

FCC CFR47 PART 15 SUBPART C

Bluetooth Low Energy

CERTIFICATION TEST REPORT

FOR

GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n, ANT+ and NFC

MODEL NUMBER: SM-A710M/DS, SM-A710M

FCC ID: A3LSMA710M

REPORT NUMBER: 15K22211-E2

ISSUE DATE: NOV 30, 2015

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

TEL: (031) 337-9902 FAX: (031) 213-5433

Revision History

Rev.	Issue Date	Revisions	Revised By
	11/30/15	Initial issue	Junwhan Lee

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	. 5
2.	TEST METHODOLOGY	. 6
3.	FACILITIES AND ACCREDITATION	6
4.	CALIBRATION AND UNCERTAINTY	. 6
4.	1. MEASURING INSTRUMENT CALIBRATION	. 6
4.2	2. SAMPLE CALCULATION	6
4.	3. MEASUREMENT UNCERTAINTY	. 7
5.	EQUIPMENT UNDER TEST	. 8
5.	1. DESCRIPTION OF EUT	. 8
5.2	2. MAXIMUM OUTPUT POWER	. 8
5.	3. DESCRIPTION OF AVAILABLE ANTENNAS	8
5.4	4. WORST-CASE CONFIGURATION AND MODE	. 8
5.	5. DESCRIPTION OF TEST SETUP	ç
6.	TEST AND MEASUREMENT EQUIPMENT1	11
7.	MEASUREMENT METHODS	12
8.	ON TIME, DUTY CYCLE AND MEASUREMENT METHODS1	12
8.	1. ON TIME AND DUTY CYCLE RESULTS	12
9.	SUMMARY TABLE	13
10.	ANTENNA PORT TEST RESULTS1	14
_	0.1. 6 dB BANDWIDTH	
10	0.2. 99% BANDWIDTH	
10	0.3. OUTPUT POWER	15
10	0.4. AVERAGE POWER	15
10	0.5. PSD	16
10	0.6. CONDUCTED SPURIOUS EMISSIONS	16
11.	RADIATED TEST RESULTS	17
11	1.1. LIMITS AND PROCEDURE	17
11	1.2. TRANSMITTER ABOVE 1 GHz	17
11	1.3. WORST-CASE BELOW 1 GHz	17
12.	AC POWER LINE CONDUCTED EMISSIONS	18
	Page 3 of 24	

UL Korea, Ltd. Suwon Laboratory

FORM ID: FCC_15C

218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

REPORT NO: 15K22211-E2
FCC ID: A3LSMA710M

DATE: NOV 30, 2015

SETUP PHOTOS.......19 13.

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SAMSUNG ELECTRONICS CO., LTD.

EUT DESCRIPTION: GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n, ANT+ and NFC

MODEL NUMBER: SM-A710M/DS, SM-A710M

SERIAL NUMBER: R38GA0JTKBJ (RADIATED); R38GA0JQBRZ (CONDUCTED)

DATE TESTED: OCT 29, 2015 - NOV 25, 2015

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Korea, Ltd. By:

Tested By:

CY Choi Suwon Lab Engineer UL Korea, Ltd.

The

Junwhan Lee Suwon Lab Engineer UL Korea, Ltd.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea. Line conducted emissions are measured only at the 218 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

218 Maeyeong-ro	
☐ Chamber 2	

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) - Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

DATE: NOV 30, 2015

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	2.32 dB
Radiated Disturbance, Below 1GHz	4.14 dB
Radiated Disturbance, Above 1 GHz	5.97 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n, ANT+ and NFC. This test report addresses the BLE (BLE) operational mode.

SM-A710M and SM-A710M/DS are same hardware but for different number of SIM card slot. SM-A710M has one slot. SM-A710M/DS is dual SIM version.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum total conducted output power as follows:

Frequency Range [MHz]	Mode	Power Mode	Output Power [dBm]	Output Power [mW]
2402 - 2480	DIE	Peak	5.379	3.45
2402 - 2460	BLE	Average	5.103	3.24

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an FPCB antenna, with a maximum gain of 1.63dBi.

5.4. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

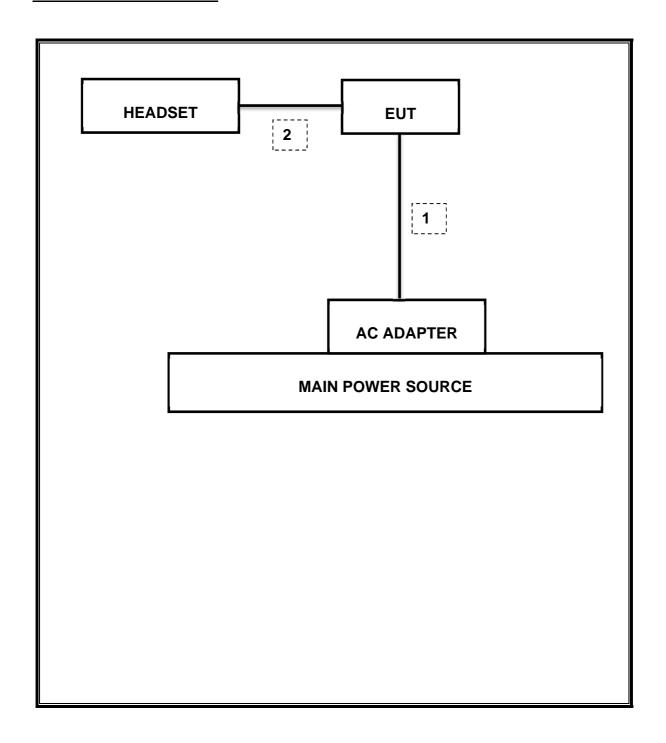
The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

DATE: NOV 30, 2015

5.5. **DESCRIPTION OF TEST SETUP**

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
Charger	SAMSUNG	EP-TA20EWE	R37G8H02Q92SE3	N/A			
Data Cable	SAMSUNG	ECB-DU4AWE	N/A	N/A			
Earphone	SAMSUNG	EHS64AVFWE	N/A	N/A			


I/O CABLES

	I/O Cable List								
Cable Port # of identical Connector Cable Type Cable Remarks					Remarks				
No		ports	Туре		Length (m)				
1	DC Power	1	Mini-USB	Shielded	0.8m	N/A			
1	Audio	1	Mini-Jack	Unshielded	1.0m	N/A			

TEST SETUP

The EUT is a stand-alone unit during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model	S/N	Cal Due			
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	749	04-25-16			
Antenna, Horn, 18 GHz	ETS	3115	00161451	05-17-16			
Antenna, Horn, 18 GHz	ETS	3117	00168724	06-17-16			
Antenna, Horn, 18 GHz	ETS	3117	00168717	06-17-16			
Antenna, Horn, 40 GHz	ETS	3116C	00166255	09-23-16			
Antenna, Horn, 40 GHz	ETS	3116C-PA	00168841	09-29-16			
Preamplifier, 1000 MHz	Sonoma	310N	341282	08-18-16			
Preamplifier, 1000 MHz	Sonoma	310N	351741	08-18-16			
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1876511	08-18-16			
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1896138	08-18-16			
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54170614	08-19-16			
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54490312	08-19-16			
Bluetooth Tester	TESCOM	TC-3000C	3000C000546	08-18-16			
Average Power Sensor	R&S	NRZ-Z91	102681	08-18-16			
Average Power Sensor	Agilent / HP	U2000	MY54270007	08-18-16			
EMI Test Receive, 40 GHz	R&S	ESU40	100439	08-19-16			
EMI Test Receive, 40 GHz	R&S	ESU40	100457	08-19-16			
EMI Test Receive, 3 GHz	R&S	ESR3	101832	08-19-16			
Attenuator / Switch driver	HP	11713A	3748A04272	N/A			
Low Pass Filter 3GHz	Micro-Tronics	LPS17541	009	08-18-16			
Low Pass Filter 3GHz	Micro-Tronics	LPS17541	015	08-18-16			
High Pass Filter 5GHz	Micro-Tronics	HPS17542	009	08-18-16			
High Pass Filter 6GHz	Micro-Tronics	HPM17543	010	08-18-16			
High Pass Filter 5GHz	Micro-Tronics	HPS17542	016	08-18-16			
High Pass Filter 6GHz	Micro-Tronics	HPM17543	015	08-18-16			
LISN	R&S	ENV-216	101836	08-19-16			
LISN	R&S	ENV-216	101837	08-19-16			

7. MEASUREMENT METHODS

KDB 558074 D01 BLE Meas Guidance v03r03: Measurement Procedure §9.1.1 is used for peak power and §10.2 PKPSD is used for power spectral density.

Unwanted emissions within Restricted Bands are measured using traditional radiated procedures.

Band edge emissions within Restricted Bands are measured using RMS with duty cycle factor offset method.

8. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

LIMITS

None: for reporting purposes only.

8.1. ON TIME AND DUTY CYCLE RESULTS

9. SUMMARY TABLE

The FCC ID: A3LSMA710M shares the same enclosure and circuit board as FCC ID: A3LSMA710F. The BLE circuitry and layout, including antennas, are almost identical between the two units. The BLE antennas and surrounding circuitry are the same between these two units.

After confirming through preliminary radiated emissions that the performance of the FCC ID: A3LSMA710F remains representative of FCC ID: A3LSMA710M, test data for FCC ID: A3LSMA710F is being submitted for this application to cover BLE features.

FCC Part Section	Test Description	Test Limit	Test Condition	Test Result	Worst Case
15.247 (a)(2)	Occupied Band width (6dB)	>500KHz		Pass	690.6 kHz
2.1051, 15.247 (d)	Band Edge / Conducted Spurious Emission	-20dBc	Conducted	Pass	-53.388 dBm
15.247	TX conducted output power	<30dBm	Conducted	Pass	5.379 dBm (Peak)
15.247	PSD	<8dBm		Pass	-8.85 dBm (Peak)
15.207 (a)	AC Power Line conducted emissions	Section 10	Power Line conducted	Pass	42.97 dBuV (QP)
15.205, 15.209	Radiated Spurious Emission	< 40dBuV/m	Radiated	Pass	31.37 dBuV/m (QP)

DATE: NOV 30, 2015

10. ANTENNA PORT TEST RESULTS

10.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Please refer to BLE test report of FCC ID: A3LSMA710F

10.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

10.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using KDB558074 D01 BLE Meas Guidance v03r03 under section 9.1.1 utilizing spectrum analyze.

RESULTS

Please refer to BLE test report of FCC ID: A3LSMA710F

10.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

10.5. PSD

LIMITS

FCC §15.247

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Power Spectral Density was performed utilizing the "Method PKPSD (Peak PSD)" under KDB558074 D01 BLE Meas Guidance v03r03

RESULTS

Please refer to BLE test report of FCC ID: A3LSMA710F

10.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

11. RADIATED TEST RESULTS

11.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10 - 2009. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and add duty cycle factor for average measurements. Duty cycle factor = $10 \log (1/x)$. For this sample: DCF = $10\log(1/0.624)$ =2.06dB (Spectrum Analyzer round it up to 2.06dB)

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

11.2. TRANSMITTER ABOVE 1 GHz

RESULTS

Please refer to BLE test report of FCC ID: A3LSMA710F

11.3. WORST-CASE BELOW 1 GHz

RESULTS

Please refer to BLE test report of FCC ID: A3LSMA710F

Page 17 of 24

UL Korea, Ltd. Suwon Laboratory

FORM ID: FCC 15C

218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

DATE: NOV 30, 2015

12. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.10 - 2009

RESULTS