

CERTIFICATION TEST REPORT

Report Number. : 12440922-E4V1

- Applicant : Samsung Electronics Co., Ltd. 129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16677, Korea
 - Models : SM-A750F/DS and SM-A750F
 - FCC ID : A3LSMA750F
- **EUT Description :** GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac and ANT+
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C

Date Of Issue: September 06, 2018

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
V1	9/6/2018	Initial Issue	

Page 2 of 85

TABLE OF CONTENTS

	T REVISION HISTORY	2
TABLE	OF CONTENTS	3
1. AT	TESTATION OF TEST RESULTS	5
2. INT	RODUCTION OF TEST DATA REUSE	6
2.1.	INTRODUCTION	6
2.1.	DEVICES DIFFERENCES	6
2.2. 2.2. 2.2. 2.2.	2. BANDEDGE (HIGH CHANNEL)	7 7
2.3.	REFERENCE DETAIL	10
3. TES	ST METHODOLOGY1	1
4. FA	CILITIES AND ACCREDITATION1	1
5. CA	LIBRATION AND UNCERTAINTY1	2
5.1.	MEASURING INSTRUMENT CALIBRATION	12
5.2.	SAMPLE CALCULATION	12
5.3.	MEASUREMENT UNCERTAINTY	12
6. EQ	UIPMENT UNDER TEST1	3
6.1.	EUT DESCRIPTION	13
6.2.	MAXIMUM OUTPUT POWER	13
6.3.	DESCRIPTION OF AVAILABLE ANTENNAS	
		13
6.4.	SOFTWARE AND FIRMWARE	
6.4. 6.5.		13
••••	SOFTWARE AND FIRMWARE	13 13
6.5. 6.6.	SOFTWARE AND FIRMWARE1 WORST-CASE CONFIGURATION AND MODE1	13 13 14
6.5. 6.6. 7. ME	SOFTWARE AND FIRMWARE	13 13 14 17
6.5. 6.6. 7. ME 8. TES	SOFTWARE AND FIRMWARE	13 13 14 17
6.5. 6.6. 7. ME 8. TES	SOFTWARE AND FIRMWARE	13 13 14 17 18 20
6.5. 6.6. 7. ME 8. TES 9. AN 9.1. 9.2.	SOFTWARE AND FIRMWARE. 1 WORST-CASE CONFIGURATION AND MODE. 1 DESCRIPTION OF TEST SETUP. 1 ASUREMENT METHOD. 1 ST AND MEASUREMENT EQUIPMENT 1 TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 99% BANDWIDTH 2	13 13 14 17 18 20 20 22
6.5. 6.6. 7. ME 8. TES 9. AN 9.1. 9.2. 9.2.	SOFTWARE AND FIRMWARE 1 WORST-CASE CONFIGURATION AND MODE 1 DESCRIPTION OF TEST SETUP 1 ASUREMENT METHOD 1 ST AND MEASUREMENT EQUIPMENT 1 TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 99% BANDWIDTH 2 1 802.11b MODE	13 13 14 17 18 20 20 22 23
6.5. 6.6. 7. ME 8. TES 9. AN 9.1. 9.2. 9.2. 9.2.	SOFTWARE AND FIRMWARE 1 WORST-CASE CONFIGURATION AND MODE 1 DESCRIPTION OF TEST SETUP 1 ASUREMENT METHOD 1 ST AND MEASUREMENT EQUIPMENT 1 TENNA PORT TEST RESULTS 2 ON TIME AND DUTY CYCLE 2 99% BANDWIDTH 2 1 802.11b MODE 2	13 13 14 17 18 20 22 23 24

0010.7.01		
9.3.1.	802.11b MODE	27
9.3.2.	802.11g MODE	
9.3.3.	802.11n HT20 MODE	29
9.4 OI	ITPUT POWER	30
9.4.1.	802.11b MODE	
9.4.2.	802.11g MODE	
9.4.3.	802.11n HT20 MODE	
95 PC	WER SPECTRAL DENSITY	.34
9.5.1.	802.11b MODE	
9.5.2.	802.11g MODE	
9.5.3.	802.11n HT20 MODE	
96 CC	NDUCTED SPURIOUS EMISSIONS	38
9.6.1.	802.11b MODE	
9.6.2.	802.11g MODE	
9.6.3.	802.11n HT20 MODE	
	TED TEST RESULTS	40
-		
	FRANSMITTER ABOVE 1 GHz	
	TX ABOVE 1 GHz 802.11b MODE IN THE 2.4 GHz BAND	
	TX ABOVE 1 GHz 802.11g MODE IN THE 2.4 GHz BAND	
10.1.3.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 2.4 GHz BAND	63
10.2.	Norst Case Below 30 MHz	73
10.3.	Vorst Case Below 1 GHz	75
10.4.	Norst Case 18-26 GHz	77
/0. /.		
11. AC PO	WER LINE CONDUCTED EMISSIONS	79
	WER LINE CONDUCTED EMISSIONS	
12. SETUP		82

Page 4 of 85

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Samsung Electronics Co., Ltd. 129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16677, Kor	ea
EUT DESCRIPTION:	GSM/WCDMA/LTE Phone with BT, I ANT+	DTS/UNII a/b/g/n/ac and
MODELS:	SM-A750F/DS and SM-A750F	
SERIAL NUMBER:	Conducted: R38K70KQF9N; R38K70 Radiated: R38K70KQFNY (Original) Conducted: R38K70MFHSY (Spot C Radiated: R38K70MFLJR, R38K70M	heck)
DATE TESTED:	August 10, 2018 – August 21, 2018 (C August 27-30, 2018 (Spot Check)	Driginal)
	APPLICABLE STANDARDS	
ST	ANDARD	TEST RESULTS
		O II

CFR 47 Part 15 Subpart C

Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

Dan Coronia CONSUMER TECHNOLOGY DIVISION Operations Leader UL Verification Services Inc. Reviewed By:

Steven Tran CONSUMER TECHNOLOGY DIVISION Project Engineer UL Verification Services Inc.

Page 5 of 85

2. INTRODUCTION OF TEST DATA REUSE

2.1. INTRODUCTION

According to the manufacturer, the WLAN, Bluetooth, ANT+ and WWAN hardware of A3LSMA750F are identical to A3LSMA750GN. In addition A3LSMA750F digital circuit is identical to A3LSMA750GN. Therefore the following report/data of A3LSMA750F may be represented from A3LSMA750GN along with the spot check verification data.

- WLAN
- Bluetooth
- BLE
- ANT+
- WWAN

2.1. DEVICES DIFFERENCES

Difference between A3LSMA750F and A3LSMA750GN: Samsung Electronics Co., Ltd. hereby declares that between A3LSMA750F and A3LSMA750GN:

Hardware:

- AP/CP/TRCV/PMIC are same.
- Deleted NFC circuit and NFC antennas.
- BT/WIFI/FM/GPS parts are exactly same.
- PCB layout is exactly same.
- Mechanic parts are exactly same.

Software:

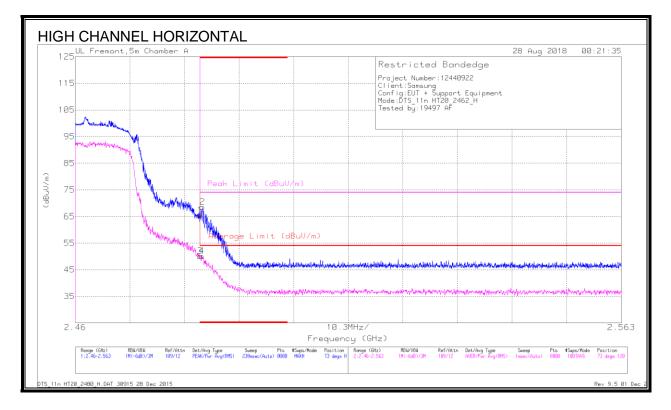
- SW was updated to reflect the HW changes
- PROTOCOL PART is same.
- All applications of MMS, SATK/USATK, SMS, SS, SUPL, DM, VOLTE feature is same.

In addition, the A3LSMA750F does not support NFC, WCDMA Band 4, LTE Bands 2, 4, 12, 13, 17, and 66.

Therefore the WLAN, BLE, Bluetooth, ANT+, WWAN report and data of A3LSMA750GN may represent for A3LSMA750F.

2.2. SPOT CHECK VERIFICATION RESULTS SUMMARY

Spot check verification has been done on device A3LSMA750F for radiated harmonic spurious and radiated band-edge. The data from the application has been verified through appropriate spot checks to demonstrate compliance for this device as shown in the summary below.

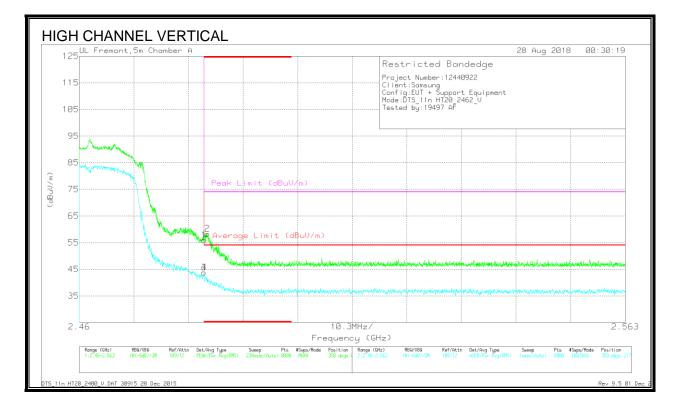

	SM-A750F SPOT CHECK RESULTS									
Taskaslasu	Mada	Test	Channel	Measured	SM-A750GN/DS		SM-A750F		Delta (dB)	
Technology	nology Mode Item		Channel	Frequency	Peak	Ave	Peak	Ave	Peak	Ave
DTS	11n HT20	RBE	11	2484MHz	70.33	51.99	68.5	50.37	-1.83	-1.62
210	11b	RSE	1	4824MHz	52.71	50.82	44.25	39.38	-8.46	-11.44

Comparison of two models, higher deviation is within 3dB range and all test are under FCC Technical Limits.

Page 6 of 85

2.2.1. SPOT CHECK DATA

2.2.2. BANDEDGE (HIGH CHANNEL)



Trace Markers

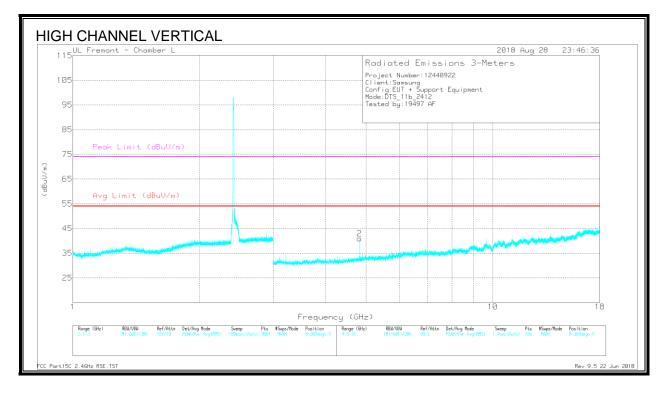
Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl/Fitr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	56.01	Pk	32.3	-22.9	0	65.41	-	-	74	-8.59	73	120	н
2	* 2.484	59.1	Pk	32.3	-22.9	0	68.5	-		74	-5.5	73	120	н
3	* 2.484	40.73	RMS	32.3	-22.9	.24	50.37	54	-3.63	-	-	73	120	н
4	* 2.484	40.72	RMS	32.3	-22.9	.24	50.36	54	-3.64	-	-	73	120	н

* - indicates frequency in CFR47 Pt 15 Restricted Band Pk - Peak detector RMS - RMS detection

Page 7 of 85

Trace Markers

Marker	Frequency	Meter	Det	AF T862 (dB/m)	Amp/Cbl/Fitr/Pad (dB)	DC Corr (dB)	Corrected	Average Limit (dBuV/m)	Margin	Peak Limit (dBuV/m)	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading					Reading		(dB)		(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)							
1	* 2.484	46.52	Pk	32.3	-22.9	0	55.92	-	-	74	-18.08	350	217	V
2	* 2.484	48.91	Pk	32.3	-22.9	0	58.31	-	-	74	-15.69	350	217	V
3	* 2.484	34.1	RMS	32.3	-22.9	.24	43.74	54	-10.26	-	-	350	217	V
4	* 2.484	34.11	RMS	32.3	-22.9	.24	43.75	54	-10.25	-	-	350	217	V


* - indicates frequency in CFR47 Pt 15 Restricted Band Pk - Peak detector RMS - RMS detection

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 8 of 85

Page 9 of 85

Radiated Emissions

2.3.

Frequency	Meter	Det	AF EMC4294	Amp/Cbl/Fltr/P	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
(GHz)	Reading		(dB/m)	ad (dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
	(dBuV)				(dBuV/m)							
* 4.824	39.28	PK2	34.2	-29	44.48	-	-	74	-29.52	322	129	н
* 4.824	33.55	MAv1	34.2	-29	38.75	54	-15.25	-	-	322	129	Н
* 4.824	39.05	PK2	34.2	-29	44.25	-	-	74	-29.75	324	329	V
* 4.824	34.18	MAv1	34.2	-29	39.38	54	-14.62	-	-	324	329	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak MAv1 - KDB558074 Option 1 Maximum RMS Average

REFERENCE DETAIL

Equipment Class	Reference FCC ID	Report Title/Section
DTS (WLAN)	A3LSMA750GN	12440598-E4V2 FCC Report DTS WLAN

Page 10 of 85

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, KDB 558074 D01 v4, ANSI C63.10-2013.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd.
☑ Chamber A (IC:2324B-1)	Chamber D (IC:22541-1)	□ Chamber I (IC: 2324A-5)
□ Chamber B (IC:2324B-2)	□ Chamber E (IC:22541-2)	□ Chamber J (IC: 2324A-6)
□ Chamber C (IC:2324B-3)	□ Chamber F (IC:22541-3)	□ Chamber K (IC: 2324A-1)
	□ Chamber G (IC:22541-4)	⊠ Chamber L (IC: 2324A-3)
	□ Chamber H (IC:22541-5)	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

Page 11 of 85

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	3.15 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.32 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.45 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.24 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 12 of 85

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The EUT is a GSM/WCDMA/LTE phone with BT, DTS/UNII a/b/g/n/ac, ANT+ and NFC.

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

2.4GHz BAND

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
1Tx			
2412 - 2462	802.11b	18.39	69.02
2412 - 2462	802.11g	16.35	43.15
2412 - 2462	802.11n HT20	16.35	43.15

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an internal antenna, with a maximum gain of-1.71 dBi.

6.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was A750GN.001

6.5. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle and high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y and Z it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20mode: MCS0

Page 13 of 85

6.6. DESCRIPTION OF TEST SETUP

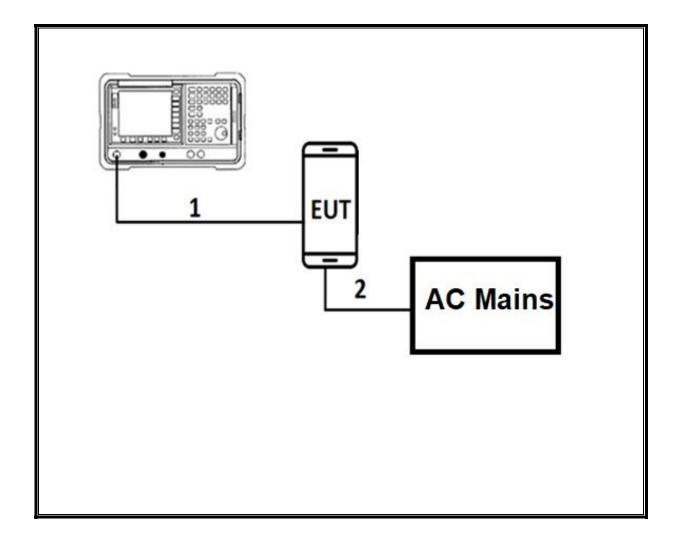
SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
AC Adapter	Samsung	EP-TA50EWE	DW3J719AS/A-E	N/A		
Earphone	Samsung	N/A	N/A	N/A		

I/O CABLES (CONDUCTED TEST)

	I/O Cable List							
Cable	Cable Port # of identical Connector Cable Type Cable Remarks							
No		ports	Туре		Length (m)			
1	Antenna	1	RF	Shielded	0.2	To spectrum Analyzer		
2	USB	1	USB	Un-shielded	1	EUT to AC Mains		

I/O CABLES (RADIATED AND CONDUCTED EMISSIONS)

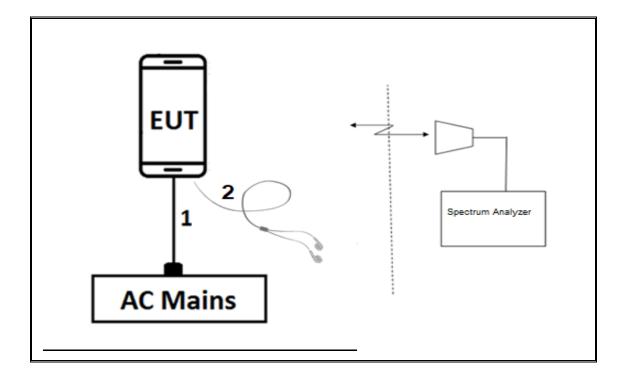

	I/O Cable List							
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	USB	1	USB	Shielded	1	N/A		
2	earphone	1	3.5mm	Un-shielded	1	N/A		

TEST SETUP

The EUT is stand alone. Test software exercised the radio card.

Page 14 of 85

CONDCUTED TEST SETUP DIAGRAM



TEST SETUP

For conducted tests: the EUT was stand alone. The test software exercises the radio.

Page 15 of 85

RADIATED AND AC LINE CONDUCTED EMISSIONS SETUP DIAGRAM

TEST SETUP

For radiated tests: EUT is Stand alone. The test software exercises the radio.

Page 16 of 85

7. MEASUREMENT METHOD

On Time and Duty Cycle: KDB 558074 D01 v04, Section 6.

<u>6 dB BW</u>: KDB 558074 D01 v04, Section 8.1.

<u>99% BW</u>: ANSI C63.10-2013, Section 6.9.3.

Output Power: KDB 558074 D01 v04, Section 9.2.3.2.

Power Spectral Density: KDB 558074 D01 v04, Section 10.3.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v04, Section 11.1 (b).

Out-of-band emissions in restricted bands: KDB 558074 D01 v04, Section 12.1.

Band-edge: KDB 558074 D01 v04, Section 12.1.

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Page 17 of 85

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

·	TEST EQUIPMENT LIST (ORIGINAL)							
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal			
Amplifier, 10KHz to 1GHz, 32dB	Agilent (Keysight) Technologies	8447D	T10	02/14/2019	02/14/2018			
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences Corp.	JB3	T407	05/10/2019	05/10/2018			
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T862	05/24/2019	05/24/2018			
RF Amplifier, 1-18GHz	MITEQ	AFS42- 00101800-25-S- 42	17146	08/01/2019	08/01/2018			
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T346	04/03/2019	04/03/2018			
RF Amplifier, 1-18GHz	MITEQ	AFS42- 00101800-25-S- 42	T931	02/24/2019	02/24/2018			
Power Meter, P-series single channel	Agilent (Keysight) Technologies	N1911A	T1269	04/05/2019	04/05/2018			
Power Sensor, P-series, 50MHz to 18GHz, Wideband	Agilent (Keysight) Technologies	N1921A	T1225	04/10/2019	04/10/2018			
EMI Reciever	Rohde & Schwarz	ESR	T1436	02/21/2019	02/21/2018			
L.I.S.N.	FCC INC.	FCC LISN 50/250	T1310	06/15/2019	06/15/2018			
L.I.S.N.	FCC INC.	FCC LISN 50/250	T24	03/06/2019	03/06/2018			
Antenna, Active Loop 9kHz- 30MHz	Com-Power Corp.	AL-130R	T1866	10/10/2018	10/10/2017			
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179522	05/11/2019	05/11/2019			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T200	11/18/2018	11/18/2017			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T1454	01/08/2019	01/08/2018			
18 - 26.5 GHz Horn Antenna	Seavey Division	MWH-1826/B	T89	01/18/2019	01/18/2018			
Pre-Amp 1-26.5 GHz	Agilent	8449B	T404	03/09/2019	023/09/2018			

Test Software List					
Description	Manufacturer	Model	Version		
Radiated Software	UL	UL EMC	Rev 9.5, Jun 22, 2018		
Antenna Port Software	UL	UL RF	Ver 8.5, Jul 12, 2018		

TEST EQUIPMENT LIST (SPOT CHECK)							
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal		
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T345	04/25/2019	04/25/2018		
RF Amplifier, 1-18GHz, 35dB	MITEQ Inc	AMF-4D-01000800- 30-29P	T1573	06/12/2019	06/12/2018		
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T1466	04/16/2019	04/16/2018		
Filter, LPF 5.0GHz	MICRO-TRONICS	LPS17541	T481	06/12/2019	06/12/2018		
Filter, HPF 6.0HPF	MICRO-TRONICS	HPS17542	T484	06/12/2019	06/12/2018		
Filter, HPF 3.0GHz	MICRO-TRONICS	HPM17543	T486	06/12/2019	06/12/2018		
Thermometer - Digital	Control Company	14-650-118	PRE0177861	02/26/2019	02/26/2018		

Test Software List				
Description Manufacturer Model Version				
Radiated Software	UL	UL EMC	Ver 9.5, June 22, 2018	

Page 19 of 85

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
802.11b 1TX	8.610	8.640	0.997	99.65%	0.00	0.010
802.11g 1TX	1.425	1.500	0.950	95.00%	0.22	0.702
802.11n HT20 1TX	1.335	1.410	0.947	94.68%	0.24	0.749

Page 20 of 85

REPORT NO: 12440922-E4V1 FCC ID: A3LSMA750F

29 AM Aug 10, 3 :14 AM Aug 10, #Avg Type: RMS Frequ #Avg Type: RMS Freque PNO: Fast +++ Trig: Free Run #Atten: 40 dB PNO: Fast ---- Trig: Free Run #Atten: 40 dB DET P N DET P N Auto Tur Auto Tu (r3 8.640 m 0.33 dl ∆Mkr3 1.500 m -0.24 dl Ref Offset 10.16 dE Ref 30.16 dBm Ref Offset 10.16 di Ref 30.16 dBm Center Fre 2.437000000 GH 20 Center Fre 2.437000000 GH Start Fre Start Fre 2.437000 2.4370 10 G Stop Fre 2.437000000 GH Stop Fre 2.43700 00 G Center 2.437000000 GH Res BW 8 MHz enter 2.437000000 es BW 8 MHz CF Step 3.000000 MH Span 0 Hz Sweep 5.000 ms (1001 pts) CF Step 8.000000 MH Span 0 Hz Sweep 15.00 ms (1001 pts) #VBW 50 MHz #VBW 50 MHz 8.610 ms (Δ) 0.76 dB 2.685 ms 21.14 dBm 8.640 ms (Δ) 0.33 dB 1.425 ms (Δ) 1.910 ms 1.500 ms (Δ) 1 Δ2 2 F 3 Δ2 -0.31 dB 18.28 dBm -0.24 dB Δ2 F Δ2 t t (Δ) 1 t 1 t (Δ) Freq Offs Freq Offse 0⊦ 0⊦ Scale Typ Scale Typ DUTY CYCLE 802.11g 1TX MODE DUTY CYCLE 802.11b 1TX MODE RACE 1 2 TYPE WV DET P N Frequency #Avg Type: RMS PNO: Fast ---- Trig: Free Run #Atten: 40 dB Auto Tu ΔMkr3 1.410 m -0.34 d Ref Offset 10.16 dB Ref 30.16 dBm Center Fre 2.437000000 GH Start Fre 2.437000000 GH ч Stop Fre 2.437000000 GH CF Step enter 2.437000000 GHz es BW 8 MHz Span 0 Hz ep 5.000 ms (1001 pts) M 50 MH: 1.335 ms (Δ) -0.61 dB 1.400 ms 18.35 dBm 1.410 ms (Δ) -0.34 dB 1 Δ2 1 t (Δ) 2 F 1 t 3 Δ2 1 t (Δ) Freq Offse 0.1 Scale Type Lit DUTY CYCLE 802.11n HT20 1TX MODE

DUTY CYCLE PLOTS

Page 21 of 85

9.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

RESULTS


9.2.1. 802.11b MODE

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low 1	2412	12.7070
Mid 6	2437	13.3230
High 11	2462	12.5330


9.2.2. 802.11g MODE

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low 1	2412	17.2010
Mid 6	2437	16.5070
High 11	2462	16.5090

802.11n HT20 MODE

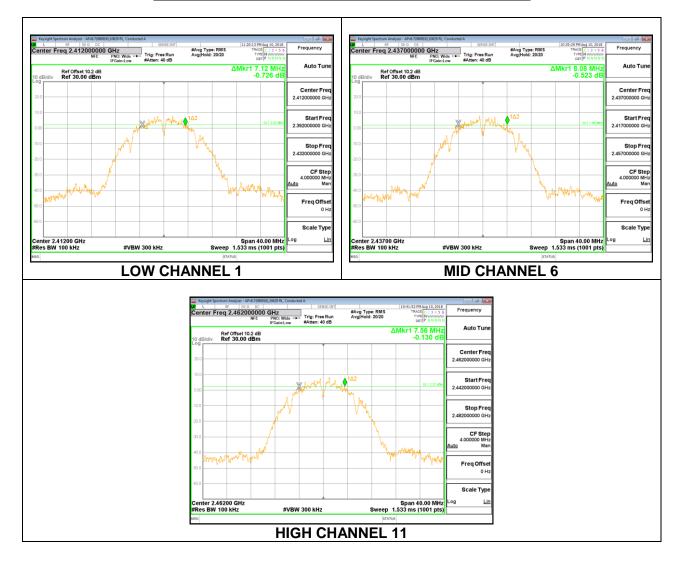
Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low 1	2412	17.4670
Mid 6	2437	17.5240
High 11	2462	17.6490

9.3. 6 dB BANDWIDTH

LIMITS

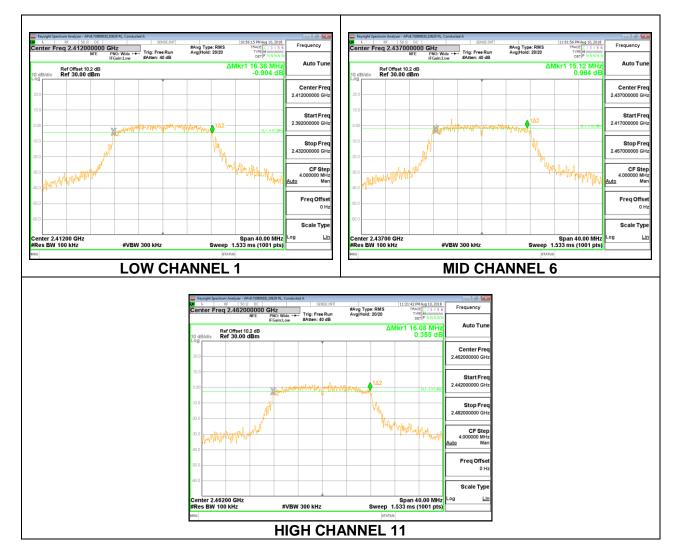
FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.


RESULTS

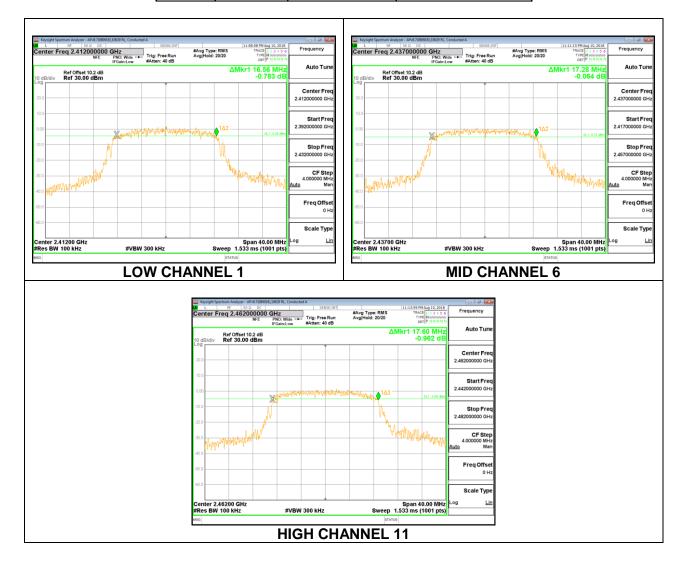
Page 26 of 85

9.3.1. 802.11b MODE


REPORT NO: 12440922-E4V1 FCC ID: A3LSMA750F

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	. ,		
	(MHz)	(MHz)	(MHz)
Low 1	2412	7.1200	0.5
Mid 6	2437	8.0800	0.5
High 11	2462	7.5600	0.5

9.3.2. 802.11g MODE


Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low 1	2412	16.3600	0.5
Mid 6	2437	15.1200	0.5
High 11	2462	16.0800	0.5

Page 28 of 85

9.3.3. 802.11n HT20 MODE

Channel Frequency		6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low 1	2412	16.5600	0.5
Mid 6	2437	17.2800	0.5
High 11	2462	17.6000	0.5

Page 29 of 85

9.4. OUTPUT POWER

<u>LIMITS</u>

FCC §15.247 (b) (3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The cable assembly insertion loss was entered as an offset in the power meter to allow for a gated average reading of power.

DIRECTIONAL ANTENNA GAIN

For 1 TX: There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

Page 30 of 85

9.4.1. 802.11b MODE

Limits

Channel	Frequency	Directional	FCC	ISED	ISED	Max
		Gain	Power	Power	EIRP	Power
			Limit	Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
Low 1	2412	-1.71	30.00	30	36	30.00
Mid 6	2437	-1.71	30.00	30	36	30.00
High 11	2462	-1.71	30.00	30	36	30.00

Results

Channel	Frequency		Total	Power	Margin
		Meas	Corr'd	Limit	
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low 1	2412	14.13	14.13	30.00	-15.87
Mid 6	2437	18.39	18.39	30.00	-11.61
High 11	2462	14.91	14.91	30.00	-15.09

Page 31 of 85

9.4.2. 802.11g MODE

Limits

Channel	Frequency	Directional	FCC	ISED	ISED	Max
		Gain	Power	Power	EIRP	Power
			Limit	Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
Low 1	2412	-1.71	30.00	30	36	30.00
Mid 6	2437	-1.71	30.00	30	36	30.00
High 11	2462	-1.71	30.00	30	36	30.00

Results

Channel	Frequency		Total	Power	Margin
		Meas	Corr'd	Limit	
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low 1	2412	16.35	16.35	30.00	-13.65
Mid 6	2437	15.97	15.97	30.00	-14.03
High 11	2462	16.22	16.22	30.00	-13.78

Page 32 of 85

9.4.3. 802.11n HT20 MODE

Limits

Channel	Frequency	Directional	FCC	ISED	ISED	Max
		Gain	Power	Power	EIRP	Power
			Limit	Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
Low 1	2412	-1.71	30.00	30	36	30.00
Mid 6	2437	-1.71	30.00	30	36	30.00
High 11	2462	-1.71	30.00	30	36	30.00

Results

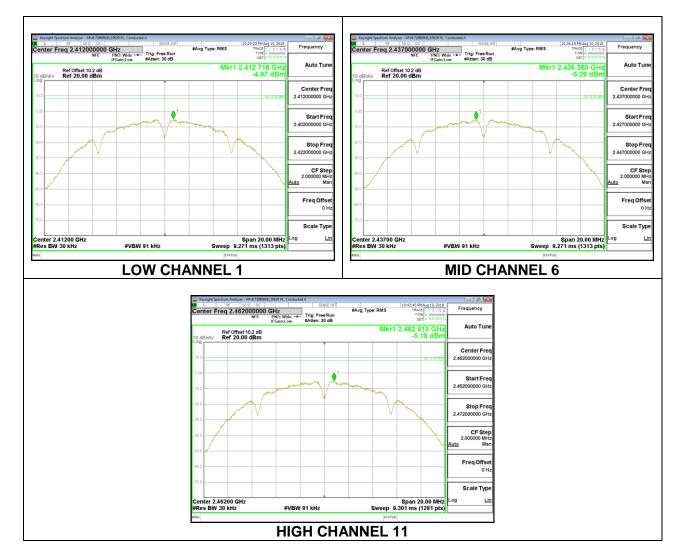
Channel	Frequency		Total	Power	Margin
		Meas	Corr'd	Limit	
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low 1	2412	15.99	15.99	30.00	-14.01
Mid 6	2437	16.35	16.35	30.00	-13.65
High 11	2462	14.15	14.15	30.00	-15.85

Page 33 of 85

9.5. POWER SPECTRAL DENSITY

LIMITS

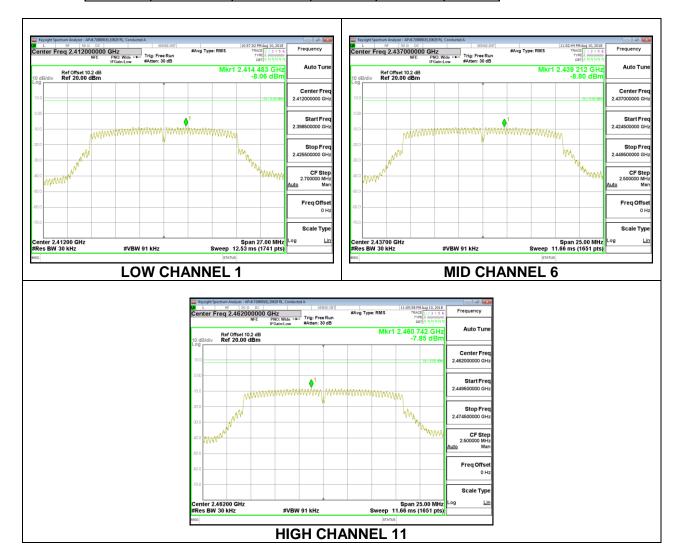
FCC §15.247 (e)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

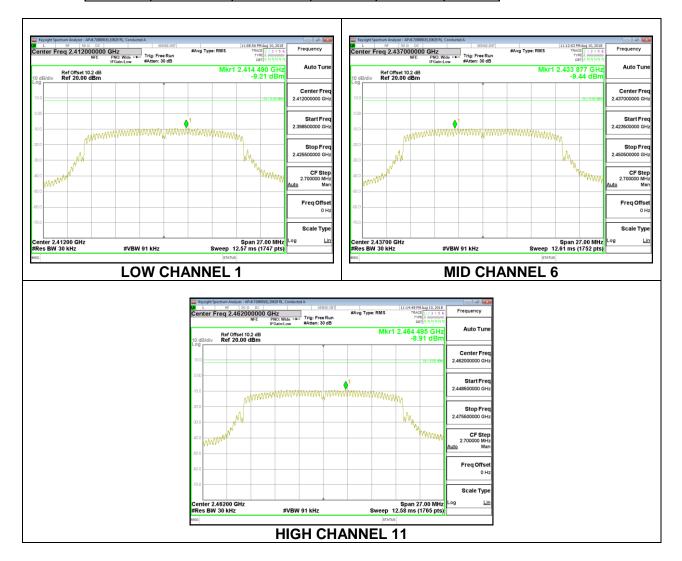
Page 34 of 85

9.5.1. 802.11b MODE


Duty C	ycle CF (dB)	0.00	Included in Calculations of Corr'd			Corr'd PSD
PSD Results						
Channel	Frequency		Total	Limit	Margin	
		Meas	Corr'd			
	(MHz)		PSD			
		(dBm/	(dBm/	(dBm/		
		30kHz)	30kHz)	3kHz)	(dB)	
Low 1	2412	-4.97	-4.97	8.0	-13.0	
Mid 6	2437	-5.26	-5.26	8.0	-13.3	
High 11	2462	-5.18	-5.18	8.0	-13.2	

Page 35 of 85

9.5.2. 802.11g MODE


Duty Cy	ycle CF (dB)	0.22	0.22 Included in Calculations of Corr'd PSD				
PSD Results							
Channel	Frequency		Total	Limit	Margin		
		Meas	Corr'd				
	(MHz)		PSD				
		(dBm/	(dBm/	(dBm/			
		30kHz)	30kHz)	3kHz)	(dB)		
Low 1	2412	-8.06	-7.84	8.0	-15.8		
Mid 6	2437	-8.80	-8.58	8.0	-16.6		
High 11	2462	-7.85	-7.63	8.0	-15.6		
	-						

Page 36 of 85

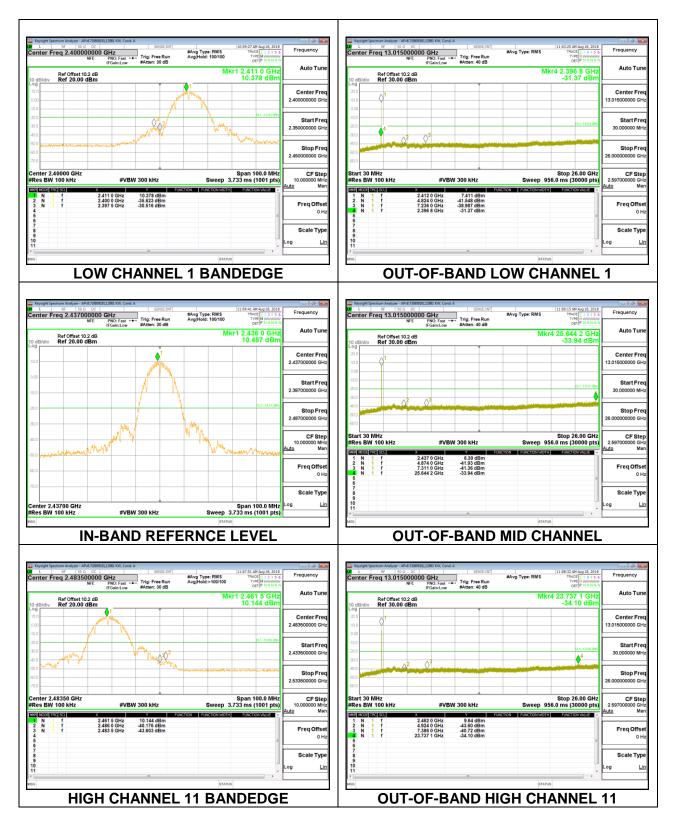
9.5.3. 802.11n HT20 MODE

Duty C	ycle CF (dB)	0.24	Included in Calculations of Corr'd PSD				
PSD Resu	PSD Results						
Channel	Frequency		Total	Limit	Margin		
		Meas	Corr'd				
	(MHz)		PSD				
		(dBm/	(dBm/	(dBm/			
		30kHz)	30kHz)	3kHz)	(dB)		
Low 1	2412	-9.21	-8.97	8.0	-17.0		
Mid 6	2437	-9.44	-9.20	8.0	-17.2		
High 11	2462	-8.91	-8.67	8.0	-16.7		

Page 37 of 85

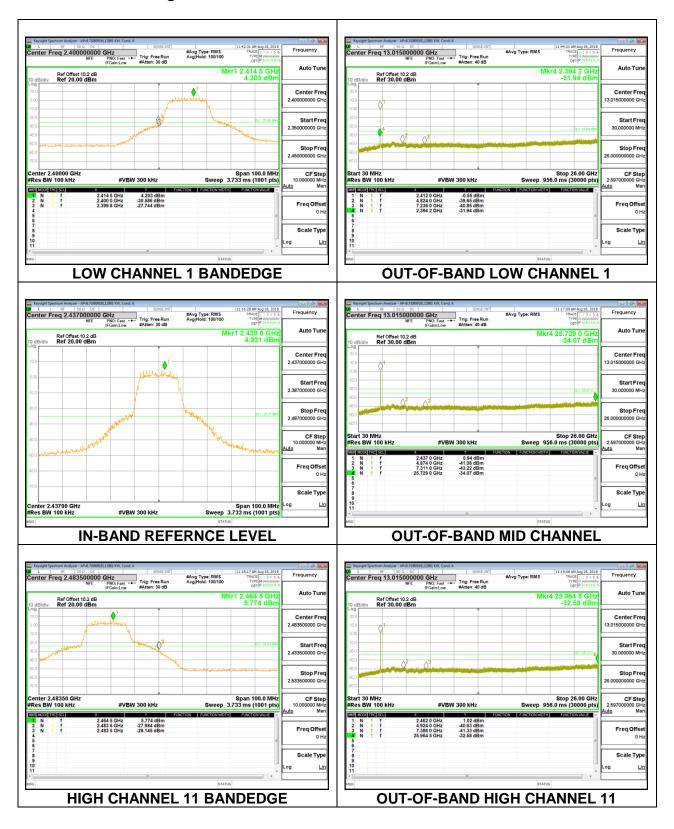
9.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

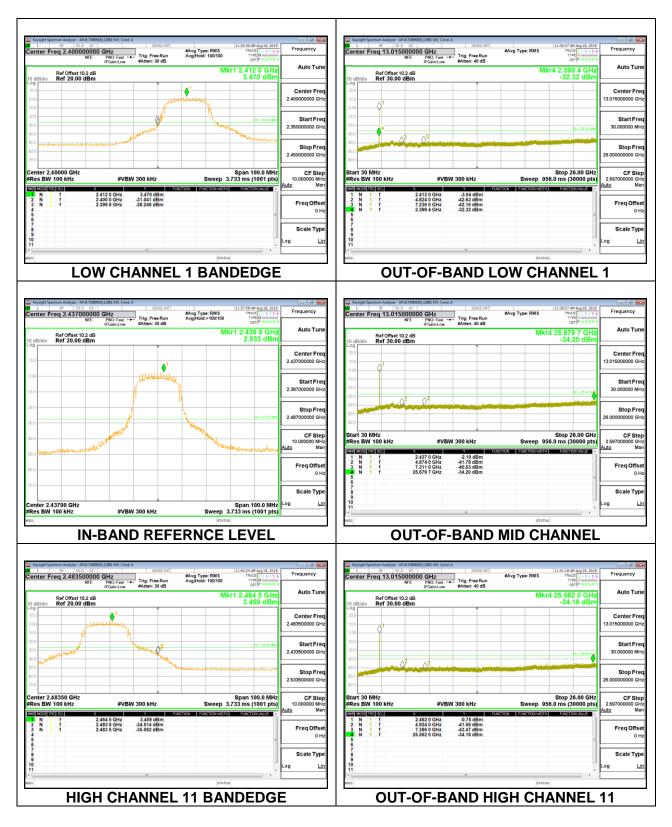

FCC §15.247 (d)

Output power was measured based on the use of average measurement, therefore the required attenuation is 30 dB.

RESULTS


Page 38 of 85

9.6.1. 802.11b MODE


Page 39 of 85

9.6.2. 802.11g MODE

Page 40 of 85

9.6.3. 802.11n HT20 MODE

Page 41 of 85

10. RADIATED TEST RESULTS

LIMITS

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

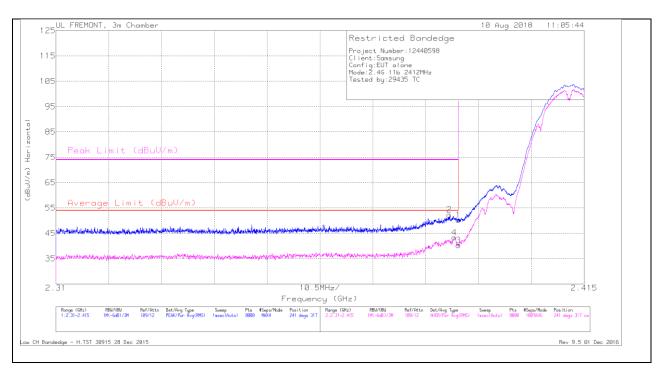
The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest output power was tested.

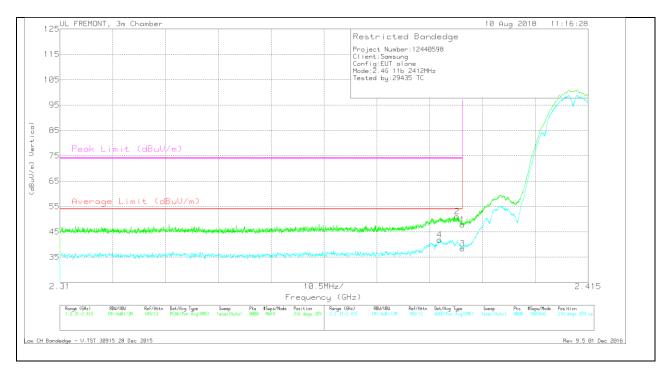

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 42 of 85

10.1. TRANSMITTER ABOVE 1 GHz

10.1.1. TX ABOVE 1 GHz 802.11b MODE IN THE 2.4 GHz BAND

BANDEDGE (LOW CHANNEL, CH 1)

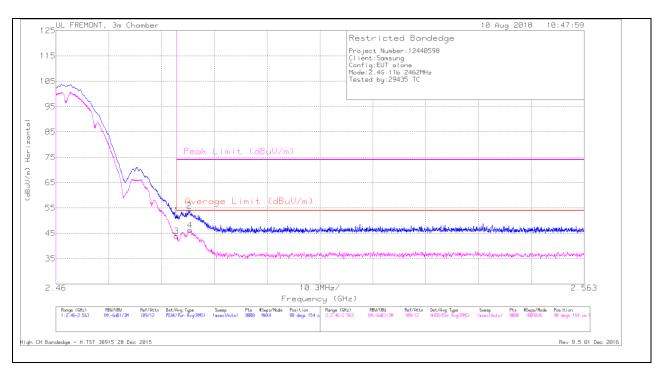

HORIZONTAL RESULT

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	2.388	41.52	Pk	32	-21.3	52.22	-	-	74	-21.78	241	317	н
4	2.389	32.7	RMS	32	-21.4	43.3	54	-10.7	-	-	241	317	н
1	2.39	39.72	Pk	32	-21.4	50.32	-	-	74	-23.68	241	317	н
3	2.39	29.68	RMS	32	-21.4	40.28	54	-13.72	-	-	241	317	н

Pk - Peak detector RMS - RMS detection

Page 43 of 85

VERTICAL RESULT


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl/Fitr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4	2.385	30.97	RMS	32.1	-21.2	41.87	54	-12.13	-	-	216	359	V
2	2.389	40.39	Pk	32	-21.4	50.99	-	-	74	-23.01	216	359	V
1	2.39	37.23	Pk	32	-21.4	47.83	-	-	74	-26.17	216	359	V
3	2.39	27.74	RMS	32	-21.4	38.34	54	-15.66	-	-	216	359	V

Pk - Peak detector RMS - RMS detection

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 44 of 85

BANDEDGE (HIGH CHANNEL, CH 11)

HORIZONTAL RESULT

Marker	Frequency (GHz)	Meter Reading	Det	AF T346 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)				(dBuV/m)							
1	2.484	41.5	Pk	32.3	-21.8	52	-	-	74	-22	90	154	н
3	2.484	33.37	RMS	32.3	-21.8	43.87	54	-10.13	-		90	154	Н
2	2.486	43.42	Pk	32.3	-21.8	53.92	-	-	74	-20.08	90	154	Н
4	2.486	35.68	RMS	32.3	-21.8	46.18	54	-7.82	-	-	90	154	Н

Pk - Peak detector RMS - RMS detection

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 45 of 85