

CERTIFICATION TEST REPORT

Report Number. : 12440720-E3V1

- Applicant : Samsung Electronics Co., Ltd. 129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16677, Korea
 - Model : SM-A750G/DS and SM-A750G
 - FCC ID : A3LSMA750G
- **EUT Description :** GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, and ANT+
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C

Date Of Issue: August 31, 2018

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	08/31/18	Initial Issue	

Page 2 of 48

TABLE OF CONTENTS

REF	POR	T REVISION HISTORY	2
TAE	BLE	OF CONTENTS	3
1.	ATT	ESTATION OF TEST RESULTS	5
2.	TES	ST METHODOLOGY	6
3.		CILITIES AND ACCREDITATION	
э.			
4.		LIBRATION AND UNCERTAINTY	
	1.	MEASURING INSTRUMENT CALIBRATION	
	2.	SAMPLE CALCULATION	
4.	3.	MEASUREMENT UNCERTAINTY	7
5.	EQI	UIPMENT UNDER TEST	8
5.	1.	EUT DESCRIPTION	8
5.	2.	MAXIMUM OUTPUT POWER	8
5.	З.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5.	4.	SOFTWARE AND FIRMWARE	8
5.	5.	WORST-CASE CONFIGURATION AND MODE	8
5	~		0
5.	6.	DESCRIPTION OF TEST SETUP	9
6.	-	ASUREMENT METHOD	
-	ME		12
6.	ME. TES	ASUREMENT METHOD1	12 13
6. 7. 8.	ME. TES	ASUREMENT METHOD1 ST AND MEASUREMENT EQUIPMENT1	12 13 14
6. 7. 8. <i>8.</i>	ME TES	ASUREMENT METHOD	12 13 14 14
6. 7. 8. 8. 8.	MEA TES AN	ASUREMENT METHOD	12 13 14 14 16
 6. 7. 8. 8. 8. 8. 	ME TES AN 1. 2.	ASUREMENT METHOD	12 13 14 14 16 18
 6. 7. 8. 8. 8. 8. 8. 8. 	ME TES AN 1. 2. .3.	ASUREMENT METHOD	12 13 14 14 16 18 20
 6. 7. 8. 	MEA TES AN 1. 2. .3. 4.	ASUREMENT METHOD	12 13 14 16 18 20 21
 6. 7. 8. 	MEA TES AN 1. 2. 3. 4. 5.	ASUREMENT METHOD	12 13 14 14 16 18 20 21 22
 6. 7. 8. 9. 9	MEA TES AN 1. 2. 3. 4. 5. 6. 7.	ASUREMENT METHOD	12 13 14 14 16 18 20 21 22 22
 6. 7. 8. 9. 	MEA TES AN 1. 2. 3. 4. 5. 6. 7.	ASUREMENT METHOD	 12 13 14 16 18 20 21 22 224 226
 6. 7. 8. 8. 8. 8. 8. 8. 9. 	MEA TES AN 1. 2. 3. 4. 5. 6. 7. RAI	ASUREMENT METHOD	 12 13 14 14 16 18 20 21 22 22 24 26 26
 6. 7. 8. 8. 8. 8. 8. 8. 8. 9. 9. 9. 	MEA TES AN 1. 2. 3. 4. 5. 6. 7. 7. RAI 1.	ASUREMENT METHOD	12 13 14 14 16 18 20 21 22 24 26 27
 6. 7. 8. 8. 8. 8. 8. 8. 8. 9. 9. 9. 9. 	MEA TES AN 1. 2. 3. 4. 5. 6. 7. 7. RAI 2.	ASUREMENT METHOD	12 13 14 14 16 18 20 21 22 26 27 37

ç	0.5. V	Norst Case 18-26 GHz	41
10.	AC	POWER LINE CONDUCTED EMISSIONS	43
	10.1.	1. AC Power Line Norm	44
11.	SE	TUP PHOTOS	46

Page 4 of 48

1. ATTESTATION OF TEST RESULTS

CFR 47 Part 15 Subpart C

COMPANY NAME:	Samsung Electronics Co., Ltd. 129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16677, Korea					
EUT DESCRIPTION:	GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, and ANT+					
MODEL:	SM-A750G/DS and SM-A750G					
SERIAL NUMBER:	Conducted: R38K70MNSEF Radiated: R38K70MNRBF, R38K70MNQ6Z					
DATE TESTED:	AUGUST 15, 2018					
APPLICABLE STANDARDS						
ST	ANDARD TEST RESULTS					

Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. All samples tested were in good operating condition throughout the entire test program. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

DAN CORONIA CONSUMER TECHNOLOGY DIVISION Operations Leader UL Verification Services Inc.

Reviewed By:

STEVEN TRAN CONSUMER TECHNOLOGY DIVISION Project Engineer UL Verification Services Inc.

Page 5 of 48

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, KDB 558074 D01 v4, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd.
Chamber A (IC:2324B-1)	Chamber D (IC:22541-1)	□ Chamber I (IC: 2324A-5)
□ Chamber B (IC:2324B-2)	□ Chamber E (IC:22541-2)	□ Chamber J (IC: 2324A-6)
□ Chamber C (IC:2324B-3)	Chamber F (IC:22541-3)	□ Chamber K (IC: 2324A-1)
	□ Chamber G (IC:22541-4)	☑ Chamber L (IC: 2324A-3)
	Chamber H (IC:22541-5)	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

Page 6 of 48

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB + 10.1 dB + 0 dB = 46.6 dBuV

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	3.15 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.32 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.45 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.24 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. EUT DESCRIPTION

The EUT is a GSM/WCDMA/LTE phone with BT, DTS/UNII a/b/g/n/ac, and ANT+.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency	Mode	Output Power	Output Power
Range		(dBm)	(mW)
(MHz)			
2402 - 2480	BLE	5.40	3.47

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an internal antenna, with a maximum gain of -1.71 dBi.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was A750G.001

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle and high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y and Z it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

5.6. DESCRIPTION OF TEST SETUP

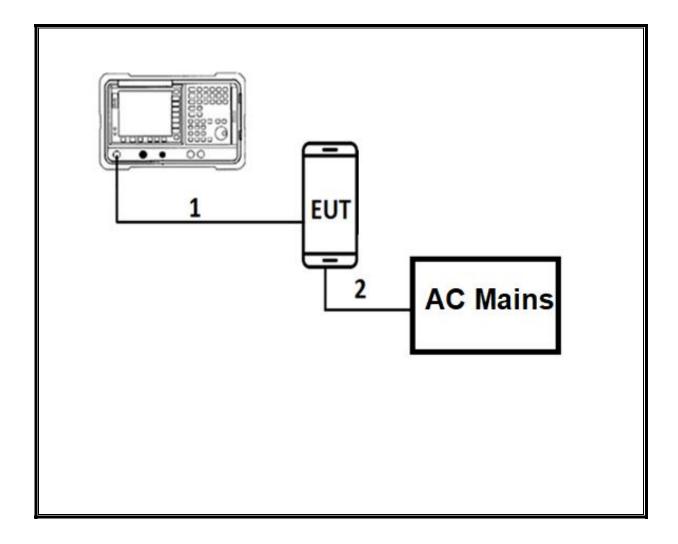
SUPPORT EQUIPMENT

Support Equipment List								
Description Manufacturer Model Serial Number FCC ID								
AC Adapter	Samsung	EP-TA50EWE	DW3J719AS/A-E	N/A				
Earphone								

I/O CABLES (CONDUCTED TEST)

	I/O Cable List							
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	Antenna	1	RF	Shielded	0.2	To spectrum Analyzer		
2	USB	1	USB	Un-shielded	1	EUT to AC Mains		

I/O CABLES (RADIATED AND CONDUCTED EMISSIONS)

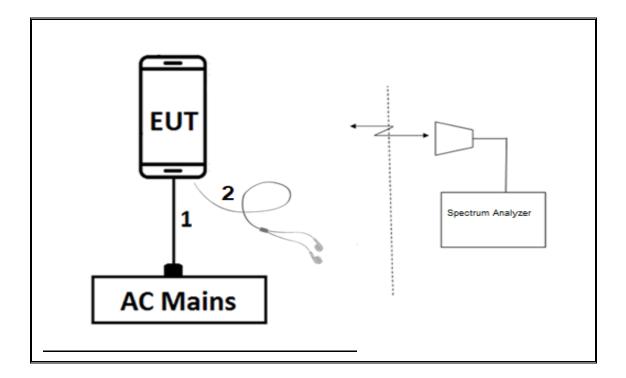

	I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	USB	1	USB	Shielded	1	N/A	
2	earphone	1	3.5mm	Un-shielded	1	N/A	

TEST SETUP

The EUT is a stand alone. Test software exercised the radio card.

Page 9 of 48

CONDCUTED TEST SETUP DIAGRAM



TEST SETUP

For conducted tests: the EUT was Stand alone. The test software exercises the radio.

Page 10 of 48

RADIATED AND AC LINE CONDUCTED EMISSIONS SETUP DIAGRAM

TEST SETUP

For radiated tests: EUT is Stand alone. The test software exercises the radio.

Page 11 of 48

6. MEASUREMENT METHOD

On Time and Duty Cycle: KDB 558074 D01 v04, Section 6.

<u>6 dB BW</u>: KDB 558074 D01 v04, Section 8.1.

Output Power: KDB 558074 D01 v04, Section 9.1.3.

Power Spectral Density: KDB 558074 D01 v04, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v04, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v04, Section 12.1.

Band-edge: KDB 558074 D01 v04, Section 12.1.

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Page 12 of 48

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal		
Amplifier, 10KHz to 1GHz, 32dB	Agilent (Keysight) Technologies	8447D	T15	08/14/2019	08/14/2018		
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences Corp.	JB3	T130	10/16/2018	10/16/2017		
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T4294	04/30/2019	04/30/2018		
RF Amplifier, 1-18GHz	MITEQ	AFS42- 00101800-25-S- 42	T1568	06/21/2019	06/21/2018		
Amplifier 1-8GHz 30dB gain	L3 Narda	AMF-4D- 01000800-30-29P	167495	06/22/2019	06/22/2018		
Power Meter, P-series single channel	Agilent (Keysight) Technologies	N1911A	T1269	04/05/2019	04/05/2018		
Power Sensor, P-series, 50MHz to 18GHz, Wideband	Agilent (Keysight) Technologies	N1921A	T1225	04/10/2019	04/10/2018		
EMI Reciever	Rohde & Schwarz	ESR	T1436	02/21/2019	02/21/2018		
L.I.S.N.	FCC INC.	FCC LISN 50/250	T1310	06/15/2019	06/15/2018		
L.I.S.N.	FCC INC.	FCC LISN 50/250	T24	03/06/2019	03/06/2018		
Antenna, Active Loop 9kHz- 30MHz	Com-Power Corp.	AL-130R	T1866	10/10/2018	10/10/2017		
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179522	05/11/2019	05/11/2019		
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T200	11/18/2018	11/18/2017		
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T1454	01/08/2019	01/08/2018		
18 - 26.5 GHz Horn Antenna	Seavey Division	MWH-1826/B	T89	01/18/2019	01/18/2018		
Pre-Amp 1-26.5 GHz	Agilent	8449B	T404	03/09/2019	023/09/2018		

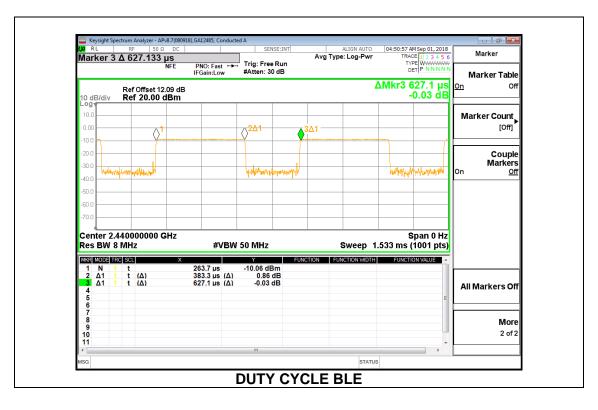
Test Software List							
Description Manufacturer Model Version							
Radiated Software	UL	UL EMC	Rev 9.5, Jun 22, 2018				
Antenna Port Software	UL	UL RF	Ver 8.7, Aug 9, 2018				

Page 13 of 48

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

LIMITS


None; for reporting purposes only.

PROCEDURE

ON TIME AND DUTY CYCLE RESULTS

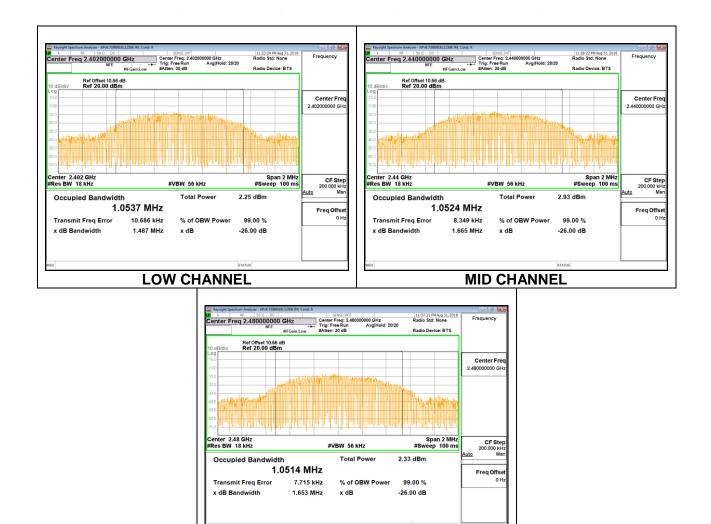
Mode	ON Time Period Duty		Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
BLE	0.383	0.627	0.611	61.07%	2.14	2.611

Page 14 of 48

DUTY CYCLE PLOT

Page 15 of 48

8.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

RESULTS

Page 16 of 48

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0540
Middle	2440	1.0520
High	2480	1.0510

Page 17 of 48

HIGH CHANNEL

8.3. 6 dB BANDWIDTH

LIMITS


FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.7080	0.5
Middle	2440	0.6900	0.5
High	2480	0.6870	0.5

Page 19 of 48

8.4. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss was entered as an offset in the power meter to allow for a gated peak reading of power.

RESULTS

Tested By:	12506 JM
Date:	8/31/2018

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	4.93	30	-25.070
Middle	2440	5.40	30	-24.600
High	2480	4.84	30	-25.160

Page 20 of 48

8.5. AVERAGE POWER

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss was entered as an offset in the power meter to allow for a gated average reading of power.

RESULTS

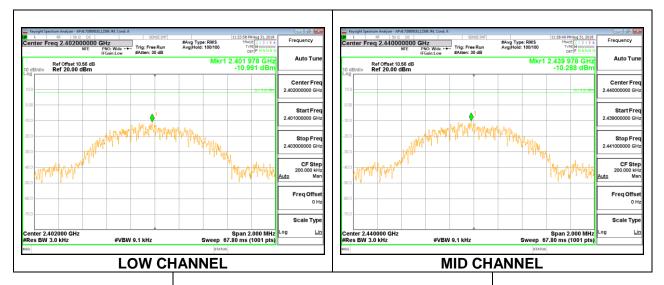
Tested By:	12506 JM
Date:	8/31/2018

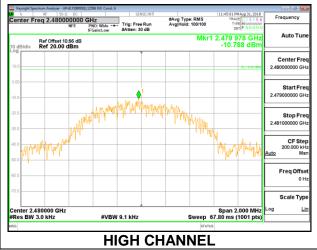
Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	4.21
Middle	2440	4.80
High	2480	4.23

Page 21 of 48

8.6. POWER SPECTRAL DENSITY

LIMITS


FCC §15.247 (e)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

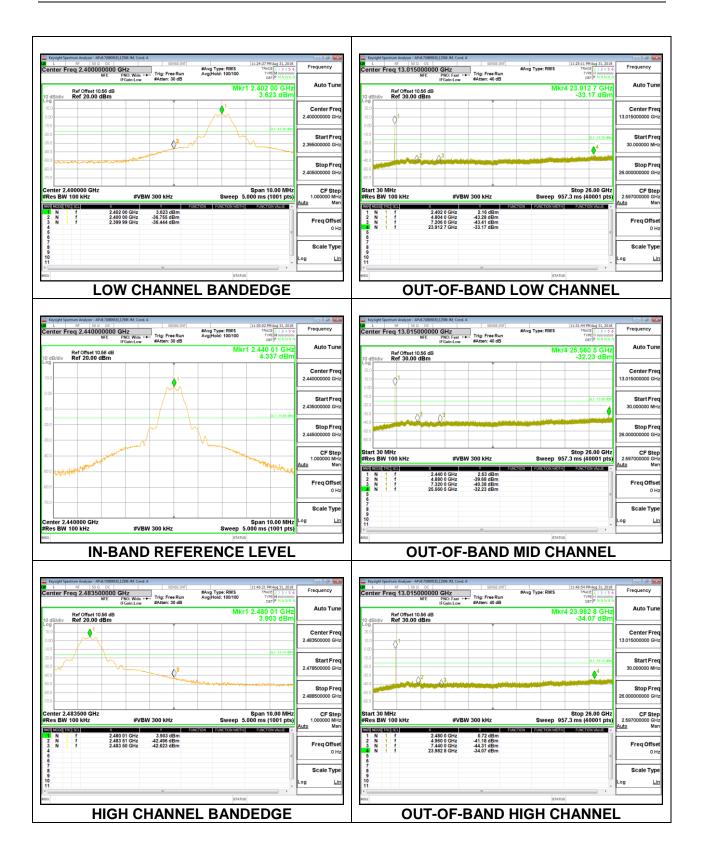
RESULTS

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2402	-10.99	8	-18.99
Middle	2440	-10.29	8	-18.29
High	2480	-10.79	8	-18.79

Page 23 of 48

8.7. CONDUCTED SPURIOUS EMISSIONS


LIMITS

FCC §15.247 (d)

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

RESULTS

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 25 of 48

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

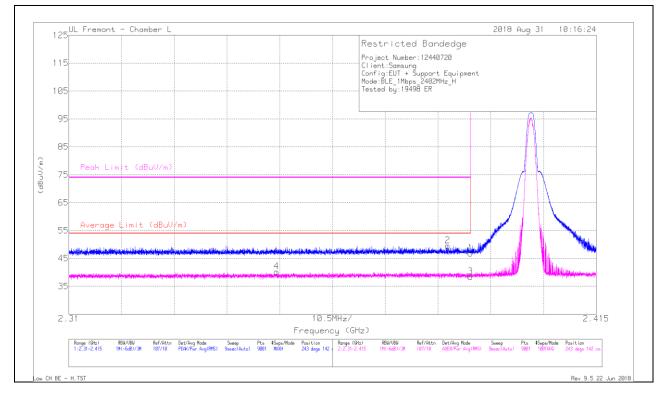
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

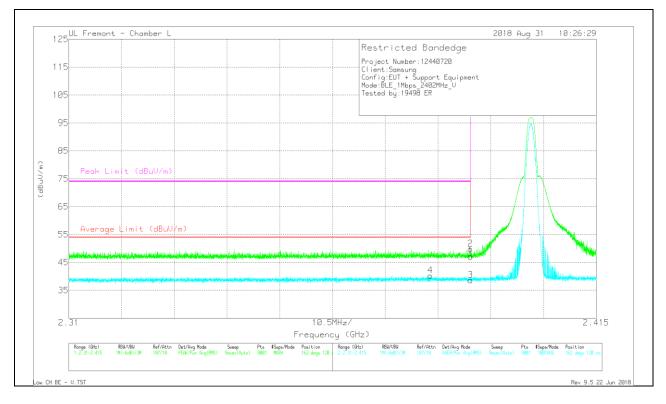

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest output power was tested.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 26 of 48

9.2. TRANSMITTER ABOVE 1 GHz

BANDEDGE (LOW CHANNEL)

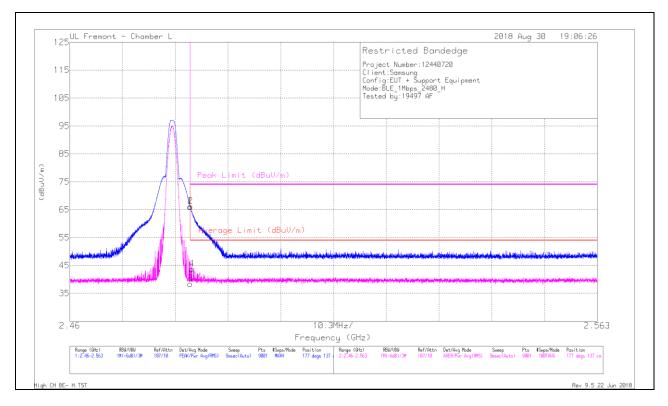

HORIZONTAL RESULT

Trace Markers

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	DC	Corrected	Average	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		EMC4294	(dB)	Corr	Reading	Limit	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dB)	(dBuV/m)	(dBuV/m)			(dB)			
1	* 2.39	37.96	Pk	31.8	-22.9	0	46.86	-	-	74	-27.14	243	142	н
2	* 2.385	40.66	Pk	31.8	-22.9	0	49.56	-	-	74	-24.44	243	142	Н
3	* 2.39	27.29	RMS	31.8	-22.9	2.14	38.33	54	-15.67	-	-	243	142	Н
4	* 2.351	29.58	RMS	31.5	-23	2.14	40.22	54	-13.78	-	-	243	142	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector RMS - RMS detection

VERTICAL RESULT


Trace Markers

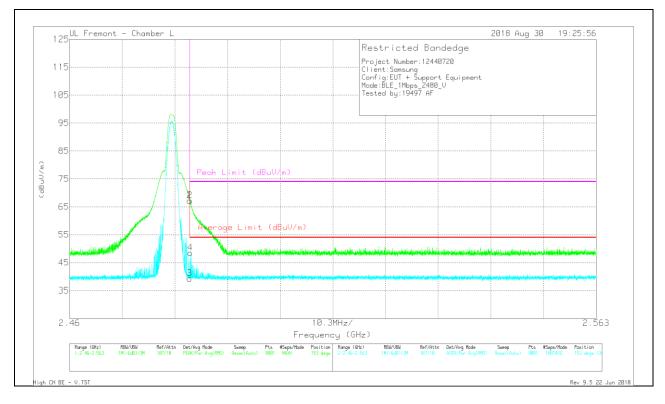
Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	DC	Corrected	Average	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		EMC4294	(dB)	Corr	Reading	Limit	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dB)	(dBuV/m)	(dBuV/m)			(dB)			
1	* 2.39	38.23	Pk	31.8	-22.9	0	47.13	-	-	74	-26.87	162	120	V
2	* 2.39	40.91	Pk	31.8	-22.9	0	49.81	-	-	74	-24.19	162	120	V
3	* 2.39	27.53	RMS	31.8	-22.9	2.14	38.57	54	-15.43	-	-	162	120	V
4	* 2.382	29.25	RMS	31.7	-22.9	2.14	40.19	54	-13.81	-	-	162	120	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector RMS - RMS detection

Page 28 of 48

BANDEDGE (HIGH CHANNEL)

HORIZONTAL RESULT

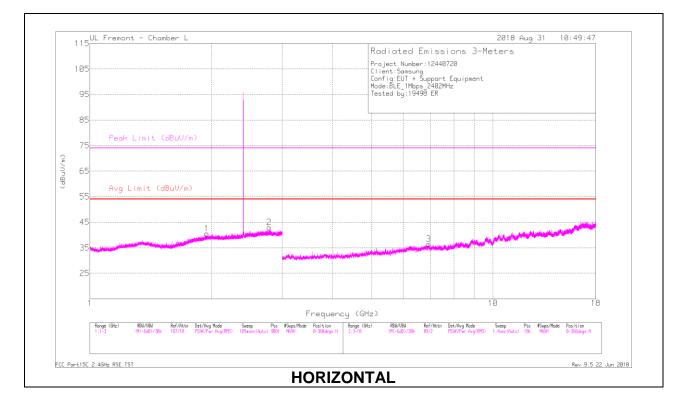

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	AF EMC4294	Amp/Cbl/Fltr/Pad (dB)	DC Corr	Corrected Reading	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)		(dB/m)		(dB)	(dBuV/m)	(dBuV/m)			(dB)			
1	* 2.484	56.33	Pk	32.3	-22.7	0	65.93	-	-	74	-8.07	177	137	н
2	* 2.484	56.61	Pk	32.3	-22.7	0	66.21	-	-	74	-7.79	177	137	н
3	* 2.484	28.79	RMS	32.3	-22.7	2.14	40.53	54	-13.47	-	-	177	137	н
4	* 2.484	34.09	RMS	32.3	-22.7	2.14	45.83	54	-8.17	-	-	177	137	н

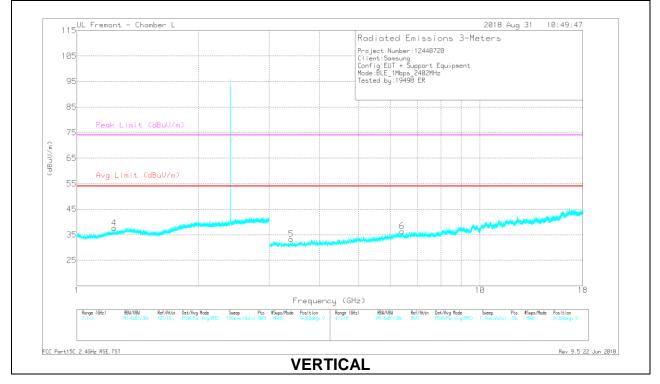
* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector RMS - RMS detection

Page 29 of 48

VERTICAL RESULT


Trace Markers

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	DC	Corrected	Average	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		EMC4294	(dB)	Corr	Reading	Limit	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dB)	(dBuV/m)	(dBuV/m)			(dB)			
1	* 2.484	57.51	Pk	32.3	-22.7	0	67.11	-	-	74	-6.89	153	134	V
2	* 2.484	57.58	Pk	32.3	-22.7	0	67.18	-	-	74	-6.82	153	134	V
3	* 2.484	27.58	RMS	32.3	-22.7	2.14	39.32	54	-14.68	-	-	153	134	V
4	* 2.484	36.73	RMS	32.3	-22.7	2.14	48.47	54	-5.53	-	-	153	134	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector RMS - RMS detection

Page 30 of 48

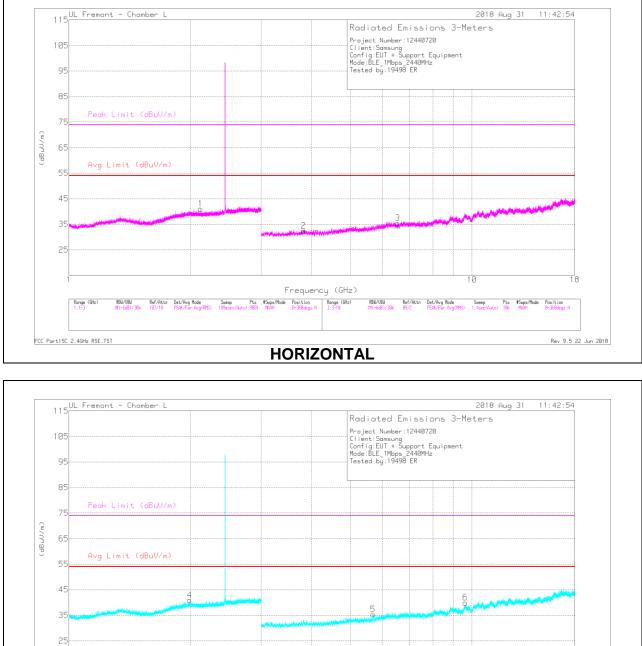
HARMONICS AND SPURIOUS EMISSIONS

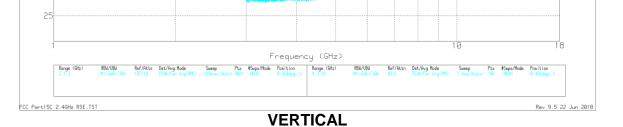
LOW CHANNEL RESULTS

Page 31 of 48

RADIATED EMISSIONS

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	DC	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		EMC4294	(dB)	Corr	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dB)	(dBuV/m)				(dB)			
1	1.948	37.56	PK2	31.4	-23.6	0	45.36	-	-	-	-	79	171	Н
2	* 2.789	38.44	PK2	32.6	-22.2	0	48.84	-	-	74	-25.16	341	150	Н
	* 2.788	27.99	MAv1	32.6	-22.2	2.14	40.53	54	-13.47	-	-	341	150	Н
4	* 1.235	38.21	PK2	28.6	-25	0	41.81	-	-	74	-32.19	276	127	V
	* 1.234	30.04	MAv1	28.6	-25	2.14	35.78	54	-18.22	-	-	276	127	V
3	6.923	30.74	PK2	35.7	-25.4	0	41.04	-	-	-	-	270	227	н
5	3.402	35.37	PK2	32.8	-30.2	0	37.97	-	-	-	-	208	133	V
6	6.416	32.79	PK2	35.7	-26.3	0	42.19	-	-	-	-	335	150	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak


MAv1 - KDB558074 Option 1 Maximum RMS Average

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 32 of 48

MID CHANNEL RESULTS

Page 33 of 48

RADIATED EMISSIONS

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	DC	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		EMC4294	(dB)	Corr	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dB)	(dBuV/m)				(dB)			
1	2.12	37.95	PK2	31.4	-23.3	0	46.05	-	-	-	-	59	127	Н
4	1.993	36.86	PK2	31.7	-23.5	0	45.06	-	-	-	-	147	108	V
2	* 3.826	35.02	PK2	33.7	-30.3	0	38.42	-	-	74	-35.58	193	263	Н
	* 3.828	27.46	MAv1	33.7	-30.2	2.14	33.1	54	-20.9	-	-	193	263	Н
3	6.549	31.09	PK2	35.6	-26.7	0	39.99	-	-	-	-	253	168	Н
5	5.688	33.13	PK2	34.9	-27.1	0	40.93	-	-	-	-	320	212	V
6	9.627	28.49	PK2	37	-20.8	0	44.69	-	-	-	-	114	155	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 34 of 48

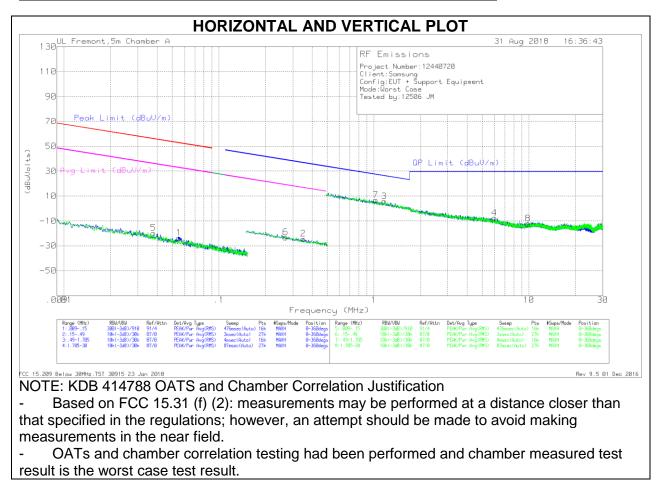
HIGH CHANNEL RESULTS

VERTICAL

Page 35 of 48

RADIATED EMISSIONS

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	DC	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		EMC4294	(dB)	Corr	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dB)	(dBuV/m)				(dB)			
1	1.992	38.03	PK2	31.7	-23.6	0	46.13	-	-	-	-	297	123	Н
4	1.993	37.31	PK2	31.7	-23.6	0	45.41	-	-	-	-	335	189	V
2	4.419	34.03	PK2	33.6	-29.2	0	38.43	-	-	-	-	176	221	Н
3	6.927	31.13	PK2	35.7	-25.3	0	41.53	-	-	-	-	89	167	н
5	6.361	32.85	PK2	35.7	-26.7	0	41.85	-	-	-	-	36	252	V
6	* 7.566	30.11	PK2	35.7	-24.5	0	41.31	-	-	74	-32.69	131	166	V
	* 7.566	21.98	MAv1	35.7	-24.5	2.14	35.32	54	-18.68	-	-	131	166	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 36 of 48

9.3. Worst Case Below 30 MHz

SPURIOUS EMISSIONS 9 kHz TO 30 MHz (WORST-CASE CONFIGURATION)

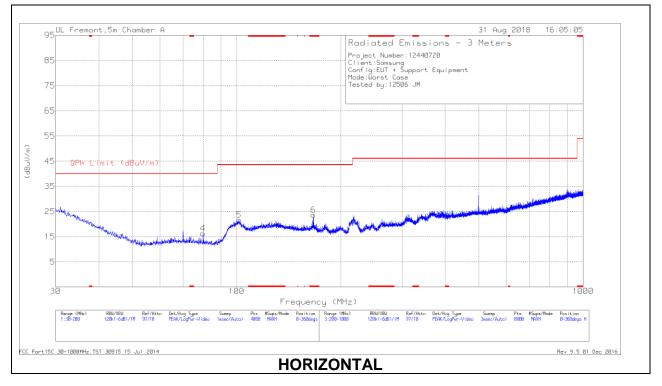
Page 37 of 48

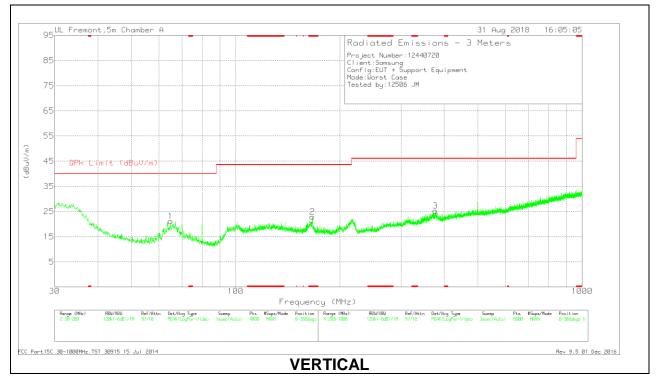
Below 30 MHz Data

Trace Markers

Marker	Frequency	Meter	Det	Loop	Cbl	Dist	Corrected	Peak Limit	Margin	Avg Limit	Margin	Peak Limit	Margin	Avg Limit	Margin	Azimuth
	(MHz)	Reading		Antenna	(dB)	Corr	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)
		(dBuV)		(dB/m)		300m	(dBuVolts)									
5	.03781	45.2	Pk	14.9	.1	-80	-19.8	56.03	-75.83	36.03	-55.83	-	-	-	-	0-360
1	.05507	41.92	Pk	14.3	.1	-80	-23.68	52.77	-76.45	32.77	-56.45	-	-	-	-	0-360
6	.26937	43.01	Pk	13.7	.1	-80	-23.19	-	-	-	-	39.01	-62.2	19.01	-42.2	0-360
2	.35047	41.71	Pk	13.7	.1	-80	-24.49	-	-	-	-	36.72	-61.21	16.72	-41.21	0-360

Pk - Peak detector


Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cbl (dB)	Dist Corr 30m	Corrected Reading (dBuVolts)	QP Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
7	1.02892	32.36	Pk	14.2	.2	-40	6.76	27.37	-20.61	0-360
3	1.16727	31.29	Pk	14.2	.2	-40	5.69	26.28	-20.59	0-360
4	5.99132	17.58	Pk	14.3	.4	-40	-7.72	29.5	-37.22	0-360
8	9.86578	12.96	Pk	14.5	.4	-40	-12.14	29.5	-41.64	0-360


Pk - Peak detector

Page 38 of 48

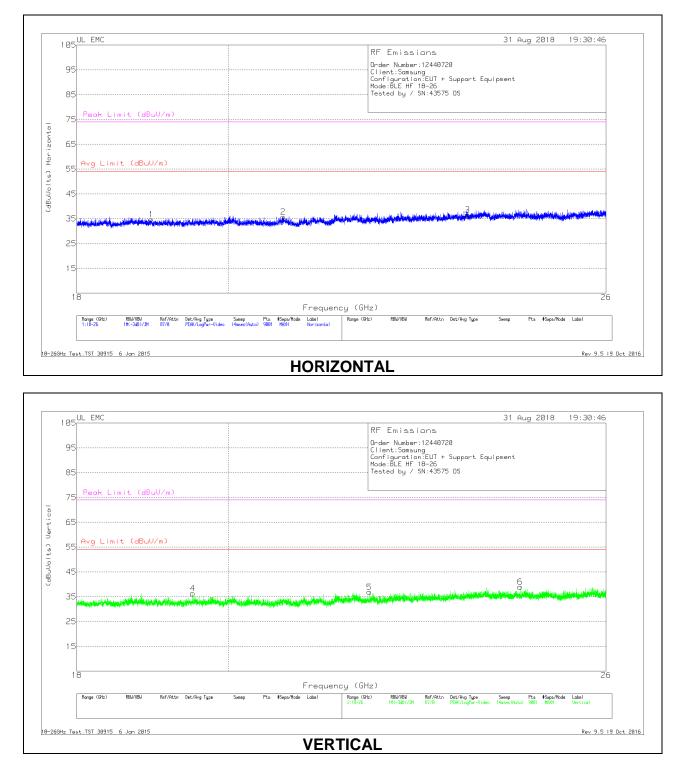
9.4. Worst Case Below 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 39 of 48

Below 1GHz Data

Marker	Frequency	Meter	Det	AF T130 (dB/m)	Amp/Cbl (dB/m)	Corrected	QPk Limit (dBuV/m)	Margin	Azimuth	Height	Polarity
	(MHz)	Reading				Reading		(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
6	* 166.5453	33.42	Pk	15.9	-25.7	23.62	43.52	-19.9	0-360	200	Н
2	* 166.5028	32.7	Pk	15.9	-25.7	22.9	43.52	-20.62	0-360	100	V
1	64.9015	35.85	Pk	12.1	-26.8	21.15	40	-18.85	0-360	100	V
4	79.9929	31.42	Pk	11.5	-26.6	16.32	40	-23.68	0-360	200	Н
5	101.546	33.36	Pk	14.7	-26.4	21.66	43.52	-21.86	0-360	200	Н
3	376.823	31.37	Pk	18.9	-25	25.27	46.02	-20.75	0-360	101	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

Page 40 of 48

9.5. Worst Case 18-26 GHz

SPURIOUS EMISSIONS 18-26 GHz (WORST-CASE CONFIGURATION)

Page 41 of 48

18 – 26GHz DATA

Marker	Frequency	Meter	Det	T89 AF	Amp/Cbl	Dist Corr	Corrected	Avg Limit	Margin	Peak Limit	PK
	(GHz)	Reading		(dB/m)	(dB)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin
		(dBuV)					(dBuVolts)				(dB)
1	18.957	37.08	Pk	32.2	-25	-9.5	34.78	54	-19.22	74	-39.22
2	20.775	37.47	Pk	32.8	-25	-9.5	35.77	54	-18.23	74	-38.23
3	23.617	37.06	Pk	33.5	-24.5	-9.5	36.56	54	-17.44	74	-37.44
4	19.511	38.44	Pk	32.5	-25.1	-9.5	36.34	54	-17.66	74	-37.66
5	22.058	38.56	Pk	33.1	-25.3	-9.5	36.86	54	-17.14	74	-37.14
6	24.493	38.82	Pk	34	-24.3	-9.5	39.02	54	-14.98	74	-34.98

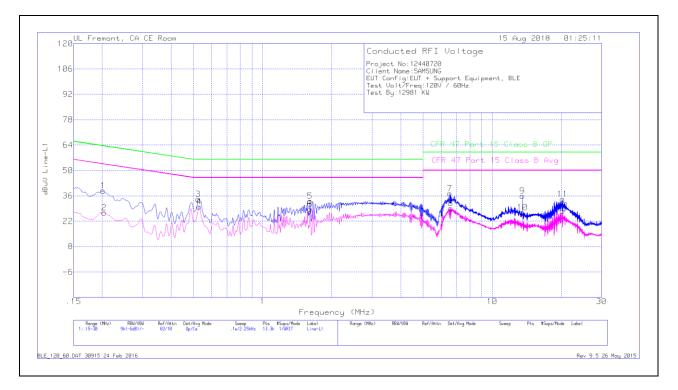
Pk - Peak detector

Page 42 of 48

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)


Frequency of Emission (MHz)	Conducted L	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

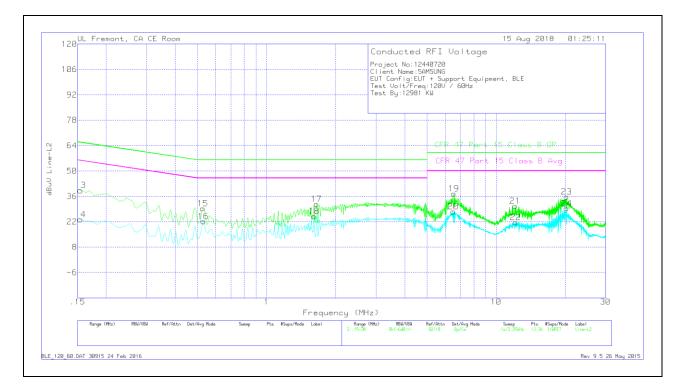
Decreases with the logarithm of the frequency.

RESULTS

Page 43 of 48

LINE 1 RESULTS

Trace Markers


Range	1: Line-L1 .	15 - 30MH	lz								
Marker	Frequency	Meter	Det	LISN L1	LC Cables	Limiter	Corrected	CFR 47	QP Margin	CFR 47	Av(CISPR)
	(MHz)	Reading			C1&C3	(dB)	Reading	Part 15	(dB)	Part 15	Margin
		(dBuV)					dBuV	Class B QP		Class B Avg	(dB)
1	.20175	28.69	Qp	0	0	10.1	38.79	63.54	-24.75	-	-
2	.204	16.63	Ca	0	0	10.1	26.73	-	-	53.45	-26.72
3	.5235	24.14	Qp	0	0	10.1	34.24	56	-21.76	-	-
4	.52912	19.92	Ca	0	0	10.1	30.02	-	-	46	-15.98
5	1.60913	22.9	Qp	0	.1	10.1	33.1	56	-22.9	-	-
6	1.61025	18.59	Ca	0	.1	10.1	28.79	-	-	46	-17.21
7	6.54	26.95	Qp	0	.2	10.2	37.35	60	-22.65	-	-
8	6.5985	18.8	Ca	0	.2	10.2	29.2	-	-	50	-20.8
9	13.56	25.37	Qp	.1	.2	10.2	35.87	60	-24.13	-	-
10	13.56	16.33	Ca	.1	.2	10.2	26.83	-	-	50	-23.17
11	20.256	23.41	Qp	.1	.3	10.3	34.11	60	-25.89	-	-
12	20.2605	16.97	Ca	.1	.3	10.3	27.67	-	-	50	-22.33

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 44 of 48

LINE 2 RESULTS

Trace Markers

Range	2: Line-L2 .	15 - 30MH	lz								
Marker	Frequency	Meter	Det	LISN L2	LC Cables	Limiter	Corrected	CFR 47	QP Margin	CFR 47	Av(CISPR)
	(MHz)	Reading			C2&C3	(dB)	Reading	Part 15	(dB)	Part 15	Margin
		(dBuV)					dBuV	Class B QP		Class B Avg	(dB)
13	.1545	29.11	Qp	.1	0	10.1	39.31	65.75	-26.44	-	-
14	.1545	13.04	Ca	.1	0	10.1	23.24	-	-	55.75	-32.51
15	.528	19.21	Qp	0	0	10.1	29.31	56	-26.69	-	-
16	.53025	12.1	Ca	0	0	10.1	22.2	-	-	46	-23.8
17	1.65075	21.56	Qp	0	.1	10.1	31.76	56	-24.24	-	-
18	1.61025	14.85	Ca	0	.1	10.1	25.05	-	-	46	-20.95
19	6.54225	27.11	Qp	0	.2	10.2	37.51	60	-22.49	-	-
20	6.4995	17.24	Ca	0	.2	10.2	27.64	-	-	50	-22.36
21	12.11325	20.27	Qp	.1	.2	10.2	30.77	60	-29.23	-	-
22	12.156	11.23	Ca	.1	.2	10.2	21.73	-	-	50	-28.27
23	20.265	25.04	Qp	.1	.3	10.3	35.74	60	-24.26	-	-
24	20.26725	18.61	Ca	.1	.3	10.3	29.31	-	-	50	-20.69

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 45 of 48