2021<br>enter Freq: 2.501000000 GHz Radio Std: None Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | LIGN AUTO  |                                          |                        | CORREC                 | AC       | RF 50 Ω                  | F               | RL                  |
| enter Freq: 2.501000000 GHz Radio Std: None Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Radio Std:                        |            |                                          |                        |                        |          | 10                       |                 |                     |
| Atten: 32 dB Radio Device: BTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Radio Devi                        |            |                                          |                        | IFGain:Low             |          | te: LO                   | Ga              | ASS                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |            |                                          |                        |                        |          |                          |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |            |                                          |                        |                        |          | B-6 40 00                |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |            |                                          |                        | m                      | 0 dE     | Ref 40.00                | div             | odB/<br>og <b>Γ</b> |
| Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |            |                                          |                        |                        |          |                          |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |            |                                          |                        |                        |          |                          |                 |                     |
| 2.50100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |            |                                          |                        |                        |          |                          |                 | 0.0                 |
| A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | -und       | and the approximation                    |                        |                        |          |                          |                 | 0.0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |            |                                          |                        |                        |          |                          |                 | .00 —               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |            |                                          |                        |                        |          |                          |                 | 0.0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |            |                                          |                        |                        |          |                          |                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | ļ          | 1                                        |                        |                        |          |                          |                 | 0.0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | - k        |                                          | and the second         | and he setting         |          |                          |                 | 0.0                 |
| Tring we have a second se | a the work of the second          | "T" HIM    |                                          |                        | HITTITIC CONTRACTOR    | al linn  | March 1 and 1 and 1      |                 | 0.0                 |
| hand have have here and here a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |            |                                          |                        |                        |          |                          | www.eeeeeeeeeee | 0.0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |            |                                          |                        |                        |          |                          |                 | 0.0                 |
| Stop 2.517 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stop 2.                           |            |                                          |                        |                        |          | GH7                      | 2.475 (         | tart                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |            |                                          |                        |                        |          |                          |                 |                     |
| Stop 2.517 SH2 CF S<br>516.20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |            |                                          |                        |                        |          |                          |                 | tait                |
| CF S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | ude        | Frequency A                              | RBW                    | Stop Freq              | q        | Start Freq               | Range           | spur                |
| 516.200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ∆ Limit                           |            |                                          |                        | Stop Freq<br>.4905 GHz | _        | Start Freq<br>2.4750 GHz | Range           |                     |
| Frequency         Amplitude         Δ Limit           AHz         2.490500000 GHz         -31.01 dBm         -6.009 dB           4Hz         2.40377000 GHz         -23.47 dBm         -10.47 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ Limit                           | dBm        | 2.490500000 GHz -3                       | 1.000 MHz              |                        | łz       |                          |                 |                     |
| Frequency         Amplitude         Δ Limit         Auto           HHz         2.490500000 GHz         -31.01 dBm         -6.009 dB         -6.009 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Δ Limit<br>-6.009 dB<br>-10.47 dB | dBm<br>dBm | 2.490500000 GHz -3<br>2.493770000 GHz -2 | 1.000 MHz<br>1.000 MHz | .4905 GHz              | iz<br>Iz | 2.4750 GHz               | 1               | spur                |

Plot 7-39. Lower ACP Plot (LTE Band 41(PC2) - 10MHz QPSK - Full RB)




| FCC ID: A3LSMF711B  | PCTEST<br>Prout to be part of @element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|----------------------------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                            | EUT Type:                  |         | Dage 25 of 52                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                  | Portable Handset           |         | Page 35 of 53                     |
| © 2021 PCTEST       | •                                      | ·                          |         | V2 3/28/2021                      |



| Og         Operation         Oper |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pectrum       | n Analyzer - Spu                            | rious Emissi              | ions             |              |                  |                            |                             |                                 |                 |                                             |                     | - F                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------|---------------------------|------------------|--------------|------------------|----------------------------|-----------------------------|---------------------------------|-----------------|---------------------------------------------|---------------------|-----------------------------|
| O dB/div         Ref 40.00 dBm           90         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           00         90           100         90           11         2.4750 GHz           2.4950 GHz         1.000 MHz           2.49950 GHz         2.4990 GHz           11         1.000 Hz           2.494955000 GHz         2.494955000 GHz           11         1.000 Hz           2.49495000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                             |                           |                  |              | Trig: F          | r Freq: 2.4985<br>Free Run | 00000                       |                                 | IGN AUTO        | Radio Sto                                   | : None              | Frequency                   |
| Stop 2.475 GHz         Stop 2.517 GHz         CF Stop 1.250000 Mi           Spur         Range         Start Freq         Stop Freq         RBW         Frequency         Amplitude         Δ Limit         Δ Limit           1         2.4750 GHz         2.4905 GHz         1.000 MHz         2.489983333 GHz         -30.84 dBm         -5.837 dB         Δ Limit         Δ Limit         Mi           2         2.4905 GHz         2.4950 GHz         1.000 MHz         2.49995000 GHz         -27.10 dBm         -14.10 dB         Freq Offs           3         2.4950 GHz         2.4960 GHz         110.0 kHz         2.49600000 GHz         -19.94 dBm         -6.935 dB         Freq Offs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 dB/div<br>0 g<br>0 0.0<br>20.0<br>10.0<br>0.00<br>10.0<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. |               |                                             |                           |                  |              | مرجعه الا        |                            |                             | htter                           | M               |                                             |                     |                             |
| Spur         Range         Start Freq         Stop Freq         RBW         Frequency         Amplitude         ∆ Limit         Auto         M           1         2.4750 GHz         2.4905 GHz         1.000 MHz         2.499983333 GHz         -30.84 dBm         -5.837 dB         -5.837 dB         -14.10 dB         Freq Offs           2         2.4905 GHz         2.4960 GHz         1.000 MHz         2.494955000 GHz         -27.10 dBm         -14.10 dB         Freq Offs           3         2.4950 GHz         2.4960 GHz         110.0 kHz         2.496000000 GHz         -19.94 dBm         -6.935 dB         -14.10 dB                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                             |                           | Mark I           |              |                  |                            |                             |                                 | 1.1.1.1.1.1.1   | Stand Street                                |                     |                             |
| 1         2.4750 GHz         2.4905 GHz         1.000 MHz         2.489983333 GHz         -30.84 dBm         -5.837 dB           2         2.4905 GHz         2.4950 GHz         1.000 MHz         2.494955000 GHz         -27.10 dBm         -14.10 dB         Freq Offs           3         2.4950 GHz         2.4960 GHz         110.0 kHz         2.496000000 GHz         -19.94 dBm         -6.935 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | ang the second second                       |                           |                  |              |                  |                            |                             |                                 |                 | Stop 2                                      | 2.517 GHz           | CFS                         |
| 2         2.4905 GHz         2.4950 GHz         1.000 MHz         2.494955000 GHz         -27.10 dBm         -14.10 dB         Freq Offs           3         2.4950 GHz         2.4960 GHz         110.0 kHz         2.49600000 GHz         -19.94 dBm         -6.935 dB         Freq Offs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | start 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 475 G         | GHz                                         |                           | n Fred           | IRB          | W                | Frequency                  |                             |                                 |                 | Stop 2                                      | 2.517 GHz           | 1.250000 N                  |
| 3 2.4950 GHz 2.4960 GHz 110.0 kHz 2.49600000 GHz -19.94 dBm -6.935 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | start 2.4<br>Spur   R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 475 G<br>ange | GHz<br>Start Freq                           | Sto                       | <u> </u>         |              |                  |                            |                             | Amplitu                         | ıde             | Stop 2                                      | 2.517 GHZ           | 1.250000 N                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | start 2.4<br>Spur   R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 475 G<br>ange | GHz<br>Start Freq<br>2.4750 GH              | 1 Sto<br>z 2.49           | 05 GHz           | 1.00         | 0 MHz            | 2.489983333                | 3 GHz                       | Amplitu<br>-30.84 d             | ude Bm          | Stop 2<br>∆ Limit<br>-5.837 dl              | 2.51 <i>1</i> GHz   | 1.250000 N<br><u>Auto</u> N |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | start 2.<br>Spur   R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 475 C         | GHz<br>Start Freq<br>2.4750 GH<br>2.4905 GH | r Sto<br>z 2.49<br>z 2.49 | 05 GHz<br>50 GHz | 1.00<br>1.00 | 00 MHz<br>00 MHz | 2.489983333<br>2.494955000 | <mark>3 GHz</mark><br>) GHz | Amplitu<br>-30.84 d<br>-27.10 d | ude<br>Bm<br>Bm | Stop 2<br>△ Limit<br>-5.837 dl<br>-14.10 dl | 2.51/ GHZ<br>B<br>B | 1.250000 N<br><u>Auto</u> N |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Start 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 475 G         | GHz                                         |                           | p Freq           | RB           | W                | Frequency                  |                             |                                 |                 | Stop 2                                      | 2.517 GHz           | 1.250000                    |








| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 36 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         |                                   |
| © 2021 PCTEST       |                       |                            |         | V2 3/28/2021                      |



| RL                                     | RF                              | 50 Ω                                      | ous Emission            | ns<br>DRREC             |                                     | SENSE:INT                                 |                                     | ALIGN AUTO              | 10:28:20                                                                                                        | PM Apr 14, 2021                                                                                                  |                                              |
|----------------------------------------|---------------------------------|-------------------------------------------|-------------------------|-------------------------|-------------------------------------|-------------------------------------------|-------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                                        | NF                              | 20.22                                     | AL LL                   | JAREC                   | Cente                               | r Freg: 2.50600                           | 0000 GHz                            | ALIGN AUTO              | Radio Ste                                                                                                       |                                                                                                                  | Frequency                                    |
| ASS                                    | Gate: LC                        | )                                         |                         |                         |                                     | Free Run                                  |                                     |                         |                                                                                                                 |                                                                                                                  |                                              |
| A55                                    |                                 |                                           | IF                      | Gain:Lov                | w #Atter                            | n: 26 dB                                  |                                     |                         | Radio De                                                                                                        | vice: BTS                                                                                                        |                                              |
|                                        |                                 |                                           |                         |                         |                                     |                                           |                                     |                         |                                                                                                                 |                                                                                                                  |                                              |
| 0 dB/div                               | Ref                             | f 40.00                                   | dBm                     |                         |                                     |                                           |                                     |                         |                                                                                                                 |                                                                                                                  |                                              |
| -og                                    |                                 |                                           |                         |                         |                                     |                                           |                                     |                         |                                                                                                                 |                                                                                                                  |                                              |
| 30.0                                   |                                 |                                           |                         |                         |                                     |                                           |                                     |                         |                                                                                                                 |                                                                                                                  | Center Fre                                   |
| 20.0                                   |                                 |                                           |                         |                         |                                     |                                           |                                     |                         |                                                                                                                 |                                                                                                                  | 2.506000000 GI                               |
| 10.0                                   |                                 |                                           |                         |                         |                                     |                                           |                                     |                         |                                                                                                                 |                                                                                                                  |                                              |
| 0.00                                   |                                 |                                           |                         |                         |                                     | Margarette                                | *****                               |                         | and the state of the |                                                                                                                  |                                              |
|                                        |                                 |                                           |                         |                         |                                     |                                           |                                     |                         |                                                                                                                 |                                                                                                                  |                                              |
| 10.0                                   |                                 |                                           |                         |                         |                                     |                                           |                                     |                         |                                                                                                                 |                                                                                                                  |                                              |
| 20.0                                   |                                 |                                           |                         |                         |                                     |                                           |                                     |                         |                                                                                                                 |                                                                                                                  |                                              |
| 30.0                                   |                                 |                                           |                         |                         | _                                   |                                           |                                     |                         |                                                                                                                 |                                                                                                                  |                                              |
| 40.0                                   |                                 |                                           | ي بالالار               | www.walli               |                                     | " <b></b> "                               |                                     |                         |                                                                                                                 | WWW.                                                                                                             |                                              |
| 50.0                                   |                                 | ALC: NOT                                  |                         |                         |                                     |                                           |                                     |                         |                                                                                                                 | and the second |                                              |
| .0.0                                   |                                 |                                           |                         |                         |                                     |                                           |                                     |                         |                                                                                                                 |                                                                                                                  |                                              |
|                                        |                                 |                                           |                         |                         |                                     |                                           |                                     |                         |                                                                                                                 |                                                                                                                  |                                              |
| start 2.4                              | 471 GHz                         |                                           |                         |                         |                                     |                                           |                                     |                         | Stop                                                                                                            | 2.521 GHz                                                                                                        |                                              |
| start 2.4                              | 471 GHz                         |                                           |                         |                         |                                     |                                           |                                     |                         | Stop                                                                                                            | 2.521 GHz                                                                                                        |                                              |
|                                        |                                 |                                           | Stop                    | Frog                    |                                     | Frequency                                 | Amr                                 | litudo                  |                                                                                                                 | 2.521 GHz                                                                                                        | CF Ste<br>515.700000 MH<br>Auto Ma           |
| Spur   R                               | ange   Sta                      | art Freq                                  | Stop                    |                         | RBW                                 | Frequency                                 |                                     | litude                  | ∆ Limit                                                                                                         |                                                                                                                  | 515.700000 Mi                                |
| Spur Ra                                | ange Sta                        | art Freq<br>710 GHz                       | 2.490                   | 5 GHz                   | 1.000 MHz                           | 2.490402500                               | GHz -36.6                           | 2 dBm                   | Δ Limit<br>-11.62 d                                                                                             | B                                                                                                                | 515.700000 Mł<br><u>Auto</u> Ma              |
| <b>Spur   R</b> a                      | ange Sta<br>2.4<br>2.4          | a <b>rt Freq</b><br>710 GHz<br>905 GHz    | 2.490<br>2.495          | 5 GHz<br>0 GHz          | 1.000 MHz<br>1.000 MHz              | 2.490402500<br>2.494767500                | GHz -36.6<br>GHz -33.9              | 2 dBm<br>7 dBm          | ∆ Limit<br>-11.62 d<br>-20.97 d                                                                                 | B<br>B                                                                                                           | 515.700000 Mł<br><u>Auto</u> Ma              |
| <b>Spur   R</b> a<br>  1<br>2 2<br>3 3 | ange Sta<br>2.4<br>2.49<br>2.49 | art Freq<br>710 GHz<br>905 GHz<br>950 GHz | 2.490<br>2.495<br>2.496 | 5 GHz<br>0 GHz<br>0 GHz | 1.000 MHz<br>1.000 MHz<br>430.0 kHz | 2.490402500<br>2.494767500<br>2.495513333 | GHz -36.6<br>GHz -33.9<br>GHz -34.5 | 2 dBm<br>7 dBm<br>8 dBm | ∆ Limit<br>-11.62 d<br>-20.97 d<br>-21.58 d                                                                     | <mark>B</mark><br>B<br>B                                                                                         | 515.700000 Mi                                |
| <b>Spur   R</b><br>1 1<br>2 2<br>3 3   | ange Sta<br>2.4<br>2.49<br>2.49 | a <b>rt Freq</b><br>710 GHz<br>905 GHz    | 2.490<br>2.495<br>2.496 | 5 GHz<br>0 GHz          | 1.000 MHz<br>1.000 MHz<br>430.0 kHz | 2.490402500<br>2.494767500                | GHz -36.6<br>GHz -33.9<br>GHz -34.5 | 2 dBm<br>7 dBm<br>8 dBm | ∆ Limit<br>-11.62 d<br>-20.97 d                                                                                 | <mark>B</mark><br>B<br>B                                                                                         | 515.700000 Mi<br><u>Auto</u> Ma<br>Freq Offs |
| <b>Spur   R</b> a<br>  1<br>2 2<br>3 3 | ange Sta<br>2.4<br>2.49<br>2.49 | art Freq<br>710 GHz<br>905 GHz<br>950 GHz | 2.490<br>2.495<br>2.496 | 5 GHz<br>0 GHz<br>0 GHz | 1.000 MHz<br>1.000 MHz<br>430.0 kHz | 2.490402500<br>2.494767500<br>2.495513333 | GHz -36.6<br>GHz -33.9<br>GHz -34.5 | 2 dBm<br>7 dBm<br>8 dBm | ∆ Limit<br>-11.62 d<br>-20.97 d<br>-21.58 d                                                                     | <mark>B</mark><br>B<br>B                                                                                         | 515.700000 Mł<br><u>Auto</u> Ma<br>Freq Offs |
| <b>Spur   R</b> a<br>  1<br>2 2<br>3 3 | ange Sta<br>2.4<br>2.49<br>2.49 | art Freq<br>710 GHz<br>905 GHz<br>950 GHz | 2.490<br>2.495<br>2.496 | 5 GHz<br>0 GHz<br>0 GHz | 1.000 MHz<br>1.000 MHz<br>430.0 kHz | 2.490402500<br>2.494767500<br>2.495513333 | GHz -36.6<br>GHz -33.9<br>GHz -34.5 | 2 dBm<br>7 dBm<br>8 dBm | ∆ Limit<br>-11.62 d<br>-20.97 d<br>-21.58 d                                                                     | <mark>B</mark><br>B<br>B                                                                                         | 515.700000 Mł<br><u>Auto</u> Ma<br>Freq Offs |
| <b>Spur   R</b> a<br>  1<br>2 2<br>3 3 | ange Sta<br>2.4<br>2.49<br>2.49 | art Freq<br>710 GHz<br>905 GHz<br>950 GHz | 2.490<br>2.495<br>2.496 | 5 GHz<br>0 GHz<br>0 GHz | 1.000 MHz<br>1.000 MHz<br>430.0 kHz | 2.490402500<br>2.494767500<br>2.495513333 | GHz -36.6<br>GHz -33.9<br>GHz -34.5 | 2 dBm<br>7 dBm<br>8 dBm | ∆ Limit<br>-11.62 d<br>-20.97 d<br>-21.58 d                                                                     | <mark>B</mark><br>B<br>B                                                                                         | 515.700000 Mł<br><u>Auto</u> Ma<br>Freq Offs |
| <b>Spur   R</b> a<br>  1<br>2 2<br>3 3 | ange Sta<br>2.4<br>2.49<br>2.49 | art Freq<br>710 GHz<br>905 GHz<br>950 GHz | 2.490<br>2.495<br>2.496 | 5 GHz<br>0 GHz<br>0 GHz | 1.000 MHz<br>1.000 MHz<br>430.0 kHz | 2.490402500<br>2.494767500<br>2.495513333 | GHz -36.6<br>GHz -33.9<br>GHz -34.5 | 2 dBm<br>7 dBm<br>8 dBm | ∆ Limit<br>-11.62 d<br>-20.97 d<br>-21.58 d                                                                     | <mark>B</mark><br>B<br>B                                                                                         | 515.700000 Mł<br><u>Auto</u> Ma<br>Freq Offs |
| Spur   Ra<br>1<br>2 2<br>3 3           | ange Sta<br>2.4<br>2.49<br>2.49 | art Freq<br>710 GHz<br>905 GHz<br>950 GHz | 2.490<br>2.495<br>2.496 | 5 GHz<br>0 GHz<br>0 GHz | 1.000 MHz<br>1.000 MHz<br>430.0 kHz | 2.490402500<br>2.494767500<br>2.495513333 | GHz -36.6<br>GHz -33.9<br>GHz -34.5 | 2 dBm<br>7 dBm<br>8 dBm | ∆ Limit<br>-11.62 d<br>-20.97 d<br>-21.58 d                                                                     | <mark>B</mark><br>B<br>B                                                                                         | 515.700000 Mi<br><u>Auto</u> Ma<br>Freq Offs |

Plot 7-43. Lower ACP Plot (LTE Band 41(PC3) - 20MHz QPSK - Full RB)



#### Plot 7-44. Upper ACP Plot (LTE Band 41(PC3) - 20MHz QPSK - Full RB)

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Dogo 27 of 52                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Page 37 of 53                     |
| © 2021 PCTEST       | •                     | •                          |         | V2 3/28/2021                      |

© 2021 PCTEST



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                                                             | ous Emissio             | ins                        |                                     |                                                 |                                        |                                           |                                                                                                                 |                                 |                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|-------------------------|----------------------------|-------------------------------------|-------------------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|
| <mark>0</mark> RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RF                                   | 50 Ω                                                        | AC C                    | ORREC                      |                                     | SENSE:INT<br>er Freq: 2.503500<br>Free Run      | 0000 GHz                               | ALIGN AUTO                                | 10:27:42<br>Radio Sto                                                                                           | PM Apr 14, 2021<br>d: None      | Frequency                                    |
| PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gate: I                              | LO                                                          |                         | FGain:Lo                   |                                     | n: 26 dB                                        |                                        |                                           | Radio De                                                                                                        | vice: BTS                       |                                              |
| I0 dB/div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R                                    | ef 40.00                                                    | dBm                     |                            |                                     |                                                 |                                        |                                           |                                                                                                                 |                                 |                                              |
| .og<br>30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                                             |                         |                            |                                     |                                                 |                                        |                                           |                                                                                                                 |                                 | O and an Em                                  |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                                             |                         |                            |                                     |                                                 |                                        |                                           |                                                                                                                 |                                 | Center Fre                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                                                             |                         |                            |                                     |                                                 |                                        |                                           |                                                                                                                 |                                 | 2.503500000 GH                               |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                                             |                         |                            |                                     | municant                                        |                                        | al an | and the state of the |                                 |                                              |
| 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                                             |                         |                            |                                     |                                                 |                                        |                                           |                                                                                                                 |                                 |                                              |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                                             |                         |                            |                                     |                                                 |                                        |                                           |                                                                                                                 |                                 |                                              |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                                             |                         |                            |                                     |                                                 |                                        |                                           |                                                                                                                 |                                 |                                              |
| 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                                             |                         |                            |                                     |                                                 |                                        |                                           | _                                                                                                               | 1                               |                                              |
| 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      | لافعاد                                                      | r parte                 |                            | <b>*****</b>                        | <u> </u>                                        |                                        |                                           |                                                                                                                 | T-shelling the                  |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and the state of the state           |                                                             |                         |                            |                                     |                                                 |                                        |                                           |                                                                                                                 |                                 |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and the states                       |                                                             |                         |                            |                                     |                                                 |                                        |                                           |                                                                                                                 | · · ·                           |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                                                             |                         |                            |                                     |                                                 |                                        |                                           | Stop 2                                                                                                          | 2.515 GHz                       |                                              |
| start 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 477 GH                               | Iz                                                          | Stor                    | Freq                       | RBW                                 | Frequency                                       | Ampl                                   | itude                                     |                                                                                                                 |                                 | 515.700000 MH                                |
| start 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 477 GH<br>ange   S                   |                                                             |                         | o Freq<br>)5 GHz           |                                     | Frequency                                       | Ampl                                   |                                           | Stop 2                                                                                                          | 2.515 GHz                       | 515.700000 MH                                |
| Start 2.4<br>Spur   Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 477 GH<br>ange S                     | lz<br>Start Freq                                            | 2.490                   |                            | 1.000 MHz                           |                                                 | GHz -35.43                             | dBm                                       | ∆ Limit                                                                                                         | 2.515 GHz<br>B                  | 515.700000 MH<br><u>Auto</u> Ma              |
| Start         2.4           Spur         Rational Rationa Rational Rational Rational Rati | 477 GH<br>ange   S<br>2.<br>2.<br>2. | <b>Iz</b><br>Start Freq<br>4773 GHz<br>4905 GHz<br>4950 GHz | 2.490<br>2.495<br>2.496 | 05 GHz<br>50 GHz<br>50 GHz | 1.000 MHz<br>1.000 MHz<br>300.0 kHz | 2.490190833 (<br>2.495000000 (<br>2.495936667 ( | GHz -35.43<br>GHz -34.04<br>GHz -35.05 | dBm<br>dBm<br>dBm                         | Δ Limit<br>-10.43 d<br>-21.04 d                                                                                 | <b>2.515 GHz</b><br>B<br>B<br>B | FreqOffse                                    |
| spur   Ra<br>2<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 477 GH<br>ange   S<br>2.<br>2.<br>2. | <b>Iz</b><br>Start Freq<br>4773 GHz<br>4905 GHz             | 2.490<br>2.495<br>2.496 | 05 GHz<br>50 GHz           | 1.000 MHz<br>1.000 MHz<br>300.0 kHz | 2.490190833 (<br>2.495000000 (                  | GHz -35.43<br>GHz -34.04<br>GHz -35.05 | dBm<br>dBm<br>dBm                         | Δ Limit<br>-10.43 d                                                                                             | <b>2.515 GHz</b><br>B<br>B<br>B | 515.700000 MH<br><u>Auto</u> Ma<br>Freq Offs |
| Spur   Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 477 GH<br>ange   S<br>2.<br>2.<br>2. | <b>Iz</b><br>Start Freq<br>4773 GHz<br>4905 GHz<br>4950 GHz | 2.490<br>2.495<br>2.496 | 05 GHz<br>50 GHz<br>50 GHz | 1.000 MHz<br>1.000 MHz<br>300.0 kHz | 2.490190833 (<br>2.495000000 (<br>2.495936667 ( | GHz -35.43<br>GHz -34.04<br>GHz -35.05 | dBm<br>dBm<br>dBm                         | Δ Limit<br>-10.43 d<br>-21.04 d                                                                                 | <b>2.515 GHz</b><br>B<br>B<br>B | 515.700000 MH<br><u>Auto</u> Ma              |

Plot 7-45. Lower ACP Plot (LTE Band 41(PC3) - 15MHz QPSK - Full RB)



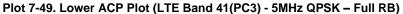


| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Dage 20 of 52                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Page 38 of 53                     |
| © 2021 PCTEST       | •                     | •                          |         | V2 3/28/2021                      |



|                  | ght Spectrum | n Analyzer - Spur | ious Emissio    | ns       |                       |                                                     |                     |                                                                                                                   |                                     |                   |                               |
|------------------|--------------|-------------------|-----------------|----------|-----------------------|-----------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------|-------------------------------|
| M RL             |              | kF 50 Ω<br>te: LO |                 | DRREC    | Trig:                 | SENSE:INT<br>r Freq: 2.5010<br>Free Run<br>h: 26 dB | 00000 G             | ALIGN AUTO                                                                                                        | 10:25:54 F<br>Radio Sto<br>Radio De |                   | Frequency                     |
| 10 dB/d          | div          | Ref 40.00         |                 | Gain:Lov |                       |                                                     |                     |                                                                                                                   |                                     |                   |                               |
| 30.0 —<br>20.0 — |              |                   |                 |          |                       |                                                     |                     |                                                                                                                   |                                     |                   | Center Free<br>2.501000000 GH |
| 10.0 —<br>0.00 — |              |                   |                 |          |                       | Augulation of                                       | <b>ire</b> ryayooli | hand the second | +/****                              |                   |                               |
| -10.0            |              |                   |                 |          |                       |                                                     |                     |                                                                                                                   |                                     |                   |                               |
| 40.0             | ter territal |                   | and an distance |          | and the second second |                                                     |                     |                                                                                                                   |                                     | When Britting and |                               |
| Start            | 2.484 0      | GHz               |                 |          |                       |                                                     |                     |                                                                                                                   | Stop 2                              | 2.509 GHz         | CF Ste<br>515.700000 MH       |
| Spur             | Range        | Start Freq        | Stop            | Freq     | RBW                   | Frequency                                           | 1                   | Amplitude                                                                                                         | ∆ Limit                             |                   | <u>Auto</u> Ma                |
|                  | 1            | 2.4835 GHz        | 2.490           | 5 GHz    | 1.000 MHz             | 2.48928666                                          | 7 GHz 🗔             | 31.06 dBm                                                                                                         | -6.062 dl                           | 3                 |                               |
|                  | 2            | 2.4905 GHz        | 2.495           | 0 GHz    | 1.000 MHz             | 2.49429500                                          | ) GHz 🟒             | 26.91 dBm                                                                                                         | -13.91 dl                           | 3                 | Freq Offse                    |
| 2                | 0            | 2.4950 GHz        | 2.496           | 0 GHz    | 200.0 kHz             | 2.49583666                                          | 7 GHz 🖃             | 31.59 dBm                                                                                                         | -18.59 dl                           | 3                 |                               |
|                  | 3            |                   |                 | 5 OU1    | 000 0 1 11            | 2 50224250                                          |                     | 064 dBm                                                                                                           | -18.04 dl                           | 3                 | 0 H                           |
|                  | 3            | 2.4960 GHz        | 2.508           | 5 GHz    | 200.0 kHz             | 2.302312300                                         |                     | .304 ubm                                                                                                          | -10.04 di                           | ,                 |                               |
| 2<br>3<br>4      |              |                   | 2.508           | 5 GHz    | 200.0 KHZ             | 2.30231230                                          |                     |                                                                                                                   | -10.04 0                            |                   |                               |

Plot 7-47. Lower ACP Plot (LTE Band 41(PC3) - 10MHz QPSK - Full RB)






| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 39 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Fage 39 01 55                     |
| © 2021 PCTEST       |                       |                            |         | V2 3/28/2021                      |



| Frequency                               | 10:24:39 PM Apr 14, 2021                 |                             |                                 |                        |                       |                          |                 |              |
|-----------------------------------------|------------------------------------------|-----------------------------|---------------------------------|------------------------|-----------------------|--------------------------|-----------------|--------------|
|                                         | Radio Std: None                          | ALIGN AUTO                  | SENSE:INT                       |                        | CORREC                | F 50 Ω A                 |                 | RL           |
|                                         | Radio Device: BTS                        |                             | Free Run<br>n: 30 dB            |                        | IFGain:Low            | e: LO                    | Gat             | ASS          |
|                                         |                                          |                             |                                 |                        | m                     | Ref 40.00 d              | /div            | 0 dB/        |
|                                         |                                          |                             |                                 |                        | <u> </u>              |                          |                 | °g<br>30.0   |
| Center Fre<br>2.498500000 G             |                                          |                             |                                 |                        |                       |                          |                 | 20.0         |
| 2.498500000 G                           |                                          |                             |                                 |                        |                       |                          |                 | 10.0         |
|                                         |                                          | NM                          | Here the appropriate the second |                        |                       |                          |                 |              |
|                                         |                                          |                             |                                 |                        |                       |                          |                 | 0.0          |
|                                         |                                          |                             |                                 |                        |                       |                          |                 |              |
|                                         |                                          |                             |                                 |                        |                       |                          |                 |              |
|                                         |                                          | W. Martinius .              | Al I                            | A second second        |                       |                          |                 | 0.0          |
|                                         | Herenanya<br>hipadantania                | and the second second       |                                 | ľ                      | -                     |                          |                 | 10.0         |
|                                         | an a |                             |                                 |                        |                       |                          |                 | i0.0         |
|                                         |                                          |                             |                                 |                        |                       |                          |                 |              |
| ี เกิดเ                                 | Stop 2.508 GHz                           |                             |                                 |                        |                       | Hz                       | 2.485 0         | tart         |
| CF Ste<br>515.700000 M<br><u>Auto</u> M |                                          | blitude                     | Frequency                       | RBW                    | Stop Freq             | Hz<br>Start Freq         |                 | tart<br>Spur |
| 515.700000 M                            | Stop 2.508 GHz                           | plitude                     | Frequency<br>2.490440000 GHz    |                        | Stop Freq<br>4905 GHz |                          |                 |              |
| 515.700000 M<br>Auto M                  | Stop 2.508 GHz                           | olitude<br>18 dBm           |                                 | 1.000 MHz              |                       | Start Freq               | Range           |              |
| 515.700000 M                            | Stop 2.508 GHz<br>∆ Limit<br>-16.28 dB   | blitude 8<br>8 dBm<br>7 dBm | 2.490440000 GHz                 | 1.000 MHz<br>1.000 MHz | 4905 GHz              | Start Freq<br>2.4845 GHz | Range<br>1<br>2 | Spur         |







| FCC ID: A3LSMF711B  | PCTEST<br>Prout to be part of @element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|----------------------------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                            | EUT Type:                  |         | Dogo 40 of 52                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                  | Portable Handset           |         | Page 40 of 53                     |
| © 2021 PCTEST       | ÷                                      | ·                          |         | V2 3/28/2021                      |



# 7.5 Radiated Power (EIRP)

# **Test Overview**

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

## Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.2.1

ANSI/TIA-603-E-2016 - Section 2.2.17

#### Test Settings

- Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation. For signals with burst transmission, the signal analyzer's "time domain power" measurement capability is used
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW  $\geq$  3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points  $\geq$  2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
- 9. Trace mode = Trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

| FCC ID: A3LSMF711B  | PCTEST<br>Prod to be part of @ element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|----------------------------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                            | EUT Type:                  |         | Page 41 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                  | Portable Handset           |         | Page 41 01 53                     |
| © 2021 PCTEST       |                                        | ·                          |         | V2 3/28/2021                      |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.



The EUT and measurement equipment were set up as shown in the diagram below.

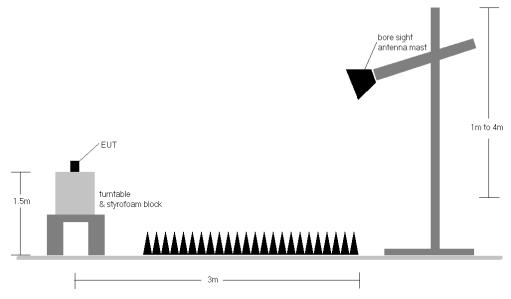



Figure 7-4. Radiated Test Setup >1GHz

# Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case setup is reported in the tables below.

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Page 42 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           | Page 42 01 53                     |
| © 2021 PCTEST       | •                     |                            | V2 3/28/2021                      |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.



| Bandwidth | Mod.          | Frequency<br>[MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Ant. Gain<br>[dBi] | RB<br>Size/Offset | Substitute<br>Level [dBm] | EIRP<br>[dBm] | EIRP<br>[Watts] | EIRP Limit<br>[dBm] | Margin<br>[dB] |
|-----------|---------------|--------------------|--------------------|---------------------------|----------------------------------|--------------------|-------------------|---------------------------|---------------|-----------------|---------------------|----------------|
| N         |               | 2506.0             | Н                  | 117                       | 204                              | 9.45               | 1 / 99            | 15.50                     | 24.95         | 0.313           | 33.01               | -8.06          |
| Ē         | QPSK          | 2593.0             | Н                  | 102                       | 202                              | 9.58               | 1 / 50            | 15.83                     | 25.41         | 0.348           | 33.01               | -7.60          |
| 20 MHz    |               | 2680.0             | Н                  | 114                       | 201                              | 9.86               | 1/0               | 15.50                     | 25.36         | 0.344           | 33.01               | -7.65          |
| 2         | 16-QAM        | 2680.0             | Н                  | 114                       | 201                              | 9.86               | 1/0               | 14.70                     | 24.56         | 0.286           | 33.01               | -8.45          |
| N         |               | 2503.5             | Н                  | 117                       | 204                              | 9.45               | 1 / 37            | 16.07                     | 25.53         | 0.357           | 33.01               | -7.48          |
| MHz       | QPSK          | 2593.0             | Н                  | 102                       | 202                              | 9.58               | 1/0               | 16.45                     | 26.03         | 0.401           | 33.01               | -6.98          |
| LC LC     |               | 2682.5             | Н                  | 114                       | 201                              | 9.86               | 1/0               | 15.76                     | 25.62         | 0.365           | 33.01               | -7.39          |
|           | 16-QAM        | 2682.5             | Н                  | 114                       | 201                              | 9.86               | 1/0               | 15.29                     | 25.15         | 0.327           | 33.01               | -7.86          |
| N         |               | 2501.0             | Н                  | 117                       | 204                              | 9.46               | 1 / 25            | 16.25                     | 25.71         | 0.372           | 33.01               | -7.30          |
| MHz       | QPSK          | 2593.0             | Н                  | 102                       | 202                              | 9.58               | 1 / 25            | 16.39                     | 25.97         | 0.396           | 33.01               | -7.04          |
| 101       |               | 2685.0             | Н                  | 114                       | 201                              | 9.85               | 1/0               | 15.80                     | 25.65         | 0.367           | 33.01               | -7.36          |
| -         | 16-QAM        | 2685.0             | Н                  | 114                       | 201                              | 9.85               | 1 / 25            | 15.08                     | 24.93         | 0.311           | 33.01               | -8.08          |
| N         |               | 2498.5             | Н                  | 117                       | 204                              | 9.46               | 1/0               | 16.24                     | 25.70         | 0.371           | 33.01               | -7.31          |
| MHz       | QPSK          | 2593.0             | Н                  | 102                       | 202                              | 9.58               | 1 / 12            | 16.39                     | 25.97         | 0.395           | 33.01               | -7.04          |
| 2         |               | 2687.5             | Н                  | 114                       | 201                              | 9.85               | 1/0               | 15.72                     | 25.56         | 0.360           | 33.01               | -7.45          |
|           | 16-QAM        | 2498.5             | Н                  | 117                       | 204                              | 9.46               | 1 / 24            | 15.91                     | 25.37         | 0.344           | 33.01               | -7.64          |
|           | Opposite Pol. | 2593.0             | V                  | 352                       | 297                              | 9.59               | 1 / 50            | 14.64                     | 24.23         | 0.265           | 33.01               | -8.78          |
| 20 MHz    | Half          | 2593.0             | Н                  | 110                       | 195                              | 9.58               | 1 / 50            | 15.80                     | 25.38         | 0.345           | 33.01               | -7.63          |
|           | WCP           | 2593.0             | Н                  | 109                       | 209                              | 9.58               | 1 / 50            | 13.57                     | 23.15         | 0.207           | 33.01               | -9.86          |

Table 7-2. EIRP Data (LTE Band 41(PC2))

| Bandwidth | Mod.          | Frequency<br>[MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Ant. Gain<br>[dBi] | RB<br>Size/Offset | Substitute<br>Level [dBm] | EIRP<br>[dBm] | EIRP<br>[Watts] | EIRP Limit<br>[dBm] | Margin<br>[dB] |
|-----------|---------------|--------------------|--------------------|---------------------------|----------------------------------|--------------------|-------------------|---------------------------|---------------|-----------------|---------------------|----------------|
| N         |               | 2506.0             | Н                  | 109                       | 31                               | 9.45               | 1 / 50            | 12.50                     | 21.95         | 0.157           | 33.01               | -11.06         |
| MHz       | QPSK          | 2593.0             | Н                  | 100                       | 34                               | 9.58               | 1 / 99            | 13.24                     | 22.82         | 0.191           | 33.01               | -10.19         |
| 20 1      |               | 2680.0             | Н                  | 103                       | 30                               | 9.86               | 1/0               | 10.43                     | 20.29         | 0.107           | 33.01               | -12.72         |
| 5         | 16-QAM        | 2593.0             | Н                  | 100                       | 34                               | 9.58               | 1 / 99            | 12.13                     | 21.71         | 0.148           | 33.01               | -11.30         |
| N         |               | 2503.5             | Н                  | 109                       | 31                               | 9.45               | 1 / 37            | 12.51                     | 21.96         | 0.157           | 33.01               | -11.05         |
| MHz       | QPSK          | 2593.0             | Н                  | 100                       | 34                               | 9.58               | 1 / 37            | 13.12                     | 22.70         | 0.186           | 33.01               | -10.31         |
| 15        |               | 2682.5             | Н                  | 103                       | 30                               | 9.86               | 1 / 37            | 10.53                     | 20.39         | 0.109           | 33.01               | -12.62         |
| -         | 16-QAM        | 2593.0             | Н                  | 100                       | 34                               | 9.58               | 1 / 37            | 12.55                     | 22.13         | 0.163           | 33.01               | -10.88         |
| N         |               | 2501.0             | Н                  | 109                       | 31                               | 9.46               | 1 / 25            | 12.22                     | 21.68         | 0.147           | 33.01               | -11.33         |
| MHz       | QPSK          | 2593.0             | Н                  | 100                       | 34                               | 9.58               | 1/0               | 12.88                     | 22.46         | 0.176           | 33.01               | -10.55         |
| 101       |               | 2685.0             | Н                  | 103                       | 30                               | 9.85               | 1 / 25            | 10.58                     | 20.44         | 0.111           | 33.01               | -12.57         |
| -         | 16-QAM        | 2593.0             | Н                  | 100                       | 34                               | 9.58               | 1/0               | 11.94                     | 21.52         | 0.142           | 33.01               | -11.49         |
| N         |               | 2498.5             | Н                  | 109                       | 31                               | 9.46               | 1 / 24            | 12.24                     | 21.70         | 0.148           | 33.01               | -11.31         |
| MHz       | QPSK          | 2593.0             | Н                  | 100                       | 34                               | 9.58               | 1 / 24            | 13.24                     | 22.82         | 0.191           | 33.01               | -10.19         |
| 2         |               | 2687.5             | Н                  | 103                       | 30                               | 9.85               | 1 / 24            | 10.35                     | 20.19         | 0.105           | 33.01               | -12.82         |
|           | 16-QAM        | 2593.0             | Н                  | 100                       | 34                               | 9.58               | 1 / 24            | 12.18                     | 21.77         | 0.150           | 33.01               | -11.24         |
|           | Opposite Pol. | 2593.0             | V                  | 102                       | 122                              | 9.59               | 1/0               | 10.92                     | 20.51         | 0.112           | 33.01               | -12.50         |
| 20 MHz    | Half          | 2593.0             | Н                  | 185                       | 28                               | 9.58               | 1 / 50            | 9.66                      | 19.24         | 0.084           | 33.01               | -13.77         |
|           | WCP           | 2593.0             | Н                  | 104                       | 41                               | 9.58               | 1 / 99            | 11.32                     | 20.90         | 0.123           | 33.01               | -12.11         |

Table 7-3. EIRP Data (LTE Band 41(PC3))

| FCC ID: A3LSMF711B  | Potest de geterent    | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 43 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Fage 43 01 55                     |
| © 2021 PCTEST       | ·                     | ·                          |         | V2 3/28/2021                      |



# 7.6 Radiated Spurious Emissions Measurements

# **Test Overview**

Radiated spurious emissions measurements are performed using the field strength conversion method described in KDB 971168 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as peak measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

## **Test Procedures Used**

KDB 971168 D01 v03r01 - Section 5.8

## **Test Settings**

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW  $\geq$  3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

| FCC ID: A3LSMF711B  |                                                 | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-------------------------------------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                                     | EUT Type:                  |         | Dage 44 of 52                     |
| 1M2104130035-05.A3L | i-05.A3L 4/21/2021 - 6/25/2021 Portable Handset |                            |         | Page 44 of 53                     |
| © 2021 PCTEST       |                                                 | ·                          |         | V2 3/28/2021                      |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.



The EUT and measurement equipment were set up as shown in the diagram below.

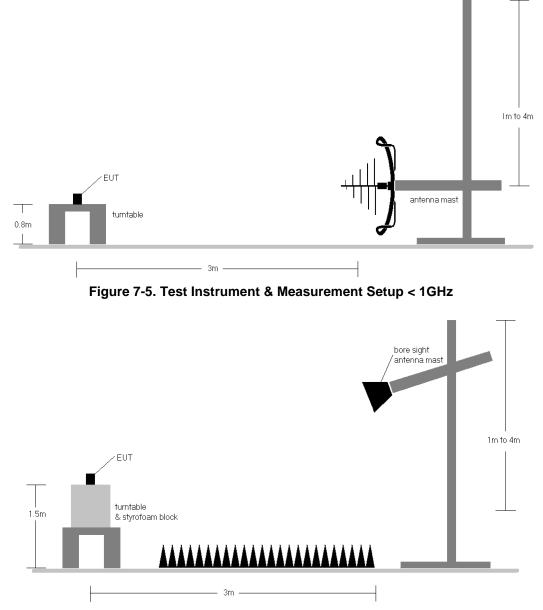
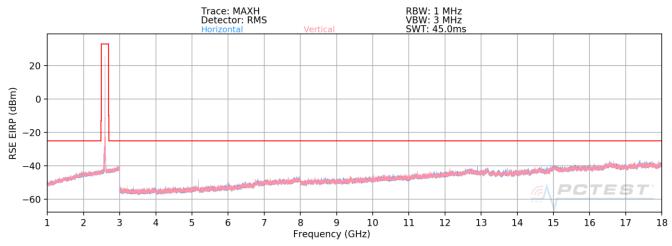



Figure 7-6. Test Instrument & Measurement Setup >1 GHz


| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Dogo 45 of 52                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Page 45 of 53                     |
| © 2021 PCTEST       |                       | •                          |         | V2 3/28/2021                      |



- Field strengths are calculated using the Measurement quantity conversions in KDB 971168 Section 5.8.4.
   b) E(dBµV/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m)
   d) EIRP (dBm) = E(dBµV/m) + 20logD 104.8; where D is the measurement distance in meters.
- 2) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 3) This unit was tested with its standard battery.
- 4) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case setup is reported in the tables below.
- 5) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 6) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 46 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Fage 40 01 53                     |
| © 2021 PCTEST       | · · · · ·             | ·                          |         | \/2 2/28/2021                     |







| Bandwidth (MHz): | 20     |
|------------------|--------|
| Frequency (MHz): | 2506.0 |
| RB / Offset:     | 1 / 50 |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5012.0          | V                  | 118                       | 334                              | -67.56                     | 7.36           | 46.80                         | -48.46                                   | -25.00         | -23.46         |
| 7518.0          | V                  | -                         | -                                | -71.45                     | 12.75          | 48.30                         | -46.96                                   | -25.00         | -21.96         |
| 10024.0         | V                  | -                         | -                                | -72.50                     | 15.19          | 49.69                         | -45.57                                   | -25.00         | -20.57         |
| 12530.0         | V                  | 181                       | 342                              | -72.97                     | 18.72          | 52.75                         | -42.51                                   | -25.00         | -17.51         |
| 15036.0         | V                  | -                         | -                                | -73.47                     | 22.22          | 55.75                         | -39.50                                   | -25.00         | -14.50         |
| 17542.0         | V                  | -                         | -                                | -74.85                     | 25.47          | 57.62                         | -37.63                                   | -25.00         | -12.63         |

Table 7-4. Radiated Spurious Data (LTE Band 41(PC2) – Low Channel)

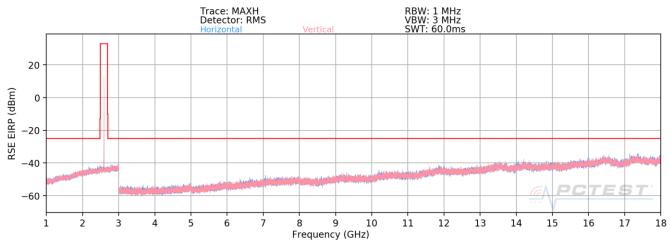
| Bandwidth (MHz): | 20     |
|------------------|--------|
| Frequency (MHz): | 2593.0 |
| RB / Offset:     | 1 / 50 |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5186.0          | V                  | 109                       | 328                              | -66.78                     | 7.32           | 47.54                         | -47.72                                   | -25.00         | -22.72         |
| 7779.0          | V                  | -                         | -                                | -71.94                     | 12.58          | 47.64                         | -47.62                                   | -25.00         | -22.62         |
| 10372.0         | V                  | -                         | -                                | -72.98                     | 15.75          | 49.77                         | -45.49                                   | -25.00         | -20.49         |
| 12965.0         | V                  | -                         | -                                | -73.65                     | 18.98          | 52.33                         | -42.93                                   | -25.00         | -17.93         |
| 15558.0         | V                  | -                         | -                                | -74.31                     | 22.69          | 55.38                         | -39.87                                   | -25.00         | -14.87         |

Table 7-5. Radiated Spurious Data (LTE Band 41(PC2) – Mid Channel)

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Dogo 47 of 52                     |  |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Page 47 of 53                     |  |
| © 2021 PCTEST       |                       | •                          |         | V2 3/28/2021                      |  |




| Bandwidth (MHz): | 20     |
|------------------|--------|
| Frequency (MHz): | 2680.0 |
| RB / Offset:     | 1 / 50 |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5360.0          | V                  | 109                       | 318                              | -66.28                     | 8.14           | 48.86                         | -46.40                                   | -25.00         | -21.40         |
| 8040.0          | V                  | -                         | -                                | -72.69                     | 12.93          | 47.24                         | -48.02                                   | -25.00         | -23.02         |
| 10720.0         | V                  | 185                       | 15                               | -72.85                     | 16.12          | 50.27                         | -44.99                                   | -25.00         | -19.99         |
| 13400.0         | V                  | -                         | -                                | -73.71                     | 19.75          | 53.04                         | -42.22                                   | -25.00         | -17.22         |
| 16080.0         | V                  | -                         | -                                | -74.72                     | 23.25          | 55.53                         | -39.73                                   | -25.00         | -14.73         |

Table 7-6. Radiated Spurious Data (LTE Band 41(PC2) – High Channel)

| FCC ID: A3LSMF711B  | PCTEST:<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|------------------------------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:                              | EUT Type:                  |         | Page 48 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                    | Portable Handset           |         | Fage 46 01 55                     |
| © 2021 PCTEST       | <u>.</u>                                 | ·                          |         | V2 3/28/2021                      |





Plot 7-52. Radiated Spurious Plot (LTE Band 41(PC3))

| 20     |
|--------|
| 2506.0 |
| 1 / 50 |
|        |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5012.0          | V                  | 130                       | 86                               | -72.22                     | 10.13          | 44.91                         | -50.35                                   | -25.00         | -25.35         |
| 7518.0          | V                  | -                         | -                                | -73.34                     | 16.03          | 49.69                         | -45.57                                   | -25.00         | -20.57         |
| 10024.0         | V                  | -                         | -                                | -75.29                     | 19.52          | 51.23                         | -44.02                                   | -25.00         | -19.02         |
| 12530.0         | V                  | -                         | -                                | -75.96                     | 23.72          | 54.76                         | -40.50                                   | -25.00         | -15.50         |

Table 7-7. Radiated Spurious Data (LTE Band 41(PC3) – Low Channel)

| Bandwidth (MHz): | 20     |
|------------------|--------|
| Frequency (MHz): | 2593.0 |
| RB / Offset:     | 1 / 50 |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5186.0          | V                  | 129                       | 86                               | -73.15                     | 10.42          | 44.27                         | -50.98                                   | -25.00         | -25.98         |
| 7779.0          | V                  | -                         | -                                | -73.84                     | 16.35          | 49.51                         | -45.74                                   | -25.00         | -20.74         |
| 10372.0         | V                  | -                         | -                                | -75.10                     | 20.17          | 52.07                         | -43.19                                   | -25.00         | -18.19         |

Table 7-8. Radiated Spurious Data (LTE Band 41(PC3) – Mid Channel)

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 49 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Fage 49 01 55                     |
| © 2021 PCTEST       |                       |                            |         | V/2 3/28/2021                     |



| Bandwidth (MHz): | 20     |
|------------------|--------|
| Frequency (MHz): | 2680.0 |
| RB / Offset:     | 1 / 50 |

| Frequency [MHz] | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | EIRP Spurious<br>Emission Level<br>[dBm] | Limit<br>[dBm] | Margin<br>[dB] |
|-----------------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|------------------------------------------|----------------|----------------|
| 5360.0          | V                  | -                         | -                                | -72.29                     | 11.06          | 45.77                         | -49.49                                   | -25.00         | -24.49         |
| 8040.0          | V                  | -                         | -                                | -73.17                     | 16.68          | 50.51                         | -44.75                                   | -25.00         | -19.75         |
| 10720.0         | V                  | -                         | -                                | -75.85                     | 20.87          | 52.02                         | -43.24                                   | -25.00         | -18.24         |

Table 7-9. Radiated Spurious Data (LTE Band 41(PC3) – High Channel)

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 50 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Fage 50 01 55                     |
| © 2021 PCTEST       |                       |                            |         | \/2 3/28/2021                     |



# 7.7 Frequency Stability / Temperature Variation

## Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

#### Test Procedure Used

ANSI/TIA-603-E-2016

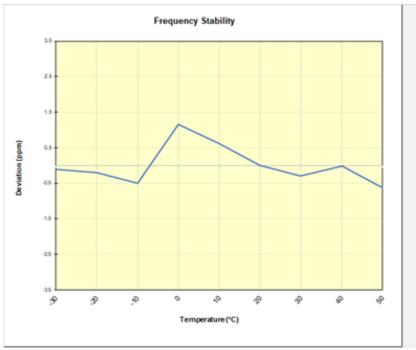
#### **Test Settings**

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

## Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

#### Test Notes


None

| FCC ID: A3LSMF711B  | PCTEST<br>Proud to be part of @ sterment | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |  |
|---------------------|------------------------------------------|----------------------------|---------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                              | EUT Type:                  |         | Daga 51 of 52                     |  |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                    | Portable Handset           |         | Page 51 of 53                     |  |
| © 2021 PCTEST       |                                          | •                          |         | V2 3/28/2021                      |  |



| LTE Band 41      |             |                |                |                    |               |  |  |  |
|------------------|-------------|----------------|----------------|--------------------|---------------|--|--|--|
|                  | Operating F | requency (Hz): | 2,593,000      | ,000               |               |  |  |  |
|                  | Ref.        | Voltage (VDC): | 4.32           |                    |               |  |  |  |
|                  |             |                |                |                    |               |  |  |  |
| Voltage (%)      | Power (VDC) | Temp (°C)      | Frequency (Hz) | Freq. Dev.<br>(Hz) | Deviation (%) |  |  |  |
|                  |             | - 30           | 2,593,001,238  | -293               | -0.0000113    |  |  |  |
|                  |             | - 20           | 2,593,001,023  | -509               | -0.0000196    |  |  |  |
|                  |             | - 10           | 2,593,000,216  | -1,315             | -0.0000507    |  |  |  |
|                  |             | 0              | 2,593,004,527  | 2,996              | 0.0001155     |  |  |  |
| 100 %            | 4.32        | + 10           | 2,593,003,136  | 1,605              | 0.0000619     |  |  |  |
|                  |             | + 20 (Ref)     | 2,593,001,531  | 0                  | 0.0000000     |  |  |  |
|                  |             | + 30           | 2,593,000,764  | -768               | -0.0000296    |  |  |  |
|                  |             | + 40           | 2,593,001,475  | -56                | -0.0000022    |  |  |  |
|                  |             | + 50           | 2,592,999,919  | -1,612             | -0.0000622    |  |  |  |
| Battery Endpoint | 3.51        | + 20           | 2,592,999,469  | -2,062             | -0.0000795    |  |  |  |

 Table 7-10. LTE Band 41(PC2) Frequency Stability Data



Plot 7-53. LTE Band 41(PC2) Frequency Stability Chart

| FCC ID: A3LSMF711B  | PCTEST.<br>Proud to be part of @ element | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |  |
|---------------------|------------------------------------------|----------------------------|---------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:                              | EUT Type:                  |         | Page 52 of 53                     |  |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021                    | Portable Handset           |         | Fage 52 01 55                     |  |
| © 2021 PCTEST       | •                                        | •                          |         | V2 3/28/2021                      |  |



# 8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the Samsung **Portable Handset FCC ID: A3LSMF711B** complies with all the requirements of Part 27 of the FCC rules.

| FCC ID: A3LSMF711B  |                       | PART 27 MEASUREMENT REPORT | SAMSUNG | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|---------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  |         | Page 53 of 53                     |
| 1M2104130035-05.A3L | 4/21/2021 - 6/25/2021 | Portable Handset           |         | Fage 55 01 55                     |
| © 2021 PCTEST       |                       | ·                          |         | V2 3/28/2021                      |