

TEST REPORT

FCC LTE Test for SM-A908B

Certification

APPLICANT SAMSUNG Electronics Co., Ltd.

REPORT NO. HCT-RF-1908-FC045-R2

DATE OF ISSUE September 07, 2019

HCT Co., Ltd.

REPORT NO. HCT-RF-1908-FC045-R2

DATE OF ISSUE September 07, 2019

FCC ID A3LSMA908B

Applicant	SAMSUNG Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Eut Type Model Name	Mobile Phone SM-A908B
Date of Receipt	July 17, 2019
FCC Rule Part(s)	§ 27, § 2
FCC Classification	PCS Licensed Transmitter Held to Ear (PCE)
Manufacturer	SAMSUNG Electronics Co., Ltd.
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated.
	Tested by Jeong Ho Kim
	Technical Manager Jong Seok Lee

HCT CO., LTD.

SooChan Lee / CEO
Accredited by KOLAS, Republic of KOREA

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	August 27, 2019	Initial Release
1	September 05, 2019	Added the ISO 17025 Kolas logo. Added the note content on 17 page.
2	September 07, 2019	Add the HCT Accreditation No. for ISO 17025 KOLAS Changed the * mark except for page 3

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

This laboratory is not accredited for the test results marked *.

The above Test Report is the accredited test result by KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA.(HCT Accreditation No.: KT197)

CONTENTS

1. GENERAL INFORMATION	5
1.1. MAXIMUM OUTPUT POWER	6
2. INTRODUCTION	7
2.1. DESCRIPTION OF EUT	7
2.2. MEASURING INSTRUMENT CALIBRATION	7
2.3. TEST FACILITY	7
3. DESCRIPTION OF TESTS	8
3.1 TEST PROCEDURE	8
3.2 RADIATED POWER	9
3.3 RADIATED SPURIOUS EMISSIONS	10
3.4 OCCUPIED BANDWIDTH.	11
3.5 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	12
3.6 BAND EDGE	13
3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	14
3.8 WORST CASE(RADIATED TEST)	15
3.9 WORST CASE(CONDUCTED TEST)	16
4. LIST OF TEST EQUIPMENT	17
5. MEASUREMENT UNCERTAINTY	18
6. SUMMARY OF TEST RESULTS	19
7. SAMPLE CALCULATION	20
8. TEST DATA 8.1 EFFECTIVE RADIATED POWER	22 22
8.3 RADIATED SPURIOUS EMISSIONS	24
8.3 OCCUPIED BANDWIDTH	28
8.4 CONDUCTED SPURIOUS EMISSIONS	29
8.5 BAND EDGE	29
8.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	30
9. TEST PLOTS	42
10. ANNEX A_ TEST SETUP PHOTO	92

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	SAMSUNG Electronics Co., Ltd.
Address:	129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
FCC ID:	A3LSMA908B
Application Type:	Certification
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
FCC Rule Part(s):	§ 27, § 2
EUT Type:	Mobile Phone
Model(s):	SM-A908B
Tx Frequency:	699.7 MHz – 715.3 MHz (LTE – Band 12 (1.4 MHz)) 700.5 MHz – 714.5 MHz (LTE – Band 12 (3 MHz)) 701.5 MHz – 713.5 MHz (LTE – Band 12/17 (5 MHz)) 704.0 MHz – 711.0 MHz (LTE – Band 12/17 (10 MHz))
Date(s) of Tests:	July 17, 2019 ~ August 23, 2019

1.1. MAXIMUM OUTPUT POWER

Modo	Ty Fraguency	Emission		EI	ERP	
Mode (MHz)	Tx Frequency (MHz)	Emission Designator	Modulation	Max. Power (W)	Max. Power (dBm)	
		1M09G7D	QPSK	0.025	13.94	
LTE – Band12 (1.4)	699.7 – 715.3	1M09W7D	16QAM	0.021	13.17	
		1M09W7D	64QAM	0.016	12.17	
		2M71G7D	QPSK	0.024	13.87	
LTE – Band12 (3)	700.5 – 714.5	2M70W7D	16QAM	0.020	13.09	
		2M71W7D	64QAM	0.016	12.03	
		4M52G7D	QPSK	0.024	13.77	
LTE – Band12/17 (5)	701.5 – 713.5	4M50W7D	16QAM	0.020	12.95	
		4M52W7D	64QAM	0.016	11.96	
		8M95G7D	QPSK	0.023	13.56	
LTE – Band12/17 (10)	704.0 – 711.0	8M98W7D	16QAM	0.019	12.78	
		8M99W7D	64QAM	0.015	11.71	

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT was a Mobile Phone with GSM/GPRS/EGPRS/UMTS and LTE.

It also supports IEEE 802.11 a/b/g/n/ac (HT20/40/80), NFC, ANT+, Bluetooth, BT LE.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE

Test Description	Test Procedure Used
Occupied Bandwidth	- KDB 971168 D01 v03r01 – Section 4.3 - ANSI C63.26-2015 – Section 5.4.4
Band Edge	- KDB 971168 D01 v03r01 – Section 6.0 - ANSI C63.26-2015 – Section 5.7
Spurious and Harmonic Emissions at Antenna Terminal	- KDB 971168 D01 v03r01 – Section 6.0 - ANSI C63.26-2015 – Section 5.7
Conducted Output Power	- N/A (See SAR Report)
Frequency stability	- ANSI C63.26-2015 – Section 5.6
Effective Radiated Power/	- KDB 971168 D01 v03r01 – Section 5.2 & 5.8
Effective Isotropic Radiated Power	- ANSI/TIA-603-E-2016 – Section 2.2.17
Radiated Spurious and Harmonic Emissions	- KDB 971168 D01 v03r01 – Section 6.2 - ANSI/TIA-603-E-2016 – Section 2.2.12

3.2 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-E-2016 Clause 2.2.17.

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

 $P_{d(dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$

Where: Pdis the dipole equivalent power and Pgis the generator output power into the substitution antenna.

3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.

These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference

between the gain of the horn and an isotropic antenna are taken into consideration

- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

3.3 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

Test Settings

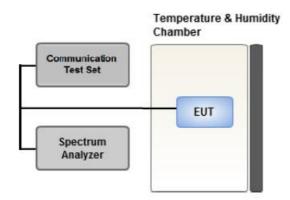
- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

Test Note

- Measurements value show only up to 3 maximum emissions noted, or would be lesser
 if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit)
 and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
- 3. For spurious emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

 $Result_{(dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dBi)}$


Where: Pgis the generator output power into the substitution antenna.

If the fundalmatal frequency is below 1GHz, RF output power has been converted to EIRP.

 $EIRP_{(dBm)} = ERP_{(dBm)} + 2.15$

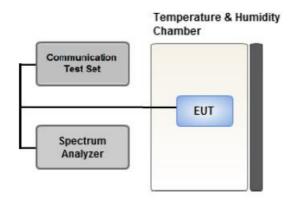
3.4 OCCUPIED BANDWIDTH.

Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.


The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

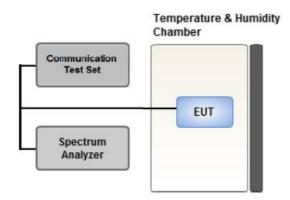
Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1 5% of the 99% occupied bandwidth observed in Step 7

3.5 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test setup

Test Overview


The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings

- 1. RBW = 1 MHz
- $2. VBW \ge 3 MHz$
- 3. Detector = RMS
- 4. Trace Mode = trace average
- 5. Sweep time = auto
- 6. Number of points in sweep $\geq 2 \times \text{Span} / \text{RBW}$

3.6 BAND EDGE

Test setup

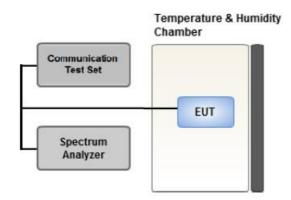
Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW > 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Notes


According to FCC 22.917, 24.238, 27.53 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + $10 \log(P)$ dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

All measurements were done at 2 channels(low and high operational frequency range.)

The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

- 2. Primary Supply Voltage:
 - .- Unless otherwise specified, vary primary supply voltage from 85% to 115% of the nominal value for other than hand carried battery equipment.
 - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

3.8 WORST CASE(RADIATED TEST)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- All modes of operation were investigated and the worst case configuration results are reported.
- The worst case is reported with the EUT positioning, modulations, and paging service configurations shown in the test data.
- LTE Band 12 (698 716 MHz, 5/10MHzbandwidth) overlaps the entire frequency range of LTE Band 17 (704 716 MHz) and they have the same Tune-up power.

Therefore, test data provided in this report covers Band 17 as well as Band 12.

[Worst case]

Test Description	Modulation	RB size	RB offset	Axis
	QPSK,			
Effective Radiated Power	16QAM,	1	0	Υ
	64QAM			
Radiated Spurious and Harmonic Emissions	QPSK	1	0	Z

3.9 WORST CASE(CONDUCTED TEST)

- Worst case : Of all modulation, We have tested modulation of the high Conducted Output Power.

 Conducted Output Power value can be confirmed on the SAR report.
- LTE Band 12 (698 716 MHz, 5/10MHzbandwidth) overlaps the entire frequency range of LTE Band 17 (704 716 MHz) and they have the same Tune-up power.

Therefore, test data provided in this report covers Band 17 as well as Band 12.

[Worst case]

Test Description	Modulation	Bandwidth (MHz)	Frequency	RB size	RB offset
Occupied Bandwidth	QPSK, 16QAM, 64QAM	1.4, 3, 5, 10	Mid	Full RB	0
		1.4	Low	1	0
		1,4	High	1	5
		3	Low	1	0
	QPSK	3	High	1	14
Band Edge		5	Low	1	0
Band Luge		10	High	1	24
			Low	1	0
		10	High	1	49
		Low,	Low,	Full RB	0
		1.4, 3, 5, 10	High	rull KD	0
Spurious and Harmonic Emissions at Antenna Terminal			Low,		
	QPSK	1.4, 3, 5, 10	Mid,	1	0
			High		

4. LIST OF TEST EQUIPMENT

		1	1	1	1
Manufacture	Model/ Equipment	Serial Number	Calibration Date	Calibratio n Interval	Calibration Due
REOHDE & SCHWARZ	SCU 18 / AMPLIFIER	10094	04/16/2019	Annual	04/16/2020
Wainwright	WHK1.2/15G-10EF/H.P.F	4	04/02/2019	Annual	04/02/2020
Wainwright	WHK3.3/18G-10EF/H.P.F	2	04/02/2019	Annual	04/02/2020
Hewlett Packard	11667B / Power Splitter(DC~26.5 GHz)	11275	05/03/2019	Annual	05/03/2020
Agilent	E3632A/DC Power Supply	MY40004326	07/01/2019	Annual	07/01/2020
Schwarzbeck	UHAP/ Dipole Antenna	557	03/29/2019	Biennial	03/29/2021
Schwarzbeck	UHAP/ Dipole Antenna	558	03/29/2019	Biennial	03/29/2021
ESPEC	SU-642 / Chamber	93000717	08/14/2019	Annual	08/14/2020
Schwarzbeck	BBHA 9120D/ Horn Antenna(1~18GHz)	147	09/14/2018	Annual	09/14/2019
Schwarzbeck	BBHA 9120D/ Horn Antenna(1~18GHz)	9120D-1298	10/04/2018	Annual	10/04/2019
Schwarzbeck	BBHA 9170/ Horn Antenna(15~40GHz)	BBHA9170342	04/29/2019	Biennial	04/29/2021
Schwarzbeck	BBHA 9170/ Horn Antenna(15~40GHz)	BBHA9170124	01/28/2019	Biennial	01/28/2021
Agilent	N9020A/Signal Analyzer(10Hz~26.5GHz)	MY51110063	05/08/2019	Annual	05/08/2020
Hewlett Packard	8493C/ATTENUATOR(20dB)	17280	06/04/2019	Annual	06/04/2020
REOHDE & SCHWARZ	FSV40/Spectrum Analyzer(10Hz~40GHz)	100931	10/22/2018	Annual	10/22/2019
Agilent	8960 (E5515C)/ Base Station	MY48360800	09/27/2018	Annual	09/27/2019
Schwarzbeck	FMZB1513/ Loop Antenna(9kHz~30MHz)	1513-175	08/23/2018	Biennial	08/23/2020
Schwarzbeck	VULB9160/ Bilog Antenna	9160-3368	08/09/2018	Biennial	08/09/2020
Schwarzbeck	VULB9160/ Hybrid Antenna	760	03/22/2019	Biennial	03/22/2021
Anritsu Corp.	MT8821C/Wideband Radio Communication Tester	6201502997	08/09/2019	Annual	08/09/2020
Anritsu Corp.	MT8820C/Wideband Radio Communication Tester	6201026545	01/30/2019	Annual	01/30/2020
REOHDE & SCHWARZ	SMB100A/ SIGNAL GENERATOR (100kHz~40GHz)	177633	07/15/2019	Annual	07/15/2020
REOHDE & SCHWARZ	ESU40 / EMI TEST RECEIVER	100524	05/17/2019	Annual	05/17/2020
HCT CO., LTD.,	FCC LTE Mobile Conducted RF Automation Test Software	-	-	-	-

Note:

- 1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 2. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017)

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05

6. SUMMARY OF TEST RESULTS

6.1 Test Condition: Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Occupied Bandwidth	§ 2.1049	N/A	PASS
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§ 2.1051, § 27.53(g)	< 43 + 10log10 (P[Watts]) at Band Edge and for all out-of-band emissions	PASS
Conducted Output Power	§ 2.1046	N/A	See Note1
Frequency stability / variation of ambient temperature	§ 2.1055, § 27.54	Emission must remain in band	PASS

Note:

1. See SAR Report

2. The same samples were used for SAR and EMC

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Effective Radiated Power	§ 27.50(c)(10)	< 3 Watts max. ERP	PASS
Radiated Spurious and Harmonic	§ 2.1053,	< 43 + 10log10 (P[Watts]) for	PASS
Emissions	§ 27.53(g)	all out-of band emissions	PA33

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch.	./ Freq.	Measured	Substitute	Ant. Gain	CI	D-I	EF	RP
channel	Freq.(MHz)	Level(dBm)	Level(dBm)	(dBd)	C.L	Pol.	W	dBm
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84

ERP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain	6.1	D-I	EII	RP
channel	Freq.(MHz)	Level(dBm)	Level(dBm)	(dBi)	C.L	Pol.	W	dBm
20175	1,732.50	-15.75	18.45	9.90	1.76	Н	0.456	26.59

EIRP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

7.3. Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW

GSM BW = 249 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W

WCDMA BW = 4.17 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

16QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

64QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

8. TEST DATA

8.1 EFFECTIVE RADIATED POWER

Freq (MHz)	Mod	Modulation	Measured	Substitute	Ant.	C.L	Pol	Limit	EF	RP
	(Bandwidth)		Level (dBm)	Level (dBm)	Gain(dBd)			W	W	dBm
		QPSK	-33.32	24.03	-10.16	0.78	V		0.020	13.09
699.7		16-QAM	-34.11	23.24	-10.16	0.78	V		0.017	12.30
		64-QAM	-35.10	22.25	-10.16	0.78	٧		0.014	11.31
		QPSK	-32.40	24.89	-10.17	0.78	٧		0.025	13.94
707.5	LTE B12 (1.4 MHz)	16-QAM	-33.17	24.12	-10.17	0.78	٧	< 3.00	0.021	13.17
	(27 1 11112)	64-QAM	-34.17	23.12	-10.17	0.78	٧		0.016	12.17
		QPSK	-33.07	24.14	-10.18	0.78	٧		0.021	13.18
715.3		16-QAM	-33.82	23.39	-10.18	0.78	V		0.017	12.43
		64-QAM	-34.82	22.39	-10.18	0.78	V		0.014	11.43

Freq (MHz)	Mod	Modulation	Measured	Substitute	Ant.	C.L	Pol	Limit	EF	RP
	(Bandwidth)		Level (dBm)	Level (dBm)	Gain(dBd)			W	W	dBm
		QPSK	-33.25	24.12	-10.16	0.78	٧		0.021	13.18
700.5		16-QAM	-34.03	23.34	-10.16	0.78	٧		0.017	12.40
		64-QAM	-35.04	22.33	-10.16	0.78	V		0.014	11.39
		QPSK	-32.47	24.82	-10.17	0.78	٧		0.024	13.87
707.5	LTE B12 (3 MHz)	16-QAM	-33.25	24.04	-10.17	0.78	V	< 3.00	0.020	13.09
	(3 1.1112)	64-QAM	-34.31	22.98	-10.17	0.78	V		0.016	12.03
		QPSK	-33.23	23.96	-10.18	0.78	V		0.020	13.00
714.5		16-QAM	-33.96	23.23	-10.18	0.78	V		0.017	12.27
		64-QAM	-34.94	22.25	-10.18	0.78	٧		0.013	11.29

Freq (MHz)	eq (MHz) Mod (Bandwidth)	Modulation	Measured	Substitute	Ant.	C.L	Pol	Limit	EF	₹P
	(Bandwidth)		Level (dBm)	Level (dBm)	Gain(dBd)			W	W	dBm
		QPSK	-33.29	24.11	-10.16	0.78	>		0.021	13.17
701.5		16-QAM	-33.98	23.42	-10.16	0.78	٧		0.018	12.48
		64-QAM	-34.99	22.41	-10.16	0.78	٧		0.014	11.47
		QPSK	-32.57	24.72	-10.17	0.78	٧		0.024	13.77
707.5	LTE B12/17 (5 MHz)	16-QAM	-33.39	23.90	-10.17	0.78	٧	< 3.00	0.020	12.95
	(3 141112)	64-QAM	-34.38	22.91	-10.17	0.78	V		0.016	11.96
		QPSK	-33.46	23.72	-10.18	0.78	V		0.019	12.76
713.5		16-QAM	-34.14	23.04	-10.18	0.78	V		0.016	12.08
		64-QAM	-35.15	22.03	-10.18	0.78	V		0.013	11.07

Freq (MHz)	Mod	Modulation	Measured	Substitute	Ant.	C.L	Pol	Limit	EF	RP
	(Bandwidth)		Level (dBm)	Level (dBm)	Gain(dBd)			W	W	dBm
		QPSK	-33.19	24.21	-10.16	0.78	V		0.021	13.27
704.0		16-QAM	-33.84	23.56	-10.16	0.78	٧		0.018	12.62
		64-QAM	-34.88	22.52	-10.16	0.78	٧		0.014	11.58
		QPSK	-32.78	24.51	-10.17	0.78	٧		0.023	13.56
707.5	LTE B12/17 (10 MHz)	16-QAM	-33.56	23.73	-10.17	0.78	٧	< 3.00	0.019	12.78
	(10 11112)	64-QAM	-34.63	22.66	-10.17	0.78	V		0.015	11.71
		QPSK	-34.11	23.11	-10.18	0.78	V		0.016	12.15
711.0		16-QAM	-34.94	22.28	-10.18	0.78	V		0.014	11.32
		64-QAM	-36.00	21.22	-10.18	0.78	V		0.011	10.26

8.3 RADIATED SPURIOUS EMISSIONS

• OPERATING FREQUENTY: 707.5 MHz

■ MEASURED OUTPUT POWER: 16.09 dBm = 0.041 W

■ MODE: LTE B12

■ MODULATION SIGNAL: 1.4 MHz QPSK

■ DISTANCE: <u>3 meters</u>

■ LIMIT: 43 + 10 log10 (W) = 29.09 dBc

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L	Pol	Result (dBm)	dBc
	1,399.40	-56.91	7.47	-65.62	1.16	٧	-59.31	75.40
23017 (699.7)	2,099.10	-56.52	9.83	-65.16	1.44	Н	-56.77	72.86
(00001)	2,798.80	-56.84	11.15	-64.07	1.72	Н	-54.64	70.73
	1,415.00	-57.54	7.56	-66.11	1.17	Н	-59.72	75.80
23095 (707.5)	2,122.50	-57.75	9.73	-65.81	1.46	Н	-57.54	73.63
(* - * * - *)	2,830.00	-56.70	11.23	-64.06	1.72	٧	-54.55	70.64
	1,430.60	-57.39	7.70	-66.43	1.17	٧	-59.90	75.99
23173 (715.3)	2,145.90	-57.37	9.47	-64.78	1.47	Н	-56.78	72.87
,	2,861.20	-57.40	11.31	-64.54	1.74	V	-54.97	71.06

■ OPERATING FREQUENTY: <u>707.5 MHz</u>

■ MEASURED OUTPUT POWER: 16.02 dBm = 0.040 W

■ MODE: <u>LTE B12</u>

■ MODULATION SIGNAL: 3 MHz QPSK

■ DISTANCE: <u>3 meters</u>

■ LIMIT: 43 + 10 log10 (W) = 29.02 dBc

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L	Pol	Result (dBm)	dBc
	1,401.00	-57.48	7.47	-66.19	1.16	V	-59.88	75.90
23025 (700.5)	2,101.50	-57.65	9.83	-66.29	1.44	V	-57.90	73.92
(1.0010)	2,802.00	-57.85	11.15	-65.08	1.72	V	-55.65	71.67
	1,415.00	-56.71	7.56	-65.28	1.17	Н	-58.89	74.90
23095 (707.5)	2,122.50	-57.90	9.73	-65.96	1.46	Н	-57.69	73.71
(**************************************	2,830.00	-57.18	11.23	-64.54	1.72	٧	-55.03	71.05
	1,429.00	-58.77	7.70	-67.81	1.17	Н	-61.28	77.30
23165 (714.5)	2,143.50	-58.51	9.47	-65.92	1.47	٧	-57.92	73.94
(. = 110)	2,858.00	-56.78	11.31	-63.92	1.74	V	-54.35	70.37

■ OPERATING FREQUENTY: <u>707.5 MHz</u>

■ MEASURED OUTPUT POWER: <u>15.92 dBm = 0.039 W</u>

■ MODE: <u>LTE B12/17</u>

■ MODULATION SIGNAL: <u>5 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: 43 + 10 log10 (W) = 28.92 dBc

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L	Pol	Result (dBm)	dBc
	1,403.00	-56.65	7.47	-65.36	1.16	٧	-59.05	74.97
23035 (701.5)	2,104.50	-57.64	9.81	-66.02	1.45	٧	-57.66	73.58
(**=***)	2,806.00	-57.42	11.16	-64.65	1.70	٧	-55.19	71.11
	1,415.00	-57.67	7.56	-66.24	1.17	٧	-59.85	75.76
23095 (707.5)	2,122.50	-58.29	9.73	-66.35	1.46	>	-58.08	74.00
	2,830.00	-57.83	11.23	-65.19	1.72	Н	-55.68	71.60
	1,427.00	-58.06	7.70	-67.10	1.17	٧	-60.57	76.49
23155 (713.5)	2,140.50	-57.59	9.52	-64.99	1.47	٧	-56.94	72.86
, ,	2,854.00	-57.73	11.31	-64.95	1.73	Н	-55.37	71.29

■ OPERATING FREQUENTY: <u>707.5 MHz</u>

■ MEASURED OUTPUT POWER: 15.71 dBm = 0.037 W

■ MODE: <u>LTE B12/17</u>

■ MODULATION SIGNAL: 10 MHz QPSK

■ DISTANCE: <u>3 meters</u>

■ LIMIT: 43 + 10 log10 (W) = 28.71 dBc

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L	Pol	Result (dBm)	dBc
	1,408.00	-57.71	7.53	-66.19	1.17	٧	-59.83	75.54
23060 (704.0)	2,112.00	-58.01	9.78	-66.13	1.45	٧	-57.80	73.51
(10110)	2,816.00	-57.55	11.18	-64.90	1.70	Н	-55.42	71.13
	1,415.00	-57.35	7.56	-65.92	1.17	٧	-59.53	75.23
23095 (707.5)	2,122.50	-57.73	9.73	-65.79	1.46	٧	-57.52	73.23
(10110)	2,830.00	-57.34	11.23	-64.70	1.72	Н	-55.19	70.90
	1,422.00	-56.32	7.59	-64.97	1.17	٧	-58.55	74.26
23130 (711.0)	2,133.00	-57.30	9.62	-65.20	1.47	Н	-57.05	72.76
(:=210)	2,844.00	-57.82	11.28	-65.11	1.71	٧	-55.54	71.25

8.3 OCCUPIED BANDWIDTH

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)			
			QPSK			1.0931			
	1.4 MHz		16-QAM	6		1.0908			
12			64-QAM			1.0904			
12			QPSK			2.7091			
	3 MHz	707.5	16-QAM	15		2.6988			
			64-QAM		0	2.7086			
		707.5	QPSK		0	4.5147			
	5 MHz		16-QAM	25		4.5008			
12/17)			64-QAM	-					4.5225
12(17)	12(17) 10 MHz		QPSK			8.9541			
			16-QAM	50		8.9760			
			64-QAM			8.9875			

Note:

1. Plots of the EUT's Occupied Bandwidth are shown Page 43 ~ 54.

8.4 CONDUCTED SPURIOUS EMISSIONS

Band	Band Width (MHz)	Frequency (MHz)	Frequency of Maximum Harmonic (GHz)	Factor (dB)	Measurement Maximum Data (dBm)	Result (dBm)	Limit (dBm)
		699.7	3.6905	27.976	-67.244	-39.268	
	1.4	707.5	3.7179	27.976	-67.491	-39.515	
12		715.3	3.6860	27.976	-67.481	-39.505	
12		700.5	3.7005	27.976	-67.275	-39.299	
	3	707.5	3.7005	27.976	-67.265	-39.289	
		714.5	3.6865	27.976	-66.781	-38.805	12.00
		701.5	3.7005	27.976	-67.021	-39.045	-13.00
	5	707.5	3.7174	27.976	-67.371	-39.395	
12/17\		713.5	3.6820	27.976	-67.268	-39.292	
12(17)	12(17)	704.0	3.6835	27.976	-67.203	-39.227	
	10	707.5	3.6775	27.976	-67.221	-39.245	
		711.0	3.6800	27.976	-67.158	-39.182	

Note:

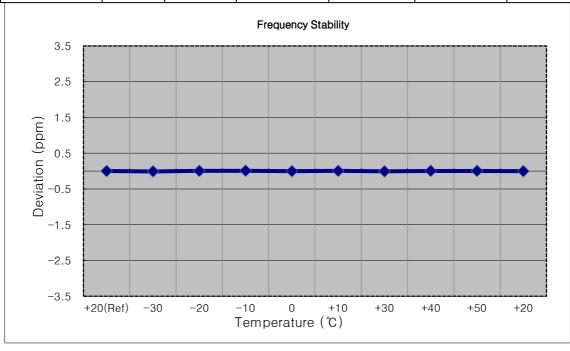
- 1. Plots of the EUT's Conducted Spurious Emissions are shown Page $80 \sim 91$.
- 2. Conducted Spurious Emissions was Tested QPSK Modulation, Resource Block Size 1 and Resource Block Offset 0
- 3. Result (dBm) = Measurement Maximum Data (dBm) + Factor (dB)
- 4. Factor(dB) = Cable Loss + Attenuator + Power Splitter

Frequency Range (GHz)	Factor [dB]
0.03 – 1	25.270
1 - 5	27.976
5 – 10	28.591
10 – 15	29.116
15 – 20	29.489
Above 20	30.131

8.5 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 55 ~ 79.

8.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

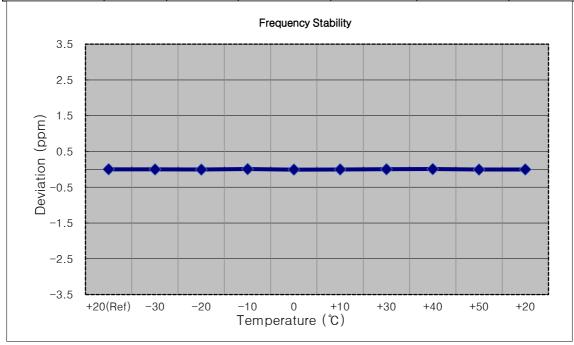

■ MODE: LTE B12

■ OPERATING FREQUENCY: 699,700,000 Hz

■ CHANNEL: 23017 (1.4 MHz)

■ REFERENCE VOLTAGE: 3.85 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	699 699 998	0.0	0.000 000	0.000
100%		-30	699 699 992	-6.7	-0.000 001	-0.010
100%		-20	699 700 003	4.6	0.000 001	0.007
100%	3.850	-10	699 700 003	4.9	0.000 001	0.007
100%		0	699 699 996	-2.0	0.000 000	-0.003
100%		+10	699 700 003	4.6	0.000 001	0.007
100%		+30	699 699 992	-6.0	-0.000 001	-0.009
100%		+40	699 700 000	1.8	0.000 000	0.003
100%		+50	699 700 001	2.2	0.000 000	0.003
Batt. Endpoint	3.400	+20	699 699 996	-2.6	0.000 000	-0.004

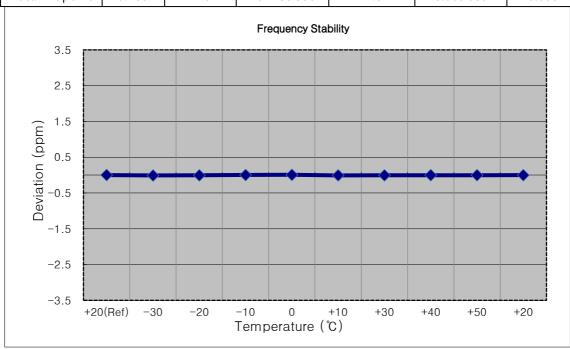

■ MODE: <u>LTE B12</u>

■ OPERATING FREQUENCY: 700,500,000 Hz

■ CHANNEL: 23025 (3 MHz)

■ REFERENCE VOLTAGE: 3.85 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	700 499 995	0.0	0.000 000	0.000
100%		-30	700 499 993	-1.6	0.000 000	-0.002
100%		-20	700 499 991	-4.4	-0.000 001	-0.006
100%	3.850	-10	700 500 000	5.2	0.000 001	0.007
100%		0	700 499 989	-5.9	-0.000 001	-0.008
100%		+10	700 499 992	-3.3	0.000 000	-0.005
100%		+30	700 499 997	2.2	0.000 000	0.003
100%		+40	700 500 001	5.6	0.000 001	0.008
100%		+50	700 499 991	-4.0	-0.000 001	-0.006
Batt. Endpoint	3.400	+20	700 499 993	-2.1	0.000 000	-0.003

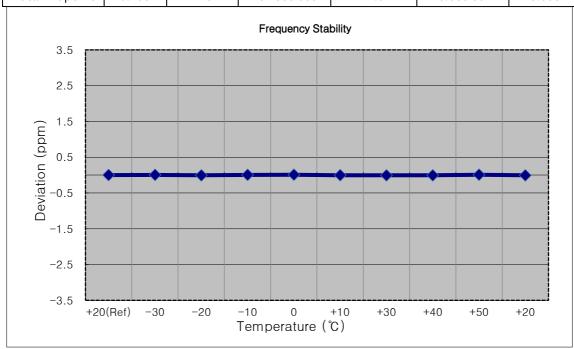

■ MODE: <u>LTE B12/17</u>

■ OPERATING FREQUENCY: 701,500,000 Hz

■ CHANNEL: <u>23035 (5 MHz)</u>

■ REFERENCE VOLTAGE: 3.85 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	701 499 998	0.0	0.000 000	0.000
100%		-30	701 499 990	-7.5	-0.000 001	-0.011
100%	3.850	-20	701 499 994	-4.2	-0.000 001	-0.006
100%		-10	701 500 000	2.1	0.000 000	0.003
100%		0	701 500 003	5.6	0.000 001	0.008
100%		+10	701 499 992	-5.5	-0.000 001	-0.008
100%		+30	701 499 993	-5.2	-0.000 001	-0.007
100%		+40	701 499 994	-3.5	0.000 000	-0.005
100%		+50	701 499 995	-2.6	0.000 000	-0.004
Batt. Endpoint	3.400	+20	701 499 996	-1.8	0.000 000	-0.003


■ MODE: <u>LTE B12/17</u>

■ OPERATING FREQUENCY: <u>704,000,000 Hz</u>

■ CHANNEL: <u>23060 (10 MHz)</u>

■ REFERENCE VOLTAGE: 3.85 VDC

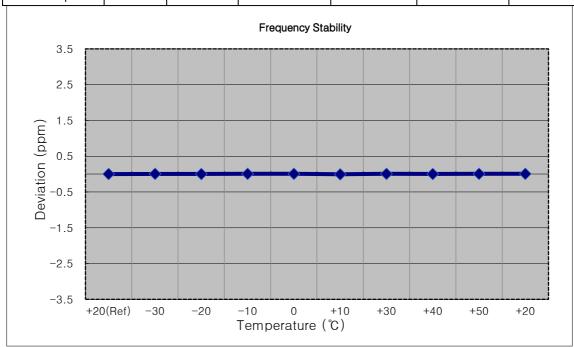
Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	704 000 007	0.0	0.000 000	0.000
100%		-30	704 000 010	3.6	0.000 001	0.005
100%		-20	704 000 003	-3.7	-0.000 001	-0.005
100%	3.850	-10	704 000 010	3.6	0.000 001	0.005
100%		0	704 000 014	7.3	0.000 001	0.010
100%		+10	704 000 004	-3.1	0.000 000	-0.004
100%		+30	704 000 003	-3.7	-0.000 001	-0.005
100%		+40	704 000 002	-4.9	-0.000 001	-0.007
100%		+50	704 000 014	6.8	0.000 001	0.010
Batt. Endpoint	3.400	+20	704 000 003	-4.0	-0.000 001	-0.006

■ MODE: <u>LTE B12</u>

■ OPERATING FREQUENCY: 707,500,000 Hz
 ■ CHANNEL: 23095 (1.4 MHz)

■ REFERENCE VOLTAGE: 3.85 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	707 499 996	0.0	0.000 000	0.000
100%		-30	707 499 999	3.5	0.000 000	0.005
100%		-20	707 499 989	-6.6	-0.000 001	-0.009
100%		-10	707 499 993	-2.7	0.000 000	-0.004
100%	3.850	0	707 499 998	1.9	0.000 000	0.003
100%		+10	707 499 989	-7.1	-0.000 001	-0.010
100%		+30	707 499 990	-5.8	-0.000 001	-0.008
100%		+40	707 499 991	-5.0	-0.000 001	-0.007
100%		+50	707 499 993	-3.3	0.000 000	-0.005
Batt. Endpoint	3.400	+20	707 499 992	-3.7	-0.000 001	-0.005

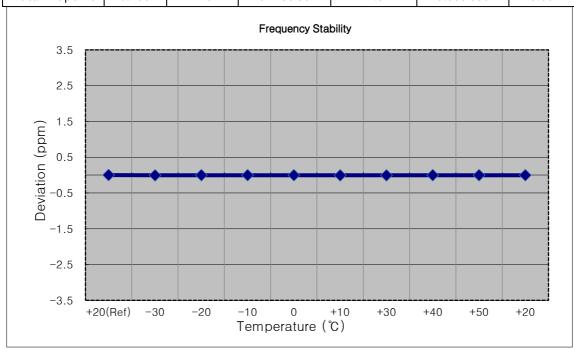

■ MODE: <u>LTE B12</u>

■ OPERATING FREQUENCY: <u>707,500,000 Hz</u>

■ CHANNEL: <u>23095 (3 MHz)</u>

■ REFERENCE VOLTAGE: 3.85 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	707 499 997	0.0	0.000 000	0.000
100%		-30	707 500 000	3.0	0.000 000	0.004
100%		-20	707 499 998	1.7	0.000 000	0.002
100%		-10	707 500 002	5.2	0.000001	0.007
100%	3.850	0	707 500 002	5.0	0.000 001	0.007
100%		+10	707 499 993	-4.0	-0.000 001	-0.006
100%		+30	707 500 002	4.8	0.000 001	0.007
100%		+40	707 499 999	2.4	0.000 000	0.003
100%		+50	707 500 002	5.2	0.000 001	0.007
Batt. Endpoint	3.400	+20	707 500 002	5.2	0.000 001	0.007

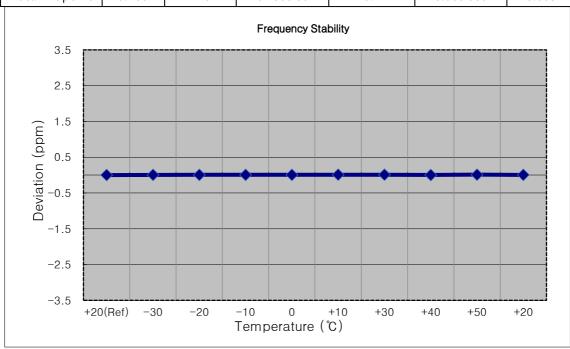

■ MODE: <u>LTE B12/17</u>

■ OPERATING FREQUENCY: 707,500,000 Hz

■ CHANNEL: <u>23095 (5 MHz)</u>

■ REFERENCE VOLTAGE: 3.85 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	707 499 995	0.0	0.000 000	0.000
100%		-30	707 499 991	-4.3	-0.000 001	-0.006
100%	3.850	-20	707 499 992	-3.6	-0.000 001	-0.005
100%		-10	707 499 991	-3.7	-0.000 001	-0.005
100%		0	707 499 992	-3.6	-0.000 001	-0.005
100%		+10	707 499 991	-3.8	-0.000 001	-0.005
100%		+30	707 499 991	-3.8	-0.000 001	-0.005
100%		+40	707 499 992	-3.3	0.000 000	-0.005
100%		+50	707 499 991	-3.7	-0.000 001	-0.005
Batt. Endpoint	3.400	+20	707 499 992	-2.9	0.000 000	-0.004

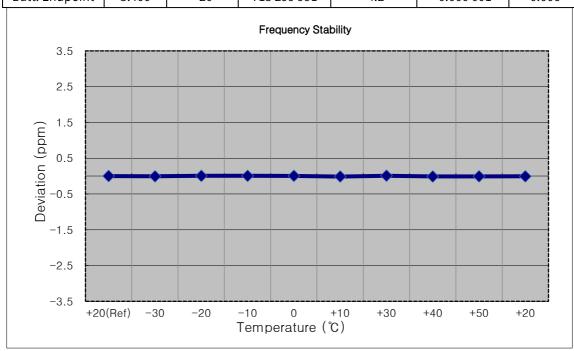

■ MODE: <u>LTE B12/17</u>

■ OPERATING FREQUENCY: <u>707,500,000 Hz</u>

■ CHANNEL: <u>23095 (10 MHz)</u>

■ REFERENCE VOLTAGE: 3.85 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%	3.850	+20(Ref)	707 500 003	0.0	0.000 000	0.000
100%		-30	707 500 007	3.8	0.000 001	0.005
100%		-20	707 500 008	4.7	0.000 001	0.007
100%		-10	707 500 008	4.6	0.000 001	0.007
100%		0	707 500 008	5.0	0.000 001	0.007
100%		+10	707 500 010	6.2	0.000 001	0.009
100%		+30	707 500 010	6.3	0.000 001	0.009
100%		+40	707 500 006	2.3	0.000 000	0.003
100%		+50	707 500 012	8.6	0.000 001	0.012
Batt. Endpoint	3.400	+20	707 500 007	3.4	0.000 000	0.005

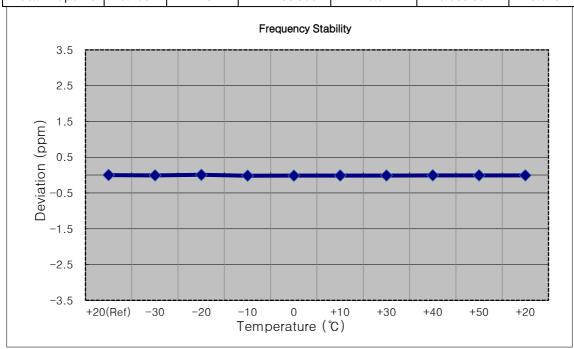


■ MODE: <u>LTE B12</u>

■ OPERATING FREQUENCY: 715,300,000 Hz
 ■ CHANNEL: 23173 (1.4 MHz)

■ REFERENCE VOLTAGE: 3.85 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	715 299 995	0.0	0.000 000	0.000
100%		-30	715 299 990	-4.5	-0.000 001	-0.006
100%	3.850	-20	715 300 000	5.7	0.000 001	0.008
100%		-10	715 300 000	5.0	0.000 001	0.007
100%		0	715 299 999	3.8	0.000 001	0.005
100%		+10	715 299 986	-9.1	-0.000 001	-0.013
100%		+30	715 300 001	6.2	0.000 001	0.009
100%		+40	715 299 987	-8.1	-0.000 001	-0.011
100%		+50	715 299 989	-5.6	-0.000 001	-0.008
Batt. Endpoint	3.400	+20	715 299 991	-4.2	-0.000 001	-0.006

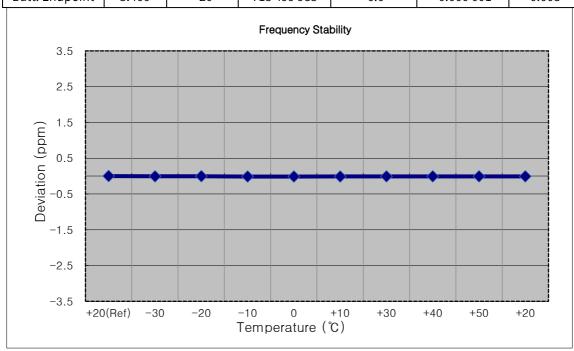

■ MODE: <u>LTE B12</u>

■ OPERATING FREQUENCY: 714,500,000 Hz

■ CHANNEL: <u>23165 (3 MHz)</u>

■ REFERENCE VOLTAGE: 3.85 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	714 499 990	0.0	0.000 000	0.000
100%		-30	714 499 984	-5.4	-0.000 001	-0.008
100%	3.850	-20	714 499 995	5.5	0.000 001	0.008
100%		-10	714 499 977	-12.9	-0.000 002	-0.018
100%		0	714 499 978	-11.2	-0.000 002	-0.016
100%		+10	714 499 981	-9.1	-0.000 001	-0.013
100%		+30	714 499 981	-8.9	-0.000 001	-0.012
100%		+40	714 499 983	-6.6	-0.000 001	-0.009
100%		+50	714 499 983	-6.6	-0.000 001	-0.009
Batt. Endpoint	3.400	+20	714 499 983	-6.9	-0.000 001	-0.010

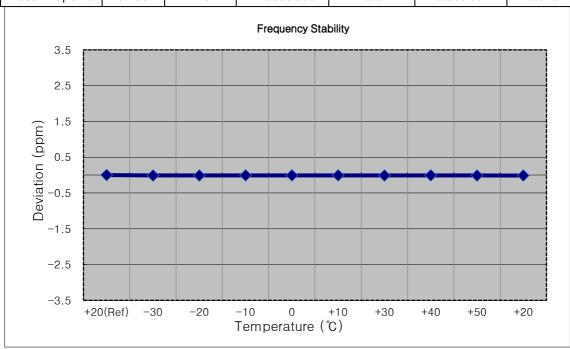

■ MODE: <u>LTE B12/17</u>

■ OPERATING FREQUENCY: 713,500,000 Hz

■ CHANNEL: <u>23155 (5 MHz)</u>

■ REFERENCE VOLTAGE: 3.85 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	713 499 991	0.0	0.000 000	0.000
100%		-30	713 499 986	-4.9	-0.000 001	-0.007
100%	3.850	-20	713 499 987	-3.3	0.000 000	-0.005
100%		-10	713 499 981	-9.2	-0.000 001	-0.013
100%		0	713 499 981	-9.8	-0.000 001	-0.014
100%		+10	713 499 983	-7.8	-0.000 001	-0.011
100%		+30	713 499 984	-6.3	-0.000 001	-0.009
100%		+40	713 499 984	-6.1	-0.000 001	-0.009
100%		+50	713 499 985	-5.6	-0.000 001	-0.008
Batt. Endpoint	3.400	+20	713 499 985	-6.0	-0.000 001	-0.008


■ MODE: <u>LTE B12/17</u>

■ OPERATING FREQUENCY: 711,000,000 Hz

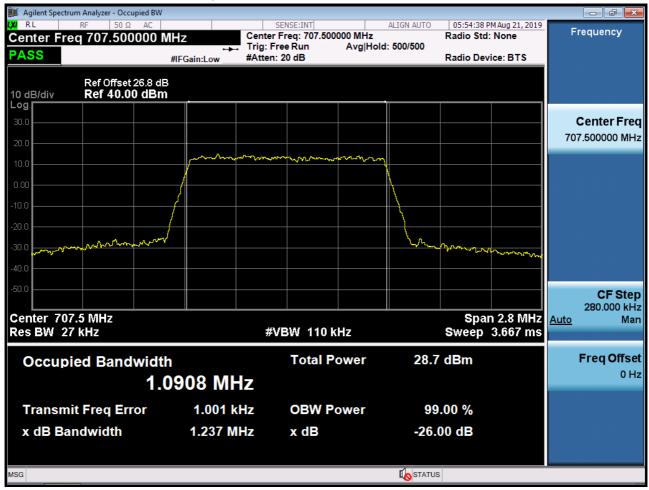
■ CHANNEL: <u>23130 (10 MHz)</u>

■ REFERENCE VOLTAGE: 3.85 VDC

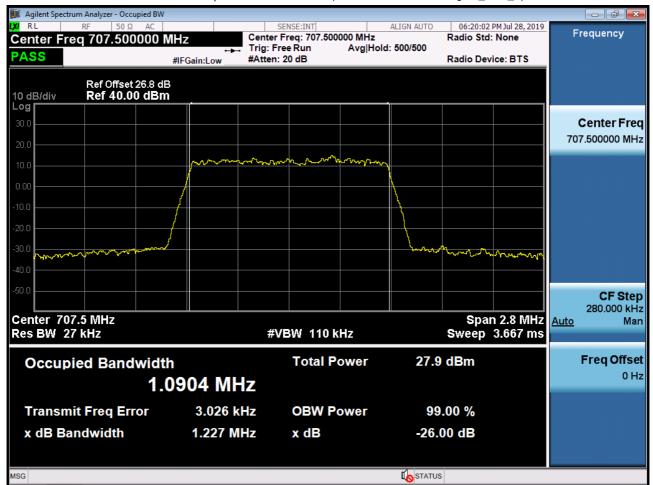
Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	710 999 992	0.0	0.000 000	0.000
100%		-30	710 999 984	-8.4	-0.000 001	-0.012
100%	3.850	-20	710 999 985	-7.2	-0.000 001	-0.010
100%		-10	710 999 985	-6.9	-0.000 001	-0.010
100%		0	710 999 985	-6.7	-0.000 001	-0.009
100%		+10	710 999 985	-6.9	-0.000 001	-0.010
100%		+30	710 999 985	-7.0	-0.000 001	-0.010
100%		+40	710 999 985	-6.9	-0.000 001	-0.010
100%		+50	710 999 985	-7.0	-0.000 001	-0.010
Batt. Endpoint	3.400	+20	710 999 983	-9.0	-0.000 001	-0.013



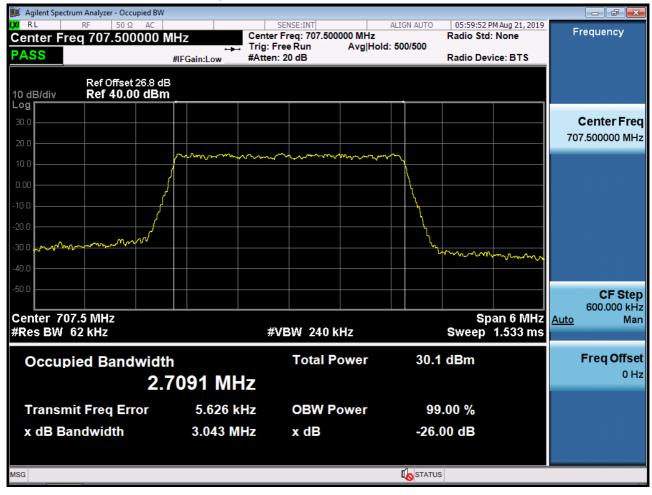
9. TEST PLOTS



BAND 12. Occupied Bandwidth Plot (1.4M BW Ch.23095 QPSK_RB6_0)



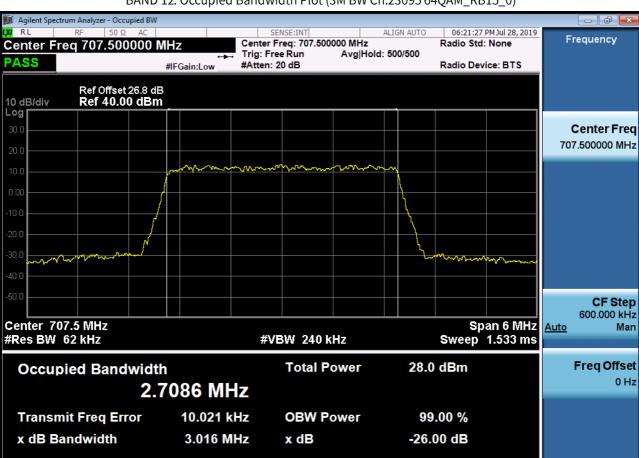
BAND 12. Occupied Bandwidth Plot (1.4M BW Ch.23095 16QAM_RB6_0)



BAND 12. Occupied Bandwidth Plot (1.4M BW Ch.23095 64QAM_RB6_0)

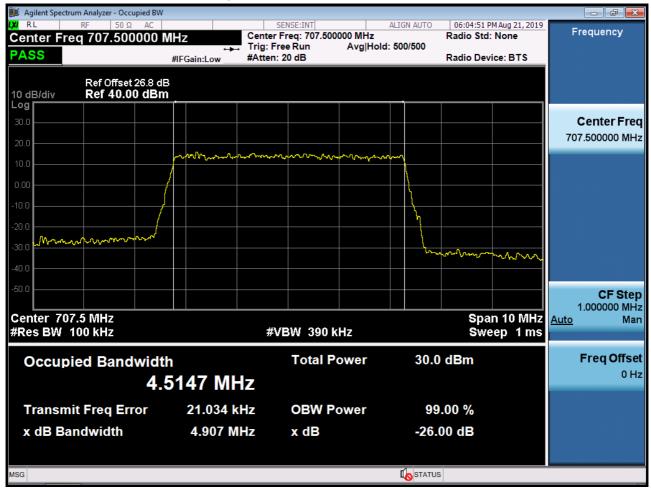


BAND 12. Occupied Bandwidth Plot (3M BW Ch.23095 QPSK_RB15_0)



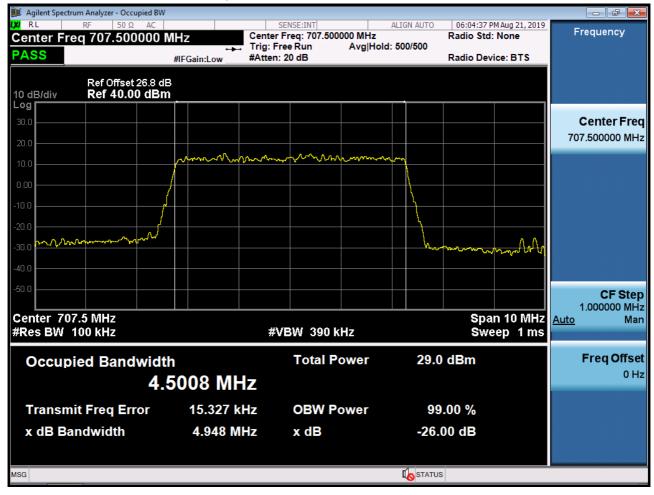
BAND 12. Occupied Bandwidth Plot (3M BW Ch.23095 16QAM_RB15_0)

MSG



STATUS

BAND 12. Occupied Bandwidth Plot (3M BW Ch.23095 64QAM_RB15_0)



BAND 12/17. Occupied Bandwidth Plot (5M BW Ch.23095 QPSK_RB25_0)

BAND 12/17. Occupied Bandwidth Plot (5M BW Ch.23095 16QAM_RB25_0)

