

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

SAR EVALUATION REPORT

CLASS II PERMISSIVE CHANGE FOR

GSM//WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac, ANT+ and NFC

MODEL NUMBER: SM-A715W

FCC ID: A3LSMA715W

REPORT NUMBER: 4789419657-S1V2

ISSUE DATE: 3/20/2020

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

> TEL: (031) 337-9902 FAX: (031) 213-5433

Testing Laboratory

TL-637

Revision History

Rev.	Date	Revisions	Revised By
V1	3/19/2020	Initial Issue	
V2	3/20/2020	Added Sec 6.4 and Appendix G: Proximity Sensor	Sanghwa Lee

Table of Contents

1.	Attestation of Test Results	5
1.1	1. The Highest Reported SAR for RF exposure conditions for each bands	6
2.	Test Specification, Methods and Procedures	7
3.	Facilities and Accreditation	7
4.	SAR Measurement System & Test Equipment	8
4.1	1. SAR Measurement System	8
4.2	2. SAR Scan Procedures	9
4.3	3. Test Equipment	11
5.	Measurement Uncertainty	12
5.1	1. DECISION RULE	12
6.	Device Under Test (DUT) Information	12
6.1	1. DUT Description	12
6.2	2. Wireless Technologies	13
6.3	3. Nominal and Maximum Output Power	14
6.4	4. Power Back-off Operation	15
7.	RF Exposure Conditions (Test Configurations)	16
8.	Dielectric Property Measurements & System Check	18
8.1	1. Dielectric Property Measurements	18
8.2	2. System Check	19
9.	Conducted Output Power Measurements	20
9.1	1. GSM	20
10.	Measured and Reported (Scaled) SAR Results	21
10.	.1. GSM 1900	23
11.	SAR Measurement Variability	23
12.	DUT Holder Perturbations	24
13.	Simultaneous Transmission SAR Analysis	25
13.	.1. Sum of the SAR for GSM 1900 & Wi-Fi & BT	25
Appe	endixes	26
478	89419657-S1V2 FCC Report SAR_App A_Photos & Ant. Locations	26
478	89419657-S1V2 FCC Report SAR_App B_Highest SAR Test Plots	26
478	89419657-S1V2 FCC Report SAR_App C_System Check Plots	26
478	89419657-S1V2 FCC Report SAR_App D_SAR Tissue Ingredients	26
	Page 3 of 26	

1. Attestation of Test Results

Applicant Name	e	SAMSUNG ELECTRONICS CO.,LTD.				
FCC ID		A3LSMA715W				
Model Number		SM-A715W				
Applicable Star	ndards	FCC 47 CFR § 2.	1093			
		IEEE Std 1528-20	13			
		Published RF exp	osure KDB procedu	ires		
			SAR Limit	s (W/Kg)		
Exposure Cate	gory	Peak spati	al-average	Product Sp	ecific 10g	
		(1g of	tissue)	(10g of t	tissue)	
General population / Uncontrolled exposure		1.6 4.0)		
DE Evacoure C	`anditiona	Equipment Class - The Highest Reported SAR (W/kg)				
RF Exposure C	onditions	PCE	DTS	U-NII	DSS	
Head		0.73	0.15	0.50	< 0.10	
Body-worn		0.69	0.21	0.38	< 0.10	
Hotspot		0.76	0.42	0.45	< 0.10	
Product Specifi	ic 10g	1.93	N/A	1.66	N/A	
	Head	1.23	0.88	1.23	0.78	
Simultaneous	Body-worn	1.06	0.89	1.06	0.70	
TX	Hotspot	1.20	1.17	1.20	0.79	
	Product Specific 10g		N/A	3.59	N/A	
Date Tested		3/18/2020				
Test Results		Pass				

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released By:	Prepared By:
- fres	이상회
Justin Park	Sanghwa Lee
Operations Leader	Senior Laboratory Technician
UL Korea, Ltd. Suwon Laboratory	UL Korea, Ltd. Suwon Laboratory

1.1. The Highest Reported SAR for RF exposure conditions for each bands

Equipment			10g of tissue		
Class	Band	Head Exposure condition	Body-worn Exposure condition	Hotspot Exposure condition	Product Specific Exposure condition
	GSM 850	0.233	0.168	0.302	N/A
	GSM 1900	0.129	0.168	0.295	N/A
	WCDMA Band II	0.228	0.366	0.378	N/A
	WCDMA Band IV	0.224	0.335	0.394	N/A
	WCDMA Band V	0.258	0.335	0.273	N/A
	LTE Band 2	0.266	0.420	0.347	N/A
	LTE Band 4	N/A	N/A	0.384	N/A
PCE	LTE Band 5	0.244	0.196	0.208	N/A
	LTE Band 7	0.729	0.687	0.603	0.995
	LTE Band 12	0.225	0.469	0.561	N/A
	LTE Band 13	0.258	0.245	0.461	N/A
	LTE Band 38	N/A	N/A	N/A	N/A
	LTE Band 41	0.569	0.403	0.498	N/A
	LTE Band 66	0.296	0.454	0.756	1.932
	LTE Band 71	0.166	0.373	0.427	N/A
DTS	2.4GHz WLAN	0.146	0.205	0.416	N/A
UNII	5GHz WLAN	0.501	0.376	0.445	1.656
DSS	Bluetooth	0.054	0.017	0.038	N/A

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, ANSI C63.26-2015 the following FCC Published RF exposure KDB procedures:

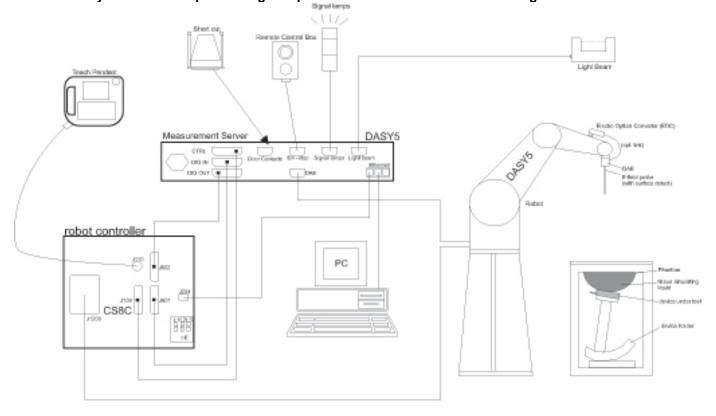
- 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- 648474 D04 Handset SAR v01r03
- 690783 D01 SAR Listings on Grants v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02
- 941225 D01 3G SAR Procedures v03r01
- 941225 D05 SAR for LTE Devices v02r05
- 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02
- 941225 D06 Hotspot Mode v02r01
- 941225 D07 UMPC Mini Tablet v01r02
- 971168 D01 Power Meas License Digital System v03r01

In addition to the above, the following information was used:

- TCB workshop October, 2014; Page 36, RF Exposure Procedures Update (Overlapping LTE Bands)
- o TCB workshop October, 2014; Page 37, RF Exposure Procedures Update (Other LTE Considerations)
- TCB workshop October, 2016; Page 7, RF Exposure Procedures (Bluetooth Duty Factor)
- o TCB workshop October, 2016; Page 18, RF Exposure Procedures (DUT Holder Perturbations)
- TCB workshop May, 2017; Page 6, RF Exposure Procedures (LTE Test Conditions)
- TCB workshop Nov, 2017; Page 9, RF Exposure Procedures (Uplink CA SAR Test Guidance)
- o TCB workshop April, 2018; Page 3, RF Exposure Procedures (LTE DL CA SAR Test Exclusion Update)
- TCB workshop April, 2019 Page 19, RF Exposure Procedures (Tissue Simulating Liquids (TSL))

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at


UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637.

The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the al the measurement resolution must be \leq the corresponx or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

			≤ 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	n,	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δz	Z _{Coom} (n-1)
Minimum zoom scan volume x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Netw ork Analyzer	Agilent	E5071C	MY 46522054	8-7-2020
Dielectric Assessment Kit	SPEAG	DAK-3.5	1196	6-18-2020
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	LKM	DTM3000	3424	8-9-2020

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
MXG Analog Signal Generator	Agilent	N5181A	MY50145882	8-6-2020
Pow er Sensor	Agilent	U2000A	MY54260010	8-9-2020
Pow er Sensor	Agilent	U2000A	MY54260007	8-9-2020
Pow er Amplifier	EXODUS	1410025-AMP2027-10003	10003	8-8-2020
Directional Coupler	Agilent	772D	MY52180193	8-7-2020
Low Pass Filter	FILTRON	L14012FL	1410003S	8-7-2020
Attenuator	Agilent	8491B/003	MY39269292	8-7-2020
Attenuator	Agilent	8491B/010	MY39269315	8-7-2020
Attenuator	Agilent	8491B/020	MY39269298	8-7-2020
E-Field Probe (SAR3)	SPEAG	EX3DV4	7314	8-29-2020
Data Acquisition Electronics (SAR3)	SPEAG	DA E4	1468	9-20-2020
System Validation Dipole	SPEAG	D1900V2	5d190	10-23-2020
Thermometer (SAR3)	Lutron	MHB-382SD	AH.50213	8-8-2020

<u>Others</u>

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Base Station Simulator	R&S	CMW500	150313	8-8-2020

Note(s):

Refer to Appendix F that mentioned about justification for Extended SAR Dipole Calibrations.D1900(SN: 5d190)

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

5.1. DECISION RULE

Decision rule for statement(s) of conformity is based on Procedures 1, Clause 4.4.2 in IEC Guide 115:2007.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	Refer to Appendix A.				
Back Cover	⊠ The Back C	over is not removable.			
Battery Options		geable battery is not user accessible			
Wireless Router (Hotspot)	Wi-Fi Hotspot mode permits the device to share its cellular data connection with other Wi-Fi-enabled devices. ☑ Mobile Hotspot (Wi-Fi 2.4 GHz) ☑ Mobile Hotspot (Wi-Fi 5.8 GHz)				
Wi-Fi Direct	Wi-Fi Direct is only available in hand use configuration. ☑ Wi-Fi Direct (Wi-Fi 2.4 GHz) ☑ Wi-Fi Direct (Wi-Fi 5.2/5.8 GHz)				
Test Sample Information	No. S/N Notes				
	1 R38N108PFNR Main Conducted				
	2	R38N108PGEZ	SAR		

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode		Duty Cycle used for SAR testing
GSM	850 1900	Voice (GMSK) GPRS (GMSK) EGPRS (8PSK) ort DTM (Dual Transfer Mode)	GPRS Multi-Slot Class: □ Class 8 - 1 Up, 4 Down □ Class 10 - 2 Up, 4 Down ☑ Class 12 - 4 Up, 4 Down □ Class 33 - 4 Up, 5 Down ? □ Yes ☒ No	GSM Voice: 12.5% (E)GPRS: 1 Slot: 12.5% 2 Slots: 25% 3 Slots: 37.5% 4 Slots: 50%
W-CDMA (UMTS)	Band II Band IV Band V	UMTS Rel. 99 (Voice & Dath HSDPA (Category 24) HSUPA (Category 6) DC-HSDPA (Category 24) HSPA+ (DL only)		100%
LTE	FDD Band 2 FDD Band 4 FDD Band 5 FDD Band 7 FDD Band 12 FDD Band 13 FDD Band 66 FDD Band 71 TDD Band 38 TDD Band 41 1	QPSK 16QAM 64QAM	QPSK 16QAM	
Wi-Fi	Does this device supp	802.11b 802.11g 802.11n (HT20)	∕es ⊠ No	97.58% (802.11b)
	5 GHz	802.11a 802.11n (HT20) 802.11n (HT40) 802.11ac (VHT20) 802.11ac (VHT40) 802.11ac (VHT80)	802.11n (HT20) 802.11n (HT40) 802.11ac (VHT20) 802.11ac (VHT40)	
		ort bands 5.60 ~ 5.65 GHz? ⊠		1
Bluetooth	2.4 GHz	ort Band gap channel(s)? ⊠ Y Version 5.0 LE	es 🗆 INO	76.9% (DH5)

Notes:

For LTE Band 41, This device supports uplink-downlink configuration 0-6. The configuration with the highest duty cycle was used for Power

class 3(uplink-downlink configuration 0 at 63.3%).

The Bluetooth protocol is considered source-based averaging. Bluetooth GFSK (DH5) was verified to have the highest duty cycle of 76.9% and was considered and used for SAR Testing.

3. Duty cycle for Wi-Fi is referenced from the DTS and UNII report.

6.3. Nominal and Maximum Output Power

KDB 447498 sec.4.1. at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

RF Air interface	Air interface Antenna		Antenna I Mode I		Time Slots	Max. RF Ou (dE	•	Reduced. RF Output Pow er (dBm)	
				Tune-up Limit	Frame Pw r	Tune-up Limit	Frame Pw r		
		Voice	1	31.5	22.5	30.0	21.0		
		GPRS	1	31.5	22.5	30.0	21.0		
		GPRS	2	28.0	22.0	26.5	20.5		
		GPRS	3	26.0	21.7	24.5	20.2		
GSM1900	Main 1 Ant.	GPRS	4	25.0	22.0	23.5	20.5		
		EGPRS	1	25.5	16.5	24.0	15.0		
		EGPRS	2	22.5	16.5	21.0	15.0		
		EGPRS	3	21.5	17.2	20.0	15.7		
			4	20.0	17.0	18.5	15.5		

Notes:

- 1. The device utilizes power reduction under some portable hotspot conditions for SAR compliance. There is power reduction for GSM 1900. The reduced powers were confirmed via conducted power measurements the RF port. Detailed description of the hotspot power reduction mechanism is included in the operational description.
- 2. GSM 1900 has support to proximity sensor back-off function. it is operating during extremity (hand-held) use conditions. And This function is apply to Product Specific 10-g SAR exposure condition. Other Head and Body exposure conditions are performed SAR test at full power. The proximity sensor details explain in SAR report according to Section 6 in KDB 616217.

6.4. Power Back-off Operation

This device supports multiple power back-off modes: WWAN (Ear-jack), WWAN (Hotspot), WWAN (Grip Sensor), WWAN (RCV) and WLAN. Each of the power back-off operates within specific exposure conditions for certain technologies. For full details on how each power back-off mode operates, refer to the Operational Description.

Power	Technologies	Exposure Conditions Active						
Back-off mode	Supported	Head	Body-worn	Hotspot	Extremity			
WWAN (Earjack) ^{1,2}	GSM 1900 W-CDMA B2/4 LTE B2/4/7/38/41/66	N/A	✓	N/A	✓			
WWAN (Hotspot) ¹	GSM 1900 W-CDMA B2/4 LTE B2/4/7/38/41/66	N/A	N/A	✓	N/A			
WWAN (Grip Sensor) ¹	GSM 1900 W-CDMA B2/4 LTE B2/4/7/38/41/66	N/A	N/A	N/A	✓			
WWAN (RCV) ¹	LTE B7/38/41	✓	N/A	N/A	N/A			
WLAN	Wi-Fi 2.4GHz Wi-Fi 5GHz	✓	N/A	N/A	N/A			

Note(s):

Extremity 10g Adjusted SAR Calculation

Wireless technologies	Max Tune-up Limit (dBm)	Reduced Tune-Up Limit (dBm)	Pow er Factor	Reported SAR Limit (W/kg)
GSM 1900	31.5	30.0	1.41	0.850
W-CDMA B2	24.0	21.0	2.00	0.601
W-CDMA B4	24.0	22.0	1.58	0.757
LTE B2	24.5	21.5	2.00	0.601
LTE B4	25.0	23.0	1.58	0.757
LTE B7	23.0	19.5	2.24	0.536
LTE B41	24.0	21.0	2.00	0.601
LTE B66	25.0	22.5	1.78	0.675

Note(s):

Tune-Up Limits for WWAN (Earjack), WWAN (Hotspot), WWAN (Grip Sensor), and WWAN (RCV) are all Reduced Average Powers. Please refer to §9 for all power measurements.

^{2.} Body-worn SAR tested at full power without ear-jack connected because no SAR values were over 1.2 W/kg.

Hotspot mode supports power reduction. When the measured SAR is scaled to the maximum tune-up limit, the adjusted SAR is < 1.2
W/kg. Therefore, Extremity SAR testing is not required for this band in accordance with KDB 648474 §2.5 b. Refer to §10 for Reported
SAR results. If the Reported SAR 1g value in §10 is less than the Reported SAR Limit listed above, then Extremity SAR is not required.

^{2.} LTE 50% RB is scaled up to the Max Tune-Up Limit with MPR included.

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Wireless	RF Exposure	DUT-to-User	Test	Antenna-to-	SAR	Note
technologies	Conditions	Separation	Position	edge/surface	Required	Note
			Left Touch	N/A	Yes	
	Head	0 mm	Left Tilt (15°)	N/A	Yes	
	Heau	O IIIIII	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Body	15 mm	Rear	N/A	Yes	
	Бойу	15 111111	Front	N/A	Yes	
WWAN			Rear	≤ 25 mm	Yes	
Main 1 ANT			Front	≤ 25 mm	Yes	
(GSM850/1900	Hotspot	10 mm	Edge 1 (Top)	> 25 mm	No	1
W-CDMA B2/4/5	поіѕроі	10 111111	Edge 2 (Right)	≤ 25 mm	Yes	
LTE B2/4/5/12/13/			Edge 3 (Bottom)	≤ 25 mm	Yes	
66/71)			Edge 4 (Left)	≤ 25 mm	Yes	
			Rear			
			Front			
	=	0	Edge 1 (Top)	5.6		
	Extremity	0 mm	Edge 2 (Right)	Refer t	o notes 2 & 3	
			Edge 3 (Bottom)	İ		
			Edge 4 (Left)	1		
			Left Touch	N/A	Yes	
	Head	0	Left Tilt (15°)	N/A	Yes	
	пеаа	0 mm	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Dl	45	Rear	N/A	Yes	
	Body	15 mm	Front	N/A	Yes	
			Rear	≤ 25 mm	Yes	
WWAN			Front	≤ 25 mm	Yes	
Main 2 ANT	Hatanat	10 mm	Edge 1 (Top)	≤ 25 mm	Yes	
(LTE B7/38/41)	Hotspot	10 mm	Edge 2 (Right)	> 25 mm	No	1
(LIE D1/30/41)			Edge 3 (Bottom)	> 25 mm	No	1
			Edge 4 (Left)	≤ 25 mm	Yes	
			Rear			•
			Front			
	Esternality	0	Edge 1 (Top)	J	0 0 0	
	Extremity	0 mm	Edge 2 (Right)	Refer t	o notes 2 & 3	
			Edge 3 (Bottom)	1		
			Edge 4 (Left)	1		

Notes:

- 1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.
- 2. For Phablet devices: when hotspot mode applies, Extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
- 3. For Phablet devices: when hotspot mode applies and power reduction applies to hotspot mode, Extremity SAR is required for each test position that has an adjusted SAR to maximum power that is > 1.2 W/kg.

Wireless technologies	RF Exposure Conditions	DUT-to-User Separation	Test Position	Antenna-to- edge/surface	SAR Required	Note
			Left Touch	N/A	Yes	
	Head	0 mm	Left Tilt (15°)	N/A	Yes	
	Head	O IIIIII	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Body	15 mm	Rear	N/A	Yes	
	Войу	13 111111	Front	N/A	Yes	
			Rear	≤ 25 mm	Yes	
	Hotspot	10 mm	Front	≤ 25 mm	Yes	
WLAN			Edge 1 (Top)	≤ 25 mm	Yes	
VVLAIN	Ποιδροί	10 111111	Edge 2 (Right)	≤ 25 mm	Yes	
			Edge 3 (Bottom)	> 25 mm	No	1
			Edge 4 (Left)	> 25 mm	No	1
			Rear			
			Front			
	Extremity	0 mm	Edge 1 (Top)	Refer to notes 2 & 3		
	Extrormity	Omm	Edge 2 (Right)			
			Edge 3 (Bottom)			
			Edge 4 (Left)			

Notes:

- 1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.
- 2. For Phablet devices: when Hotspot Mode is not supported, Extremity SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.
- 3. For Phablet devices: when hotspot mode applies, Extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
 - Wi-Fi Direct is only available in Hand use configuration.

Dielectric Property Measurements & System Check 8.

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	F	Head	Be	ody
rarget Frequency (MHZ)	ε _r	σ (S/m)	$\varepsilon_{\rm r}$	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

SAR test were performed in All RF exposure conditions using Head tissue according to TCB workshop note of April. 2019.

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results: SAR 3 Room

Date	Freq. (MHz)		Lic	quid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Head 1900	e'	39.5000	Relative Permittivity (ε_r):	39.50	40.00	-1.25	5
	e"		13.6500	Conductivity (σ):	1.44	1.40	3.00	5
3-17-2020	17-2020 Head 1850	e'	39.5900	Relative Permittivity (ε_r):	39.59	40.00	-1.02	5
3-17-2020	rieau 1650	e"	13.6900	Conductivity (σ):	1.41	1.40	0.59	5
	Head 1910	e'	39.4700	Relative Permittivity (ε_r):	39.47	40.00	-1.33	5
	Head 1910	e"	13.6400	Conductivity (σ):	1.45	1.40	3.47	5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole
 center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 2.5 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 1.4 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

•

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles.

System Dipole	System Dipole Serial No. Ca		Freq. (MHz)	Target SAR Values (W/kg)			
System Dipole	Serial No.	Cal. Date	1 164. (IVII 12)	1g/10g	Head		
D1900V2	5d190	10-23-2018	1900	1g	39.10		
D1900V2	50190	10-23-2016	1900	10g	20.40		

Note(s):

Refer to Appendix F that mentioned about justification for Extended SAR Dipole Calibrations D1900(SN: 5d190)

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR 3 Room

	System Dipole		T.S.		Measure	d Results	Target	Delta	
Date Tested	Type	Serial#		uid	Zoom Scan to	Normalize	(Ref. Value)	±10 %	Plot No.
	Турс	Octial #	ĽΙΥ	ala	100 mW	to 1 W	(Itel. Value)	110 /0	
3-17-2020	D1900V2	5d190	Head	1g	3.76	37.6	39.10	-3.84	1.2
3-17-2020	D1900V2	50190	neau	10g	1.96	19.6	20.40	-3.92	1, 2

9. Conducted Output Power Measurements

9.1. GSM

Per KDB 941225 D01 3G SAR Procedures:

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

GSM1900 Measured Results(Reduction)

	Coding	Time		Freq.	Re	duced Averaç Hotspot	ge Power (dE back-off	ßm)		duced Average Proximity ser	•	•
Mode	Scheme	Slots	Ch No.	(MHz)	Meas	sured	Tune-u	ıp Limit	Meas	ured	Tune-u	ıp Limit
				` '	Burst Pw r	Frame Pw r	Burst Pw r	Frame Pw r	Burst Pwr	Frame Pw r	Burst Pwr	Frame Pw r
GSM			512	1850.2	28.4	19.3			28.4	19.3		
(Voice)	CS1	1	661	1880.0	28.8	19.8	30.0	21.0	28.7	19.7	30.0	21.0
(VOICC)			810	1909.8	28.9	19.9			28.8	19.8		
			512	1850.2	28.4	19.3			28.4	19.4		
		1	661	1880.0	28.8	19.8	30.0	21.0	28.8	19.8	30.0	21.0
			810	1909.8	28.8	19.8			28.8	19.8		
			512	1850.2	25.9	19.9			25.9	19.9		
		2	661	1880.0	26.1	20.0	26.5	20.5	26.0	20.0	26.5	20.5
GPRS	CS1		810	1909.8	25.8	19.8			25.8	19.8		
(GMSK)	G		512	1850.2	22.6	18.3			22.6	18.3	24.5	
		3	661	1880.0	22.8	18.5	24.5	20.2	22.8	18.5		20.2
			810	1909.8	22.6	18.3			22.7	18.4		
			512	1850.2	22.2	19.1			22.2	19.1		
		4	661	1880.0	22.4	19.4	23.5	20.5	22.4	19.4	23.5	23.5 20.5
			810	1909.8	22.2	19.2			22.2	19.2		
			512	1850.2	22.9	13.9			22.9	13.9		
		1	661	1880.0	22.9	13.8	24.0	15.0	22.9	13.8	24.0	15.0
			810	1909.8	22.6	13.6			22.6	13.6		
			512	1850.2	20.0	14.0			20.0	14.0		
		2	661	1880.0	20.1	14.1	21.0	15.0	20.1	14.1	21.0	15.0
EGPRS	MCS5		810	1909.8	19.8	13.8			19.8	13.8		
(8PSK)	IVICOS		512	1850.2	19.1	14.8			19.1	14.8		
		3	661	1880.0	19.1	14.9	20.0	15.7	19.2	14.9	20.0	15.7
			810	1909.8	18.9	14.6			18.9	14.6		
			512	1850.2	17.1	14.1			17.1	14.1		1
		4	661	1880.0	17.2	14.2	18.5	15.5	17.2	14.2	18.5	15.5
			810	1909.8	16.9	13.9			16.9	13.9		

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- GMSK (GPRS) mode with 1 time slot for Reduced power, based on the Tune-up Procedure. Refer to §6.3.
- SAR is not required for EGPRS (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4dB higher than GMSK GPRS or the adjusted SAR of the highest reported SAR of GMSK GPRS is ≤ 1.2W/kg.

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN= Measured SAR *Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi and Bluetooth= Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 648474 D04 Handset SAR (Phablet Only):

For smart phones, with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm.

When hotspot mode does not apply, 10-g extremity SAR is required for all surfaces and edges with an antenna located at \leq 25mm From that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; However, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, Including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

Additional 1-g SAR testing at 5 mm is not required when hotspot mode 10-g extremity SAR is not required for the surfaces and edges; since all 1-g reported SAR < 1.2 W/kg.

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low,
 Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available
 non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth
 configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the
 requirement for H, M and L channels may not fully apply.

Page 21 of 26

KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the <u>initial test position(s)</u> by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The <u>initial test position(s)</u> is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the <u>reported SAR</u> for the <u>initial test position</u> is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported SAR</u> is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported SAR</u> is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII
 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not
 required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has
 the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2
 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands
 independently for SAR.

To determine the <u>initial test position</u>, Area Scans were performed to determine the position with the <u>Maximum Value of SAR</u> (measured). The position that produced the highest <u>Maximum Value of SAR</u> is considered the worst case position; thus used as the <u>initial test position</u>.

10.1. GSM 1900

RF Exposure			PWR	Dist.			Freq. (MHz)	Power (dBm)		1-g SAR (W/kg)		Plot		
Antenna	Conditions	Mode	(mm)	Test Position	Ch #.	Tune-up limit		Meas.	Meas.	Scaled	No.			
					Rear	661	1880.0	30.0	28.8	0.256	0.336	1		
		OPPO	On	On 10		Front	661	1880.0	30.0	28.8	0.124	0.163		
Main Ant.1	Hotspot	GPRS 1 Slot			On	On	On	10	Edge 2	661	1880.0	30.0	28.8	0.037
		1 0100			Edge 3	661	1880.0	30.0	28.8	0.181	0.237			
					Edge 4	661	1880.0	30.0	28.8	0.108	0.142			

Note(s):

Head and Body-worn SAR levels are reference to Original filing granted in 03/05/2020.

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Peak spatial-average (1g of tissue)

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	Repeated Measured SAR (W/kg)	Largest to Smallest SAR Ratio
1900	GSM 1900	Hotspot	Rear	No	0.256	N/A	N/A

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

12. DUT Holder Perturbations

In accordance with published DUT Holder Perturbations in Oct.2016 TCB workshop,

When Highest reported SAR is over 1.2 or 3.0 W/kg (1-g or 10-g respectively), Holder perturbation verification is required for each antenna, using the highest configuration among all applicable frequency bands. Both Head test and Body test (Edge 1-4 sides) are evaluated with DUT holder. Both Front and Rear sides are evaluated without DUT holder. (Details of test setup are refer to Appendix A.)

So we are only consider about Head test and Body test (Edge 1-4 sides).

All highest SAR level is not over 1.2 or 3.0 W/kg (1-g or 10-g respectively) in All bands.

Please refer to Section 10. So DUT Holder perturbations verification are not required.

13. Simultaneous Transmission SAR Analysis

Simultaneous Transmission Condition

RF Exposure Condition	Item	Capable Transmit Configurations					
Head Body-w orn Hotspot	1	GSM(Voice)	+	DTS			
	2	GSM(Voice)	+	U-NII			
	3	GSM(Voice)	+	BT			
	4	GSM(GPRS/EDGE)	+	DTS			
	5	GSM(GPRS/EDGE)	+	U-NII			
	6	GSM(GPRS/EDGE)	+	BT			
	7	W-CDMA	+	DTS			
	8	W-CDMA	+	U-NII			
	9	W-CDMA	+	BT			
	10	LTE	+	DTS			
	11	LTE	+	U-NII			
	12	LTE	+	BT			

Notes:

- 1. DTS & UNII supports Hotspot.
- 2. GPRS/EDGE, W-CDMA, and LTE support Hotspot.
- 3. DTS Radio cannot transmit simultaneously with Bluetooth Radio.
- 4. U-NII Radio cannot transmit simultaneously with Bluetooth Radio.

Simultaneous transmission SAR test exclusion considerations

KDB 447498 D01 General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

13.1. Sum of the SAR for GSM 1900 & Wi-Fi & BT

RF Exposure conditions		Standalone	SAR (W/kg)	∑ 1-g SAR (W/kg)			
	1	2	3	4	1+2	1+3	1+4
	WWAN	Wi-Fi 2.4G	Wi-Fi 5G	BT	172		
Hotspot	0.336	0.416	0.445	0.038	0.752	0.781	0.374

Note(s):

DTS, UNII and BT SAR levels are reference to Original filing granted in 03/05/2020.

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the sum of the 1-g SAR (10-g SAR) is < 1.6 W/kg (4.0 W/kg).

Page 25 of 26

Appendixes

Refer to separated files for the following appendixes.

4789419657-S1V2 FCC Report SAR_App A_Photos & Ant. Locations 4789419657-S1V2 FCC Report SAR_App B_Highest SAR Test Plots 4789419657-S1V2 FCC Report SAR_App C_System Check Plots 4789419657-S1V2 FCC Report SAR_App D_SAR Tissue Ingredients 4789419657-S1V2 FCC Report SAR_App E_Probe Cal. Certificates 4789419657-S1V2 FCC Report SAR_App F_Dipole Cal. Certificates 4789419657-S1V2 FCC Report SAR_App G Proximity Sensor

END OF REPORT