

FCC BT REPORT Certification

Applicant Name: SAMSUNG Electronics Co., Ltd.

Address:

129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea Date of Issue: February 15, 2022

Test Site/Location: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA

Report No.: HCT-RF-2202-FC026 FCC ID: A3LSMA736B **APPLICANT:** SAMSUNG Electronics Co., Ltd. Model: SM-A736B/DS **Additional Model:** SM-A736B Mobile phone EUT Type: Max. RF Output Power: 16.450 dBm (44.16 mW) **Frequency Range:** 2 402 MHz - 2 480 MHz (Bluetooth) GFSK(Normal), π/4DQPSK and 8DPSK(EDR) Modulation type **FCC Classification:** FCC Part 15 Spread Spectrum Transmitter (DSS)

Part 15 subpart C 15.247

Engineering Statement:

FCC Rule Part(s):

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance

FCC ID: A3LSMA736B

REVIEWED BY

Report prepared by : Chang Hee Hwang Engineer of Telecommunication Testing Center

Report approved by : Jong Seok Lee Manager of Telecommunication Testing Center

This test results were applied only to the test methods required by the standard.

This laboratory is not accredited for the test results marked *. The above Test Report is the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA. (HCT Accreditation No.: KT197)

* The report shall not be reproduced except in full(only partly) without approval of the laboratory.

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
HCT-RF-2202-FC026	February 15, 2022	- First Approval Report

Table of Contents

REVIEWED BY	2
1. EUT DESCRIPTION	5
2. Requirements for Bluetooth transmitter(15.247)	ô
3. TEST METHODOLOGY	6
EUT CONFIGURATION	6
EUT EXERCISE	7
GENERAL TEST PROCEDURES	7
DESCRIPTION OF TEST MODES	7
4. INSTRUMENT CALIBRATION	8
5. FACILITIES AND ACCREDITATIONS	8
FACILITIES	8
EQUIPMENT	8
6. ANTENNA REQUIREMENTS	B
7. MEASUREMENT UNCERTAINTY	9
8. DESCRIPTION OF TESTS	D
9. SUMMARY OF TEST RESULTS	8
10. TEST RESULT	9
10.1 PEAK POWER	9
10.2 BAND EDGES	5
10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99 % BW)	2
10.4 NUMBER OF HOPPING FREQUENCY	D
10.5 TIME OF OCCUPANCY (DWELL TIME)	4
10.6 SPURIOUS EMISSIONS	D
10.6.1 CONDUCTED SPURIOUS EMISSIONS	0
10.6.2 RADIATED SPURIOUS EMISSIONS	8
10.6.3 RADIATED RESTRICTED BAND EDGES	8
10.7 POWERLINE CONDUCTED EMISSIONS8 ⁴	1
11. LIST OF TEST EQUIPMENT	5
12. ANNEX A_ TEST SETUP PHOTO	7

1. EUT DESCRIPTION

Model	SM-A736B/DS	
Additional Model	SM-A736B	
EUT Type	Mobile phone	
Power Supply	DC 3.86 V	
Frequency Range	2 402 MHz ~ 2 480 MHz	
Max. RF Output Power	16.450 dBm (44.16 mW)	
BT Operating Mode	Normal, EDR, AFH	
Modulation Type	GFSK(Normal), π/4DQPSK and 8DPSK(EDR)	
Modulation Technique	FHSS	
Number of Channels	79 Channels, Minimum 20 Channels(AFH)	
Date(s) of Tests	December 13, 2021~ February 15, 2022	
Serial number	Radiated: 5c887a1540287ece Conducted: 5c887a1537287ece	

2. Requirements for Bluetooth transmitter(15.247)

This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.

• 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.

• 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device (ANSI C63.10-2013, KDB 558074) is used in the measurement of the test device.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHz with 1.5 m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the analyzer was set to peak detector with a reduced VBW setting(RBW = 1 MHz, VBW = 1/T Hz, where T = Pulse width).

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of §15.203

7. MEASUREMENT UNCERTAINTY

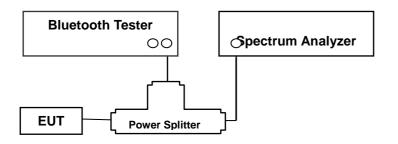
The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40 (Confidence level about 95 %, k=2)
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80 (Confidence level about 95 %, k=2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05 (Confidence level about 95 %, <i>k</i> =2)

8. DESCRIPTION OF TESTS


8.1. Conducted Maximum Peak Output Power

<u>Limit</u>

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 W. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 W.
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

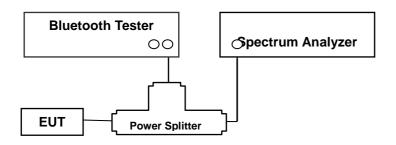
The Spectrum Analyzer is set to (7.8.5 in ANSI 63.10-2013 & Procedure 10(b)(6)(i) in KDB 558074 v05r02)

- 1) Span: approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- 2) RBW > the 20 dB bandwidth of the emission being measured
- 3) VBW ≥ RBW
- 4) Sweep = Auto
- 5) Detector = Peak
- 6) Trace = Max hold

Sample Calculation

Output Power = Spectrum Measured Power + Power Splitter loss + Cable loss(2 ea)

= 10 dBm + 6 dB + 1.5 dB = 17.5 dBm



8.2. Conducted Band Edge(Out of Band Emissions)

<u>Limit</u>

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

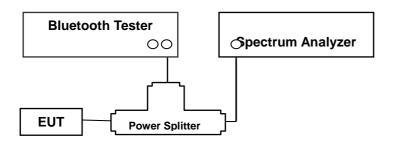
Test Configuration

Test Procedure

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (6.10.4 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) RBW: 100 kHz
- 6) VBW: 300 kHz
- 7) Detector: Peak
- 8) Trace: Max hold



8.3. Frequency Separation & 20 dB Bandwidth

<u>Limit</u>

According to §15.247(a)(1), Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

Test Procedure(Frequency Separation)

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.2 in ANSI 63.10-2013 & Procedure 10(b)(6)(iii) in KDB 558074 v05r02)

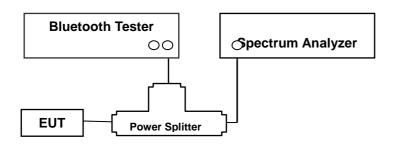
- 1) Span: Wide enough to capture the peaks of two adjacent channels
- 2) RBW: Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.
- 8) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Test Procedure (20 dB Bandwidth)

And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (6.9.2 in ANSI 63.10-2013)

- 1) Span: Set between two times and five times the OBW
- 2) RBW: 1 % to 5 % of the OBW.
- 3) VBW \ge 3 x RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.



8.4. Number of Hopping Frequencies

<u>Limit</u>

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

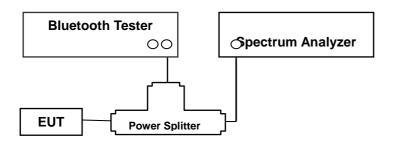
Test Configuration

Test Procedure

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (7.8.3 in ANSI 63.10-2013 & Procedure 10(b)(4) in KDB 558074 v05r02)

- 1) Span: the frequency band of operation
- 2) RBW: To identify clearly the individual channels, set the RBW to less than 30 % of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) Allow the trace to stabilize.



8.5. Time of Occupancy

<u>Limit</u>

According to \$15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

Test Procedure

This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.4 in ANSI 63.10-2013 & Procedure 10(b)(6)(iv) in KDB 558074 v05r02)

- 1) Span: Zero span, centered on a hopping channel
- RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3) Sweep = as necessary to capture the entire dwell time per hopping channel
- 4) Detector: Peak
- 5) Trace: Max hold

The marker-delta function was used to determine the dwell time.

Sample Calculation

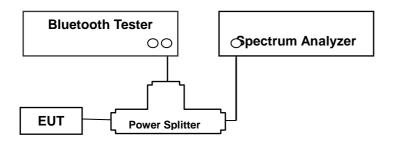
The following calculation process is not relevant to our measurement results. It is just an example.

- (1) Non-AFH Mode
- DH 5 (GFSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- (2) AFH Mode
- DH 5 (GFSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)

Note :

DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving.

Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.667 times of appearance. Each tx-time per appearance of DH5 is 2.890 ms.


Dwell time = Tx-time x 106.667 = 308.27 (ms)

8.6. Conducted Spurious Emissions

<u>Limit</u> Conducted > 20 dBc

Test Configuration

Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (7.8.8 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span: 30 MHz to 10 times the operating frequency in GHz.
- 2) RBW: 100 kHz
- 3) VBW: 300 kHz
- 4) Sweep: Coupled
- 5) Detector: Peak

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

This test is performed with hopping off.

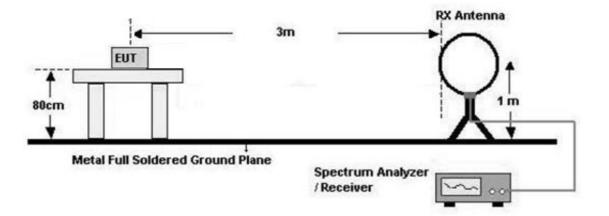
Factors for frequency

Freq(MHz)	Factor(dB)
30	6.14
100	6.22
200	6.30
300	6.40
400	6.46
500	6.49
600	6.49
700	6.53
800	6.55
900	6.59
1000	6.61
2000	6.70
2400	6.81
2500	6.90
3000	7.09
4000	7.25
5000	7.44
6000	7.51
7000	7.66
8000	7.78
9000	7.90
10000	8.04
11000	8.12
12000	8.28
13000	8.47
14000	8.41
15000	8.51
16000	8.56
17000	8.63
18000	8.75
19000	8.81
20000	8.89
21000	9.18
22000	9.24
23000	9.27
24000	9.35
25000	9.48
26000	9.58

Note : 1. 2400 ~ 2500 MHz is fundamental frequency range.

2. Factor = Cable loss(2 EA) + Splitter loss(6 dB)

3. EUT Cable Loss = 0.35 dB


8.7. Radiated Test

<u>Limit</u>

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Configuration

Below 30 MHz

Report No.: HCT-RF-2202-FC026

30 MHz - 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3 m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = $40\log(3 \text{ m}/30 \text{ m}) = -40 \text{ dB}$

Measurement Distance : 3 m

- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \ge 3 x RBW
- 9. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1 GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1m to 4 m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - * In general, (1) is used mainly
- 7. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from

the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 1/T Hz, where T = pulse width in seconds
 - The actual setting value of VBW = 1 kHz
 - ◆ Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 11. Distance extrapolation factor = 20log (test distance / specific distance) (dB)

Report No.: HCT-RF-2202-FC026

12. Total

(1)Measurement(Peak)

Measured Value(Peak) + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F) (2)Measurement(Avg)

Measured Value (Avg) + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F) + D.C.C.F(AFH)

- 13. Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 229.100 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H $^{\prime}$ =1
 - c. Worst Case Dwell Time = T [ms] x H ' = 2.9 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 14. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 20 channels = 58.00 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H ' = 2
 - c. Worst Case Dwell Time = T [ms] x H ' = 5.800 ms
 - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB

Test Procedure of Radiated Restricted Band Edge

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Average):
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 1/T Hz, where T = pulse width in seconds

The actual setting value of VBW = 1 kHz

- Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- 9. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 10. Total
 - (1) Measurement(Peak)
 - = Measured Value(Peak) + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G) + Attenuator(ATT) + Distance Factor(D.F)
 - (2) Measurement(Avg)
 - = Measured Value(Avg) + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G) + Attenuator(ATT) + Distance Factor(D.F) + D.C.C.F(AFH)
- 11. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

8.8. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)	
0.50 to 5	56	46	
5 to 30	60	50	

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.
- 5. The EUT is the device operating below 30 MHz.
 - For unterminated the Antenna, the AC line conducted tests are performed with the antenna connected
 - For terminated the Antenna, the AC line conducted tests are performed with a dummy load connected to the EUT antenna output terminal.

Sample Calculation

Quasi-peak(Final Result) = Measured Value + Correction Factor

8.9 Worst case configuration and mode

Radiated test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone + External accessories (Earphone, Keyboard etc)
- Worstcase : Stand alone
- 2. EUT Axis
 - Radiated Spurious Emissions : X, Y, Z
 - Radiated Restricted Band Edge : Z

3. All data rate of operation were investigated and the test results are worst case in highest datarate of each mode.

- GFSK : DH5
- π/4DQPSK : 2-DH5
- 8DPSK : 3-DH5
- 4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.Position : Horizontal, Vertical, Parallel to the ground plane
- 5. SM-A736B/DS, SM-A736B were tested and the worst case results are reported.
 - Worst case : SM-A736B/DS

Radiated test(RSDB)

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone, Stand alone + External accessories(Earphone., etc)
 - Worstcase : Stand alone
- 2. EUT Axis
 - Radiated Spurious Emissions : X, Y
- 3. The following tables show the worst case configurations determined during testing.

Description	Bluetooth Emission	5 GHz Emission
Antenna	WIFI/BT	WIFI/BT
Channel	78	138
Data Rate	1 Mbps	MCS 0
Mode	GFSK : DH5	802.11ax (HE80)

Note : 5 GHz WLAN RSDB Data refer to [UNII ax] Test Report.

AC Power line Conducted Emissions

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone + External accessories(Earphone etc)+Travel Adapter
 - Stand alone + Travel Adapter
 - Worstcase : Stand alone + Travel Adapter
- 2. SM-A736B/DS, SM-A736B were tested and the worst case results are reported.
 - Worst case : SM-A736B/DS

Conducted test

- 1. The EUT was configured with data rate of highest power.
 - GFSK : DH5
 - $\pi/4DQPSK$: 2-DH5
 - 8DPSK : 3-DH5
- 2. AFH & Non-AFH were tested and the worst case results are reported.
 - Worst case : Non-AFH
- 3. SM-A736B/DS, SM-A736B were tested and the worst case results are reported.
 - Worst case : SM-A736B/DS

9. SUMMARY OF TEST RESULTS

Test Description	FCC Part Section(s)	ction(s) Test Limit		Test Result
20 dB Bandwidth	§15.247(a)(1)	N/A		PASS
Occupied Bandwidth	N/A	N/A	-	N/A
Conducted Maximum Peak Output Power	§15.247(b)(1)	< 0.125 W		PASS
Carrier Frequency Separation	§15.247(a)(1)	> 25 kHz or >2/3 of the 20 dB BW		PASS
Number of Hopping Frequencies	§15.247(a)(1)(iii) ≥ 15		Conducted	PASS
Time of Occupancy	§15.247(a)(1)(iii)	< 400 ms		PASS
Conducted Spurious Emissions	§15.247(d)	> 20 dB for all out-of band emissions		PASS
Band Edge (Out of Band Emissions)	§15.247(d)	> 20 dB for all out-of band emissions	-	PASS
AC Power line Conducted Emissions	§15.207(a) cf. Section 8.8		-	PASS
Radiated Spurious§15.247(d),Emissions15.205,15.20915.209		cf. Section 8.7		PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 8.7	Radiated	PASS

Note: Average Power data refer to SAR report

10. TEST RESULT

10.1 PEAK POWER

Channel	Frequency	Output Power (GFSK)		Limit
	(MHz)	(dBm)	(mW)	(mW)
Low	2402	16.450	44.16	
Mid	2441	16.134	41.06	125
High	2480	15.347	34.25	

Channel	Frequency	Outpu (8D	Limit	
	(MHz)	(dBm)	(mW)	(mW)
Low	2402	16.058	40.35	
Mid	2441	15.572	36.07	125
High	2480	14.996	31.59	

Channel	Frequency	-	t Power QPSK)	Limit (mW)
(MHz)	(dBm)	(mW)	(11177)	
Low	2402	15.523	35.67	
Mid	2441	15.058	32.05	125
High	2480	14.453	27.88	

Note:

1. Spectrum measured values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

2. Actual value of loss for the splitter and cable combination is 7.16 dB at 2400 MHz and is 7.25 dB at 2500 MHz. So, 7.25 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Test Plots (GFSK)

Peak Power (CH.0)

RL	rum Analyzer - Swept SA RF 50 Ω AC		SENSE:INT	ALIGNAUTO	05:15:40 PM Jan 18, 2022	_
enter F	req 2.402000000	GHz PNO: Fast ↔ IFGain:Low		#Avg Type: RMS Avg Hold: 1/1	TRACE 123456 TYPE MWWWW DET PPPPP	Frequency
) dB/div	Ref Offset 7.25 dB Ref 29.00 dBm			Mkr1	2.402 211 GHz 16.450 dBm	Auto Tun
9.0			∳ ¹			Center Fre 2.402000000 G⊦
00						Start Fre 2.399652074 GF
1.0						Stop Fre 2.404347926 GF
1.0						CF Ste 469.585 kl <u>Auto</u> M
1.0						Freq Offs 01
1.0						
	402000 GHz 3.0 MHz	#VBW	50 MHz	Sweep 1	Span 4.696 MHz .000 ms (1001 pts)	
G				STATU:		

Test Plots (GFSK) Peak Power (CH.39)

Test Plots (GFSK)

Peak Power (CH.78)

	rum Analyzer - Swept SA					
XI RL Center Fi	RF 50 Ω AC req 2.480000000	PNO: Fast 🔸	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold: 1/1	05:16:03 PM Jan 18, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P	Frequency
10 dB/div	Ref Offset 7.25 dB Ref 29.00 dBm	IFGain:Low	Atten: 32 dB	Mkr	1 2.479 939 GHz 15.347 dBm	Auto Tune
19.0			1			Center Free 2.480000000 GH:
9.00						Start Fre 2.477644787 GH
-11.0						Stop Fre 2.482355213 G⊢
31.0						CF Ste 471.043 kH <u>Auto</u> Ma
51.0						Freq Offs 0 F
	480000 GHz	<i>#</i>)(D)))			Span 4.710 MHz	
Res BW	3.0 WINZ	#VBW	50 MHz	Sweep	1.000 ms (1001 pts) ^{JS}	

Test Plots (8DPSK) Peak Power (CH.0)

Test Plots (8DPSK)

Peak Power (CH.39)

Test Plots (8DPSK) Peak Power (CH.78)

Test Plots (π/4DQPSK)

Peak Power (CH.0)

RL RF	50Ω AC		SENSE:INT	ALIGNAUTO	05:16:15 PM Jan 18, 2022	Frequency
enter Freq 2.4	P	IZ NO: Fast ↔→ Gain:Low	Trig: Free Run Atten: 32 dB	#Avg Type: RMS Avg Hold: 1/1	TRACE 123456 TYPE M M M M M M M M M M M M M M M M M M M	
Ref Of dB/div Ref 2	fset 7.25 dB 9.00 dBm			Mkr1	2.402 161 GHz 15.523 dBm	Auto Tur
9.0			↓ ¹			Center Fre 2.402000000 GH
.00						Start Fr 2.398777500 GI
1.0						Stop Fr 2.405222500 G
1.0						CF St 644.500 k <u>Auto</u> M
1.0						Freq Offs 0
enter 2.402000	CH7				Span 6.445 MHz	
Res BW 3.0 MH		#VBW	50 MHz	Sweep 1	.000 ms (1001 pts)	

Test Plots (π/4DQPSK) Peak Power (CH.39)

Test Plots (π /4DQPSK)

Peak Power (CH.78)

enter Fi	RF 50 Ω AC req 2.480000000	PNO: Fast ↔	Trig: Free Run Atten: 32 dB	ALIGNAUTO #Avg Type: RMS Avg Hold: 1/1	05:16:38 PM Jan 18, 2022 TRACE 1 2 3 4 5 6 TYPE M	Frequency
0 dB/div	Ref Offset 7.25 dB Ref 29.00 dBm	IFGain:Low	Atten: 32 dB	Mkr1	2.479 915 GHz 14.453 dBm	Auto Tur
og			↓			Center Fr 2.480000000 G
3.00						Start Fr 2.476722500 G
1.0						Stop Fr 2.483277500 G
1.0						CF St 655.500 k <u>Auto</u> M
1.0						Freq Offs 0
si.0	480000 GHz				Span 6.555 MHz	
	3.0 MHz	#VB\	V 50 MHz	Sweep 1	.000 ms (1001 pts)	

10.2 BAND EDGES

Without hopping

Outside Frequency Bond	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	59.933	60.372	59.566	00
Upper	69.509	66.599	66.725	20

With hopping

Outoido Eroquenou Bond	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	60.545	58.117	58.650	00
Upper	66.281	62.967	63.830	20

Note:

1. Spectrum measured values are not plot data.

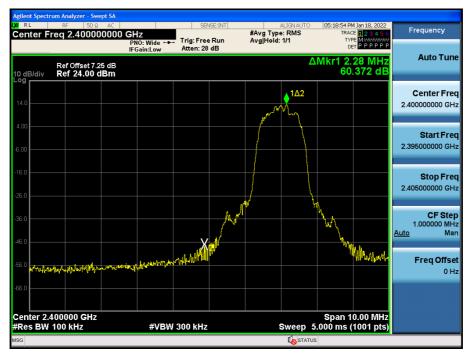
The power results in plot is already including the actual values of loss for the splitter and cable combination.

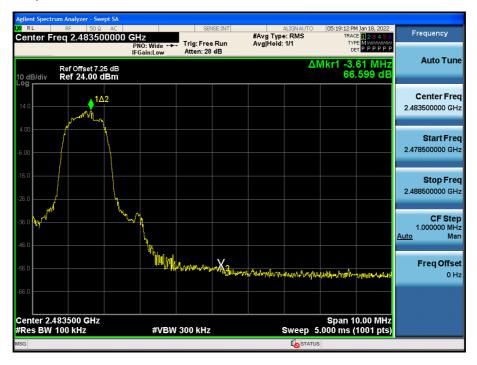
2. Actual value of loss for the splitter and cable combination is 7.16 dB at 2400 MHz and is 7.25 dB at 2500 MHz. So, 7.25 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.



Test Plots without hopping (GFSK)

Band Edges (CH.0)

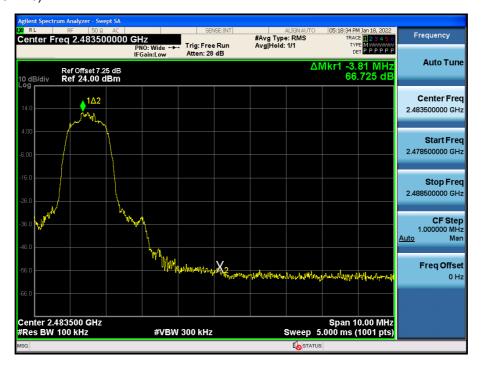

Test Plots without hopping (GFSK) Band Edges (CH.78)



Test Plots without hopping (8DPSK)

Band Edges (CH.0)

Test Plots without hopping (8DPSK) Band Edges (CH.78)



Test Plots without hopping (π /4DQPSK)

Band Edges (CH.0)

Test Plots without hopping (π /4DQPSK) Band Edges (CH.78)

Test Plots with hopping (GFSK)

Band Edges (CH.0)

Test Plots with hopping (GFSK) Band Edges (CH.78)

Test Plots with hopping (8DPSK)

Band Edges (CH.0)

Test Plots with hopping (8DPSK) Band Edges (CH.78)

Test Plots with hopping (π /4DQPSK)

Band Edges (CH.0)

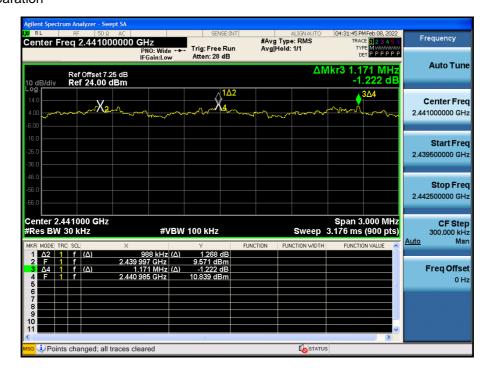
Test Plots with hopping (π /4DQPSK) Band Edges (CH.78)

10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99 % BW)

	99 % BW (kHz)									
Channel	Channel GFSK 8DPSK π/4DQPSK									
CH.0	829.64	1181.6	1175.3							
CH.39	836.45	1180.7	1171.2							
CH.78	828.65	1181.4	1174.4							

20 dB BW (kHz)									
Channel	Channel GFSK 8DPSK π/4DQPSK								
CH.0	939.2	1312	1289						
CH.39	943.7	1311	1307						
CH.78	942.1	1306	1311						

	Channel Separation(kHz)						
GFSK	8DPSK	8DPSK π/4DQPSK					
			>25 kHz				
981	988	994	or				
			>2/3 of the 20 dB BW				



Test Plots (GFSK)

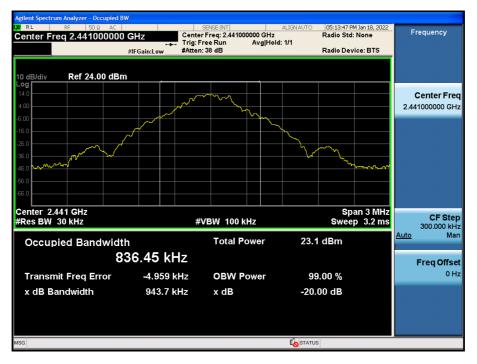
Channel Separation

Test Plots (8DPSK) Channel Separation

Test Plots (π/4DQPSK)

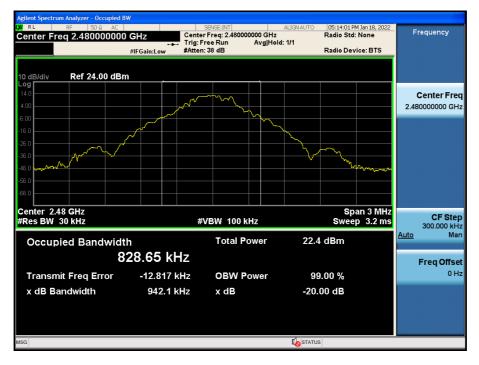
Channel Separation

Agilent Spect	rum Analyzer - Sw	ept SA AC		SENSE	- 10.000			010107.07	4 Feb 08, 2022	
	req 2.4410	00000 GH	lz		*	Avg Typ		TRAC	01Feb 08, 2022 2E <mark>1 2 3 4 5 6</mark> 2E M 44444444	Frequency
10 dB/div	Ref Offset 7. Ref 24.00	IFC 25 dB	IO: Wide ↔ Gain:Low	Atten: 28 di		avgji iola.		ΔMkr3 9	TPPPPP	Auto Tune
14.00	~~~~X2		·····~	1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∆2 √^^	~~~~	~~~~	3∆4 /////	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Center Freq 2.441000000 GHz
-16.0 -26.0 -36.0										Start Freq 2.439500000 GHz
-46.0 -56.0 -66.0										Stop Freq 2.442500000 GHz
Center 2. #Res BW	441000 GHz 30 kHz		#VBW	100 kHz			Sweep	Span 3 3.176 ms	.000 MHz (900 pts)	CF Step 300.000 kHz Auto Man
MKR MODE T 1 Δ2 2 2 F 2 3 Δ4 7 4 F 2 5 6 6 7 8 9 9 10 11	1 f (∆) 1 f	2.439 98	94 kHz (Δ)	Y -1.324 dB 10.758 dBm 1.290 dE 9.435 dBm	1		NCTION WIDTH	FUNCTIC	IN VALUE	<u>Auto</u> Man Freq Offset 0 Hz
<mark>мsg</mark> ЏРоіп	nts changed; all	traces clear	ed	m			I STATUS	6		


Test Plots (GFSK)

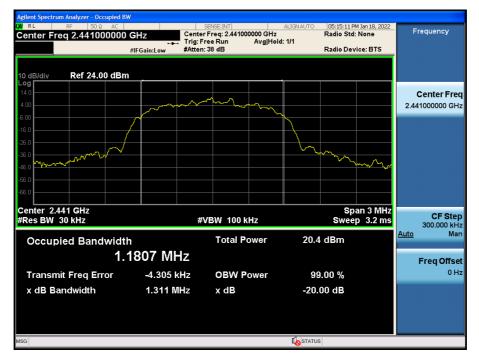
20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (GFSK)


20 dB Bandwidth & Occupied Bandwidth (CH.39)

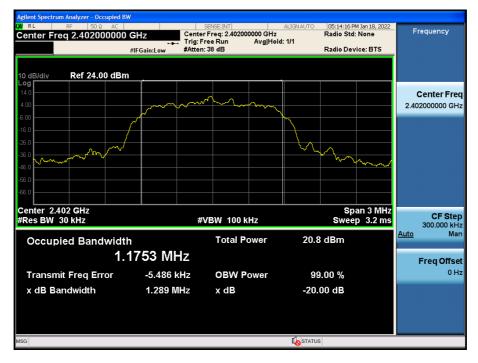
Test Plots (GFSK)

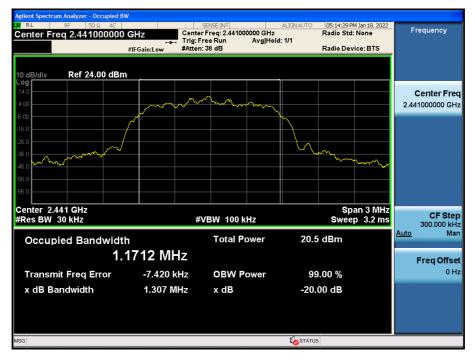
20 dB Bandwidth & Occupied Bandwidth (CH.78)


Test Plots (8DPSK) 20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (8DPSK)

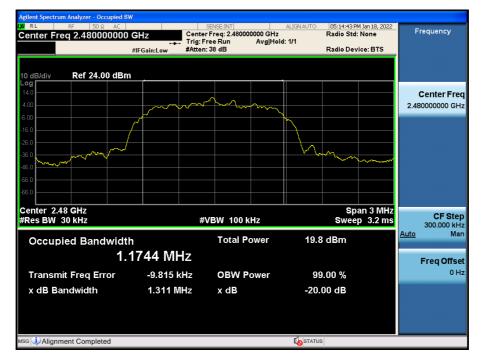
20 dB Bandwidth & Occupied Bandwidth (CH.39)


Test Plots (8DPSK) 20 dB Bandwidth & Occupied Bandwidth (CH.78)


Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (π /4DQPSK)


20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.78)

10.4 NUMBER OF HOPPING FREQUENCY

GFSK	Limit		
79	79	79	>15

Note :

In case of AFH mode, minimum number of hopping channels is 20.

Test Plots (GFSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (GFSK)

Number of Channels (2.441 GHz - 2.483.5 GHz)

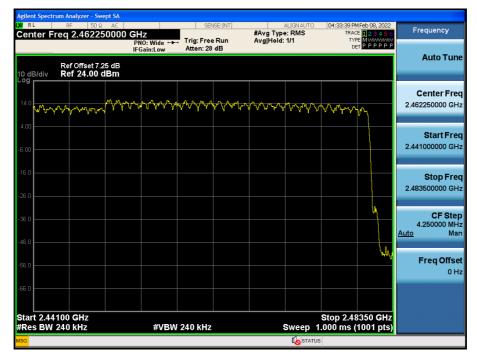
Test Plots (8DPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

LXI RL	RF 50 Ω	AC	1-	SEN	ISE:INT	#Avg Typ			4 Feb 08, 2022 E 1 2 3 4 5 6	Fre	quency
Center	Freq 2.42050	PI	1Z NO: Wide ↔ Gain:Low	Trig: Free Atten: 28		Avg Hold:		TYF	E MWWWWWW P P P P P P P		Auto Tune
10 dB/div Log	Ref Offset 7.2 Ref 24.00 (
	or the the the	ᡰᡧ᠆᠕ᠰ	www	ᡊᡃᠾ᠕ᠰ᠋	ᡣᢦ᠕ᢇ᠕᠈	ᢦᡃᠬ᠕᠆ᡝ	ᡏᡎᡘᡃ᠋ᢍᢦᠾᡏᡧ	M M M	᠕᠕᠕		e nter Freq 500000 GHz
4.00 •6.00											Start Freq 000000 GHz
-16.0											Stop Fred
-36.0										4.1 <u>Auto</u>	CF Step 100000 MH Mar
-56.0										F	req Offse 0 H:
-66.0	40000 GHz							Stop 2.44	100 GHz		
	W 240 kHz		#VBW	240 kHz			Sweep 1	.000 ms (100 GH2 1001 pts)		
MSG	S STATUS										

Test Plots (8DPSK)

Number of Channels (2.441 GHz - 2.483.5 GHz)


Test Plots (π/4DQPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

2 _	:33:04 PM Feb 08, 2022	IGNAUTO 04:33:0	ALIG	SENSE:INT	SE			<mark>Malyzer - Sw</mark> RF 50 Ω		Agilent XI R L
Frequency	TRACE 123456 TYPE MWWWWW DET PPPPP	RMS T	#Avg Type: Ri Avg Hold: 1/1	Free Run		PNO: Wide ↔		2.4205	ter Freq	Cent
Auto Tune				n: 28 dB	Atten: 2	IFGain:Low	25 dB	ef Offset 7.		
							dBm	ef 24.00	3/div R e	10 dB ^{Log} [
Center Freq 2.420500000 GHz	utra ta an an ats the	have all from a	ᠵᠬᢧᢉᢦ᠕ᡃ᠕ᠰ	γ un $M_{\rm L}$ r	h_{μ}	1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Amoria	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ለሌ በባኑታ	14.0
ř	n A. O. Prov A. I.	עיר עייייי				- 4 u h -				4.00
Start Freq 2.40000000 GHz										-6.00
Stop Fred 2.441000000 GHz										-16.0
CF Step) pl	-36.0
4.100000 MHz <u>Auto</u> Mar										-46.0
Freq Offse										-56.0
0 Hz										
										-66.0
Z	p 2.44100 GHz	Stop 2		/U7	240 KH-	#\/B\A			t 2.40000	
2	Res BW 240 kHz #VBW 240 kHz Sweep 1.000 ms (1001 pts) sa								MSG	

Test Plots (π/4DQPSK)

Number of Channels (2.441 GHz - 2.483.5 GHz)

10.5 TIME OF OCCUPANCY (DWELL TIME)

	Channel	GFSK	8DPSK	π/4DQPSK
Pulse Time	Low	2.885	2.890	2.890
(ms)	Mid	2.885	2.890	2.890
	High	2.890	2.890	2.885

Non-AFH Mode

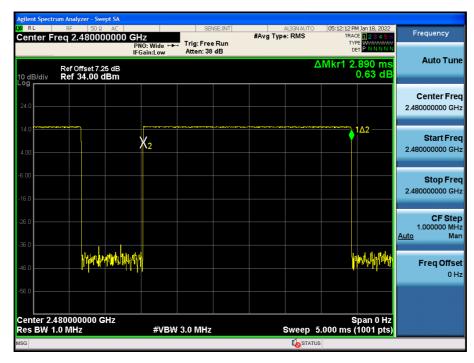
	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	307.73	308.27	308.27	31.6	
(ms)	Mid	307.73	308.27	308.27	31.6	400
	High	308.27	308.27	307.73	31.6	

AFH Mode

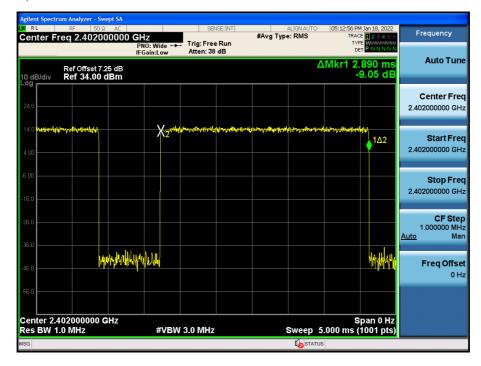
	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	153.87	154.13	154.13	8.0	
(ms)	Mid	153.87	154.13	154.13	8.0	400
	High	154.13	154.13	153.87	8.0	

Test Plots (GFSK)

Dwell Time (CH.0)

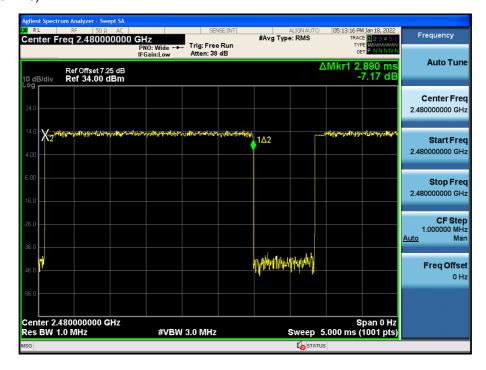

LXIRL	rum Analyzer - Swept SA RF 50 Ω AC req 2.402000000 C	GHz	EUNT #Avg Ty	ALIGNAUTO	05:11:38 PM Jan 18, 2022 TRACE 12 3 4 5 6	Frequency
10 dB/div		PNO: Wide +++ Trig: Free IFGain:Low Atten: 38 o		Δ	Mkr1 2.885 ms 0.23 dB	Auto Tune
24.0			1Δ2			Center Freq 2.402000000 GHz
14.0 - X2 4.00				,		Start Freq 2.402000000 GHz
-6.00						Stop Freq 2.402000000 GHz
-26.0						CF Step 1.000000 MH; <u>Auto</u> Mar
-46.0			the help the help the	ntrinal		Freq Offset 0 Hz
Center 2.4 Res BW 1	402000000 GHz .0 MHz	#VBW 3.0 MHz		Sweep 5	Span 0 Hz .000 ms (1001 pts)	
MSG				I o status		

Test Plots (GFSK) Dwell Time (CH.39)



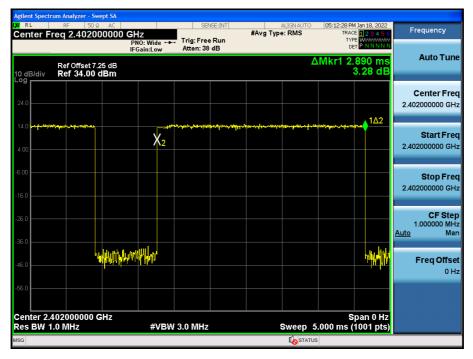
Test Plots (GFSK) Dwell Time (CH.78)

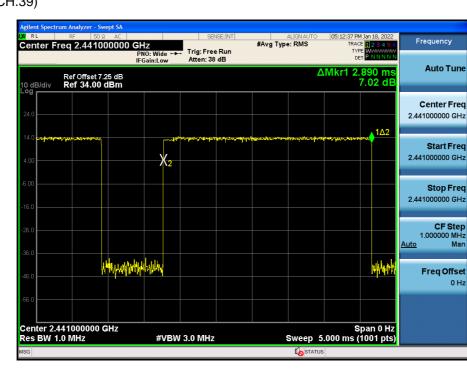
Test Plots (8DPSK) Dwell Time (CH.0)



Test Plots (8DPSK)

Dwell Time (CH.39)


Test Plots (8DPSK) Dwell Time (CH.78)



Test Plots (π/4DQPSK)

Dwell Time (CH.0)


Test Plots (π/4DQPSK) Dwell Time (CH.39)

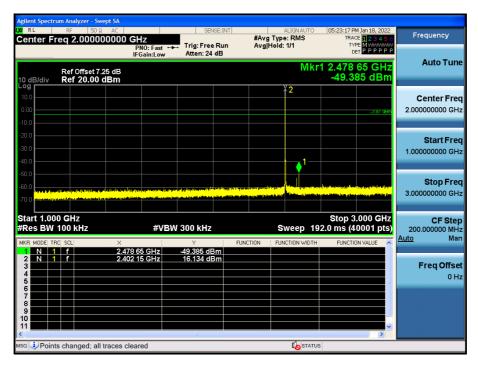
Test Plots (π /4DQPSK)

Dwell Time (CH.78)

10.6 SPURIOUS EMISSIONS 10.6.1 CONDUCTED SPURIOUS EMISSIONS

Test Result : please refer to the plot below.

In order to simplify the report, attached plots were only the worst case channel and data rate.

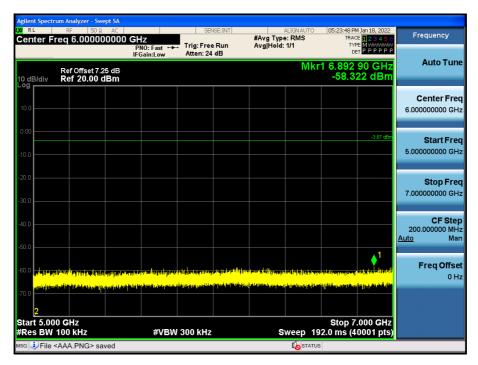


Test Plots (GFSK)- 30 MHz - 1 GHz

Spurious Emission (CH.0)

Agilent Spectr	r <mark>um Analyzer - Swe</mark> RF 50 Ω			SEN	ISE:INT		ALIGNAUTO	05:23:27 DM	4 Jan 18, 2022	
	req 515.000	000 MHz	NO: Fast 🕶			#Avg Type Avg Hold:	e: RMS	TRAC	E 123456 E MWWWWW	Frequency
			Gain:Low	Atten: 24	dB		M	kr1 737.	OA MUT	Auto Tune
10 dB/div Log	Ref Offset 7.2 Ref 20.00 d						IVI		38 dBm	
L08										Center Freq
10.0										515.000000 MHz
0.00									-3.87 dBm	
-10.0										Start Freq 30.000000 MHz
10.0										
-20.0										Stop Freq
-30.0										1.000000000 GHz
-40.0										CF Step
										97.000000 MHz <u>Auto</u> Man
-50.0										
-60.0		1.					↓ Is all tabal a	A contract tand	lan an athrada	Freq Offset 0 Hz
און אין אין און אין אין אין אין אין אין אין אין אין אי	n an	and a static static respectively a static	laan bekendeli <mark>1. Jaan de enstelend</mark>	, de page de la finales de Restaur de la finales de la Restaur de la finales de la	na (hana ang ang Manaika (mang	likereka oktobel Njihan konstant	<mark>(1996) y se a la sega</mark> 1999 y se a la sega	<mark>e dahan kangalaranan</mark> Pelakan kangalaranan	tergepresenter Le reletation de la compo	0112
									2	
Start 30.0			<i>4</i> 0 (D)14						0000 GHz	
#Res BW	100 KHZ ts changed; all t	traces clear		300 kHz		s	weep 93	3.33 ms (2	oooo pts)	

Test Plots (GFSK)- 1 GHz – 3 GHz

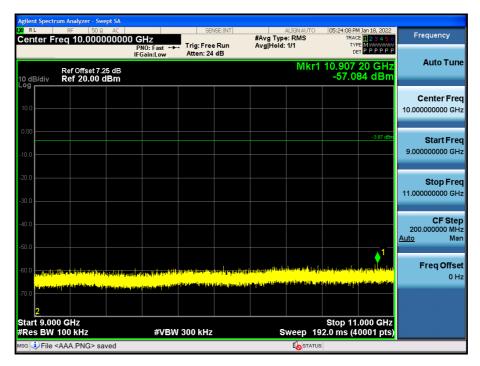


Test Plots(GFSK)- 3 GHz - 5 GHz

Spurious Emission (CH.0)

Agilent Spect	rum Analyzer - Swep RF 50 Ω			CEA	ISE:INT		ALIGNAUTO	05-22-20 DA	4 Jan 18, 2022	
	req 4.00000	0000 GHz	:Fast ↔			#Avg Type Avg Hold:	e: RMS	TRAC	E 123456 E MWWWWW	Frequency
10 dB/div	Ref Offset 7.25 Ref 20.00 di	IFGai 5 dB	in:Low	Atten: 24	dB		Mkr	1 4.804	25 GHz 43 dBm	Auto Tune
10.0										Center Freq 4.00000000 GHz
-10.0									-3.87 dBm	Start Freq 3.000000000 GHz
-20.0										Stop Freq 5.00000000 GHz
-40.0									1	CF Step 200.000000 MHz <u>Auto</u> Man
and the second	ng ng Salah ng pang Salah ng Pang ng Ng Salah ng	in the second	ⁱⁿ T ^{an} tanga	i pan Jaras (n. 1) karin <mark>awa jaras karina karina</mark>	n <mark>i mani silan.</mark> ^{Manan} asina		d (Adam) (Provid) Na cologica (Color		Deservitions (1994)	Freq Offset 0 Hz
-70.0 2 Start 3.00	00 GHz							Stop 5	.000 GHz	
#Res BW	100 KHZ		#VBW	300 kHz		s	weep 19	<u> </u>	0001 pts)	

Test Plots (GFSK)- 5 GHz - 7 GHz



Test Plots(GFSK)- 7 GHz - 9 GHz

Spurious Emission (CH.0)

	um Analyzer - Swep									
Center Fi	RF 50 Ω req 8.000000	0000 GH	z		ISE:INT	#Avg Type		TRAC	4 Jan 18, 2022 E <mark>1 2 3 4 5 6</mark> E M 4 1 4 1 4 5	Frequency
			IO: Fast ↔ Jain:Low	Atten: 24		Avg[Hold:	101	DE	PPPPP	
10 dB/div Log	Ref Offset 7.25 Ref 20.00 de						Mkr		95 GHz 81 dBm	Auto Tune
209										Center Freq
10.0										8.00000000 GHz
0.00									-3.87 dBm	
									-3.67 UBN	Start Freq 7.00000000 GHz
-10.0										
-20.0										Stop Freq
-30.0										9.00000000 GHz
										CF Step
-40.0										200.000000 MHz
-50.0			1							<u>Auto</u> Man
-60.0 <mark>m⁴1/341-</mark>	وفروسا فالمرابع مرفا والمراجع			att a baa	es there					Freq Offset
	(low to live a division of the second se	dinata di Kanadi		ng processing and proceeding	an al traverse and a start an	n an	ر ان در مانا و من علم الله. و ان در من طفا و من علم الله ا	inner Malphysier Inner Malphysier	and the second states and the second s	0 Hz
-70.0						- Citra das	and a state			
2										
Start 7.00 #Res BW			#VBW	300 kHz		s	weep <u>1</u> 9	9 Stop 2.0 ms	.000 GHz 0001 pts)	
мsg 🔱 File «	<aaa.png> save</aaa.png>	ed								

Test Plots(GFSK)- 9 GHz - 11 GHz

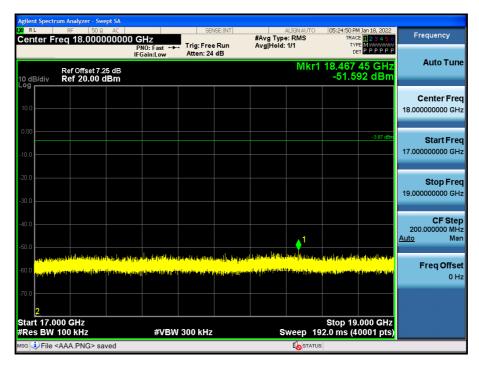


Test Plots(GFSK) 11 GHz - 13 GHz

Spurious Emission (CH.0)

	um Analyzer - Swep									
Center F	⊮ୋ 50 ହ req 12.00000		iHz	SEN	ISE:INT	#Avg Type	ALIGNAUTO	TRAC	1 Jan 18, 2022 E 1 2 3 4 5 6	Frequency
Conton I		Р	NO:Fast ↔► Gain:Low	Trig: Free Atten: 24		Avg Hold:	1/1	TYF	Е Миллинин ТРРРРРР	
	D 400 470		Sameow				Mkr1	12.683	25 GHz	Auto Tune
10 dB/div Log	Ref Offset 7.25 Ref 20.00 dl							-56.7	17 dBm	
										Center Freq
10.0										12.000000000 GHz
0.00									-3.87 dBm	Start Freq
-10.0										11.000000000 GHz
- 10.0										
-20.0										Stop Freq
										13.000000000 GHz
-30.0										
-40.0										CF Step
-40.0										200.000000 MHz
-50.0								<u> </u>		<u>Auto</u> Man
								. ♦ '		Freq Offset
	eletti este biten este betit								alle di studio p	0 Hz
-70.0	<mark>bachtar tailea bheana a</mark> nn	and the second second	ana da se da s Se da se d	and a subscription of the	and produce and the	youth repeating the sector	(a) (glanderinderi	أوانت والغظاء والغراف أل	and in the second second	
-70:0										
2										
Start 11.0 #Res BW			#VBW	300 kHz		s	weep 19	Stop 13 2.0 ms (4	.000 GHz 0001 pts)	
	<aaa.png> sav</aaa.png>	red						· · · · ·		
мsg 🤃 File •	<aaa.png> sav</aaa.png>	red								

Test Plots (GFSK)- 13 GHz – 15 GHz



Test Plots(GFSK)- 15 GHz - 17 GHz

Spurious Emission (CH.0)

Agilent Spect	<mark>rum Analyzer - Swep</mark> RF 50 Ω			SEN	ISE:INT		ALIGNAUTO	05-24-39 DM	4 Jan 18, 2022	
	req 16.00000	00000 G	Hz NO: Fast ↔	. Trig: Free	Run	#Avg Type Avg Hold:	e: RMS	TRAC	E 123456 E MWWWWW	Frequency
	Ref Offset 7.25		Gain:Low	Atten: 24	dB		Mkr1	15.376	60 GHz	Auto Tune
10 dB/div Log	Ref 20.00 di							-53.8	60 dBm	
										Center Freq
10.0										16.00000000 GHz
0.00									-3.87 dBm	Otort Error
-10.0										Start Freq 15.00000000 GHz
10.0										
-20.0										Stop Freq
-30.0										17.000000000 GHz
-40.0										CF Step
-40.0										200.000000 MHz Auto Man
-50.0	1									
60.0			er biller er en feller (- er der er er biller (-					a ge al litro stat l	ingen Pargebranden Angen erkeltetetetetetetetetetetetetetetetetetet	Freq Offset
	it for Alexandria pranovansta i talika ki			o loborador.	opine, fabrica	and a statistic set	^{n kal} ik jarijudjede	COLUMN STREET	lead of Long	0 Hz
-70.0										
2 Start 15.0	000 GHz							Stop 17	.000 GHz	
#Res BW			#VBW	300 kHz		s		2.0 ms (4	0001 pts)	
мsg 🧼 File	<aaa.png> save</aaa.png>	ed						8		

Test Plots(GFSK)- 17 GHz - 19 GHz

Test Plots (GFSK)- 19 GHz - 21 GHz

Spurious Emission (CH.0)

	um Analyzer - Swep									
Center F	RF 50 Ω req 20.00000	00000 G	Hz		ISE:INT	#Avg Type		TRAC	4 Jan 18, 2022 E <mark>1 2 3 4 5</mark> 6	Frequency
			IO: Fast ↔ ain:Low	Trig: Free Atten: 24		Avg Hold:	1/1	DI	е Милиини ТРРРРРР	
10 dB/div Log	Ref Offset 7.25 Ref 20.00 di						Mkr1		90 GHz 78 dBm	Auto Tune
10.0										Center Freq 20.000000000 GHz
-10.0									-3.87 dBm	Start Freq 19.000000000 GHz
-20.0										Stop Freq 21.00000000 GHz
-40.0								. 1		CF Step 200.000000 MHz <u>Auto</u> Man
-50.0 <mark>Xiyinga</mark> -60.0 My¹44a a	nolulaludialasis socialisti ang					ndan tadan Malapanatar				Freq Offset 0 Hz
-70.0										
Start 19.0 #Res BW			#VBW	300 kHz		s	weep 19	Stop 21 2.0 ms (4	.000 GHz 0001 pts)	
мsg 🧼 File	<aaa.png> save</aaa.png>	ed								

Test Plots (GFSK)- 21 GHz - 23 GHz

		um Analyzer									
L <mark>XI</mark> R Cen			50Ω AC	0 GHz	SEN	NSE:INT	#Avg Typ	ALIGNAU" e: RMS	TRA	M Jan 18, 2022 CE 1 2 3 4 5 6	Frequency
CCI		Cq ZZ.0	000000	PNO: Fast ↔ IFGain:Low	Trig: Free Atten: 24		Avg[Hold:		TY D	РЕ МИЛИЛИИИ ЕТ Р Р Р Р Р Р	
				IFGall:LUW	Accent 24	40		MI	r1 22.768	25 GH7	Auto Tune
10 di Log	B/div		et 7.25 dB 00 dBm							41 dBm	
LOg											Center Freq
10.0											22.000000000 GHz
0.00										-3.87 dBm	Start Freq
-10.0											21.000000000 GHz
10.0											
-20.0											Stop Freq
											23.000000000 GHz
-30.0											
-40.0											CF Step
40.0										1	200.000000 MHz Auto Man
-50.0	<u> </u>				le le					• • • • •	<u>Auto</u> murr
				dille aradabba						and the second second	Freq Offset
-60.0	altendri.	<mark>i latin (p_elatin)</mark>	apelling to the state of the st	an a	almanik - Anita in	a a la gia da di fi li fa da a g	en el statistica de la sella de la s	an a			0 Hz
-70.0											
10.0											
Star	2	00 GHz							Stop 22	.000 GHz	
		100 GHZ		#VBV	V 300 kHz		s	weep	192.0 ms (4		
MSG 🤇	i ₽File <	AAA.PNG	> saved					Íоsт.	ATUS		

Test Plots (GFSK)- 23 GHz - 25 GHz

Agilent Spectrum Analyzer - Swept SA					
Center Freq 24.0000000	DO GHz	#Avg Typ e Run Avg Hold:	e: RMS TE	PM Jan 18, 2022 ACE 1 2 3 4 5 6 TYPE M WWWWW DET P P P P P P	Frequency
Ref Offset 7.25 dB 10 dB/div Ref 20.00 dBm	IFGain:Low Atten: 24	4 dB	Mkr1 24.94		Auto Tune
10.0					Center Freq 24.000000000 GHz
-10.0				-3.87 dBm	Start Free 23.000000000 GHz
-20.0					Stop Freq 25.000000000 GHz
-40.0	ntalitation of the state	a herentlykertektikterendyssererette	a, ta fi fi a diga ta da di anga anga da sa da da	Mining and Market A.	CF Step 200.000000 MH: Auto Mar
-60.0	in a state of the particle of a particle of a state of the	by und flag of flat big fille state if the site party of galaxies	a filma finansi kata ya kata y	i, ko ki dadiyi bayani dekirda	Freq Offse 0 H:
-70.0 2 Start 23.000 GHz			Stop 2	5.000 GHz	
#Res BW 100 kHz	#VBW 300 kHz	2 S	Stop 2 Sweep 192.0 ms	(40001 pts)	

10.6.2 RADIATED SPURIOUS EMISSIONS

Frequency	Measured Value	A.F+C.L+D.F	POL	Total	Limit	Margin					
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]					
	No Critical peaks found										

Frequency Range : 9 kHz - 30 MHz

Note:

1. The Measured of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBµV) + Distance extrapolation factor
- 4. Radiated test is performed with hopping off.

Frequency Range : Below 1 GHz

Frequency	Measured Value	A.F+C.L	POL	Total	Limit	Margin					
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]					
	No Critical peaks found										

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

2. Radiated test is performed with hopping off.

Frequency Range : Above 1 GHz

Operation Mode: CH Low(GFSK)

Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4804	45.62	3.75	V	0.00	49.37	73.98	24.61	PK
4804	38.51	3.75	V	-24.73	17.53	53.98	36.45	AV
7206	41.22	12.70	V	0.00	53.92	73.98	20.06	PK
7206	33.02	12.70	V	-24.73	20.99	53.98	32.99	AV
4804	45.98	3.75	Н	0.00	49.73	73.98	24.25	PK
4804	38.91	3.75	Н	-24.73	17.93	53.98	36.05	AV
7206	42.06	12.70	Н	0.00	54.76	73.98	19.22	PK
7206	33.35	12.70	Н	-24.73	21.32	53.98	32.66	AV

Operation Mode: CH Mid(GFSK)

Frequency	Measured Value	A.F+C.L-A.G+D.F		Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4882	44.02	3.71	V	0.00	47.73	73.98	26.25	PK
4882	33.12	3.71	V	-24.73	12.10	53.98	41.88	AV
7323	41.02	11.73	V	0.00	52.75	73.98	21.23	PK
7323	29.78	11.73	V	-24.73	16.78	53.98	37.20	AV
4882	44.25	3.71	Н	0.00	47.96	73.98	26.02	PK
4882	33.75	3.71	Н	-24.73	12.73	53.98	41.25	AV
7323	41.35	11.73	Н	0.00	53.08	73.98	20.90	PK
7323	29.97	11.73	Н	-24.73	16.97	53.98	37.01	AV

Operation Mode: CH High(GFSK)

		A.F+C.L-A.G+D.F		Duty Cycle Correction [dB]		Limit		Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]			[dBµV/m]		
4960	46.33	4.49	V	0.00	50.82	73.98	23.16	PK
4960	40.32	4.49	V	-24.73	20.08	53.98	33.90	AV
7440	47.02	12.08	V	0.00	59.10	73.98	14.88	PK
7440	41.98	12.08	V	-24.73	29.33	53.98	24.65	AV
4960	46.74	4.49	Н	0.00	51.23	73.98	22.75	PK
4960	40.43	4.49	Н	-24.73	20.19	53.98	33.79	AV
7440	47.24	12.08	Н	0.00	59.32	73.98	14.66	PK
7440	42.18	12.08	Н	-24.73	29.53	53.98	24.45	AV

Operation Mode: CH Low(π /4DQPSK)

Frequency [MHz]	Measured Value [dBµV]	A.F+C.L-A.G+D.F [dB/m]	Pol. [H/V]	Duty Cycle Correction [dB]	Total [dBµV/m]	Limit [dBµV/m]	-	Measurement Type
4804	43.31	3.75	V	0.00	47.06	73.98	26.92	PK
4804	31.02	3.75	V	-24.73	10.04	53.98	43.94	AV
7206	40.23	12.70	V	0.00	52.93	73.98	21.05	PK
7206	26.78	12.70	V	-24.73	14.75	53.98	39.23	AV
4804	43.56	3.75	Н	0.00	47.31	73.98	26.67	PK
4804	31.39	3.75	Н	-24.73	10.41	53.98	43.57	AV
7206	40.41	12.70	Н	0.00	53.11	73.98	20.87	PK
7206	26.97	12.70	Н	-24.73	14.94	53.98	39.04	AV

Operation Mode: CH Mid(π /4DQPSK)

Frequency	Measured Value	A.F+C.L-A.G+D.F		Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4882	43.22	3.71	V	0.00	46.93	73.98	27.05	PK
4882	30.41	3.71	V	-24.73	9.39	53.98	44.59	AV
7323	39.89	11.73	V	0.00	51.62	73.98	22.36	PK
7323	26.12	11.73	V	-24.73	13.12	53.98	40.86	AV
4882	43.34	3.71	Н	0.00	47.05	73.98	26.93	PK
4882	30.57	3.71	Н	-24.73	9.55	53.98	44.43	AV
7323	40.06	11.73	Н	0.00	51.79	73.98	22.19	PK
7323	26.47	11.73	Н	-24.73	13.47	53.98	40.51	AV

Operation Mode: CH High(π /4DQPSK)

		A.F+C.L-A.G+D.F		Duty Cycle Correction		Limit		Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4960	44.02	4.49	V	0.00	48.51	73.98	25.47	PK
4960	32.89	4.49	V	-24.73	12.65	53.98	41.33	AV
7440	41.98	12.08	V	0.00	54.06	73.98	19.92	PK
7440	30.01	12.08	V	-24.73	17.36	53.98	36.62	AV
4960	44.31	4.49	Н	0.00	48.80	73.98	25.18	PK
4960	33.16	4.49	Н	-24.73	12.92	53.98	41.06	AV
7440	42.12	12.08	Н	0.00	54.20	73.98	19.78	PK
7440	30.13	12.08	Н	-24.73	17.48	53.98	36.50	AV

Operation Mode: CH Low(8DPSK)

Frequency [MHz]	Measured Value [dBµV]	A.F+C.L-A.G+D.F [dB/m]		Duty Cycle Correction [dB]	Total [dBµV/m]	Limit [dBµV/m]		Measurement Type
4804	43.22	3.75	V	0.00	46.97	73.98	27.01	PK
4804	31.12	3.75	V	-24.73	10.14	53.98	43.84	AV
7206	40.12	12.70	V	0.00	52.82	73.98	21.16	PK
7206	26.68	12.70	V	-24.73	14.65	53.98	39.33	AV
4804	43.44	3.75	Н	0.00	47.19	73.98	26.79	PK
4804	31.35	3.75	Н	-24.73	10.37	53.98	43.61	AV
7206	40.32	12.70	Н	0.00	53.02	73.98	20.96	PK
7206	26.88	12.70	Н	-24.73	14.85	53.98	39.13	AV

Operation Mode: CH Mid(8DPSK)

Frequency	Measured Value	A.F+C.L-A.G+D.F		Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4882	43.55	3.71	V	0.00	47.26	73.98	26.72	PK
4882	30.12	3.71	V	-24.73	9.10	53.98	44.88	AV
7323	39.78	11.73	V	0.00	51.51	73.98	22.47	PK
7323	26.48	11.73	V	-24.73	13.48	53.98	40.50	AV
4882	43.69	3.71	Н	0.00	47.40	73.98	26.58	PK
4882	30.31	3.71	Н	-24.73	9.29	53.98	44.69	AV
7323	39.99	11.73	Н	0.00	51.72	73.98	22.26	PK
7323	26.57	11.73	Н	-24.73	13.57	53.98	40.41	AV

Operation Mode: CH High(8DPSK)

		A.F+C.L-A.G+D.F		Duty Cycle Correction		Limit		Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4960	44.32	4.49	V	0.00	48.81	73.98	25.17	PK
4960	33.00	4.49	V	-24.73	12.76	53.98	41.22	AV
7440	42.02	12.08	V	0.00	54.10	73.98	19.88	PK
7440	29.98	12.08	V	-24.73	17.33	53.98	36.65	AV
4960	44.58	4.49	Н	0.00	49.07	73.98	24.91	PK
4960	33.18	4.49	Н	-24.73	12.94	53.98	41.04	AV
7440	42.22	12.08	Н	0.00	54.30	73.98	19.68	PK
7440	30.02	12.08	Н	-24.73	17.37	53.98	36.61	AV

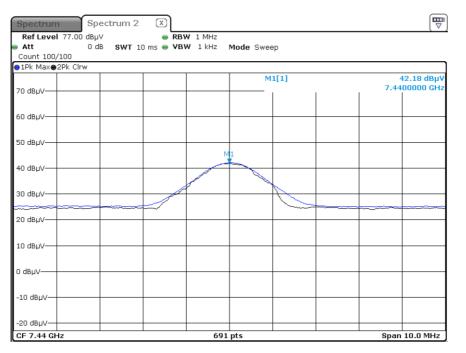
[RSDB Mode]

WLAN/BT Ant : 802.11ax(HE80) SU Ch. 138 & Bluetooth Ch. 78 (GFSK)

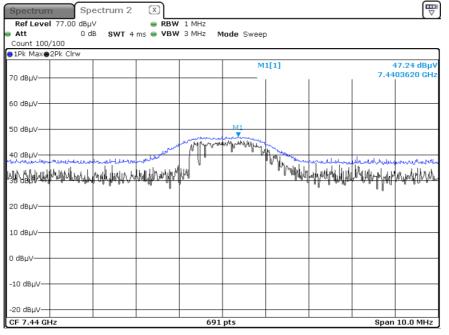
Operation Mode:	802.11ax & GFSK
Transfer Rate :	MCS 0 & 1 Mbps
Operating Frequency	5690 & 2480 MHz
Channel No.	138 Ch & 78 Ch

Frequency	Measured Value	A.F+C.L-A.G+D.F		Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4960	47.01	4.49	V	0.00	51.50	73.98	22.48	PK
4960	40.22	4.49	V	-24.73	19.98	53.98	34.00	AV
7440	47.22	12.08	V	0.00	59.30	73.98	14.68	PK
7440	42.02	12.08	V	-24.73	29.37	53.98	24.61	AV
4960	47.22	4.49	Н	0.00	51.71	73.98	22.27	PK
4960	40.43	4.49	Н	-24.73	20.19	53.98	33.79	AV
7440	47.48	12.08	Н	0.00	59.56	73.98	14.42	PK
7440	42.44	12.08	Н	-24.73	29.79	53.98	24.19	AV

Note :


1. Used duty cycle correction factor.

2. WLAN RSDB Data refer to UNII ax Test Report.



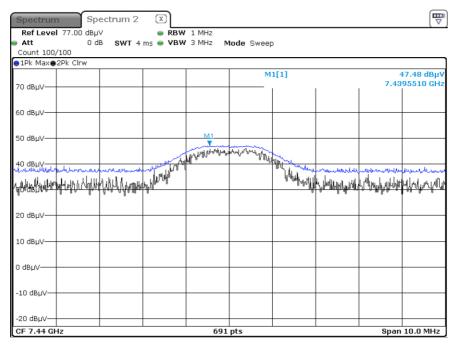
RESULT PLOTS

Radiated Spurious Emissions plot – Average Result (GFSK, Ch. 78 3rd Harmonic, Y-H)

Radiated Spurious Emissions plot - Peak Result (GFSK, Ch. 78 3rd Harmonic, Y-H)

Note:

Plot of worst case are only reported.


RESULT PLOTS(RSDB)

WLAN/BT Ant : 802.11ax(HE80) SU Ch. 138 & Bluetooth Ch. 78 (GFSK)

Radiated Spurious Emissions plot - Average Result (GFSK, Ch. 78 3rd Harmonic, Y-H)

Spectrum 2 l≞ Spectrum X Ref Level 77.00 dBµV RBW 1 MHz • SWT 10 ms 👄 VBW 1 kHz Mode Sweep Att 0 dB Count 100/100 ●1Pk Max●2Pk Clrw 42.44 dBµ\ 7.4400000 GH M1[1] 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV 0 dBµV -10 dBuV -20 dBµV Span 10.0 MHz 691 pts CF 7.44 GHz

Radiated Spurious Emissions plot - Peak Result (GFSK, Ch. 78 3rd Harmonic, Y-H)

Note:

Plot of worst case are only reported.

10.6.3 RADIATED RESTRICTED BAND EDGES

Operation Mode	Normal(GFSK)
Operating Frequency	2402 MHz, 2480 MHz
Channel No	CH 0, CH 78

Frequency	Measured Value	A.F+C.L+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
2390.0	19.441	34.04	Н	0.00	53.48	73.98	20.50	PK
2390.0	8.592	34.04	Н	-24.73	17.90	53.98	36.08	AV
2390.0	19.355	34.04	V	0.00	53.40	73.98	20.59	PK
2390.0	8.602	34.04	V	-24.73	17.91	53.98	36.07	AV
2483.5	23.482	35.00	Н	0.00	58.48	73.98	15.50	PK
2483.5	14.712	35.00	Н	-24.73	24.98	53.98	29.00	AV
2483.5	23.578	35.00	V	0.00	58.58	73.98	15.40	PK
2483.5	14.970	35.00	V	-24.73	25.24	53.98	28.74	AV

Operation Mode

 $EDR(\pi/4DQPSK)$

Operating Frequency

Channel No

2402 MHz, 2480 MHz

CH 0, CH 78

Frequency	Value	A.F+C.L+D.F		Duty Cycle Correction		Limit		Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[ασμν/m]	[dBµV/m]	[dB]	
2390.0	18.764	34.04	Н	0.00	52.80	73.98	21.18	PK
2390.0	8.441	34.04	Н	-24.73	17.75	53.98	36.23	AV
2390.0	19.482	34.04	V	0.00	53.52	73.98	20.46	PK
2390.0	8.484	34.04	V	-24.73	17.79	53.98	36.19	AV
2483.5	22.985	35.00	Н	0.00	57.99	73.98	16.00	PK
2483.5	14.702	35.00	Н	-24.73	24.97	53.98	29.01	AV
2483.5	23.011	35.00	V	0.00	58.01	73.98	15.97	PK
2483.5	14.842	35.00	V	-24.73	25.11	53.98	28.87	AV

Operation Mode	EDR(8DPSK)	
Operating Frequency	2402 MHz, 2480 MHz	
Channel No	CH 0, CH 78	

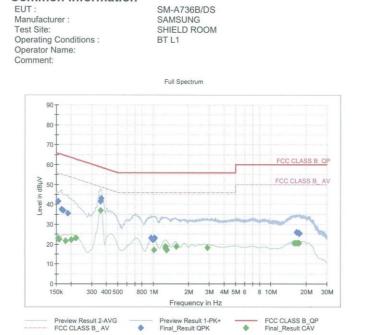
Frequency	Measured Value	A.F+C.L+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
2390.0	18.821	34.04	Н	0.00	52.86	73.98	21.12	PK
2390.0	8.363	34.04	Н	-24.73	17.67	53.98	36.31	AV
2390.0	19.321	34.04	V	0.00	53.36	73.98	20.62	PK
2390.0	8.585	34.04	V	-24.73	17.89	53.98	36.09	AV
2483.5	21.512	35.00	Н	0.00	56.51	73.98	17.47	PK
2483.5	14.789	35.00	Н	-24.73	25.06	53.98	28.92	AV
2483.5	21.745	35.00	V	0.00	56.75	73.98	17.24	PK
2483.5	14.901	35.00	V	-24.73	25.17	53.98	28.81	AV

RESULT PLOTS

Radiated Restricted Band Edges plot – Peak Result (GFSK, Ch.78, Z-V)

Note:

Plot of worst case are only reported.


1/2

10.7 POWERLINE CONDUCTED EMISSIONS

Conducted Emissions (Line 1)

BT L1

Common Information

Test Report

Final Result QPK

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	41.54	65.75	24.21	9.000	L1	OFF	9.6
0.1658	37.48	65.17	27.69	9.000	L1	OFF	9.6
0.1725	36.83	64.84	28.00	9.000	L1	OFF	9.6
0.1883	35.34	64.11	28.77	9.000	L1	OFF	9.6
0.3548	41.44	58.85	17.41	9.000	L1	OFF	9.6
0.3615	42.94	58.69	15.75	9.000	L1	OFF	9.6
0.9635	22.97	56.00	33.03	9.000	L1	OFF	9.7
0.9928	22.10	56.00	33.90	9.000	L1	OFF	9.7
0.9995	22.48	56.00	33.52	9.000	L1	OFF	9.7
1.0063	22.40	56.00	33.60	9.000	L1	OFF	9.7
1.0153	22.38	56.00	33.62	9.000	L1	OFF	9.7
1.0220	22.96	56.00	33.04	9.000	L1	OFF	9.7
16.4503	26.07	60.00	33.93	9.000	L1	OFF	10.3
17.2873	25.68	60.00	34.32	9.000	L1	OFF	10.3
17.3098	25.44	60.00	34.56	9.000	L1	OFF	10.3
17.4200	25.46	60.00	34.54	9.000	L1	OFF	10.3
17.4425	25.37	60.00	34.63	9.000	L1	OFF	10.3
17.5415	25.48	60.00	34.52	9.000	L1	OFF	10.3

2022-02-09

오후 2:16:43

Report No.: HCT-RF-2202-FC026

2/2

BT L1

Final_Result_CAV

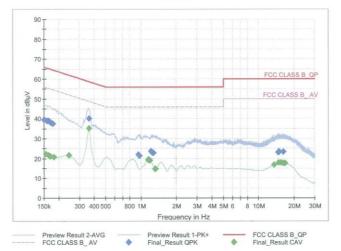
Frequency (MHz)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	22.69	55.75	33.06	9.000	L1	OFF	9.6
0.1590	22.57	55.52	32.94	9.000	L1	OFF	9.6
0.1793	21.68	54.52	32.84	9.000	L1	OFF	9.6
0.2018	22.26	53.54	31.28	9.000	L1	OFF	9.6
0.2198	23.20	52.83	29.63	9.000	L1	OFF	9.6
0.3570	37.04	48.80	11.76	9.000	L1	OFF	9.6
1.0108	17.15	46.00	28.85	9.000	L1	OFF	9.7
1.2650	18.66	46.00	27.34	9.000	L1	OFF	9.7
1.2785	17.99	46.00	28.01	9.000	L1	OFF	9.7
1.2943	17.02	46.00	28.98	9.000	L1	OFF	9.7
1.5755	18.69	46.00	27.31	9.000	L1	OFF	9.7
2.9053	18.04	46.00	27.96	9.000	L1	OFF	9.8
15.8248	20.59	50.00	29.41	9.000	L1	OFF	10.2
16.4210	20.61	50.00	29.39	9.000	L1	OFF	10.3
17.1680	20.43	50.00	29.57	9.000	L1	OFF	10.3
17.1883	20.46	50.00	29.54	9.000	L1	OFF	10.3
17.2828	20.36	50.00	29.64	9.000	L1	OFF	10.3
17.2873	20.37	50.00	29.63	9.000	L1	OFF	10.3

2022-02-09

오후 2:16:43

Conducted Emissions (Line 2)

BT N


1/2

Test Report

Common Information EUT : Manufacturer :

Manufacturer : Test Site: Operating Conditions : Operator Name: Comment: SM-A736B/DS SAMSUNG SHIELD ROOM BT N

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1500	39.59	66.00	26.41	9.000	N	OFF	9.6
0.1590	39.07	65.52	26.45	9.000	N	OFF	9.6
0.1635	38.86	65.28	26.43	9.000	N	OFF	9.6
0.1703	38.00	64.95	26.95	9.000	N	OFF	9.6
0.1770	37.41	64.63	27.21	9.000	N	OFF	9.6
0.3593	40.20	58.75	18.55	9.000	N	OFF	9.6
0.9500	21.98	56.00	34.02	9.000	N	OFF	9.7
0.9613	21.77	56.00	34.23	9.000	N	OFF	9.7
0.9725	21.49	56.00	34.51	9.000	N	OFF	9.7
1.2200	23.70	56.00	32.30	9.000	N	OFF	9.7
1.2425	23.04	56.00	32.96	9.000	N	OFF	9.7
1.2673	22.74	56.00	33.26	9.000	N	OFF	9.7
14.6300	23.21	60.00	36.79	9.000	N	OFF	10.2
14.7380	23.44	60.00	36.56	9.000	N	OFF	10.2
14.9923	23.34	60.00	36.66	9.000	N	OFF	10.3
15.0148	23.49	60.00	36.51	9.000	N	OFF	10.3
16.1758	23.44	60.00	36.56	9.000	N	OFF	10.3
16.1803	23.50	60.00	36.50	9.000	N	OFF	10.3

2022-02-09

오후 2:22:44

Report No.: HCT-RF-2202-FC026

2/2

BT N

Final_Result_CAV

Frequency (MHz)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	22.32	55.75	33.43	9.000	N	OFF	9.6
0.1635	21.78	55.28	33.51	9.000	N	OFF	9.6
0.1703	21.18	54.95	33.77	9.000	N	OFF	9.6
0.1815	20.89	54.42	33.52	9.000	N	OFF	9.6
0.2445	21.58	51.94	30.37	9.000	N	OFF	9.6
0.3615	35.06	48.69	13.64	9.000	N	OFF	9.6
1.1525	19.32	46.00	26.68	9.000	N	OFF	9.7
1.1615	19.31	46.00	26.69	9.000	N	OFF	9.7
1.1750	19.20	46.00	26.80	9.000	N	OFF	9.7
1.1863	19.08	46.00	26.92	9.000	N	OFF	9.7
1.3123	14.86	46.00	31.14	9.000	N	OFF	9.7
1.3258	14.81	46.00	31.19	9.000	N	OFF	9.7
13.4915	16.72	50.00	33.28	9.000	N	OFF	10.2
14.7020	17.75	50.00	32.25	9.000	N	OFF	10.2
15.5143	17.76	50.00	32.24	9.000	N	OFF	10.3
16.1533	17.64	50.00	32.36	9.000	N	OFF	10.3
16.1758	17.69	50.00	32.31	9.000	N	OFF	10.3
16.6348	17.59	50.00	32.41	9.000	N	OFF	10.3

2022-02-09

오후 2:22:44

11. LIST OF TEST EQUIPMENT

Conducted Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
LISN	ENV216	Rohde & Schwarz	102245	08/23/2022	Annual
EMI Test Receiver	ESR	Rohde & Schwarz	101910	06/17/2022	Annual
Temperature Chamber	SU-642	ESPAC	0093008124	03/15/2022	Annual
Signal Analyzer	N9030A	Agilent	MY49431210	01/11/2023	Annual
Power Measurement Set	OSP 120	Rohde & Schwarz	101231	07/02/2022	Annual
Power Meter	N1911A	Agilent	MY45100523	04/08/2022	Annual
Power Sensor	N1921A	Keysight	MY57820067	04/08/2022	Annual
Directional Coupler	87300B	Agilent	3116A03621	11/02/2022	Annual
Power Splitter	11667B	Hewlett Packard	05001	05/20/2022	Annual
DC Power Supply	E3632A	Hewlett Packard	MY50360067	02/16/2022	Annual
Attenuator(10 dB)	8493C	Hewlett Packard	07560	06/18/2022	Annual
Software	EMC32	Rohde & Schwarz	N/A	N/A	N/A
Bluetooth Tester	CBT	Rohde & Schwarz	100808	02/23/2022	Annual
FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	HCT CO., LTD.	N/A	N/A	N/A

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Report No.: HCT-RF-2202-FC026

Radiated Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
Controller(Antenna mast)	CO3000	Innco system	CO3000-4p	N/A	N/A
Antenna Position Tower	MA4640/800-XP-EP	Innco system	N/A	N/A	N/A
Controller	EM1000	Audix	060520	N/A	N/A
Turn Table	N/A	Audix	N/A	N/A	N/A
Bluetooth Tester	TC-3000B	TESCOM	3000B670110	12/16/2022	Annual
Loop Antenna	FMZB 1513	Rohde & Schwarz	1513-333	03/19/2022	Biennial
Hybrid Antenna	VULB 9168	Schwarzbeck	760	02/22/2023	Biennial
Horn Antenna	BBHA 9120D	Schwarzbeck	02299	05/19/2022	Biennial
Horn Antenna (15 GHz ~ 40 GHz)	BBHA9170	Schwarzbeck	BBHA9170541	11/16/2023	Biennial
Spectrum Analyzer	FSV40-N	Rohde & Schwarz	102168	07/05/2022	Annual
Signal Analyzer	N9030A	Agilent	MY49431210	01/11/2023	Annual
Band Reject Filter	WRCJV12-4900-5100-5900- 6100-50SS	Wainwright Instruments	5	06/24/2022	Annual
Band Reject Filter	WRCJV12-4900-5100-5900- 6100-50SS	Wainwright Instruments	6	06/24/2022	Annual
Band Reject Filter	WRCJV2400/2483.5- 2370/2520-60/12SS	Wainwright Instruments	2	01/06/2023	Annual
Band Reject Filter	WRCJV5100/5850-40/50- 8EEK	Wainwright Instruments	1	02/07/2023	Annual
High Pass Filter	WHK3.0/18G-10EF	Wainwright Instruments	8	01/21/2023	Annual
High Pass Filter	WHKX8-6090-7000-18000- 40SS	Wainwright Instruments	25	01/21/2023	Annual
Attenuator (3 dB)	18B-03	Api tech.	1	01/21/2023	Annual
Attenuator(10 dB)	8493C-10	Agilent	08285	01/21/2023	Annual
Power Amplifier	CBLU1183540	CERNEX	22964	01/21/2023	Annual
Power Amplifier	CBL06185030	CERNEX	22965	01/21/2023	Annual
Power Amplifier	CBL18265035	CERNEX	22966	12/02/2022	Annual
Power Amplifier	CBL26405040	CERNEX	25956	03/23/2022	Annual

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

12. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2202-FC026-P