

SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

For GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, ANT+

> FCC ID: A3LSMA750F Model Name: SM-A750F/DS, SM-A750F

Report Number: 12440922-S1V3 Issue Date: 9/12/2018

Prepared for Samsung Electronics Co., Ltd. 129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16677, Korea

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Date	Revisions	Revised By
V1	9/7/2018	Initial Issue	
V2	9/11/2018	Added Section 6.6	Coltyce Sanders
V3	9/12/2018	Section 10.10: Removed Product Specific 10g Bluetooth Exclusion	AJ Newcomer

UL Verification Services Inc. Doc. No.: 1.0 This report shall not be reproduced without the written approval of UL Verification Services Inc.

Table of Contents

1.	Attestation of Test Results	. 5
2.	Test Specification, Methods and Procedures	. 6
3.	Facilities and Accreditation	. 6
4.	SAR Measurement System & Test Equipment	.7
4.1.	SAR Measurement System	. 7
4.2.	SAR Scan Procedures	. 8
4.3.	Test Equipment	10
5.	Measurement Uncertainty	11
6.	Device Under Test (DUT) Information	12
6.1.	DUT Description	12
6.2.	Wireless Technologies	13
6.3.	General LTE SAR Test and Reporting Considerations	14
6.4.	LTE (TDD) Considerations	15
6.5.	LTE Carrier Aggregation	16
6.6.	WLAN Proximity Sensor Test Rationale	16
7.	RF Exposure Conditions (Test Configurations)	17
8.	Dielectric Property Measurements & System Check	19
8. 8.1.		
	Dielectric Property Measurements	19
8.1.	Dielectric Property Measurements	19 22
8.1. 8.2.	Dielectric Property Measurements System Check Conducted Output Power Measurements	19 22 24
8.1. 8.2. 9. 9.1.	Dielectric Property Measurements System Check	19 22 24 24
8.1. 8.2. 9. 9.1.	Dielectric Property Measurements System Check Conducted Output Power Measurements GSM W-CDMA	19 22 24 24 26
8.1. 8.2. 9. 9.1. 9.2.	Dielectric Property Measurements System Check Conducted Output Power Measurements GSM W-CDMA LTE	19 22 24 24 26 31
8.1. 8.2. 9. 9.1. 9.2. 9.3.	Dielectric Property Measurements System Check Conducted Output Power Measurements GSM W-CDMA LTE LTE Carrier Aggregation	19 22 24 26 31 35
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4.	Dielectric Property Measurements System Check Conducted Output Power Measurements	19 22 24 26 31 35 37
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5.	Dielectric Property Measurements	19 22 24 26 31 35 37 38
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5. 9.6.	Dielectric Property Measurements	19 22 24 24 26 31 35 37 38 40
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7.	Dielectric Property Measurements	19 22 24 24 26 31 35 37 38 40 41
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 10.	Dielectric Property Measurements System Check	19 22 24 24 26 31 35 37 38 40 41 43
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 10.	Dielectric Property Measurements System Check Conducted Output Power Measurements GSM W-CDMA LTE LTE Carrier Aggregation Wi-Fi 2.4GHz (DTS Band) Wi-Fi 5GHz (U-NII Bands) Bluetooth Measured and Reported (Scaled) SAR Results 1. GSM850 2. GSM1900	19 22 24 26 31 35 37 38 40 41 43 43
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 10. 10.	Dielectric Property Measurements	19 22 24 26 31 35 37 38 40 41 43 43 43
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 10. 10. 10.2	Dielectric Property Measurements	 19 22 24 26 31 35 37 38 40 41 43 43 43 43 44

This report shall not be reproduced without the written approval of UL Verification Services Inc.

10.6.	LTE Band 41 (20MHz Bandwidth)	
10.7.	Wi-Fi (DTS Band)	
10.8.	Wi-Fi (U-NII Band)	
10.9.	Bluetooth	
10.10.	Standalone SAR Test Exclusion Considerations & Estimated SAR	
11. SA	R Measurement Variability	
12. Si	nultaneous Transmission Conditions	50
12.1.	Sum of the SAR for WWAN & Wi-Fi & BT	
Appendi	(es	
	022-S1V1 Appendix A: SAR Setup Photos	
	022-S1V1 Appendix B: SAR System Check Plots	
124409	022-S1V1 Appendix C: Highest SAR Test Plots	
124409	022-S1V1 Appendix D: SAR Liquid Tissue Ingredients	
124409	022-S1V1 Appendix E: SAR Probe Calibration Certificates	
124409	22-S1V1 Appendix F: SAR Dipole Calibration Certificates	

1. Attestation of Test Results

Annulla and Manual						
Applicant Name		Samsung Electronics Co., Ltd.				
FCC ID		A3LSMA750F				
Model Name		SM-A750F/DS, S	M-A750F			
Applicable Standards		FCC 47 CFR § 2.1093 Published RF exposure KDB procedures IEEE Std 1528-2013				
			SAR Lim	iits (W/Kg)		
Exposure Category		Peak spatial-average (1g of tissue)		Extremities (hands, wrists, ankles, etc.) (10g of tissue)		
General population / Uncontrolled exposure		1.6 4		4		
	000	Equipment Class - Highest Reported SAR (W/kg)				
RF Exposure Conditi	0115	PCE	DTS	NII	DSS	
Head		0.435	0.474	0.582	0.232	
Body-worn		0.390	0.207	0.291	N/A	
Hotspot/Wi-Fi Direct	/BT Tethering	1.045	0.426	0.751	N/A	
Product specific 10g	SAR	N/A	N/A	0.648	N/A	
	Head	0.989	0.890	0.989	0.667	
	Body-worn	0.681	0.597	0.681	0.530	
Simultaneous TX	Hotspot/ Wi-Fi Direct/ BT Tethering	1.471	1.471	1.456	1.255	
Date Tested		8/27/2018 to 9/6/2018				
Test Results		Pass				

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released By:	Prepared By:	
JenCary	Florio Fi	
Devin Chang	Florencio Pesigan	
Senior Test Engineer	Laboratory Technician	
UL Verification Services Inc.	UL Verification Services Inc.	

Page 5 of 51

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures:

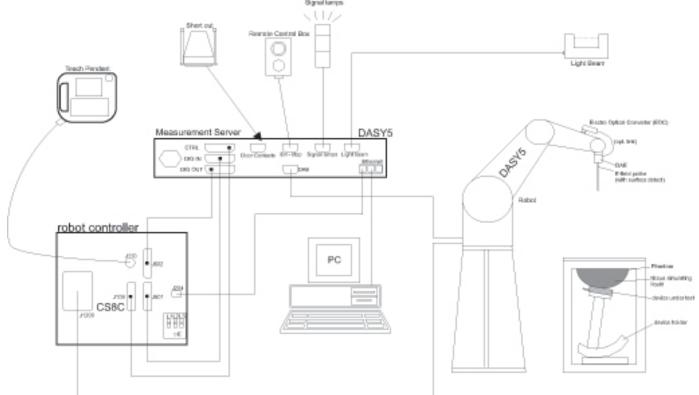
- o 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- o 447498 D03 Supplement C Cross-Reference v01
- o 648474 D04 Handset SAR v01r03
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- o 865664 D02 RF Exposure Reporting v01r02
- o 941225 D01 3G SAR Procedures v03r01
- o 941225 D05 SAR for LTE Devices v02r05
- o 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02
- o 941225 D06 Hotspot Mode v02r01

In addition to the above, the following information was used:

- o TCB workshop April 2015; Page 33, RF Exposure Procedures Update (Overlapping LTE Bands)
- o <u>TCB workshop</u> October 2014; Page 37, RF Exposure Procedures Update (Other LTE Considerations)
- o <u>TCB workshop</u> October 2015; Page 6, RF Exposure Procedures (KDB 941225 D05A)
- o <u>TCB workshop</u> April 2016; Page 13, RF Exposure Procedures (LTE Carrier Aggregation for DL)
- o <u>TCB workshop</u> April 2016; Page 22, RF Exposure Procedures (Phablet Procedures)
- TCB workshop October 2016; Page 7, RF Exposure Procedures (Bluetooth Duty Factor)
- o <u>TCB workshop</u> October 2016; Page 18, RF Exposure Procedures (DUT Holder Perturbations)
- o <u>TCB workshop</u> May 2017; Page 9, Broadband Liquid Above 3 GHz
- o TCB workshop May 2017; Page 16, Bluetooth Tethering

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at


47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	SAR Lab 5
SAR Lab F	SAR Lab 6
SAR Lab G	SAR Lab 7
SAR Lab H	SAR Lab 8

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D0	1 SAR Measurement 100 MHz to 6 GHz
---	------------------------------------

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$	
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SA	AR Measurement 100 MHz to 6 GHz
---	---------------------------------

		\leq 3 GHz	> 3 GHz	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$	
uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm	
graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm	
grid $\Delta z_{Zoom}(n>1)$: between subsequent points		≤1.5·Δz	_{Zoom} (n-1)	
Minimum zoom scan volume x, y, z		≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm	
	uniform g graded grid	uniform grid: $\Delta z_{Zoom}(n)$ graded grid $\frac{\Delta z_{Zoom}(1): \text{ between}}{1^{st} \text{ two points closest}}$ to phantom surface $\frac{\Delta z_{Zoom}(n>1):}{between \text{ subsequent}}$ points	$\frac{ z }{ z } = \frac{ z }{ z } = $	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

Page 9 of 51

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Rohde & Schwarz	ZNLE6	1323.0012K56-101273-VA	7/16/2019
Dielectric Probe kit	SPEAG	DAK-3.5	1087	11/14/2018
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	2/6/2019
Thermometer	Traceable Calibration Control Co.	4242	140493798	12/8/2018

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Synthesized Signal Generator	Rohde & Schwarz	SMB 100A	1406.6000K03-180968-gX	7/4/2019
Power Sensor	Rohde & Schwarz	NRP 18A	1424.6815K02-100994-RE	6/19/2019
Synthesized Signal Generator	Rohde & Schwarz	SMB 100A	1406.6000K03-180969-yC	6/27/2019
Power Meter	Rohde & Schwarz	NRP 18A	1424.6815K02-10092-iU	6/19/2019

Lab Equipment

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
E-Field Probe (SAR Lab B)	SPEAG	EX3DV4	3772	2/13/2019
E-Field Probe (SAR Lab C)	SPEAG	EX3DV4	3773	4/23/2019
E-Field Probe (SAR Lab F)	SPEAG	EX3DV4	3902	5/24/2019
E-Field Probe (SAR Lab G)	SPEAG	EX3DV4	7463	7/20/2019
Data Acquisition Electronics (SAR Lab B)	SPEAG	DAE4	1352	11/8/2018
Data Acquisition Electronics (SAR Lab C)	SPEAG	DAE4	1472	3/8/2019
Data Acquisition Electronics (SAR Lab F)	SPEAG	DAE4	1377	10/11/2018
Data Acquisition Electronics (SAR Lab G)	SPEAG	DAE4	1359	2/9/2019
System Validation Dipole	SPEAG	D835V2	4d002	11/21/2018
System Validation Dipole	SPEAG	D1900V2	5d140	4/11/2019
System Validation Dipole	SPEAG	D2450V2	748	2/14/2019
System Validation Dipole	SPEAG	D2600V2	1006	10/5/2018
System Validation Dipole	SPEAG	D5GHzV2	1168	8/10/2019

Other

Name of Equipment	Manufacturer	Type/Model	T Number	Serial No.	Cal. Due Date
Power Meter	Agilent	N1912A	T 733	MY50001018	10/17/2019
Power Sensor	Agilent	N1921A	T 308	MY52260009	1/8/2019
Base Station Simulator	R & S	CMW500	T1871	165411-Ci	2/19/2019
Base Station Simulator	R & S	CMW500	T 259	124594-HX	2/21/2019

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	This is a Phablet Device Refer to Appendix A	e (display diagonal dimension > 1	5.0 cm or an overall diagonal dimension > 16.0 cm)								
Back Cover	The Back Cover is not r	ne Back Cover is not removable									
Battery Options	The rechargeable batter	e rechargeable battery is not user accessible.									
Accessory	Headset										
Wireless Router (Hotspot)	🛛 Mobile Hotspot (Wi-Fi		data connection with other Wi-Fi-enabled devices.								
Wi-Fi Direct	Wi-Fi Direct enabled dev ⊠ Wi-Fi Direct (Wi-Fi 2.4 ⊠ Wi-Fi Direct (Wi-Fi 5.2 ⊠ Wi-Fi Direct (Wi-Fi 5.8	2 GHz)	each other								
Bluetooth Tethering		BT Tethering mode permits the device to share its cellular data connection with other devices. ☑ BT Tethering (Bluetooth 2.4 GHz)									
Test sample information	S/N R38K70KBTSH R38K70KBTTV R38K70KQGDH R38K70MFHHP R38K70MFLFT R38K70MFL6K R38K70MFLJR	IMEI 351580100020037 351580100020035 351580100020045 351580100020045 351580100020043 351580100020043 351581100020043 359979090076524 359980090076522 359940090044343 359950090044341 359950090045316 35994090045225 359950090045223 359940090045223 359940090045224	Notes WWAN Conducted WWAN Conducted WLAN Conducted SAR Radiated SAR Radiated SAR Radiated SAR Radiated								
		359950090045348									
Hardware Version	REV1.0										
Software Version	A750F.001										

Wireless Technologies 6.2.

Wireless technologies	Frequency bands	Oper	rating Mode	Duty Cycle used for SAR testing
GSM	850 1900	Voice (GMSK) GPRS (GMSK) EDGE (8PSK)	Multi-Slot Class: Class 33 - 4 Up, 5 Down	GSM Voice: 12.5% (E)GPRS: 1 Slot: 12.5% 2 Slots: 25% 3 Slots: 37.5% 4 Slots: 50%
	Does this device support DTM	l (Dual Transfer Mode)? 🗆 ١	∕es ⊠ No	
W-CDMA (UMTS)	Band II Band V	UMTS Rel. 99 (Voice & Da HSDPA (Rel. 9) HSUPA (Rel. 9) HSPA+ (Rel. 9) ⁵ DC-HSDPA (Rel. 9)	ata)	100%
LTE	FDD Band 5 TDD Band 41	QPSK 16QAM Rel. 10 Carrier Aggregatic	n (1 Uplink and 2 Downlinks) ⁴	100% (FDD) 63.3% (TDD) ³ Refer to §6.4
	Does this device support SV-L	TE (1xRTT-LTE)? 🗆 Yes 🗵	1 No	·
	2.4 GHz	802.11b 802.11g 802.11n (HT20)		802.11b ¹ : 99.65% 802.11g ¹ : 95.00% 802.11n HT20 ¹ : 94.68%
Wi-Fi	5 GHz	802.11a 802.11n (HT20) 802.11n (HT40) 802.11ac (VHT20) 802.11ac (VHT40) 802.11ac (VHT40)		802.11a ¹ : 98.35% 802.11n/ac HT20 ¹ : 98.24% 802.11n/ac HT40 ¹ : 96.23% 802.11ac VHT80 ¹ : 92.74%
	Does this device support band		🗆 No	
	Does this device support Band			
Bluetooth	2.4 GHz	Version 5.0 LE		GFSK ² : 76.5%

Notes:

Duty Cycles for Wi-Fi are referenced from the DTS report 12440922-E4 and U-NII report 12440922-E5. 1.

2.

Duty Cycle for Bluetooth GFSK mode is referenced from the BT report 12440922-E2. This device supports uplink-downlink configuration 0-6. The configuration with the highest duty cycle was used (Subframe Number 0 at 3. 63.3%).

For supported Carrier Aggregation combinations, refer to §6.5. 4.

Uplink 16QAM is not supported for HSPA+. Only downlink is supported. 5.

6.3. General LTE SAR Test and Reporting Considerations

Item	Description									
Frequency range, Channel Bandwidth,			Fr	equenc	y range: 8	824 - 84	9 MHz (BW	= 25 MHz)		
Numbers and Frequencies	Band 5	Channel Bandwidth								
		20 MHz	15	MHz	10 MF	IZ ²	5 MHz	3 MHz	1.4 MHz	
	Law				2045	60/	20425/	20415/	20407/	
	Low				829	9	826.5	825.5	824.7	
	Mid				2052	25/	20525/	20525/	20525/	
	IVIIG				836.	.5	836.5	836.5	836.5	
	High				2060	0/	20625/	20635/	20643/	
	nign				844	1	846.5	847.5	848.3	
			Fred	luency i	range: 24	96 - 269	00 MHz (BW	= 194 MHz)		
	Band 41 ¹ Channel Bandwidth									
		20 MHz	15	MHz	10 M	Hz	5 MHz	3 MHz	1.4 MHz	
	Low			39750	/ 2506.0					
	Low-Mid			40185	/ 2549.5					
	Mid			40620	/ 2593.0					
	Mid-High		41055 / 2636.5							
		High 41490 / 2680.0								
implementation Maximum power reduction (MPR)		e 6.2.3-1: Ma					-	Class 1, 2 a		
	Modulat								MPR (dB)	
		1.4 MH		3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
	QPSK			> 4	> 8	> 12	> 16	> 18	≤ 1	
	16 QA 16 QA			≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1	
	64 QA			> 4 ≤ 4	> 8 ≤ 8	> 12 ≤ 12	> 16 ≤ 16	> 18 ≤ 18	≤ 2 ≤ 2	
	64 QA			> 4	> 8	> 12	> 16	> 18	<u>_</u> ≤ 3	
	256 QA	M			≥	:1	1	1	≤ 5	
	MPR Built-ir The manufa not follow th A-MPR (add	e default MF	PR value	6.				MPR allowa	nce but may	
Power reduction	No									
Spectrum plots for RB configurations		pectrum plot						nd power mea on are not in	asurements; cluded in the	

Notes:

 LTE band 41 test channels in accordance with October 2014 TCB workshop for all channels bandwidths. This band was tested using Uplink-Downlink Configuration 0 at 63.3% duty cycle and Special Subframe 7.
 Maximum bandwidth does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports

Maximum bandwidth does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports
overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be
selected for testing per KDB 941225 D05 SAR for LTE Devices.

3. SAR Testing for LTE was performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

6.4. LTE (TDD) Considerations

According to KDB 941225 D05 SAR for LTE Devices, for Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

LTE TDD Bands support 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations and Table 4.2-1 for Special subframe configurations.

	N	ormal cyclic prefix in	downlink	Ex	tended cyclic prefix i	n downlink	
Special	DwPTS	Upl	PTS	DwPTS	Upl	PTS	
subframe configuration		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink	
0	$6592 \cdot T_s$			$7680 \cdot T_s$			
1	$19760 \cdot T_s$			$20480 \cdot T_s$	$(1+X) \cdot 2192 \cdot T_{s}$	$(1+X) \cdot 2560 \cdot T_s$	
2	$21952 \cdot T_s$	$(1+X) \cdot 2192 \cdot T_s$	$(1+X) \cdot 2560 \cdot T_s$	$23040 \cdot T_s$	$(1+X)^{-2192}$	$(1+X)^{\cdot}2300^{\cdot}I_{s}$	
3	$24144 \cdot T_s$	-		$25600 \cdot T_s$	*		
4	$26336 \cdot T_s$	-		$7680 \cdot T_s$			
5	$6592 \cdot T_s$			$20480 \cdot T_s$	$(2+X) \cdot 2192 \cdot T_s$	$(2 + \mathbf{V})$ 2560 T	
6	$19760 \cdot T_s$	-		$23040 \cdot T_s$	$(2+\Lambda)\cdot 2192\cdot I_s$	$(2+\Lambda) \cdot 2500 \cdot I_s$	
7	$21952 \cdot T_s$	$(2+X) \cdot 2192 \cdot T_s$	$(2+X) \cdot 2560 \cdot T_s$	$12800 \cdot T_s$	*		
8	$24144 \cdot T_s$	Ī		-	-	-	
9	$13168 \cdot T_s$			-	-	-	
10	$13168 \cdot T_s$	$13152 \cdot T_s$	$12800 \cdot T_s$	-	-	-	

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS)

Table 4.2-2: Uplink-downlink configurations & Calculated Duty Cycle

Uplink- Downlink	Downlink-to- Uplink Switch-	Subframe Number									Calculated Duty Cycle	
Configuration	point Periodicity	0	1	2	3	4	5	6	7	8	9	(%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	63.3%
1	5 ms	D	S	U	U	D	D	S	U	U	D	43.3%
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.3%
3	10 ms	D	S	U	U	U	D	D	D	D	D	31.7%
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.7%
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.7%
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.3%

Calculated Duty Cycle = Extended cyclic prefix in uplink * (Ts) * # of S + # of U / period

Note(s):

This device supports uplink-downlink configurations 0-6. The configuration with highest duty cycle was used for SAR Testing: configuration 0 at 63.3% duty cycle and Special Subframe 7.

6.5. LTE Carrier Aggregation

Combination conf	CA		Bandwidth (MHz)										
	configuration		PCC						S	00			
	connguration	20	15	10	5	3	1.4	20	15	10	5	3	1.4
Intra-Band non-contiguous	41A	~	\checkmark	~	~			~	~	~	~		
Intra-Band contiguous	41C	~	~	~	~			~	~	~	~		

Note(s):

For supported channels, please refer to §6.3.

6.6. WLAN Proximity Sensor Test Rationale

When a user makes or receives a voice or VOIP call, the audio of the call is sent through the earpiece at the top of the device so that the device can be used next to the ear. The IR Sensor located at the top of the device is used to detect when the device is in proximity of the user's head in order to optimize the user's device experience, for example, to dim or turn off the screen to save battery life. For this model, an auxiliary function of the IR sensor is for the purpose of RF Safety (i.e. reducing output power for Head SAR compliance).

A reduced power level of the device is called when the IR sensor is activated while in a held-to-ear voice/ VOIP call and the active audio receiver. Therefore, when the IR proximity sensor is active in a held-to-ear user scenario, the output power level is reduced.

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Wireless	RFExposure	DUT-to-User	Test	Antenna-to-	SAR	Note
technologies	Conditions	Separation	Position	edge/surface	Required	Note
			Left Touch	N/A	Yes	
	Head	0 mm	Left Tilt (15°)	N/A	Yes	
	s RF Exposure Conditions Head Body Hotspot Product Specifc 10g Head Body Head	0 mm	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Body	15 mm	Rear	N/A	Yes	
	Dody	15 1111	Front	N/A	Yes	
			Rear	< 25 mm	Yes	
			Front	< 25 mm	Yes	
WWAN	nologiesConditionsHeadHeadBodyWWAN in Ant. 1)HotspotProduct Specifc 10gHeadHeadBodyHeadHeadHeadHeadHeadBodyHotspotProduct Specifc hotspotProduct SpecifcProduct SpecifcProduct Specifc	10 mm	Edge 1 (Top)	> 25 mm	No	1
(Main Ant. 1)	noispoi	10 mm	Edge 2 (Right)	> 25 mm	No	1
			Edge 3 (Bottom)	< 25 mm	Yes	
			Edge 4 (Left)	< 25 mm	Yes	
			Rear	< 25 mm	No	2
	lechnologiesConditionsHeadBodyWWAN (Main Ant. 1)Product Specifc 10gProduct Specifc 10gBodyHeadHeadProduct Specifc 10gHotspotHeadBodyHotspot		Front	< 25 mm	No	2
		0 mm	Edge 1 (Top)	> 25 mm	No	1
		0 mm	Edge 2 (Right)	> 25 mm	No	1
			Edge 3 (Bottom)	< 25 mm	No	2
			Edge 4 (Left)	< 25 mm	No	2
	WWAN Aain Ant. 1) Hotspot Product Specifc 10g Head Head WWAN Aain Ant. 2) Hotspot		Left Touch	N/A	Yes	
		0 mm	Left Tilt (15°)	N/A	Yes	
		0 mm	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Pody	15 mm	Rear	N/A	Yes	
	Bouy	15 1111	Front	N/A	Yes	
			Rear	< 25 mm	Yes	
			Front	< 25 mm	Yes	
WWAN	Listen et	10	Edge 1 (Top)	> 25 mm	No	1
(Main Ant. 2)	Hotspot	10 mm	Edge 2 (Right)	< 25 mm	Yes	
			Edge 3 (Bottom)	< 25 mm	Yes	
			Edge 4 (Left)	> 25 mm	No	1
			Rear	< 25 mm	No	2
			Front	< 25 mm	No	2
	Product Specifc	0	Edge 1 (Top)	> 25 mm	No	1
		0 mm	Edge 2 (Right)	< 25 mm	No	2
	Hotspot Product Specifc 10g Head Body WWAN Iain Ant. 2) Product Specifc Product Specifc		Edge 3 (Bottom)	< 25 mm	No	2
	WAN Ant. 1) Hotspot Product Specifc 10g Head Body Head Body Hotspot Product Specifc		Edge 4 (Left)	> 25 mm	No	1

Notes:

SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR. 1.

2. For Phablet devices: when hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg. WWAN Main Ant. 2 supports LTE Band 41 only. Cellular Sub Antenna is Rx only.

3.

4.

Page 17 of 51

RF Exposure Conditions (Test Configurations) (continued):

Wireless technologies	RF Exposure Conditions	DUT-to-User Separation	Test Position	Antenna-to- edge/surface	SAR Required	Note
teenneregiee	Conditions	Copulation	Left Touch	N/A	Yes	
	Used	0	Left Tilt (15°)	N/A	Yes	
	Head Body Hotspot / Wi-Fi Direct (2.4/5.2/5.8 GHz Bands)	0 mm	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Body	15 mm	Rear	N/A	Yes	
	Воду	15 1111	Front	N/A	Yes	
			Rear	< 25 mm	Yes	
	Hotspot /		Front	< 25 mm	Yes	
	Wi-Fi Direct (2.4/5.2/5.8 GHz	10 mm	Edge 1 (Top)	< 25 mm	Yes	
		TO IIIII	Edge 2 (Right)	> 25 mm	No	1
			Edge 3 (Bottom)	> 25 mm	No	1
			Edge 4 (Left)	< 25 mm	Yes	
WEAN & DI	WLAN & BT		Rear	< 25 mm	No	3
			Front	< 25 mm	No	3
	Product Specifc 10g	0 mm	Edge 1 (Top)	< 25 mm	No	3
	(2.4 GHz)	UIIII	Edge 2 (Right)	> 25 mm	No	1
	(-)		Edge 3 (Bottom)	> 25 mm	No	1
			Edge 4 (Left)	< 25 mm	No	3
			Rear	< 25 mm	Yes	2
	Product Specifc		Front	< 25 mm	Yes	2
	10g	0 mm	Edge 1 (Top)	< 25 mm	Yes	2
	(5.3/5.5 GHz	Unin	Edge 2 (Right)	> 25 mm	No	1
	Bands)		Edge 3 (Bottom)	> 25 mm	No	1
			Edge 4 (Left)	< 25 mm	Yes	2

Notes:

1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.

 For Phablet devices: when Hotspot Mode is not supported, Product Specific 10-g SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.

3. For Phablet devices: when hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant (ϵ r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to

be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ϵ r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	Н	ead	Bc	ody
	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Page 19 of 51

Dielectr	ric Property	/ Measur	ements Results:								
SAR	Date	Band	Tissue	Frequency	Relative Permittivity (cr)			Conductivity (σ)			
Lab	Date	(MHz)	Туре	(MHz)	Measured	Target	Delta	Measured	Target	Delta	
				2600	37.33	39.01	-4.31	1.99	1.96	1.42	
В	8/27/2018	2600	Head	2495	37.48	39.14	-4.25	1.90	1.85	2.94	
				2690	37.12	38.90	-4.57	2.07	2.06	0.41	
				835	42.78	41.50	3.08	0.95	0.90	5.00	
В	8/28/2018	835	Head	805	42.80	41.68	2.69	0.94	0.90	4.27	
				905	42.57	41.50	2.58	0.97	0.97	-0.37	
				5250	35.72	35.93	-0.59	4.63	4.70	-1.58	
В	8/31/2018	5250	Head	5150	35.91	36.05	-0.38	4.52	4.60	-1.65	
				5350	35.54	35.82	-0.78	4.73	4.80	-1.47	
				5600	35.12	35.53	-1.16	4.97	5.06	-1.80	
В	8/31/2018	5600	Head	5500	35.30	35.65	-0.98	4.86	4.96	-2.02	
				5725	34.84	35.39	-1.56	5.12	5.19	-1.31	
				5750	34.84	35.36	-1.48	5.14	5.21	-1.43	
В	8/31/2018	5750	Head	5700	34.93	35.42	-1.38	5.08	5.16	-1.54	
				5850	34.67	35.30	-1.78	5.23	5.27	-0.70	

SAR	Date	Band	Tissue	Frequency	Relative	Permittivity	′ (єr)	Conductivity (σ)			
Lab	Duto	(MHz)	Туре	(MHz)	Measured	Target	Delta	Measured	Target	Delta	
				1900	38.07	40.00	-4.83	1.45	1.40	3.86	
С	8/29/2018	1900	Head	1850	38.14	40.00	-4.65	1.43	1.40	1.86	
					1920	38.07	40.00	-4.83	1.47	1.40	4.79
					2450	38.27	39.20	-2.37	1.86	1.80	3.28
С	8/30/2018	2450	Head	2400	38.33	39.30	-2.46	1.82	1.75	4.02	
				2480	38.22	39.16	-2.41	1.87	1.83	2.21	
				2450	37.53	39.20	-4.26	1.85	1.80	2.78	
С	9/6/2018	2450	Head	2400	37.59	39.30	-4.34	1.81	1.75	3.33	
				2480	37.46	39.16	-4.35	1.87	1.83	1.83	

SAR	Date	Band	Tissue	Frequency Relative Permittivity (cr)			Conductivity (σ)			
Lab	2410	(MHz)	Туре	(MHz)	Measured	Target	Delta	Measured	Target	Delta
			2450	51.04	52.70	-3.15	2.03	1.95	4.00	
F	8/30/2018	2450	Body	2400	51.24	52.77	-2.90	1.96	1.90	3.42
			2480	50.94	52.66	-3.27	2.06	1.99	3.46	

Page 20 of 51

Dielectric Property Measurements Results (continued): SAR Band Tissue Frequency Relative Permittivity (cr) Conductivity (o) Date Lab (MHz) Туре (MHz) Measured Delta Measured Delta Target Target 835 52.65 55.20 -4.62 1.00 0.97 3.30 G 8/27/2018 835 Body 805 52.70 55.33 -4.76 0.99 0.97 2.56 905 55.00 -4.49 1.03 -1.95 52.53 1.05 53.30 1.86 1.57 1.52 3.09 1900 54.29 G 8/28/2018 1900 Body 1850 54.38 53.30 2.03 1.53 1.52 0.72 1920 54.29 53.30 1.86 1.58 1.52 4.08 2600 52.37 52.51 -0.27 2.17 2.16 0.43 G 8/29/2018 2600 Body 2495 52.64 -0.25 2.07 2.01 2.77 52.51 52.40 -0.41 2690 52.18 2.26 2.29 -1.02 5.34 5250 47.68 48.95 -2.60 5.35 -0.30 G 8/30/2018 5250 Body 5150 47.88 49.09 -2.46 5.19 5.24 -0.89 5350 47.49 48.82 -2.72 5.49 5.47 0.28 5600 47.09 48.48 -2.86 5.83 5.76 1.25 G 8/30/2018 5600 Body 5500 48.61 -2.80 5.68 5.64 0.56 47.25 5725 46.82 48.31 -3.08 6.05 5.91 2.43 5750 46.82 48.27 -3.01 6.08 5.94 2.39 G 8/30/2018 5750 Body 5700 46.90 48.34 -2.98 6.00 5.88 2.12 5850 46.66 48.20 -3.20 6.23 6.00 3.90 5750 34.58 35.36 -2.21 5.12 5.21 -1.87 G 8/31/2018 5750 Head -2.08 5700 34.65 35.42 -2.17 5.06 5.16 5850 34.38 35.30 -2.61 5.21 5.27 -1.23

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
- For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within $\pm 10\%$ of the manufacturer calibrated dipole SAR target. Refer to Appendix B for the SAR System Check Plots.

				.	Me	easured Resul	ts for 1g SAR		Ме	asured Result	s for 10g SAR		Diet
SAR Lab	Date	Tissue Type	Dipole Type _Serial #	Dipole Cal. Due Data	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
В	8/27/2018	Head	D2600V2 SN:1006	10/5/2018	5.400	54.00	55.73	-3.10	2.430	24.30	25.08	-3.11	1,2
В	8/28/2018	Head	D835V2 SN:4d002	11/21/2018	0.988	9.88	10.27	-3.80	0.643	6.43	6.76	-4.88	3,4
В	8/31/2018	Head	D5GHzV2 SN:1168 (5.25 GHz)	8/10/2019	8.330	83.30	79.80	4.39	2.390	23.90	22.90	4.37	5,6
В	8/31/2018	Head	D5GHzV2 SN:1168 (5.60 GHz)	8/10/2019	8.620	86.20	85.00	1.41	2.440	24.40	24.40	0.00	
В	8/31/2018	Head	D5GHzV2 SN:1168 (5.75 GHz)	8/10/2019	8.300	83.00	80.60	2.98	2.370	23.70	23.40	1.28	
С	8/29/2018	Head	D1900V2 SN:5d140	4/11/2019	4.190	41.90	38.93	7.63	2.160	21.60	20.14	7.25	7,8
С	8/30/2018	Head	D2450V2 SN:748	2/14/2019	5.200	52.00	52.94	-1.78	2.400	24.00	24.60	-2.44	9,10
С	9/6/2018	Head	D2450V2 SN:748	2/14/2019	5.200	52.00	52.94	-1.78	2.400	24.00	24.60	-2.44	
F	8/30/2018	Body	D2450V2 SN:748	2/14/2019	5.360	53.60	50.95	5.20	2.440	24.40	23.80	2.52	11,12
G	8/27/2018	Body	D835V2 SN:4d002	11/21/2018	1.020	10.20	10.23	-0.29	0.663	6.63	6.80	-2.50	13,14
G	8/28/2018	Body	D1900V2 SN:5d140	4/11/2019	4.410	44.10	41.00	7.56	2.270	22.70	21.05	7.84	15,16
G	8/29/2018	Body	D2600V2 SN:1006	10/5/2018	5.980	59.80	56.13	6.54	2.640	26.40	25.00	5.60	17,18
G	8/30/2018	Body	D5GHzV2 SN:1168 (5.25 GHz)	8/10/2019	7.840	78.40	74.90	4.67	2.210	22.10	21.20	4.25	
G	8/30/2018	Body	D5GHzV2 SN:1168 (5.60 GHz)	8/10/2019	8.730	87.30	79.50	9.81	2.450	24.50	22.40	9.38	19,20
G	8/30/2018	Body	D5GHzV2 SN:1168 (5.75 GHz)	8/10/2019	7.880	78.80	72.80	8.24	2.210	22.10	20.70	6.76	
G	8/31/2018	Head	D5GHzV2 SN:1168 (5.75 GHz)	8/10/2019	8.520	85.20	80.60	5.71	2.460	24.60	23.40	5.13	

9. Conducted Output Power Measurements

9.1. GSM

Per KDB 941225 D01 3G SAR Procedures:

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

When different maximum output power applies to GSM voice or GPRS/EDGE time slots, GSM voice and GPRS/EDGE time slots should be tested separately to determine compliance by summing the corresponding reported SAR.

The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance.

Per October 2013 TCB Workshop:

When the maximum frame-averaged powers levels are within 0.25 dB of each other, test the configuration with the most number of time slots.

	o "	Time		_	Мах	imum Avera	ge Power (d	Bm)	
Mode	Coding Scheme	Time Slots	Ch No.	Freq. (MHz)	Meas	sured	Tune-u	ıp Limit	
					Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr	
			128	824.2	32.9	23.9			
		1	190	836.6	33.0	24.0	34.0	25.0	
			251	848.8	33.0	24.0			
			128	824.2	30.2	24.2			
		2	190	836.6	30.5	24.5	32.0	26.0	
GPRS/EDGE	CS1		251	848.8	30.4	24.4			
(GMSK)	031		128	824.2	28.6	19.5		24.7	
		3	190	836.6	28.8	19.8	29.0		
			251	848.8	28.7	19.6			
			128	824.2	27.2	21.1			
		4	190	836.6	27.4	21.4	28.0	25.0	
			251	848.8	27.4	21.4			
		1	128	824.2	26.6	17.5		18.0	
			190	836.6	26.9	17.8	27.0		
			251	848.8	26.7	17.7			
			128	824.2	23.9	17.9			
		2	190	836.6	24.2	18.2	25.0	19.0	
EDGE	MCS5		251	848.8	24.2	18.2			
(8PSK)	WC35		128	824.2	22.5	13.4			
		3	190	836.6	22.5	13.4	24.0	19.7	
			251	848.8	22.5	13.5			
			128	824.2	20.7	14.6			
		4	190	836.6	20.7	14.7	23.0	20.0	
			251	848.8	20.7	14.7			

GSM850 Measured Results

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- GPRS/EDGE (GMSK) mode with 2 time slots for Max power, based on the Tune-up Procedure.
- SAR is not required for EDGE (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4dB higher than GPRS/EDGE (GMSK) or the adjusted SAR of the highest reported SAR of GPRS/EDGE (GMSK) is ≤ 1.2W/kg.

GSM1900 Measured Results

	o "			_	Мах	imum Avera	ge Power (d	Bm)	
Mode	Coding Scheme	Time Slots	Ch No.	Freq. (MHz)	Meas	sured	Tune-u	ıp Limit	
					Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr	
			512	1850.2	29.4	20.3			
		1	661	1880.0	29.7	20.7	31.0	22.0	
			810	1909.8	29.7	20.6			
			512	1850.2	26.8	20.8			
		2	661	1880.0	27.2	21.1	28.5	22.5	
GPRS/EDGE	CS1		810	1909.8	27.1	21.1			
(GMSK)	031	3	512	1850.2	25.7	16.7		22.2	
			661	1880.0	26.2	17.2	26.5		
			810	1909.8	26.2	17.1			
			512	1850.2	24.6	18.6			
		4	661	1880.0	25.0	18.9	25.0	22.0	
			810	1909.8	24.9	18.9			
			512	1850.2	25.1	16.1		17.0	
		1	661	1880.0	25.4	16.4	26.0		
			810	1909.8	25.4	16.3			
			512	1850.2	23.1	17.1			
		2	661	1880.0	23.2	17.2	24.0	18.0	
EDGE	MCS5		810	1909.8	23.3	17.3			
(8PSK)	IVICS5		512	1850.2	21.7	12.6			
		3	661	1880.0	22.0	12.9	23.5	19.2	
			810	1909.8	21.8	12.8			
			512	1850.2	20.2	14.1			
		4	661	1880.0	20.5	14.4	22.0	19.0	
			810	1909.8	20.3	14.2			

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

GPRS/EDGE (GMSK) mode with 2 time slots for Max power, based on the Tune-up Procedure.

• SAR is not required for EDGE (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4dB higher than GPRS/EDGE (GMSK) or the adjusted SAR of the highest reported SAR of GPRS/EDGE (GMSK) is ≤ 1.2W/kg.

9.2. W-CDMA

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 2
WCDMA Conorol Sottings	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to Release 9 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

Table C.10.2.4: β values for transmitter characteristics tests with HS-DPCCH

	Mode	HSDPA	HSDPA	HSDPA	HSDPA			
	Subtest	1	2	3	4			
	Loopback Mode	Test Mode 1						
	Rel99 RMC	12.2kbps RMC	12.2kbps RMC					
	HSDPA FRC	H-Set 1						
	Power Control Algorithm	Algorithm 2						
W-CDMA	βc	2/15	11/15	15/15	15/15			
General Settings	βd	15/15	15/15	8/15	4/15			
Settings	Bd (SF)	64						
	βc/βd	2/15	11/15	15/8	15/4			
	βhs	4/15	24/15	30/15	30/15			
	MPR (dB)	0	0	0.5	0.5			
	D _{ACK}	8						
	D _{NAK}	8						
HSDPA	DCQI	8						
Specific	Ack-Nack repetition factor	3						
Settings	CQI Feedback (Table 5.2B.4)	4ms						
	CQI Repetition Factor (Table 5.2B.4)	2						
	Ahs=βhs/βc	30/15						

HSPA (HSDPA & HSUPA) Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to Release 9 procedures in table C,11.1.3 of 3GPP TS 34.121-1 A summary of these settings are illustrated below:

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

	Mode	HSPA							
	Subtest	1	2	3	4	5			
	Loopback Mode	Test Mode 1							
	Rel99 RMC	12.2 kbps RM	//C						
	HSDPA FRC	H-Set 1							
	HSUPA Test	HSPA							
	Power Control Algorithm	Algorithm 2				Algorithm 1			
WCDMA	βc	11/15	6/15	15/15	2/15	15/15			
General	βd	15/15	15/15	9/15	15/15	0			
Settings	βес	209/225	12/15	30/15	2/15	5/15			
	βc/βd	11/15	6/15	15/9	2/15	-			
	βhs	22/15	12/15	30/15	4/15	5/15			
	βed	1309/225	94/75	47/15	56/75	47/15			
	CM (dB)	1	3	2	3	1			
	MPR (dB)	0	2	1	2	0			
	DACK	8				0			
	DNAK		0						
HSDPA	DCQI	8				0			
Specific	Ack-Nack repetition factor	3				•			
Settings	CQI Feedback (Table 5.2B.4)	4ms							
	CQI Repetition Factor (Table 5.2B.4) 2								
	Ahs = βhs/βc	30/15							
	E-DPDCCH	6	8	8	5	0			
	DHARQ	0	0	0	0	0			
	AG Index	20	12	15	17	12			
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	67			
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9			
	Reference E-TFCIs	5	5	2	5	1			
	Reference E-TFCI	11	11	11	11	67			
HSUPA	Reference E-TFCI PO	4	4	4	4	18			
Specific	Reference E-TFCI	67	67	92	67	67			
Settings	Reference E-TFCI PO	18	18	18	18	18			
	Reference E-TFCI	71	71	71	71	71			
	Reference E-TFCI PO	23	23	23	23	23			
	Reference E-TFCI	75	75	75	75	75			
	Reference E-TFCI PO	26	26	26	26	26			
	Reference E-TFCI	81	81	81	81	81			
	Reference E-TFCI PO	27	27	27	27	27			
	Maximum Channelization Codes	2xSF2				SF4			

DC-HSDPA Setup Procedures used to establish the test signals

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS34.108. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1

Table E.5.0: Levels for HSDPA connection setup								
Parameter During Connection setup	Unit	Value						
P-CPICH_Ec/lor	dB	-10						
P-CCPCH and SCH_Ec/lor	dB	-12						
PICH _Ec/lor	dB	-15						
HS-PDSCH	dB	off						
HS-SCCH_1	dB	off						
DPCH_Ec/lor	dB	-5						
OCNS_Ec/lor	dB	-3.1						

Call is set up as per 3GPP TS34.108 sub clause 7.3.13

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

Table C.8.1.12: Fixed	Reference	Channel	H-Set 12

Unit Volue

Deremeter

	Falance		value	1
	Nominal Avg. Inf. Bit Rate	kbps	60	1
	Inter-TTI Distance	TTI's	1	
	Number of HARQ Processes	Proces	6	
		ses	0	
	Information Bit Payload (N_{INF})	Bits	120	
	Number Code Blocks	Blocks	1	
	Binary Channel Bits Per TTI	Bits	960	
	Total Available SML's in UE	SML's	19200	
	Number of SML's per HARQ Proc.	SML's	3200	
	Coding Rate		0.15	
	Number of Physical Channel Codes	Codes	1	
	Modulation		QPSK	
	Note 1: The RMC is intended to be used			
	mode and both cells shall transm		ical	
	parameters as listed in the table			
	Note 2: Maximum number of transmission			
	retransmission is not allowed. T		ncy and	
	constellation version 0 shall be u	isea.		1
г				
Inf. Bit Payload	120			
CRC Addition	120 24 CRC			
L				
Code Block	144			
Segmentation	144			
Turbo-Encoding	432			12 Tail Bits
(R=1/3)	432			12 Tail Bits
· · ·				
1st Rate Matching	43	2		
-				
RV Selection	960			
-				
Physical Channel				
Segmentation	960			

Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 4 Sub-tests for HSDPA were completed according to Release 9 procedures in section 5.2 of 3GPP TS34.121. A summary of subtest settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA				
	Subtest	1	2	3	4				
	Loopback Mode	Test Mode 1	est Mode 1						
	Rel99 RMC	12.2kbps RMC							
	HSDPA FRC	H-Set 1	H-Set 1						
WCDMA	Power Control Algorithm	Algorithm2	Algorithm2						
General	βc	2/15	11/15	15/15	15/15				
Settings	βd	15/15	15/15	8/15	4/15				
Settings	βd (SF)	64	64						
	βc/βd	2/15	12/15	15/8	15/4				
	βhs	4/15	24/15	30/15	30/15				
	MPR (dB)	0	0	0.5	0.5				
	DACK	8							
	DNAK	8							
HSDPA	DCQI	8							
Specific	Ack-Nack Repetition factor	3							
Settings	CQI Feedback	4ms							
	CQI Repetition Factor	2							
	Ahs = βhs/ βc	30/15							

HSPA+ Release 9

Since 16QAM is not used for uplink, RF conducted power measurements are not required for HSPA+.

Page 28 of 51

UL Verification Services Inc. This report shall not be reproduced without the written approval of UL Verification Services Inc.

W-CDMA Band II Measured Results

	de.		Freq.	Maximum Ave	erage P	ower (dBm)	
IVIC	de	UL Ch No.	(MHz)	Measured Pwr	MPR	Tune-up Limit	
	Rel 99	9262	1852.4	23.1			
Release 99	(RMC, 12.2	9400	1880.0	23.3	N/A	24.5	
	kbps)	9538	1907.6	23.4			
		9262	1852.4	22.2			
	Subtest 1	9400	1880.0	22.3	0	23.0	
		9538	1907.6	22.4			
		9262	1852.4	22.2			
	Subtest 2	9400	1880.0	22.3	0	23.0	
HSDPA		9538	1907.6	22.4			
NODPA		9262	1852.4	21.3			
	Subtest 3	9400	1880.0	21.5	0.5	22.5	
		9538	1907.6	21.6			
		9262	1852.4	21.2			
	Subtest 4	9400	1880.0	21.3	0.5	22.5	
		9538	1907.6	21.4			
		9262	1852.4	21.1			
	Subtest 1	9400	1880.0	21.3	0	23.0	
		9538	1907.6	21.4			
	Subtest 2	9262	1852.4	19.2			
		9400	1880.0	19.5	2	21.0	
		9538	1907.6	19.6			
		9262	1852.4	20.3		22.0	
HSUPA	Subtest 3	9400	1880.0	20.5	1		
		9538	1907.6	20.5			
		9262	1852.4	19.2			
	Subtest 4	9400	1880.0	19.5	2	21.0	
		9538	1907.6	19.6			
		9262	1852.4	22.1			
	Subtest 5	9400	1880.0	22.3	0	23.0	
		9538	1907.6	22.4			
		9262	1852.4	22.2			
	Subtest 1	9400	1880.0	22.3	0	23.0	
		9538	1907.6	22.4			
		9262	1852.4	22.2			
	Subtest 2	9400	1880.0	22.3	0	23.0	
		9538	1907.6	22.4			
DC-HSDPA		9262	1852.4	21.3			
	Subtest 3	9400	1880.0	21.5	0.5	22.5	
		9538	1907.6	21.6		-	
		9262	1852.4	21.2			
	Subtest 4	9400	1880.0	21.3	0.5	22.5	
		9538	1907.6	21.4			

Notes:

Refer to W-CDMA MPR Attestation Letter for HSUPA MPR Explanation.

Page 29 of 51

UL Verification Services Inc. Do This report shall not be reproduced without the written approval of UL Verification Services Inc.

W-CDMA Band V Measured Results

			Freq.	Maximum Av	verage P	ower (dBm)	
Mc	ode	UL Ch No.	(MHz)	Measured Pwr	MPR	Tune-up Limit	
	Rel 99	4132	826.4	24.0			
Release 99	(RMC, 12.2	4183	836.6	24.2	N/A	25.0	
	kbps)	4233	846.6	24.2			
		4132	826.4	22.9			
	Subtest 1	4183	836.6	23.1	0	23.5	
		4233	846.6	23.1			
		4132	826.4	22.0			
	Subtest 2	4183	836.6	22.3	0	23.5	
HSDPA		4233	846.6	22.3			
HODFA		4132	826.4	20.9			
	Subtest 3	4183	836.6	21.2	0.5	23.0	
		4233	846.6	21.1			
		4132	826.4	20.9			
	Subtest 4	4183	836.6	21.2	0.5	23.0	
		4233	846.6	21.1			
		4132	826.4	20.1			
	Subtest 1	4183	836.6	20.2	2	21.5	
		4233	846.6	20.2			
		4132	826.4	18.1			
	Subtest 2	4183	836.6	18.1	4	19.5	
		4233	846.6	18.3			
		4132	826.4	21.0		22.5	
HSUPA	Subtest 3	4183	836.6	21.3	1		
		4233	846.6	21.2			
		4132	826.4	18.1			
	Subtest 4	4183	836.6	18.2	4	19.5	
		4233	846.6	18.2			
		4132	826.4	23.0			
	Subtest 5	4183	836.6	23.2	0	23.5	
		4233	846.6	23.2			
		4132	826.4	22.9			
	Subtest 1	4183	836.6	23.1	0	23.5	
		4233	846.6	23.1			
		4132	826.4	22.0			
	Subtest 2	4183	836.6	22.3	0	23.5	
DOLIDEDA		4233	846.6	22.3			
DC-HSDPA		4132	826.4	20.9			
	Subtest 3	4183	836.6	21.2	0.5	23.0	
		4233	846.6	21.1	1		
		4132	826.4	20.9			
	Subtest 4	4183	836.6	21.2	0.5	23.0	
		4233	846.6	21.1			

Notes:

Refer to W-CDMA MPR Attestation Letter for HSUPA MPR Explanation.

Page 30 of 51

UL Verification Services Inc. Doc. No.: 1.0 This report shall not be reproduced without the written approval of UL Verification Services Inc.

9.3. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	MPR (dB)					
	1.4	3.0	5	10	15	20	
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ <mark>8</mark>	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3
256 QAM				≥ 1			≤ 5

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A
NS_03	6.6.2.2.1	2, 4,10, 23, 25,	3 5 10	>5 >6 >6	≤1 ≤1 ≤1
_	6.6.2.2.2,	35, 36, 66, 70	15 20	>8 >10	≤ 1 ≤ 1
NS_04	6.6.3.3.19	41	5, 10, 15, 20		Table 6.2.4-4a
NS_05	6.6.3.3.1	1	10,15,20	≥ 50 (NOTE1) Table 6.2.4	≤ 1 (NOTE1) -18 (NOTE2)
_		65 (NOTE 3)	10,15,20 15,20	≥ 50	≤ 1 (NOTE 1) -18 (NOTE 2)
NS 06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	N/A
NS_07	6.6.2.2.3 6.6.3.3.2	13	10		6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤1 ≤2
NS 10		20	15, 20		6.2.4-3
NS_11	6.6.2.2.1 6.6.3.3.13	23	1.4, 3, 5, 10, 15, 20	Table	6.2.4-5
NS_12	6.6.3.3.5	26	1.4, 3, 5, 10, 15	Table	6.2.4-6
NS 13	6.6.3.3.6	26	5		6.2.4-7
NS 14	6.6.3.3.7	26	10, 15		6.2.4-8
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15	Table	6.2.4-9 6.2.4-10
NS_16	6.6.3.3.9	27	3, 5, 10		, Table 6.2.4-12, 6.2.4-13
NS_17	6.6.3.3.10	28	5, 10	Table 5.6-1	N/A
NS_18	6.6.3.3.11	28	5 10, 15, 20	≥2 ≥1	≤ 1 ≤ 4
NS_19	6.6.3.3.12	44	10, 15, 20	Table	6.2.4-14
NS_20	6.2.2 6.6.2.2.1 6.6.3.3.14	23	5, 10, 15, 20		6.2.4-15
NS_21	6.6.2.2.1 6.6.3.3.15	30	5, 10	Table	8.2.4-16
NS_22	6.6.3.3.16	42, 43	5, 10, 15, 20		6.2.4-17
NS_23	6.6.3.3.17	42, 43	5, 10, 15, 20		I/A
NS_24	6.6.3.3.20	65 (NOTE 4)	5, 10, 15, 20		8.2.4-19
NS_25 NS_26	6.6.3.3.21 6.6.3.3.22	65 (NOTE 4) 68	5, 10, 15, 20 10, 15		8.2.4-20 8.2.4-21
NS_20	6.6.2.2.5,	48	5, 10, 15, 20		8.2.4-21
NS_28	6.6.3.3.23 6.2.2A, 6.6.3.3.24	46 (NOTE 5)	20		6.2.4-23
NS_29	6.6.2.2A, 6.6.2.3.1a, 6.6.3.3.25	46 (NOTE 5)	20	Table	6.2.4-24
NS_30	6.2.2A, 6.6.3.3.26	46 (NOTE 5)	20	Table	6.2.4-25
NS_31	6.2.2A, 6.6.3.3.27	46 (NOTE 5)	20	Table	6.2.4-26
NS 32	-	-	-	-	-
NOTE 1: A	equency is larger th	lower edge of the as an or equal to the u gned, where channe	pper edge of PH	IS band (1915.7	dwidth MHz) + 4 MHz +

Table 6.2.4-1: Additional Maxi	mum Power Reduction (A-MPR)
--------------------------------	-----------------------------

Page 32 of 51

LTE Band 5 Measured Results

						and the Designed (JD)				
BW	Mada	RB	RB	00450		rage Power (dBi	n)			
(MHz)	Mode	Allocation	offset	20450 829 MHz	20525 836.5 MHz	20600 844 MHz	MPR	Tune-up Limit		
		1	0	829 WIEZ	23.1	044 MI⊓Z	0	25		
		1	25		23.1		0	25		
		1	49		23.1		0	25		
	QPSK	25	-45		22.0		1	23		
		25	12		22.0		1	24		
		25	25		22.0		1	24		
		50	0		22.1		1	24		
10 MHz		1	0		22.0		1	24		
		1	25		21.9		1	24		
		1	49		22.0		1	24		
	16QAM	25	0		21.0		2	23		
		25	12		21.0		2	23		
		25	25		21.0		2	23		
		50	0		21.0		2	23		
					Maximum Ave	rage Power (dBi	n)			
BW (MHz)	Mode	RB Allocation	RB offset	20425	20525	20625	MDD	Tune-up		
(11112)		Thocation	01301	826.5 MHz	836.5 MHz	846.5 MHz	MPR	Limit		
		1	0	23.0	23.1	23.1	0	25		
		1	12	22.9	23.1	23.0	0	25		
		1	24	23.0	23.1	23.0	0	25		
	QPSK	12	0	22.0	22.0	22.1	1	24		
		12	7	21.9	22.0	22.1	1	24		
ľ				12	13	21.9	22.0	22.0	1	24
5 MHz		25	0	21.9	22.1	22.1	1	24		
0 1011 12		1	0	21.8	21.9	21.9	1	24		
				1	12	21.7	21.8	21.8	1	24
		1	24	21.7	21.9	21.8	1	24		
	16QAM	12	0	20.8	20.9	21.0	2	23		
1002		12	7	20.8	20.9	20.9	2	23		
		12	13	20.8	20.9	20.9	2	23		
		25	0	20.8	20.9	20.9	2	23		
BW		RB	RB			rage Power (dBi	n)			
(MHz)	Mode	Allocation	offset	20415	20525	20635	MPR	Tune-up Limit		
			<u>^</u>	825.5 MHz	836.5 MHz	847.5 MHz	0			
		1	0	23.0	23.2	23.3	0	25		
		1	8	23.0	23.2	23.2	0	25		
	QPSK	1 8	14 0	23.0	23.2 22.0	23.2 22.1	0	25		
	QI SIX	0		21.9		22.1	1	24		
		0				22.1	1	24		
		8				22.1	1	24		
		8	7	21.9	22.0	22.0	1	24		
3 MHz		8 15	7 0	21.9 22.0	22.0 22.1	22.0 22.1	1	24 24		
3 MHz		8 15 1	7 0 0	21.9 22.0 21.9	22.0 22.1 22.1	22.0 22.1 22.0	1 1 1	24 24 24		
3 MHz		8 15 1 1	7 0 0 8	21.9 22.0 21.9 21.9	22.0 22.1 22.1 21.9	22.0 22.1 22.0 22.1	1 1 1 1	24 24 24 24		
3 MHz	16QAM	8 15 1 1 1	7 0 0 8 14	21.9 22.0 21.9 21.9 22.0	22.0 22.1 22.1 21.9 22.0	22.0 22.1 22.0 22.1 22.0	1 1 1 1 1	24 24 24 24 24 24		
3 MHz	16QAM	8 15 1 1 1 8	7 0 0 8 14 0	21.9 22.0 21.9 21.9 22.0 20.8	22.0 22.1 22.1 21.9 22.0 20.9	22.0 22.1 22.0 22.1 22.0 20.9	1 1 1 1 2	24 24 24 24 24 24 23		
3 MHz	16QAM	8 15 1 1 1 8 8	7 0 8 14 0 4	21.9 22.0 21.9 22.0 20.8 20.8	22.0 22.1 21.9 22.0 20.9 20.9	22.0 22.1 22.0 22.1 22.0 20.9 20.9	1 1 1 1 2 2	24 24 24 24 24 24 23 23		
3 MHz	8 7 21.9 22.0 22.0 1 15 0 22.0 22.1 22.1 1 1 15 0 22.0 22.1 22.1 1 1 1 1 0 21.9 22.1 22.0 1 1 1 1 1 8 21.9 22.1 22.0 1 1 1 14 22.0 22.0 22.0 1 1 1 16QAM 8 0 20.8 20.9 20.9 2 1 16QAM 8 7 20.8 20.9 20.9 2 1 16QAM 14 20.8 20.9 20.9 2 1 16QAM 14 20.8 20.9 20.9 2 1 16QAM 16 0 20.8 20.9 20.9 2 1									
3 MHz	16QAM	8 15 1 1 8 8 8 8	7 0 8 14 0 4 7	21.9 22.0 21.9 22.0 20.8 20.8 20.8 20.7	22.0 22.1 21.9 22.0 20.9 20.9 20.9 20.9 20.9	22.0 22.1 22.0 22.1 22.0 20.9 20.9 20.9	1 1 1 1 2 2 2 2 2	24 24 24 24 24 24 23		
BW	16QAM Mode	8 15 1 1 8 8 8 8 15 RB	7 0 8 14 0 4 7 0 8	21.9 22.0 21.9 22.0 20.8 20.8 20.8 20.7	22.0 22.1 21.9 22.0 20.9 20.9 20.9 20.9 20.9	22.0 22.1 22.0 22.1 22.0 20.9 20.9 20.9 20.9 20.9	1 1 1 1 2 2 2 2 2 1 0	24 24 24 24 23 23 23 23 23		
		8 15 1 1 1 8 8 8 8 15	7 0 8 14 0 4 7 0	21.9 22.0 21.9 22.0 20.8 20.8 20.8 20.7 20.8	22.0 22.1 21.9 22.0 20.9 20.9 20.9 20.9 20.9 20.9 Maximum Ave	22.0 22.1 22.0 22.1 22.0 20.9 20.9 20.9 20.9 20.9 20.9	1 1 1 1 2 2 2 2 2	24 24 24 24 24 23 23 23 23		
BW		8 15 1 1 8 8 8 8 15 RB	7 0 8 14 0 4 7 0 8	21.9 22.0 21.9 22.0 20.8 20.8 20.7 20.8 20.7 20.8	22.0 22.1 21.9 22.0 20.9 20.9 20.9 20.9 20.9 Maximum Ave 20525	22.0 22.1 22.0 22.1 22.0 20.9 20.9 20.9 20.9 20.9 20.9 20.9	1 1 1 1 2 2 2 2 2 1 0	24 24 24 23 23 23 23 23 23 23		
BW		8 15 1 1 8 8 8 8 15 8 8 15 8 8 15	7 0 8 14 0 4 7 0 8 8 8 8 8 8 8	21.9 22.0 21.9 22.0 20.8 20.8 20.7 20.8 20.7 20.8 20407 824.7 MHz	22.0 22.1 22.1 22.0 20.9 20.9 20.9 20.9 Maximum Ave 20525 836.5 MHz	22.0 22.1 22.0 22.1 22.0 20.9 20.9 20.9 20.9 20.9 20.9 20.9	1 1 1 2 2 2 2 2 n)	24 24 24 23 23 23 23 23 23 23 23 23		
BW		8 15 1 1 8 8 8 15 8 15 8 Allocation	7 0 8 14 0 4 7 0 8 8 8 0ffset	21.9 22.0 21.9 22.0 20.8 20.8 20.7 20.8 20.7 20.8 20407 824.7 MHz 23.0	22.0 22.1 22.1 21.9 22.0 20.9 20.9 20.9 20.9 Maximum Ave 20525 836.5 MHz 23.2	22.0 22.1 22.0 22.1 22.0 20.9 20.9 20.9 20.9 20.9 20.9 20643 848.3 MHz 23.2	1 1 1 2 2 2 2 2 0 m PR 0	24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23		
BW		8 15 1 1 8 8 8 15 8 Allocation 1 1	7 0 8 14 0 4 7 0 8 8 8 8 0 6 15 8 9 0 3	21.9 22.0 21.9 22.0 20.8 20.8 20.7 20.8 20407 824.7 MHz 23.0 23.1	22.0 22.1 22.1 21.9 22.0 20.9 20.9 20.9 20.9 Maximum Ave 20525 836.5 MHz 23.2 23.2	22.0 22.1 22.0 22.1 22.0 20.9 20.9 20.9 20.9 20.9 20.9 20643 848.3 MHz 23.2 23.2	1 1 1 2 2 2 2 2 0 m MPR 0 0	24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23		
BW	Mode	8 15 1 1 8 8 8 15 8 Allocation 1 1 1 1	7 0 8 14 0 4 7 0 8 8 8 8 9 6 15 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	21.9 22.0 21.9 22.0 20.8 20.8 20.7 20.8 20.7 20.8 20407 824.7 MHz 23.0 23.1	22.0 22.1 22.1 21.9 22.0 20.9 20.9 20.9 20.9 20.9 20.9 20	22.0 22.1 22.0 22.1 22.0 20.9 20.9 20.9 20.9 20.9 20.9 20.9	1 1 1 1 2 2 2 2 2 0 m MPR 0 0 0 0	24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23		
BW	Mode	8 15 1 1 8 8 8 15 8 Allocation 1 1 1 1 3	7 0 8 14 0 4 7 0 8 8 8 6 6 9 6 9 6 9 6 9 6 9 9 9 9 9 9 9	21.9 22.0 21.9 22.0 20.8 20.8 20.7 20.8 20407 824.7 MHz 23.0 23.1 23.1 23.0	22.0 22.1 22.1 21.9 22.0 20.9 20.9 20.9 20.9 20.9 20.9 20	22.0 22.1 22.0 22.1 22.0 20.9 20.9 20.9 20.9 20.9 20.9 20.9	1 1 1 2 2 2 2 2 n) MPR 0 0 0 0 0 0	24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23		
BW (MHz)	Mode	8 15 1 1 8 8 8 15 8 15 15 1 1 1 1 1 3 3	7 0 8 14 0 4 7 0 8 8 8 8 0 8 8 9 0 3 5 0 1	21.9 22.0 21.9 22.0 20.8 20.8 20.7 20.8 20.7 20.8 20407 824.7 MHz 23.0 23.1 23.1 23.1 23.0 23.0	22.0 22.1 22.1 21.9 22.0 20.9 20.9 20.9 20.9 20.9 20.9 20	22.0 22.1 22.0 22.1 22.0 20.9 20.9 20.9 20.9 20.9 20.9 20.9	1 1 1 2 2 2 2 m) MPR 0 0 0 0 0 0 0 0 0 0 0 0 0	24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23		
BW	Mode	8 15 1 1 8 8 8 15 8 15 15 1 1 1 1 1 3 3 3 3	7 0 8 14 0 4 7 0 8 8 8 0 8 8 9 0 3 5 0 1 3	21.9 22.0 21.9 22.0 20.8 20.8 20.7 20.8 20.7 20.8 20407 824.7 MHz 23.0 23.1 23.1 23.1 23.0 23.0 23.0	22.0 22.1 22.1 21.9 22.0 20.9 20.9 20.9 20.9 20.9 20.9 20	22.0 22.1 22.0 22.9 20.9 20.9 20.9 20.9 20.9 20.9	1 1 1 2 2 2 2 n) MPR 0 0 0 0 0 0 0 0 0 0 0 0 0	24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25		
BW (MHz)	Mode	8 15 1 1 8 8 8 15 8 15 1 1 1 1 1 1 3 3 3 6	7 0 8 14 0 4 7 0 RB offset 0 3 5 0 1 3 0	21.9 22.0 21.9 22.0 20.8 20.8 20.7 20.8 20.7 20.8 20407 824.7 MHz 23.0 23.1 23.1 23.1 23.0 23.0 23.0 23.0 23.0 21.9	22.0 22.1 22.1 21.9 22.0 20.9 20.9 20.9 20.9 20.9 20.9 20	22.0 22.1 22.0 22.9 20.9 20.9 20.9 20.9 20.9 20.9	1 1 1 2 2 2 2 m) MPR 0 0 0 0 0 0 0 0 0 0 0 0 0	24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25		
BW (MHz)	Mode	8 15 1 1 8 8 8 15 8 15 1 1 1 1 1 3 3 3 6 1	7 0 8 14 0 4 7 0 RB offset 0 3 5 0 1 3 0 0	21.9 22.0 21.9 22.0 20.8 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.8 20.9 23.0 23.0 23.0 23.0 23.0 21.9 21.5	22.0 22.1 22.1 21.9 22.0 20.9 20.9 20.9 20.9 20.9 Maximum Ave 20525 836.5 MHz 23.2 23.2 23.2 23.1 23.1 23.1 23.1 23.1	22.0 22.1 22.0 22.9 20.9 20.9 20.9 20.9 20.9 20.9	1 1 1 2 2 2 2 n) MPR 0 0 0 0 0 0 0 0 1 1 1	24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23		
BW (MHz)	Mode	8 15 1 1 8 8 8 15 8 15 15 1 1 1 1 3 3 3 6 1 1 1	7 0 8 14 0 4 7 0 RB offset 0 3 5 0 1 3 0 0 1 3 0 0 0 3 3	21.9 22.0 21.9 22.0 20.8 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.9 23.0 23.0 23.0 23.0 23.0 23.0 21.9 21.5 21.5	22.0 22.1 22.1 21.9 22.0 20.9 20.9 20.9 20.9 Maximum Ave 20525 836.5 MHz 23.2 23.2 23.2 23.1 23.1 23.1 23.1 23.1	22.0 22.1 22.0 22.9 20.9 20.9 20.9 20.9 20.9 20.9	1 1 1 2 2 2 2 n) MPR 0 0 0 0 0 0 0 0 0 1 1 1 1	24 24 24 23 23 23 23 23 23 23 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25		
BW (MHz)	Mode QPSK	8 15 1 1 8 8 15 RB Allocation 1 1 3 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1	7 0 8 14 0 4 7 0 8 8 0 6 5 0 1 3 0 0 1 3 0 0 0 3 5 5	21.9 22.0 21.9 22.0 20.8 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.9 23.0 23.0 23.0 23.0 23.0 23.0 23.0 21.9 21.5 21.5 21.5	22.0 22.1 22.1 21.9 22.0 20.9 20.9 20.9 20.9 Maximum Ave 20525 836.5 MHz 23.2 23.2 23.1 23.1 23.1 23.1 23.1 23.1	22.0 22.1 22.0 22.9 20.9 20.9 20.9 20.9 20.9 20.9	1 1 1 2 2 2 2 2 n) MPR 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	24 24 24 23 23 23 23 23 23 23 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25		
BW (MHz)	Mode QPSK	8 15 1 1 8 8 15 8 15 15 1 1 1 3 3 6 1 1 1 1 3 3 6 1 1 1 3 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1	7 0 8 14 0 4 7 0 8 8 0 6 5 0 1 3 0 0 1 3 0 0 0 3 5 0 0 1 3 0 0 0 3 5 0 0	21.9 22.0 21.9 22.0 20.8 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.7 20.8 20.9 20.9 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	22.0 22.1 22.1 21.9 22.0 20.9 20.9 20.9 20.9 Maximum Ave 20525 836.5 MHz 23.2 23.2 23.1 23.1 23.1 23.1 23.1 23.1	22.0 22.1 22.0 22.9 20.9 20.9 20.9 20.9 20.9 20.9	1 1 1 2 2 2 2 2 2 7 MPR 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	24 24 24 23 23 23 23 23 23 23 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25		

Page 33 of 51

LTE Band 41 Measured Results

BW		RB	RB		-	Maximum Aver							
(MHz)	Mode	Allocation	offset	39750	40185	40620	41055	41490	MPR	Tune-up			
				2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz		Limit			
		1	0	22.6	22.8	23.1	23.6	23.7	0	24.5			
		1	49	22.7	22.8	23.1	23.6	23.8	0	24.5			
		1	99	22.7	22.8	23.1	23.6	23.8	0	24.5			
	QPSK	50	0	21.6	21.9	22.1	22.5	22.8	1	23.5			
		50	24	21.6	21.9	22.2	22.5	22.8	1	23.5			
		50	50	21.6	21.9	22.2	22.5	22.8	1	23.5			
		100	0	21.6	21.9	22.2	22.5	22.8	1	23.5			
20 MHz		1	0	21.3	21.7	21.7	22.6	22.6	1	23.5			
		1	49	21.3	21.8	22.0	22.4	22.7	1	23.5			
		1	99	21.5	21.6	21.7	22.4	22.7	1	23.5			
	16QAM	50	0	20.6	20.9	21.2	21.4	21.8	2	22.5			
		50	24	20.6	20.9	21.2	21.5	21.8	2	22.5			
		50	50	20.6	20.9	21.2	21.5	21.9	2	22.5			
		100	0	20.6	20.9	21.2	21.5	21.8	2	22.5			
BW		RB	RB			Maximum Aver		-	<u> </u>				
(MHz)	Mode	Allocation	offset	39750	40185	40620	41055	41490	MPR	Tune-up			
				2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz		Limit			
		1	0	22.5	22.8	23.2	23.4	23.8	0	24.5			
		1	37	22.5	22.8	23.2	23.4	23.8	0	24.5			
		1	74	22.5	22.9	23.2	23.4	23.8	0	24.5			
	QPSK	36	0	21.6	21.9	22.2	22.5	22.8	1	23.5			
		36	20	21.6	21.9	22.2	22.5	22.8	1	23.5			
		36	39	21.7	21.9	22.2	22.5	22.8	1	23.5			
		75	0	21.7	21.9	22.2	22.5	22.8	1	23.5			
15 MHz		1	0	21.1	21.8	21.9	22.2	22.6	1	23.5			
		1	37	21.2	22.1	21.9	22.2	22.7	. 1	23.5			
		-	74										
	100414	1		21.3	22.1	21.9	22.3	23.2	1	23.5			
	16QAM	36	0	20.7	20.9	21.3	21.5	21.8	2	22.5			
		36	20	20.6	21.0	21.2	21.5	21.8	2	22.5			
		36	39	20.7	21.0	21.2	21.5	21.9	2	22.5			
		75	0	20.7	20.9	21.2	21.5	21.8	2	22.5			
BW		RB	RB			Maximum Aver	age Power (dB	m)					
(MHz)	Mode	Allocation				offset	39750	40185	40620	41055	41490	MPR	Tune-up
				2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz		Limit			
		1	0	22.5	22.8	23.2	23.4	23.7	0	24.5			
		1	25	22.6	22.8	23.2	23.4	23.7	0	24.5			
		1	49	22.6	22.8	23.2	23.4	23.8	0	24.5			
	QPSK	25	0	01.0									
		20	0	21.6	21.9	22.2	22.4	22.8	1	23.5			
		25	12	21.6	21.9 21.9	22.2 22.2	22.4 22.4	22.8 22.8	1	23.5 23.5			
		25	12	21.6	21.9	22.2	22.4	22.8	1	23.5			
10 MHz		25 25	12 25	21.6 21.6	21.9 21.9	22.2 22.2	22.4 22.4	22.8 22.8	1 1	23.5 23.5			
10 MHz		25 25 50 1	12 25 0 0	21.6 21.6 21.6 21.3	21.9 21.9 21.9 21.8	22.2 22.2 22.2 21.7	22.4 22.4 22.4 22.3	22.8 22.8 22.8 22.8 22.8	1 1 1	23.5 23.5 23.5 23.5			
10 MHz		25 25 50 1 1	12 25 0 0 25	21.6 21.6 21.6 21.3 21.3	21.9 21.9 21.9 21.8 21.7	22.2 22.2 22.2 21.7 21.7	22.4 22.4 22.4 22.3 22.3	22.8 22.8 22.8 22.8 22.8 22.8	1 1 1 1	23.5 23.5 23.5 23.5 23.5 23.5			
10 MHz	160AM	25 25 50 1 1 1	12 25 0 25 49	21.6 21.6 21.6 21.3 21.3 21.3	21.9 21.9 21.9 21.8 21.7 21.7	22.2 22.2 22.2 21.7 21.7 21.7	22.4 22.4 22.3 22.3 22.3 22.3	22.8 22.8 22.8 22.8 22.8 22.8 22.8 22.8	1 1 1 1 1 1	23.5 23.5 23.5 23.5 23.5 23.5 23.5			
10 MHz	16QAM	25 25 50 1 1 1 25	12 25 0 25 49 0	21.6 21.6 21.3 21.3 21.3 21.3 20.7	21.9 21.9 21.9 21.8 21.7 21.7 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.1	22.4 22.4 22.3 22.3 22.3 22.3 21.4	22.8 22.8 22.8 22.8 22.8 22.8 22.8 22.8	1 1 1 1 1 1 2	23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5			
10 MHz	16QAM	25 25 50 1 1 1 25 25	12 25 0 25 49 0 12	21.6 21.6 21.3 21.3 21.3 20.7 20.7	21.9 21.9 21.9 21.8 21.7 21.7 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.1 21.2	22.4 22.4 22.3 22.3 22.3 22.3 21.4 21.5	22.8 22.8 22.8 22.8 22.8 22.8 22.8 21.8 21	1 1 1 1 1 1 2 2	23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5			
10 MHz	16QAM	25 25 50 1 1 25 25 25 25	12 25 0 25 49 0 12 25	21.6 21.6 21.3 21.3 21.3 21.3 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 21.7 20.9 20.9 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.1 21.2 21.2	22.4 22.4 22.3 22.3 22.3 21.4 21.5 21.5	22.8 22.8 22.8 22.8 22.8 22.8 21.8 21.8	1 1 1 1 1 1 2 2 2 2	23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5			
10 MHz	16QAM	25 25 50 1 1 1 25 25	12 25 0 25 49 0 12	21.6 21.6 21.3 21.3 21.3 20.7 20.7	21.9 21.9 21.9 21.8 21.7 21.7 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.1 21.2 21.2	22.4 22.4 22.3 22.3 22.3 21.4 21.5 21.5 21.5 21.5	22.8 22.8 22.8 22.8 22.8 22.8 22.8 21.8 21	1 1 1 1 1 1 2 2	23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5			
		25 25 50 1 1 25 25 25 25 50	12 25 0 25 49 0 12 25 0	21.6 21.6 21.3 21.3 21.3 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 21.7 20.9 20.9 20.9 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.1 21.2 21.2	22.4 22.4 22.3 22.3 22.3 21.4 21.5 21.5 21.5 21.5 3age Power (dB	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 1 1 2 2 2 2	23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5			
10 MHz BW (MHz)	16QAM Mode	25 25 50 1 1 25 25 25 25	12 25 0 25 49 0 12 25	21.6 21.6 21.3 21.3 21.3 21.3 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 21.7 20.9 20.9 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.1 21.2 21.2	22.4 22.4 22.3 22.3 22.3 21.4 21.5 21.5 21.5 21.5	22.8 22.8 22.8 22.8 22.8 22.8 22.8 21.8 21	1 1 1 1 1 1 2 2 2 2	23.5 23.5 23.5 23.5 23.5 23.5 22.5 22.5			
BW		25 25 50 1 1 1 25 25 25 50 RB	12 25 0 25 49 0 12 25 0 RB	21.6 21.6 21.3 21.3 21.3 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 21.7 20.9 20.9 20.9 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.1 21.2 21.2	22.4 22.4 22.3 22.3 22.3 21.4 21.5 21.5 21.5 21.5 3age Power (dB	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 1 1 2 2 2 2 2 2	23.5 23.5 23.5 23.5 23.5 23.5 22.5 22.5			
BW		25 25 50 1 1 1 25 25 25 50 RB	12 25 0 25 49 0 12 25 0 RB	21.6 21.6 21.3 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 21.7 20.9 20.9 20.9 20.9 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 22.3 21.4 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.8 22.8 22.8 22.8 22.8 22.8 21.8 21.8	1 1 1 1 1 1 2 2 2 2 2 2	23.5 23.5 23.5 23.5 23.5 23.5 22.5 22.5			
BW		25 25 50 1 1 25 25 25 50 8 Allocation	12 25 0 25 49 0 12 25 0 8 8 8 8 0	21.6 21.6 21.3 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 21.7 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 22.3 21.4 21.5 21.5 21.5 21.5 21.5 age Power (dB 41055 2636.5 MHz	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 2 2 2 2 2 2 2 8 9	23.5 23.5 23.5 23.5 23.5 22.5 22.5 22.5			
BW		25 25 50 1 1 25 25 25 50 Allocation 1	12 25 0 25 49 0 12 25 0 8 8 6 0 8 8 8 0 0	21.6 21.6 21.3 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 22.3 21.4 21.5 21.5 21.5 21.5 3ge Power (dB 41055 2636.5 MHz 23.5	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 1 2 2 2 2 2 2 2 2 0 MPR 0	23.5 23.5 23.5 23.5 23.5 22.5 22.5 22.5			
BW		25 25 50 1 1 25 25 25 50 8 Allocation 1 1	12 25 0 25 49 0 12 25 0 8 RB offset 0 12	21.6 21.6 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 21.4 21.5 21.5 21.5 21.5 3ge Power (dB 41055 2636.5 MHz 23.5	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 2 2 2 2 2 2 2 2 2 0 0 0	23.5 23.5 23.5 23.5 22.5 22.5 22.5 22.5			
BW	Mode	25 25 50 1 1 25 25 25 50 RB Allocation 1 1 1	12 25 0 25 49 0 12 25 0 RB offset 0 12 24	21.6 21.6 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 21.4 21.5 21.5 21.5 21.5 3ge Power (dB 41055 2636.5 MHz 23.5 23.5 23.5	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0	23.5 23.5 23.5 23.5 22.5 22.5 22.5 22.5			
BW	Mode	25 25 50 1 1 25 25 25 50 Allocation 1 1 1 1 2	12 25 0 25 49 0 12 25 0 RB offset 0 12 24 0	21.6 21.6 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 21.4 21.5 21.5 21.5 21.5 21.5 221.5 221.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0	23.5 23.5 23.5 23.5 22.5 22.5 22.5 22.5			
BW	Mode	25 25 50 1 1 25 25 50 8 Allocation 1 1 1 1 2 12 12 12	12 25 0 25 49 0 12 25 0 8 8 8 6 0 8 8 8 0 0 12 24 0 7 7 13	21.6 21.6 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 21.4 21.5 21.5 21.5 21.5 21.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0	23.5 23.5 23.5 23.5 22.5 22.5 22.5 22.5			
BW	Mode	25 50 1 1 25 25 25 50 Allocation 1 1 1 1 2 2 5 12 2 5 2 5 0 2 5 0 2 5 0 2 5 0 2 5 0 2 5 0 2 5 12 2 5 2 5 10 2 5 10 12 12 2 5 2 5 10 12 12 2 5 10 12 12 12 5 10 12 12 5 10 12 12 5 10 12 12 5 10 12 12 5 10 12 5 10 12 5 10 12 5 10 12 5 10 12 5 10 12 5 10 12 5 10 12 5 10 12 5 10 12 5 10 12 5 10 12 5 10 12 5 10 12 5 10 12 5 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	12 25 0 25 49 0 12 25 0 8 8 8 0 6 12 24 0 7 7 13 0	21.6 21.6 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 21.4 21.5 21.5 21.5 21.5 21.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23.5 23.5 23.5 23.5 22.5 22.5 22.5 22.5			
BW (MHz)	Mode	25 25 50 1 25 25 25 50 Allocation 1 1 1 1 2 2 5 1 2 5 1	12 25 0 25 49 0 12 25 0 8 8 8 6 6 8 8 0 0 12 24 0 7 7 13 0 0 0	21.6 21.6 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 20.9 20.9 20.9 20.9 20.9 20.9 20.9 22.9 22	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 21.4 21.5 21.5 21.5 21.5 21.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23.5 23.5 23.5 22.5 22.5 22.5 22.5 22.5			
BW (MHz)	Mode	25 25 50 1 1 25 25 25 50 8 Allocation 1 1 1 1 2 12 12 12 12 25 1 1 1	12 25 0 25 49 0 12 25 0 8 8 8 0 6 7 24 0 7 7 13 0 0 0 12	21.6 21.6 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 22.3 21.4 21.5 21.5 21.5 21.5 21.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23.5 23.5 23.5 22.5 22.5 22.5 22.5 22.5			
BW (MHz)	Mode QPSK	25 25 50 1 1 25 25 50 8 Allocation 1 1 1 1 2 12 12 12 12 25 1 1 1 1 1 1 1	12 25 0 25 49 0 12 25 0 8 8 8 6 6 7 24 0 7 7 13 0 0 7 12 24 0 12 24	21.6 21.6 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 20.9 20.9 20.9 20.9 20.9 20.9 20.9 22.9 22	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 22.3 21.4 21.5 21.5 21.5 21.5 21.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23.5 23.5 23.5 22.5 22.5 22.5 22.5 22.5			
BW (MHz)	Mode	25 25 50 1 25 25 25 50 Allocation 1 1 1 1 2 25 1 2 5 1 1 1 2 25 1 1 1 2 25 1 1 1 2 25 1 1 1 2 25	12 25 0 25 49 0 12 25 0 8 8 8 0 6 7 24 0 7 13 0 0 7 13 0 0 0 12 24 0 0	21.6 21.6 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 20.9 20.9 20.9 20.9 20.9 20.9 20.9 22.9 22	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 22.3 21.4 21.5 21.5 21.5 21.5 21.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	23.5 23.5 23.5 22.5 22.5 22.5 22.5 22.5			
BW (MHz)	Mode QPSK	25 25 50 1 1 25 25 50 8 Allocation 1 1 1 1 2 12 12 12 12 25 1 1 1 1 1 1 1	12 25 0 25 49 0 12 25 0 8 8 8 6 6 7 24 0 7 7 13 0 0 7 12 24 0 12 24	21.6 21.6 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 20.9 20.9 20.9 20.9 20.9 20.9 20.9 22.9 22	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 22.3 21.4 21.5 21.5 21.5 21.5 21.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	23.5 23.5 23.5 22.5 22.5 22.5 22.5 22.5			
BW (MHz)	Mode QPSK	25 25 50 1 25 25 25 50 Allocation 1 1 1 1 2 25 1 2 5 1 1 1 2 25 1 1 1 2 12 12 12 12 12 12 12 12 12 12 1	12 25 0 25 49 0 12 25 0 8 8 8 0 6 7 24 0 7 13 0 0 7 13 0 0 0 12 24 0 0	21.6 21.6 21.3 21.3 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	21.9 21.9 21.8 21.7 20.9 20.9 20.9 20.9 20.9 20.9 20.9 22.9 22	22.2 22.2 21.7 21.7 21.7 21.7 21.2 21.2	22.4 22.4 22.3 22.3 22.3 21.4 21.5 21.5 21.5 21.5 21.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23	22.8 22.8 22.8 22.8 22.8 21.8 21.8 21.8	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	23.5 23.5 23.5 22.5 22.5 22.5 22.5 22.5			

Page 34 of 51

Doc. No.: 1.0

UL Verification Services Inc. This report shall not be reproduced without the written approval of UL Verification Services Inc.

9.4. LTE Carrier Aggregation

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

For inter-band carrier aggregation with uplink assigned to one E-UTRA band (Table 5.6A-1), the requirements in subclause 6.2.3 apply.

For inter-band carrier aggregation with one component carrier per operating band and the uplink active in two E-UTRA bands, the requirements in subclause 6.2.3 apply for each uplink component carrier.

For intra-band contiguous carrier aggregation the allowed Maximum Power Reduction (MPR) for the maximum output power applicable to the DUT in table below. In case the modulation format is different on different component carriers then the MPR is determined by the rules applied to higher order of those modulations.

Modulation	Component Carrier Transmission Bandwidth Configuration				
	25 RB	50 RB	75 RB	100 RB	
QPSK	> 8 and ≤ 25	> 12 and ≤ 50	> 16 and ≤ 75	> 18 and ≤ 100	≤ 1
QPSK	> 25	> 50	> 75	> 100	≤ 2
16 QAM	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 8 and ≤ 25	> 12 and ≤ 50	> 16 and ≤ 75	> 18 and ≤ 100	≤ 2
16 QAM	> 25	> 50	> 75	> 100	≤ 3
64 QAM	≤ 8 and	≤ 12 and	≤ 16 and	≤ 18 and	≤ 2
	allocation	allocation	allocation	allocation	
	wholly	wholly	wholly	wholly	
	contained	contained	contained	contained	
	within a	within a	within a	within a	
	single CC	single CC	single CC	single CC	
64 QAM	> 8 or	> 12 or	> 16 or	> 18 or	≤ 3
	allocation	allocation	allocation	allocation	
	extends	extends	extends	extends	
	across	across	across	across	
	two CC's	two CC's	two CC's	two CC's	

For PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH WPDK modulation for the corresponding transmission bandwidth.

For intra-band contiguous carrier aggregation bandwidth class C with non-contiguous resource allocation, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1 is specified as follows

 $MPR = CEIL \{min(M_A, M_{IM5}), 0.5\}$

Where MA is defined as follows

MA

8.2	;0 ≤ A < 0.025
9.2 – 40A	;0.025 ≤ A < 0.05
8 – 16A	;0.05 ≤ A < 0.25
4.83 – 3.33A	;0.25 ≤ A ≤ 0.4
3.83 – 0.83A	;0.4 ≤ A ≤ 1
	9.2 – 40A 8 – 16A 4.83 – 3.33A

and M_{IM5} is defined as follows

$M_{IM5} =$	4.5	; Δ_{IM5} < 1.5 * BW _{Channel_CA}
	6.0	; 1.5 * BW Channel_CA $\leq \Delta_{IM5} < BW$ Channel_CA/2 + Δf_{ooB}
	MA	; $\Delta_{IM5} \ge BW_{Channel_CA}/2 + \Delta f_{OOB}$

Where

 $A = N_{RB_alloc} / N_{RB_agg}$

 $\Delta_{\text{IM5}} = \max(\left|F_{\text{C}_{agg}} - (3^*F_{agg_{alloc}_{low}} - 2^*F_{agg_{alloc}_{high}})\right|, \left|F_{\text{C}_{agg}} - (3^*F_{agg_{alloc}_{high}} - 2^*F_{agg_{alloc}_{low}})\right|)$

CEIL{M_A, 0.5} means rounding upwards to closest 0.5dB, i.e. MPR \in [3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5]

For intra-band carrier aggregation, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For intra-band non-contiguous carrier aggregation with one uplink carrier on the PCC, the requirements in the subclause 6.2.3 apply. For intra-band non-contiguous aggregation with two uplink carriers the MPR is defined tfor those E-UTRA bands where maximum possible $W_{GAP} \le 42.2$ MHz as follows

$$MPR = CEIL\{M_{A}, 0.5\}$$

Where M_N is defined as follows

M _N =	-0.125N + 18.25	; 2 ≤ N ≤ 50
	-0.0333 N + 13.67	; 50 < N ≤ 200

Where $N = N_{RB_{alloc}}$ is the number of allocated resource blocks.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5A apply.

LTE Carrier Aggregation Measured Results

The following power measurements were performed with a single carrier uplink; CA for this particular project is only supported in the downlinks. The CA combinations supported by this device is one (1) Uplink and two (2) Downlinks.

LTE CA combinations		PCC (UL)				SCC (DL)			LTE Rel 8 Tx.	LTE Rel 10	Delta			
Туре	PCC	+	SCC	Mode	BW (MHz)	Channel	Freq. (MHz)	RB/Offset	BW (MHz)	Channel	Freq. (MHz)	Power [dBm]	Tx. Power [dBm]	(dBm)
Intra-Band non-contiguous		41A		QPSK	20	39750	2506.0	1/99	20	41490	2680.0	22.7	22.7	0.0
Intra-Band Contiguous		41C		QPSK	20	39750	2506.0	1/99	20	39948	2525.8	22.7	22.7	0.0

Note:

Per KDB 941225 D05A LTE Rel. 10 KDB Inquiry Sheet: SAR is excluded for Carrier Aggregation when measured power does not exceed LTE Release 8 by more than a ¹/₄ dBm

Page 36 of 51

Wi-Fi 2.4GHz (DTS Band) 9.5.

When the proximity sensor is active in a held-to-ear user scenario, the output power level is reduced. The maximum allowed output powers in all conditions are included in the maximum power document.

Refer to Operational Description for WLAN explanation.

Wi-Fi 2.4GHz Measured Results

				Freq.	Maximum	Average Pov	ver (dBm)	Reduced	Average Pow	ver (dBm)
Band	Mode	Data Rate	Ch #	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)	Meas Pwr	Tune-up	SAR Test (Yes/No)
			1	2412	14.0	15.0		12.8	13.0	
5000			2	2417	18.6	19.0		12.3	13.0	
DSSS 2.4 GHz	2.4 GHz 802.11b	1 Mbps	6	2437	18.6	19.0	Yes	12.3	13.0	Yes
2.1 0112			10	2457	18.5	19.0		12.3	13.0	
			11	2462	16.0	16.0		12.5	13.0	
			1	2412		17.0			13.0	
	802.11g	6 Mbps	6	2437	Not Required	17.0	No	Not Required	13.0	No
OFDM			11	2462		17.0			13.0	
2.4 GHz	000.44		1	2412		17.0			13.0	
	802.11n (HT20)	6.5 Mbps	6	2437	Not Required	17.0	No	Not Required	13.0	No
	(1120)		11	2462		17.0			13.0	

Note(s):

SAR testing is not required for OFDM modes when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified 1. maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

2.

For "Not required", SAR Test reduction was applied in accordance with KDB 248227 §2.1, b), 1). Channels 2, 6 and 10 for Maximum average power, were chosen for SAR evaluation due to these channels having highest Tune-up power. 3.

9.6. Wi-Fi 5GHz (U-NII Bands)

When the proximity sensor is active in a held-to-ear user scenario, the output power level is reduced. The maximum allowed output powers in all conditions are included in the maximum power document.

Refer to Operational Description for WLAN explanation.

Wi-Fi 5 GHz Measured Results

				Freq.	Maximum	Average Po	wer (dBm)	Reduced	Average Pow	/er (dBm)
Band	Mode	Data Rate	Ch #	(MHz)	Meas Pwr	Tune-up	SARTest (Yes/No)	Meas Pwr	Tune-up	SAR Test (Yes/No)
			36	5180	16.1	16.5			11.0	
	802.11a	6 Mbps	40	5200	16.0	16.5	Yes	Not Required	11.0	No
	002.118	0 100093	44	5220	16.0	16.5	163	Not Nequiled	11.0	NO
			48	5240	16.2	16.5			11.0	
			36	5180		16.5			11.0	
	802.11n	6.5 Mbps	40	5200	Not Required	16.5	No	Not Required	11.0	No
	(HT20)	0.5 10005	44	5220	Not Required	16.5		Not Nequiled	11.0	NO
			48	5240		16.5			11.0	
UNII-1			36	5180		16.5			11.0	
5.2 GHz	802.11ac	6.5 Mbps	40	5200	Not Required	16.5	No	Not Required	11.0	No
	(VHT20)	0.5 10005	44	5220	Not Required	16.5		Not Required	11.0	NO
			48	5240		16.5			11.0	
	802.11n	12 E Mana	38	5190	Not Doguirod	15.0	No	Not Required	11.0	No
	(HT40)	13.5 Mbps	46	5230	Not Required	15.0		Not Required	11.0	INO
	802.11ac	10.5 Mana	38	5190		15.0	Nie		11.0	Nia
	(VHT40)	13.5 Mbps	46	5230	Not Required	15.0	No	Not Required	11.0	No
	802.11ac (VHT80)	29.3 Mbps	42	5210	Not Required	11.0	No	10.8	11.0	Yes
				Freq.	Maximum	Average Po	wer (dBm)	Reduced	Average Pow	ver (dBm)
Band	Mode	Data Rate	Ch #	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)	Meas Pwr	Tune-up	SARTest (Yes/No)
			52	5260	15.9	16.5			11.0	
	802.11a	6 Mbps	56	5280	16.2	16.5	Yes	Not Required	11.0	No
	002.11a	0 Mops	60	5300	15.7	16.5	165	Not Required	11.0	NO
			64	5320	16.4	16.5			11.0	
			52	5260		16.5			11.0	
	802.11n	6.5 Mbps	56	5280	Not Required	16.5	No	Not Required	11.0	No
	(HT20)	0.5 10005	60	5300	Not Required	16.5		Not Required	11.0	NO
			64	5320		16.5			11.0	
UNII-2A			52	5260		16.5			11.0	
5.3 GHz	802.11ac	6 E Mbpo	56	5280	Not Doguirod	16.5	No	Not Doguirod	11.0	No
	(VHT20)	6.5 Mbps	60	5300	Not Required	16.5		Not Required	11.0	INO
			64	5320		16.5	1		11.0	
	802.11n	10.5 Mana	54	5270		15.0	Nie		11.0	Nia
	(HT40)	13.5 Mbps	62	5310	Not Required	15.0	No	Not Required	11.0	No
	802.11ac	12 E Mars	54	5270		15.0	No		11.0	No
	(VHT40)	13.5 Mbps	62	5310	Not Required	15.0	No	Not Required	11.0	No
	802.11ac (VHT80)	29.3 Mbps	58	5290	Not Required	14.0	No	10.8	11.0	Yes

Note(s):

0

1. For "Not required", SAR Test reduction was applied in accordance with KDB 248227 §2.1, b), 1). When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

2. When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac modes, the channel in the lower order/sequence 802.11 mode (i.e. a, g, n then ac) is selected.

3. When the specified maximum output power is the same for both U-NII band 1 and U-NII band 2A, begin SAR measurement in U-NII band 2A; and if the highest *reported* SAR for U-NII band 2A is

- \circ \leq 1.2 W/kg, SAR is not required for U-NII band 1
 - > 1.2 W/kg, both bands should be tested independently for SAR.
- 4. Wi-Fi Direct is supported in U-NII Band 1. Therefore, Wi-Fi Direct was tested separately for SAR for U-NII Band 1.

Page 38 of 51

Wi-Fi 5 GHz Measured Results (continued)

			·	Freq.	Maximum	Average Pow	er (dBm)	Reduced	Average Powe	er (dBm)	
Band	Mode	Data Rate	Ch #	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)	Meas Pwr	Tune-up	SAR Test (Yes/No)	
			100	5500	16.0	16.5			11.0		
			116	5580	15.6	16.5			11.0		
	802.11a	6 Mbps	124	5620	15.6	16.5	Yes	Not Required	11.0	No	
			140	5700	15.6	16.5			11.0		
			144	5720	15.5	16.5			11.0		
			100	5500		16.5			11.0		
			116	5580		16.5			11.0		
	802.11n	6.5 Mbps	124	5620	Not Required	16.5	No	Not Required	11.0	No	
	(HT20)		140	5700		16.5			11.0		
			144	5720		16.5			11.0		
			100	5500		16.5			11.0		
			116	5580		16.5			11.0		
	802.11ac	6.5 Mbps	124	5620	Not Required	16.5	No	Not Required	11.0	No	
UNII-2C	(VHT20)		140	5700		16.5			11.0		
5.5 GHz			144	5720		16.5			11.0		
			102	5510		15.0			11.0		
			118	5590		15.0			11.0		
	802.11n	13.5 Mbps	126	5630	Not Required	15.0	No	Not Required	11.0	No	
	(HT40)	13.3 10003	134	5670	Not Required	15.0	NO	Not Required	11.0	NO	
			134	5710		15.0			11.0		
			142			15.0					
				5510					11.0	No	
	802.11ac	40 5 Mhaa	118	5590	Net Demuined	15.0	Na	Net Desviced	11.0		
	(VHT40)	13.5 Mbps	126	5630	Not Required	15.0	No	Not Required	11.0	INO	
			134	5670		15.0			11.0		
			142	5710		15.0		40.4	11.0		
	802.11ac	00.0 Miles	106	5530	Not Dominal	14.0		10.4	11.0	Mar	
	(VHT80)	29.3 Mbps	122	5610	Not Required	14.0	No	10.5	11.0	Yes	
			138	5690	Maximum	14.0 Average Pow	or (dBm)	10.4	11.0 Average Powe	or (dBm)	
Band	Mode	Data Rate	Ch #	Freq. (MHz)	Meas Pwr	Tune-up	SAR Test	Meas Pwr	Tune-up	SAR Test	
			149	5745	14.9	16.5	(Yes/No)		11.0	(Yes/No)	
	802.11a	6 Mbps	157	5785	15.0	16.5	Yes	Not Required	11.0	No	
	002.110	o mopo	167	5825	15.1	16.5	100	Not Required	11.0	110	
			149	5745	10.1	16.5			11.0		
	802.11n	6.5 Mbps	143	5785	Not Required	16.5	No	Not Required	11.0	No	
	(HT20)	0.5 10005	165	5825	Not Required	16.5		Not Required	11.0	NO	
			149	5745		16.5			11.0		
UNII-3	802.11ac	6.5 Mbps	149	5745	Not Required	16.5	No	Not Required	11.0	No	
5.8 GHz	(VHT20)		165	5765	Not Required	16.5		Not Required	11.0	TNU	
	000.44		165					Not Required			
	802.11n (HT40)	13.5 Mbps		5755	Not Required	15.0	No		11.0	No	
			159	5795		15.0			11.0		
	802.11ac (VHT40)	13.5 Mbps	151	5755	Not Required	15.0	No	Not Required	11.0	No	
	802.11ac		159	5795		15.0			11.0		
	802.11ac (VHT80)	29.3 Mbps	155	5775	Not Required	14.0	No	10.5	11.0	Yes	

Note(s):

1. For "Not required", SAR Test reduction was applied in accordance with KDB 248227 §2.1, b), 1). When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

2. When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac modes, the channel in the lower order/sequence 802.11 mode (i.e. a, g, n then ac) is selected.

9.7. Bluetooth

Bluetooth Measured Results

			Freq.	Maximum	n Average Pov	ver (dBm)			
Band	Mode	Ch #	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)			
		0	2402	8.1	10.00				
	GFSK	39	2441	8.3	10.00	Yes			
		78	2480	7.6	10.00				
	EDR, π/4 DQPSK	0	2402	7.4	10.00				
	,	39	2441	7.8	10.00	No			
2.4	iii i bai on	78	2480	7.1	10.00				
2.4	π/4 DQPSK EDR,	0	2402	6.7	10.00				
	8-DPSK	39	2441	7.2	10.00	No			
		8-DPSK	78	2480	6.5	10.00			
						0	2402	4.2	5.00
	LE, GFSK	19	2440	4.9	5.00	No			
	0.010	39	2480	4.4	5.00				

Note(s):

Body-worn and BT Tethering Mode qualify for SAR Test Exclusion. Refer to §10.10.

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN = Measured SAR *Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi and Bluetooth = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 648474 D04 Handset SAR (Phablet Only):

When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at \leq 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.

When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

Per TCB workshop April 2016; Page 22, RF Exposure Procedures (Phablet Procedures): phablet 10-g SAR should not be identified as hand or extremity SAR; this should be reported as product specific 10-g SAR in reports and grants.

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply.

KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are

Page 41 of 51 UL Verification Services Inc. Doc. No.: 1.0 This report shall not be reproduced without the written approval of UL Verification Services Inc. mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). Initial Test Position SAR Test Reduction Procedure is outlined in KDB 248227 D01 §5.1.1. To determine the *initial test position*, Area Scans were performed to determine the position with the *Maximum Value of SAR (measured)*. The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the *initial test position*.

Page 42 of 51

10.1. GSM850

RF Exposure		Power	Dist.				Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Touch	190	836.6	32.0	30.5	0.169	0.239	
Head	GPRS	OFF	0	Left Tilt	190	836.6	32.0	30.5	0.106	0.150	
neau	2 Slots	OFF	0	Right Touch	190	836.6	32.0	30.5	0.200	0.283	1
				Right Tilt	190	836.6	32.0	30.5	0.096	0.136	
Deducuran	GPRS	OFF	15	Rear	190	836.6	32.0	30.5	0.276	0.390	2
Body-worn	2 Slots	OFF	15	Front	190	836.6	32.0	30.5	0.135	0.191	
					128	824.2	32.0	30.2	0.464	0.702	
				Rear	190	836.6	32.0	30.5	0.626	0.884	
Listanat	GPRS	OFF	10		251	848.8	32.0	30.4	0.723	1.045	3
Hotspot	2 Slots	OFF	10	Front	190	836.6	32.0	30.5	0.204	0.288	
				Edge 3	190	836.6	32.0	30.5	0.276	0.390	
			Edge 4	190	836.6	32.0	30.5	0.042	0.059		

10.2. GSM1900

RF Exposure			Dist.				Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Pwr Back-off	(mm)	Test Position	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Touch	661	1880.0	28.50	27.20	0.027	0.036	4
Head	GPRS		0	Left Tilt	661	1880.0	28.50	27.20	0.010	0.013	
neau	2 Slots	ots OFF	0	Right Touch	661	1880.0	28.50	27.20	0.018	0.024	
				Right Tilt	661	1880.0	28.50	27.20	0.009	0.013	
Body-worn	GPRS	OFF	15	Rear	661	1880.0	28.50	27.20	0.036	0.048	5
Body-worn	2 Slots	OFF	15	Front	661	1880.0	28.50	27.20	0.024	0.032	
				Rear	661	1880.0	28.50	27.20	0.089	0.120	6
Lists and	GPRS	055	10	Front	661	1880.0	28.50	27.20	0.053	0.071	
Hotsopt	2 Slots	OFF	10	Edge 3	661	1880.0	28.50	27.20	0.040	0.054	
				Edge 4	661	1880.0	28.50	27.20	0.024	0.032	

10.3. W-CDMA Band II

RF Exposure		Pow er	Dist.	Test		Freq.	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Back-off	(mm)	Position	Ch #.	(MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Touch	9400	1880.0	24.5	23.3	0.031	0.041	7
Head	Rel 99	C OFF	0	Left Tilt	9400	1880.0	24.5	23.3	0.011	0.014	
neau	Head RMC OFF 12.2 kbps dy-w orn RMC OFF 12.2 kbps		0	Right Touch	9400	1880.0	24.5	23.3	0.021	0.028	
				Right Tilt	9400	1880.0	24.5	23.3	0.012	0.016	
Deducuran			15	Rear	9400	1880.0	24.5	23.3	0.072	0.094	8
Body-worn		OFF	15	Front	9400	1880.0	24.5	23.3	0.044	0.057	
				Rear	9400	1880.0	24.5	23.3	0.187	0.245	9
Listanat	Rel 99			Front	9400	1880.0	24.5	23.3	0.096	0.126	
Hotspot RMC 12.2 kbps	OFF	10	Edge 3	9400	1880.0	24.5	23.3	0.078	0.102		
	12.2 KDps			Edge 4	9400	1880.0	24.5	23.3	0.050	0.066	

Page 43 of 51

10.4. W-CDMA Band V

RF Exposure		Pow er	Dist.	Test		Freq.	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Conditions	Mode	Back-off	(mm)	Position	Ch #.	(MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Touch	4183	836.6	25.0	24.2	0.135	0.163	
Head	Head Rel 99 Head RMC OFF 12.2 kbps Rel 99	OFF	0	Left Tilt	4183	836.6	25.0	24.2	0.097	0.117	
neau		OFF	0	Right Touch	4183	836.6	25.0	24.2	0.185	0.224	10
				Right Tilt	4183	836.6	25.0	24.2	0.093	0.113	
Body worn	Rel 99	OFF	15	Rear	4183	836.6	25.0	24.2	0.229	0.277	11
Body-worn	dy-w orn RMC OF	OFF	15	Front	4183	836.6	25.0	24.2	0.116	0.140	
				Rear	4183	836.6	25.0	24.2	0.496	0.600	12
Listanat	Rel 99		10	Front	4183	836.6	25.0	24.2	0.159	0.192	
	12.2 kbps	RMC OFF 2.2 kbps	OFF 10	Edge 3	4183	836.6	25.0	24.2	0.231	0.280	
				Edge 4	4183	836.6	25.0	24.2	0.035	0.042	

10.5. LTE Band 5 (10MHz Bandwidth)

RF Exposure		Pwr	Dist.			Freq.	RB	RB	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left	20525	836.5	1	49	25.0	23.1	0.109	0.169	
				Touch	20323	030.5	25	0	24.0	22.0	0.106	0.166	
				Left Tilt	20525	836.5	1	49	25.0	23.1	0.073	0.113	
Head	QPSK	OFF	0	(15°)	20323	030.3	25	0	24.0	22.0	0.070	0.110	
Tiedu	QFON	OIT	0	Right	20525	836.5	1	49	25.0	23.1	0.146	0.227	13
				Touch	20323	030.5	25	0	24.0	22.0	0.133	0.209	
				Right Tilt	20525	836.5	1	49	25.0	23.1	0.077	0.120	
				(15°)	20323	030.5	25	0	24.0	22.0	0.072	0.113	
			Rear	20525	836.5	1	49	25.0	23.1	0.187	0.291	14	
Body-w orn	QPSK	OFF	15	Real	20323	030.3	25	0	24.0	22.0	0.157	0.246	
Body-worn	QFON	OIT	15	Front	20525	836.5	1	49	25.0	23.1	0.085	0.132	
				TION	20020	000.0	25	0	24.0	22.0	0.087	0.137	
				Rear	20525	836.5	1	49	25.0	23.1	0.398	0.619	15
				iteai	20020	000.0	25	0	24.0	22.0	0.337	0.529	
				Front	20525	836.5	1	49	25.0	23.1	0.131	0.204	
Hotspot	QPSK	OFF	10	TION	20020	000.0	25	0	24.0	22.0	0.114	0.179	
riotopot	GION		10	Edge 3	20525	836.5	1	49	25.0	23.1	0.216	0.336	
				Luge 3	20020	030.3	25	0	24.0	22.0	0.184	0.289	
				Edge 4	20525	836.5	1	49	25.0	23.1	0.031	0.048	
				Luge 4	20020	000.0	25	0	24.0	22.0	0.033	0.052	

10.6. LTE Band 41 (20MHz Bandwidth)

RF Exposure		Pwr	Dist.			Freq.	RB	RB	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left	40620	2593.0	1	99	24.5	23.1	0.146	0.200	
				Touch	40020	2393.0	50	24	23.5	22.2	0.108	0.146	
				Left Tilt	40620	2593.0	1	99	24.5	23.1	0.162	0.222	
Head	QPSK	OFF	0	(15°)	40020	2000.0	50	24	23.5	22.2	0.122	0.165	
Ticad	QION	On	Ŭ	Right	40620	2593.0	1	99	24.5	23.1	0.318	0.435	16
				Touch	40020	2000.0	50	24	23.5	22.2	0.234	0.317	
				Right Tilt	40620	2593.0	1	99	24.5	23.1	0.092	0.126	
				(15°)	40020	2000.0	50	24	23.5	22.2	0.068	0.092	
				Rear	40620	2593.0	1	99	24.5	23.1	0.229	0.313	17
Body-w orn	QPSK	OFF	15	Rear	40020	2000.0	50	24	23.5	22.2	0.174	0.236	
body worm	QION	On	10	Front	40620	2593.0	1	99	24.5	23.1	0.215	0.294	
				TIOIR	40020	2000.0	50	24	23.5	22.2	0.158	0.214	
				Rear	40620	2593.0	1	99	24.5	23.1	0.435	0.595	18
				Real	40020	2000.0	50	24	23.5	22.2	0.330	0.447	
				Front	40620	2593.0	1	99	24.5	23.1	0.387	0.529	
Hotspot	QPSK	OFF	10	TTOIL	40020	2393.0	50	24	23.5	22.2	0.280	0.379	
Ποισμοι	QF ON		10	Edge 2	40620	2593.0	1	99	24.5	23.1	0.309	0.423	
				Luge Z	40020	2000.0	50	24	23.5	22.2	0.234	0.317	
				Edge 3	40620	2593.0	1	99	24.5	23.1	0.088	0.120	
				Luge 0	40020	2000.0	50	24	23.5	22.2	0.063	0.085	

10.7. Wi-Fi (DTS Band)

When the 802.11b reported SAR of the highest measured maximum output power channel is ≤ 0.8 W/kg, no further SAR testing is required. If SAR is > 0.8 W/kg and ≤ 1.2 W/kg, SAR is required for the next highest measured output power channel. Finally, if SAR is > 1.2 W/kg, SAR is required for the third channel.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

RF		Pow er	Dist.			Freq.	Duty	Area Scan	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot			
Exposure Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Cycle	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	No.			
				Left Touch	1	2412.0	99.65%	0.355	13.0	12.8						
Head	802.11b	ON	0	Left Tilt	1	2412.0	99.65%	0.367	13.0	12.8						
neau	1 Mbps	ON	0	Right Touch	1	2412.0	99.65%	0.626	13.0	12.8	0.433	0.455				
					Right Tilt	1	2412.0	99.65%	0.706	13.0	12.8	0.451	0.474	19		
Dedu were	802.11b	OFF	15	Rear	6	2437.0	99.65%	0.320	19.0	18.6	0.188	0.207	20			
Body-w orn	1 Mbps	OFF	15	Front	6	2437.0	99.65%	0.188	19.0	18.6						
				Rear	6	2437.0	99.65%	0.569	19.0	18.6	0.387	0.426	21			
Hotspot &	802.11b	b OFF	OFF	OFF	OFF	10	Front	6	2437.0	99.65%	0.473	19.0	18.6	0.318	0.350	
Wi-Fi Direct	1 Mbps	OFF			10	Edge 1	6	2437.0	99.65%	0.424	19.0	18.6				
			.1		Edge 4	6	2437.0	99.65%	0.075	19.0	18.6					

10.8. Wi-Fi (U-NII Band)

<u>UNII-1 &2A</u>

When the specified maximum output power is the same for both UNII band I and UNII band 2A, begin SAR measurement in UNII band 2A; and if the highest *reported* SAR for UNII band 2A is

- ≤ 1.2 or 3 W/kg (1g and 10g respectively), SAR is not required for UNII band I
- > 1.2 or 3 W/kg (1g and 10g respectively), both bands should be tested independently for SAR.

	Power	Dist.			Freq.		Area Scan	Power	(dBm)	1-g SAI	R (W/kg)	Plot
Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Duty Cycle	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	No.
			Left Touch	58	5290.0	92.74%	0.360	11.0	10.8			
802.11ac	ON	0	Left Tilt	58	5290.0	92.74%	0.445	11.0	10.8			
VHT80	ON	0	Right Touch	58	5290.0	92.74%	0.317	11.0	10.8			
			Right Tilt	58	5290.0	92.74%	0.493	11.0	10.8	0.266	0.300	22
802.11a	OFF	15	Rear	64	5320.0	98.35%	0.317	16.5	16.4	0.155	0.161	23
6 Mbps	OIT	15	Front	64	5320.0	98.35%	0.286	16.5	16.4			
	Power	Dist			Freq		Area Scan	Power	(dBm)	1-g SA	R (W/kg)	Plot
Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Duty Cycle	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	No.
			Rear	48	5240.0	98.35%	0.205	16.5	16.2			
802.11a	OFF	10	Front	48	5240.0	98.35%	0.134	16.5	16.2			
6 Mbps	OFF	10	Edge 1	48	5240.0	98.35%	0.239	16.5	16.2	0.133	0.145	24
			Edge 4	48	5240.0	98.35%	0.028	16.5	16.2			
	Power	Dist			Freq		Area Scan	Power	(dBm)	10-g SA	R (W/kg)	Plot
Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Duty Cycle	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	No.
			Rear	64	5320.0	98.35%	7.620	16.5	16.4	0.623	0.648	25
802.11a	OFF	0	Front	64	5320.0	98.35%	4.140	16.5	16.4			
6 Mbps	UFF	U	Edge 1	64	5320.0	98.35%	5.690	16.5	16.4			
			Edge 4	64	5320.0	98.35%	0.115	16.5	16.4			
	VHT80 802.11a 6 Mbps 802.11a 6 Mbps Mode 802.11a	802.11ac VHT80ON802.11a 6 MbpsOFFModePower Back-off802.11a 6 MbpsOFFModePower Back-off802.11aOFF	802.11ac VHT80ON0802.11a 6 MbpsOFF15ModePower Back-offDist. (mm)802.11a 6 MbpsOFF10802.11a 6 MbpsOFFDist. (mm)802.11a 6 ModePower Back-offDist. (mm)	Back-off (mm) 802.11ac VHT80 ON 1 00 1 1 802.11a 6 Mbps OFF 15 802.11a 6 Mbps OFF Dist. (mm) Rear 802.11a 6 Mbps Power Back-off Dist. (mm) Test Position 802.11a 6 Mbps OFF Dist. (mm) Rear 802.11a 6 Mbps Power Back-off Dist. (mm) Rear 802.11a 6 Mbps Power Back-off Dist. (mm) Rear 802.11a 6 Mbps Power Back-off Dist. (mm) Test Position	$ \begin{array}{c c c c c c } \hline Back-off & (mm) \\ \hline Back-off & (mm) \\ \hline Back-off & (mm) \\ \hline \\ \hline \\ \hline \\ 802.11a \\ 6 Mbps \\ \hline \\ POF \\ \hline \\ 0 \\ \hline \\ \hline \\ 0 \\ \hline \\ \hline \\ 0 \\ \hline \\ \hline$	Back-oit (mm) Left Touch 58 5290.0 802.11ac ON Left Tilt 58 5290.0 VHT80 ON Right Touch 58 5290.0 Right Touch 58 5290.0 Right Touch 58 5290.0 Right Touch 58 5290.0 802.11a OFF 15 Rear 64 5320.0 802.11a OFF 15 Front 64 5320.0 802.11a OFF Dist. Freq. MH2 (MH2) 802.11a OFF Dist. Front 48 5240.0 802.11a OFF Dist. Front 48 5240.0 802.11a OFF Dist. Front 48 5240.0 Rear 48 5240.0 Edge 1 48 5240.0 Mode Power Dist. Test Position Ch #. Freq. 802.11a OFF Dist. Test Position <	Back-off VHT80 Back-off ON (mm) Left Touch 58 5290.0 92.74% 802.11ac VHT80 ON Image: Provide the state the stat	Back-off (mm) (mm) (MHz) (MHz) (MHz) (MHz) (W/kg) 802.11ac ON 0 Left Touch 58 5290.0 92.74% 0.360 802.11ac ON 1 Left Tilt 58 5290.0 92.74% 0.345 802.11a OFF Right Touch 58 5290.0 92.74% 0.493 802.11a OFF Right Touch 58 5290.0 92.74% 0.493 802.11a OFF Fight Touch 58 5290.0 92.74% 0.493 802.11a OFF Freq. Rear 64 5320.0 98.35% 0.317 802.11a OFF Dist. Front 64 5320.0 98.35% 0.286 802.11a OFF Dist. Front 48 5240.0 98.35% 0.205 802.11a OFF Dist. Front 48 5240.0 98.35% 0.239 802.11a Power Dis	Back-off VHT80 Ref 0N Left Touch 58 5290.0 92.74% 0.360 11.0 802.11ac VHT80 ON Left Touch 58 5290.0 92.74% 0.445 11.0 802.11ac VHT80 ON Left Touch 58 5290.0 92.74% 0.445 11.0 802.11a 6 Mbps OFF Image Second 92.74% 0.493 11.0 802.11a 6 Mbps OFF Image Second 92.74% 0.493 11.0 802.11a 6 Mbps OFF Image Rear 64 5320.0 98.35% 0.286 16.5 802.11a 6 Mbps OFF Dist. (mm) Test Position Ch #. Freq. (MHz) Duty Cycle Area Scan Max. SAR (W/kg) Power 802.11a 6 Mbps OFF Dist. (mm) Rear 48 5240.0 98.35% 0.205 16.5 Freq. (MHz) Power Max. SAR (W/kg) Inc.5 16.5 16.5 16.5 802.11a 6 Mbps Power Test Position <td>Back-off (mm) (mm)</td> <td>Back-off (mm) Left Touch 58 5290.0 92.74% 0.360 11.00 10.8 Meas. Meas. 802.11ac VHT80 ON Left Touch 58 5290.0 92.74% 0.360 11.0 10.8 (Meas.) 802.11ac VHT80 ON Left Touch 58 5290.0 92.74% 0.445 11.0 10.8 (Meas.) 802.11a ON Right Touch 58 5290.0 92.74% 0.433 11.0 10.8 (Meas.) 802.11a OFF 15 Rear 64 5320.0 98.35% 0.317 16.5 16.4 0.155 802.11a OFF 15 Rear 64 5320.0 98.35% 0.286 16.5 16.4 0.155 802.11a OFF Back-off Dist. Test Position Ch #. Freq. Max. SAR Max. SAR</td> <td>Back-oit (min) (min) <t< td=""></t<></td>	Back-off (mm) (mm)	Back-off (mm) Left Touch 58 5290.0 92.74% 0.360 11.00 10.8 Meas. Meas. 802.11ac VHT80 ON Left Touch 58 5290.0 92.74% 0.360 11.0 10.8 (Meas.) 802.11ac VHT80 ON Left Touch 58 5290.0 92.74% 0.445 11.0 10.8 (Meas.) 802.11a ON Right Touch 58 5290.0 92.74% 0.433 11.0 10.8 (Meas.) 802.11a OFF 15 Rear 64 5320.0 98.35% 0.317 16.5 16.4 0.155 802.11a OFF 15 Rear 64 5320.0 98.35% 0.286 16.5 16.4 0.155 802.11a OFF Back-off Dist. Test Position Ch #. Freq. Max. SAR Max. SAR	Back-oit (min) (min) <t< td=""></t<>

Note(s):

1. For Head and Body-worn RF Exposure Conditions, The Highest Reported 1-g SAR for U-NII 2A mode is < 1.2 W/kg, therefore SAR testing is not required for U-NII 1 mode.

2. For Product Specific 10g RF Exposure Condition, The Highest Reported 10-g SAR for U-NII 2A mode is < 3.0 W/kg, therefor SAR testing is not required for U-NII 1 mode.

3. Wi-Fi Direct is supported in U-NII Band 1, therefore it was evaluated separately.

U-NII 2C

RF		Power	Dist.			Freq.		Area Scan	Power	(dBm)	1-g SAF	R (W/kg)	Plot								
Exposure Conditions	Exposure Mode Back		(mm)	Test Position	Ch #.	(MHz)	Duty Cycle	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	No.								
				Left Touch	122	5610.0	72.27%	0.548	11.0	10.5											
Head	802.11ac	ON	0	Left Tilt	122	5610.0	72.27%	0.866	11.0	10.5	0.357	0.554									
Heau	VHT80	ON	0	Right Touch	122	5610.0	72.27%	0.556	11.0	10.5											
				Right Tilt	122	5610.0	72.27%	1.080	11.0	10.5	0.375	0.582	26								
Body-worn	802.11a	11a OFF		15	Rear	100	5500.0	98.35%	0.441	16.5	16.0	0.190	0.217	27							
Bouy-worn	6 Mbps	OFF	15	Front	100	5500.0	98.35%	0.320	16.5	16.0											
RF		Power Dist.				Freq.		Area Scan	Power	(dBm)	10-g SAR (W/kg)		Plot								
Exposure Conditions	Mode	Back-off									(mm)	Test Position	Ch #.	(MHz)	Duty Cycle	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	No.
				Rear	100	5500.0	98.35%	6.700	16.5	16.0	0.543	0.619	28								
Product	802.11a	OFF	0	Front	100	5500.0	98.35%	4.210	16.5	16.0											
Specific 10g	6 Mbps	UFF	0	Edge 1	100	5500.0	98.35%	3.630	16.5	16.0											
				Edge 4	100	5500.0	98.35%	0.147	16.5	16.0											

U-NII 3

RF		Power	Dist.			Freq.		Area Scan	Power	(dBm)	1-g SAI	R (W/kg)	Plot
Exposure Mode Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Duty Cycle	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	No.
				Left Touch	155	5775	92.74%	0.783	11.0	10.5			
Head	802.11ac	ON	0	Left Tilt	155	5775	92.74%	0.912	11.0	10.5	0.429	0.519	
пеац	VHT80	30 UN	0	Right Touch	155	5775	92.74%	0.735	11.0	10.5			
				Right Tilt	155	5775	92.74%	1.180	11.0	10.5	0.461	0.558	29
Body-worn	802.11a	OFF	15	Rear	165	5825	98.35%	0.505	16.5	15.1	0.207	0.291	30
Bouy-wom	6 Mbps	OFF	15	Front	165	5825	98.35%	0.331	16.5	15.1			
				Rear	165	5825	98.35%	0.662	16.5	15.1	0.293	0.411	
Hotspot &	802.11a	OFF	10	Front	165	5825	98.35%	0.529	16.5	15.1			
Wi-Fi Direct	6 Mbps	UFF		Edge 1	165	5825	98.35%	1.260	16.5	15.1	0.535	0.751	31
				Edge 4	165	5825	98.35%	0.086	16.5	15.1			

10.9. Bluetooth

RF Exposure Mod Conditions		Power	Dist.			Freq.		Power	(dBm)	1-g SAF	R (W/kg)	Plot
	Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Duty Cycle	Tune-up limit	Meas.	Meas.	Scaled	No.
				Left Touch	39	2441	76.50%	10.0	8.3	0.067	0.129	
Head	GFSK	OFF	0	Left Tilt	39	2441	76.50%	10.0	8.3	0.064	0.123	
neau	DH5		0	Right Touch	39	2441	76.50%	10.0	8.3	0.121	0.232	32
				Right Tilt	39	2441	76.50%	10.0	8.3	0.118	0.227	

Note(s):

Body-worn, BT Tethering Mode and Product Specific 10g qualify for SAR Test Exclusion. Refer to §10.10.

Page 47 of 51

10.10. Standalone SAR Test Exclusion Considerations & Estimated SAR

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)}$] \leq 3.0, for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

- (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[√f_(GHz)/x] W/kg for test separation distances ≤ 50 mm;
 - where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Body-worn and BT Tethering:

RF Air interface	RF Exposure	Frequency	Max. tune-up to	olerance Power	Min. test	SAR test exclusion	Estimated
	Conditions	(GHz)	(dBm)	(mW)	separation distance (mm)	Result*	1-g SAR (W/kg)
Bluetooth	Body-worn	2.480	10.0	10	15	1.0	0.140
Bluetooth	Tethering	2.480	10.0	10	10	1.6	0.210

Conclusion:

*: The computed value is ≤ 3; therefore, this qualifies for Standalone SAR test exclusion.

Page 48 of 51

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)
850	GSM 850	Hotspot	Rear	No	0.723
650	WCDMA Band V	Hotspot	Rear	No	0.496
1900	GSM 1900	Hotspot	Rear	No	0.089
1900	WCDMA Band II	Hotspot	Rear	No	0.187
2400	Wi-Fi 802.11b	Head	Right Tilt	No	0.451
2400	ВТ	Head	Right Touch	No	0.121
2600	LTE Band 41	Hotspot	Rear	No	0.435
5200	Wi-Fi 802.11a	Wi-Fi Direct	Edge 1	No	0.133
5300	Wi-Fi 802.11ac	Head	Right Tilt	No	0.266
5500	Wi-Fi 802.11ac	Head	Right Tilt	No	0.375
5800	Wi-Fi 802.11ac	Hotspot & Wi-Fi Direct	Edge 1	No	0.535

Note(s):

Repeated Measurement is not required since measured SAR is < 0.8 W/kg.

Product Specific 10g SAR:

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)
5300	Wi-Fi 802.11a	Product Specific 10g	Rear	No	0.648
5500	Wi-Fi 802.11a	Product Specific 10g	Rear	No	0.543

Note(s):

Repeated Measurement is not required since measured SAR is < 2.0 W/kg.

Simultaneous Transmission Conditions 12.

Simultaneous transmission SAR test exclusion considerations

KDB 447498 D01 General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Notes
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	
2	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A	
3	GSM voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	^Bluetooth Tethering is considered
4	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	
5	UMTS + 5 GHz WI-FI	Yes	Yes	Yes	
6	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	^Bluetooth Tethering is considered
7	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	
8	LTE + 5 GHz WI-FI	Yes	Yes	Yes	
9	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	*Bluetooth Tethering is considered
10	GPRS/EDGE + 2.4 GHz WI-FI	N/A	N/A	Yes	
11	GPRS/EDGE + 5 GHz WI-FI	N/A	N/A	Yes	
12	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	N/A	Yes^	

12.1. Sum of the SAR for WWAN & Wi-Fi & BT

RF		St	andalone	SAR (W/kg	3)	∑ 1-g SAR (W/kg)			
Exposure	Test Position	WWAN	DTS	U-NII	BT	WWAN+DTS	WWAN+ U-NII	WWAN+BT	
conditions		1	2	3		+	+	+	
	Left Touch	0.239	0.455	0.554	0.129	0.694	0.793	0.368	
Head	Left Tilt	0.222	0.455	0.554	0.123	0.677	0.776	0.345	
neau	Right Touch	0.435	0.455	0.554	0.232	0.890	0.989	0.667	
	Right Tilt	0.136	0.474	0.582	0.227	0.610	0.718	0.363	
Body-w orn	Rear	0.390	0.207	0.291	0.140	0.597	0.681	0.530	
Body-wonn	Front	0.294	0.207	0.291	0.140	0.501	0.585	0.434	
	Rear	1.045	0.426	0.411	0.210	1.471	1.456	1.255	
Hotspot, Wi-	Front	0.529	0.350	0.411	0.210	0.879	0.940	0.739	
Fi Direct &	Edge 1		0.350	0.751	0.210				
BT	Edge 2	0.423							
Tethering	Edge 3	0.390							
	Edge 4	0.493	0.350	0.411	0.210	0.843	0.904	0.703	

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the sum of the 1-g SAR is < 1.6 W/kg.

Appendixes

Refer to separated files for the following appendixes.

12440922-S1V1 Appendix A: SAR Setup Photos

12440922-S1V1 Appendix B: SAR System Check Plots

12440922-S1V1 Appendix C: Highest SAR Test Plots

12440922-S1V1 Appendix D: SAR Liquid Tissue Ingredients

- 12440922-S1V1 Appendix E: SAR Probe Calibration Certificates
- 12440922-S1V1 Appendix F: SAR Dipole Calibration Certificates

END OF REPORT