

CERTIFICATION TEST REPORT

Report Number. : 12810836-E8V2

- Applicant : Samsung Electronics Co., Ltd. 129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16677, Korea
 - Model : SM-A705YN
 - FCC ID : A3LSMA705YN
- **EUT Description :** GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, ANT+, and NFC
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C

Date Of Issue: April 29, 2019

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	4/22/2019	Initial Issue	
V2	4/29/2019	Updated Section 12.1	K.Kedida

Page 2 of 49

TABLE OF CONTENTS

REPOR	T REVISION HISTORY	2
TABLE	OF CONTENTS	3
1. AT	TESTATION OF TEST RESULTS	5
2. INT	RODUCTION OF TEST DATA REUSE	6
2.1.	INTRODUCTION	6
2.2.	DIFFERENCES	6
2.3.	SPOT CHECK VERIFICATION RESULTS SUMMARY	6
2.4.	REFERENCE DETAIL	2
3. TE	ST METHODOLOGY13	3
4. FA	CILITIES AND ACCREDITATION1	3
5. CA	LIBRATION AND UNCERTAINTY14	4
5.1.	MEASURING INSTRUMENT CALIBRATION1	4
5.2.	SAMPLE CALCULATION	4
5.3.	MEASUREMENT UNCERTAINTY1	4
6. EQ	UIPMENT UNDER TEST1	5
6.1.	EUT DESCRIPTION1	5
6.2.	MAXIMUM FUNDAMENTAL FIELD STRENGTH1	5
6.3.	DESCRIPTION OF AVAILABLE ANTENNAS1	5
6.4.	SOFTWARE AND FIRMWARE1	5
6.5.	WORST-CASE CONFIGURATION AND MODE1	5
6.6.	DESCRIPTION OF TEST SETUP1	5
7. TE	ST AND MEASUREMENT EQUIPMENT19	3
8. ME	ASUREMENT METHODS20	0
9. AN	TENNA PORT TEST RESULTS2	1
9.1.	ON TIME AND DUTY CYCLE2	1
9.2.	20dB BANDWIDTH2	3
10. F	ADIATED TEST RESULTS	5
10.1.	TRANSMITTER ABOVE 1 GHz2	7
10.2.	FUNDAMENTAL FREQUENCY RADIATED EMISSION	7
10.3.	WORST CASE BELOW 30 MHz	8
10.4.	WORST CASE BELOW 1 GHz	9

Page 3 of 49

REPORT NO: 12810836-E8V2 FCC ID: A3LSMG975YN

5. WOF	RST CASE 18-26 GHz	41
AC POW	ER LINE CONDUCTED EMISSIONS	43
SETUP F	PHOTOS	46
1. SM-/	A705FN/DS (ORIGINAL)	46
2. SM-7	A705YN (Spot Check)	49
	AC POW SETUP F	5. WORST CASE 18-26 GHz AC POWER LINE CONDUCTED EMISSIONS

Complies

1. ATTESTATION OF TEST RESULTS

COMPANY NAME	: Samsung Electronics Co., 129 Samsung-Ro, Yeongto Suwon-Si, Gyeonggi-Do, 1	ong-Gu,
EUT DESCRIPTION	I: GSM/WCDMA/LTE Phone and NFC	e with BT, DTS/UNII a/b/g/n/ac, ANT+,
MODEL:	SM-A705YN	
SERIAL NUMBER:	Radiated (Original):R38M1 Conducted (Original):R38M Radiated (Spot Check): R3	
DATE TESTED:	February 21 – March 27, 20 April 11, 2019 (Spot Check)	
	APPLICABLE STAND	ARDS
	STANDARD	TEST RESULTS

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

CFR 47 Part 15 Subpart C

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

Dan Coronia Operations Leader Consumer Technology Division UL Verification Services Inc.

Reviewed By:

Kiya Kedida Project Engineer Consumer Technology Division UL Verification Services Inc.

Page 5 of 49

2. INTRODUCTION OF TEST DATA REUSE

2.1. INTRODUCTION

According to the manufacturer, FCC ID: A3LSMA705FN and FCC ID: A3LSMA705YN nonlicensed radios are electrically identical. The FCC ID: A3LSMA705FN test data shall remain representative of FCC ID: A3LSMA705YN.

The applicant takes full responsibility that the test data as referenced in this section represents compliance for this FCC ID.

2.2. DIFFERENCES

The FCC ID: A3LSMA705FN, shares the same enclosure and circuit board as FCC ID: A3LSMA705YN. The ANT+ antennas and surrounding circuitry and layout are identical between two models.

After confirming through preliminary radiated emissions that the performance of the FCC ID: A3LSMG705FN remains representative of FCC ID: A3LSMA705YN. The test data of FCC ID: A3LSMG705FN being submitted for this application to cover ANT+ features.

2.3. SPOT CHECK VERIFICATION RESULTS SUMMARY

Spot check verification has been done on device A3LSMA705YN for radiated harmonic spurious and radiated band-edge. The data from the application has been verified through appropriate spot checks to demonstrate compliance for this device in accordance to FCC public KDB 484596 D01 as shown in the summary below.

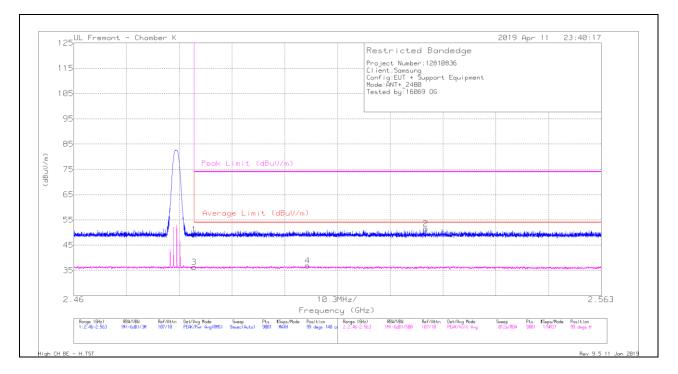
	A3LSMA705YN SPOT CHECK RESULTS												
			Manager	Original n	nodel	Spot o mo							
Technology	Test Item	Channel	Measured	SM-A705F	N/DS	SM-A70	5YN/DS	Delta (dB)					
				A3LSMA7	A3LSMA705FN		\705YN						
			Frequency	Peak	Ave	Peak	Ave	Peak	Ave				
	Fundamental	80	2480MHz	89.41	55.72	87.59	53.9	-1.82	-1.82				
ANT+	RBE	80	2507MHz	51.59	39.9	51.66	36.87	0.07	-3.03				
	RSE	02	2764MHz	51.5	42.92	49.47	36.77	-2.03	-6.15				

Comparison of the models, upper deviation is within 3dB range and all tests are under FCC Technical Limits.

SPOT CHECK DATA

FUNDAMENTAL FREQUENCY RADIATED EMISSION

Marker	Frequency	Meter	Det	AF T862	Amp/Cbl/Fltr/Pad	DC Corr	Corrected	Avg Limit	Margin	Peak Limit	PK	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	(dB)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)					(dBuV/m)				(dB)			
1	2.48	80.09	PKFH	32.3	-24.8		87.59	-	-	114	-26.41	350	284	н
	2.48	80.09	AVG	32.3	-24.8	-33.69	53.9	94	-40.1	•	-	350	284	н
2	2.48	75.29	PKFH	32.3	-24.8		82.79	-	-	114	-31.21	301	345	V
	2.48	75.29	AVG	32.3	-24.8	-33.69	49.1	94	-44.9	-	-	301	345	V


PKFH - FHSS: RB=1MHz VB=3 x RB, Peak

AVG = Peak Reading + Duty Cycle Correction Factor

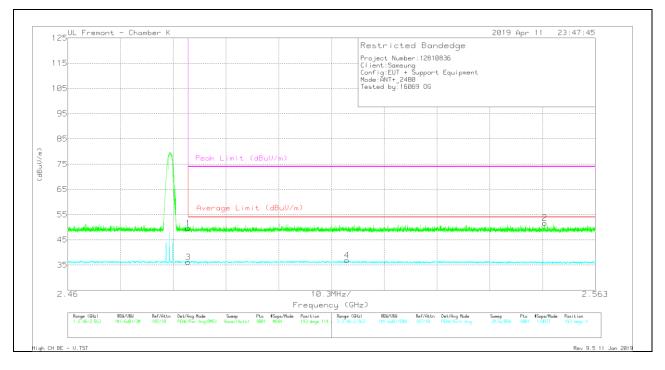
Duty Cycle Correction Factor = -33.69 dB

Page 7 of 49

BANDEDGE (HIGH CHANNEL)

HORIZONTAL RESULT

Trace Markers


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	41.71	Pk	32.3	-24.8	49.21	-		74	-24.79	99	140	Н
2	2.529	44.04	Pk	32.3	-24.8	51.54	-	-	74	-22.46	99	140	н
3	* 2.484	28.81	VA1T	32.3	-24.8	36.31	54	-17.69	-	-	99	140	Н
4	2.506	29.27	VA1T	32.3	-24.7	36.87	54	-17.13	-	•	99	140	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

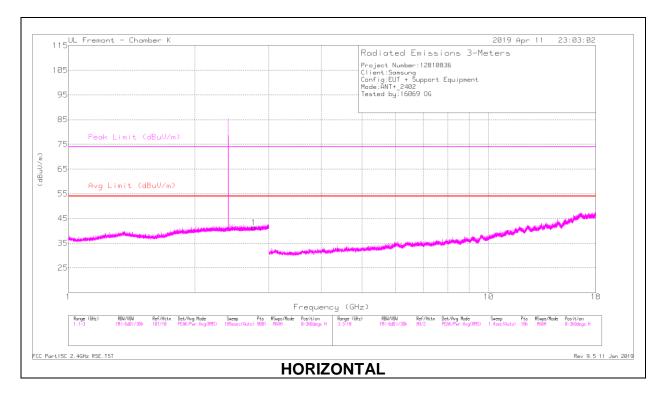
Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

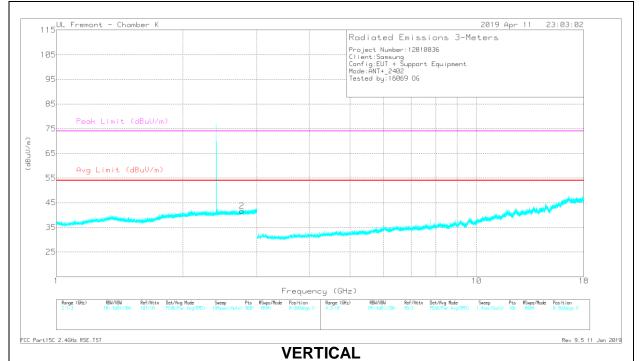
VERTICAL RESULT

Trace Markers

Marker	Frequency (GHz)	Meter Reading	Det	AF T344	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading	Average Limit	Margin (dB)	Peak Limit	PK Margin	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 2.484	42.08	Pk	32.3	-24.8	49.58	-	-	74	-24.42	193	114	V
2	2.553	44.16	Pk	32.3	-24.8	51.66	-	-	74	-22.34	193	114	V
3	* 2.484	28.68	VA1T	32.3	-24.8	36.18	54	-17.82	-	-	193	113	V
4	2.515	29.27	VA1T	32.3	-24.7	36.87	54	-17.13	-	-	193	113	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector


VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 9 of 49

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL RESULTS

Page 10 of 49

RADIATED EMISSIONS

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	Corrected	Avg	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		T344	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 2.763	42.03	PKFH	32.3	-24.5	49.83	-	-	74	-24.17	177	392	н
	* 2.763	29.05	VA1T	32.3	-24.5	36.85	54	-17.15	-	-	177	392	Н
2	* 2.766	41.67	PKFH	32.3	-24.5	49.47	-	-	74	-24.53	85	260	V
	* 2.765	28.97	VA1T	32.3	-24.5	36.77	54	-17.23	-	-	85	260	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

PKFH FHSS/BT RB=100k for Frequencies<1GHz / RB=1MHz for Frequencies>1GHz, VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

2.4. **REFERENCE DETAIL**

Reference application that contains the reused reference data

Equipment Class	Reference FCC ID	Type Grant/ Permissive Change	Reference Application	Folder Test/RF Exposure	Report Title/Section
DXX	A3LSMA705FN	Grant	12726900-E8	Test	FCC Report ANT+ / All sections

Page 12 of 49

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, and ANSI C63.10-2013.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd
Chamber A (ISED:2324B-1)	Chamber D (ISED:22541-1)	Chamber I (ISED:2324A-5)
Chamber B (ISED:2324B-2)	Chamber E (ISED:22541-2)	Chamber J (ISED:2324A-6)
Chamber C (ISED:2324B-3)	Chamber F (ISED:22541-3)	Chamber K (ISED:2324A-1)
	Chamber G (ISED:22541-4)	Chamber L (ISED:2324A-3)
	Chamber H (ISED:22541-5)	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

Page 13 of 49

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB + 10.1 dB + 0 dB = 46.6 dBuV

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	3.15 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.32 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.45 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.24 dB

Uncertainty figures are valid to a confidence level of 95%.

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The EUT is a GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, ANT+, and NFC. The model SM-A705FN/DS was used for final testing and is representative of the test results in this report

6.2. MAXIMUM FUNDAMENTAL FIELD STRENGTH

The transmitter has a maximum peak fundamental field strength as follows:

Frequency Range	Mode	Peak E-field Strength	Avg E-field Strength	Distance
(MHz)		(dBuV/m)	(dBuV/m)	(m)
2402 - 2480	ANT +	89.41	55.72	3.00

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an FPCB antenna, with a maximum gain of -4.88 dBi.

6.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was A705FN.001.

6.5. WORST-CASE CONFIGURATION AND MODE

WORST-CASE CONFIGURATION AND MODE FOR FINAL TEST

Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle and high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

All radios that can be transmitted simultaneously have been evaluated for radiated for all possible combinations of transmission and found to be in compliance.

6.6. DESCRIPTION OF TEST SETUP

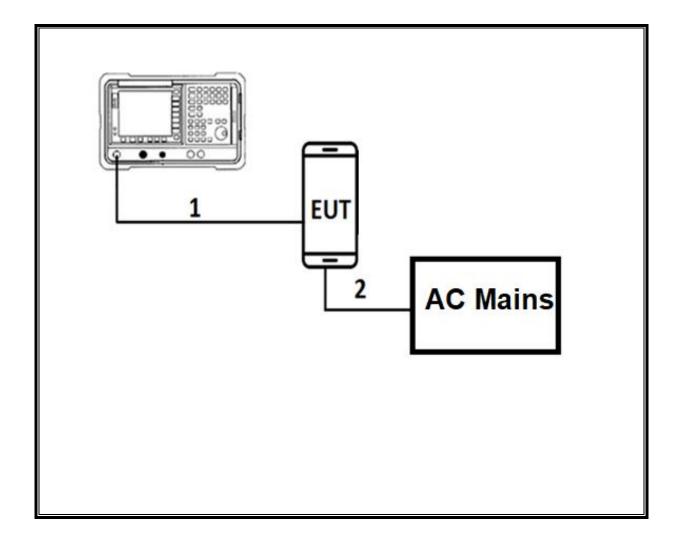
SUPPORT EQUIPMENT

Support Equipment List									
Description	Manufacturer	Model	Serial Number	FCC ID					
AC Adapter	Samsung	EP-TA50EWE	DW3J719AS/A-E	N/A					
Earphone	Samsung	N/A	N/A	N/A					

I/O CABLES (CONDUCTED TEST)

	I/O Cable List											
Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks						
No		ports	Туре		Length (m)							
1	Antenna	1	RF	Shielded	0.2	To spectrum Analyzer						
2	USB	1	USB	Un-shielded	1	EUT to AC Mains						

I/O CABLES (RADIATED AND CONDUCTED EMISSIONS)

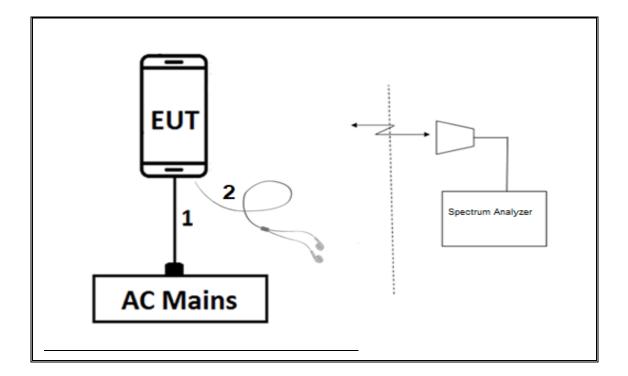

	I/O Cable List										
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks					
1	USB	1	USB	Shielded	1	N/A					
2	Earphone	1	3.5mm	Un-shielded	1	N/A					

TEST SETUP

The EUT is a stand alone unit. Test software exercised the radio card.

Page 16 of 49

CONDUCTED TEST SETUP DIAGRAM



TEST SETUP

For conducted tests: the EUT was stand alone. The test software exercises the radio.

Page 17 of 49

RADIATED AND AC LINE CONDUCTED EMISSIONS SETUP DIAGRAM

TEST SETUP

For radiated tests, the EUT is stand alone unit and the test software exercises the radio.

Page 18 of 49

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIP	MENT LIST			
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal
6 port rf switch, 1-18GHz	Pasternack	PE7159	171455	08/01/2019	08/01/2018
Power Meter, P-series single channel	Agilent (Keysight) Technologies	N1911A	T1271	07/26/2019	07/26/2018
Power Sensor, P-series, 50MHz to 18GHz, Wideband	Agilent (Keysight) Technologies	N1921A	T1224	10/09/2019	10/09/2018
Antenna, Active Loop 9kHz-30MHz	ETS-Lindgren	6502	T757	09/25/2019	09/25/2018
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T344	04/30/2019	04/30/2018
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T862	05/25/2019	05/25/2018
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179372	05/04/2019	05/04/2018
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179375	05/08/2019	05/08/2018
Amplifier, 1-18GHz, 35 dB	AMPLICAL	AMP1G18-35	T1569	06/03/2019	06/23/2018
Amplifier, 1-18GHz, 35 dB	AMPLICAL	AMP1G18-35	T1571	07/30/2019	07/30/2018
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T908	01/23/2020	01/23/2019
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T341	09/26/2019	09/26/2018
Amplifier, 100kHz to 1GHz, 32 dB	Agilent (Keysight) Technologies	8447D	T15	10/20/2019	10/20/2018
Hybrid Antenna, 30MHz to 3GHz	SunAR rf motion	JB3	PRE0181574	08/21/2019	08/21/2018
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826/B	T447	06/16/2019	06/16/2018
Pre-Amp, 1-26.5GHz	Agilent	8449B	T404	03/09/2019	03/09/2018
	AC Line Co	nducted			
EMI Receiver	Rohde & Schwarz	ESR	T1436	02/14/2020	02/14/2019
LISN for Conducted Emissions CISPR-16	FCC INC.	FCC LISN 50/250	T1310	06/15/2019	06/15/2018
	Test Softw	are List			
Radiated Software	UL	UL E	MC	Ver 9.5, Ju	ne 22, 2018
Antenna Port Software	UL	UL	RF	Ver 9.3.2, Ja	an. 07, 2019
AC Line Conducted Software	UL	UL E	MC	Ver 9.5, Ma	ay 26, 2015

NOTES:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Page 19 of 49

8. MEASUREMENT METHODS

On Time and Duty Cycle: ANSI C63.10-2013 Section 11.6

Occupied BW (20dB): ANSI C63.10-2013 Section 6.9.2

Radiated Spurious Emissions 30-1000MHz: ANSI C63.10-2013 Section 6.3 and 6.5

Radiated Spurious Emissions above 1GHz: ANSI C63.10-2013 Section 6.3 and 6.6

Radiated Band-edge: ANSI C63.10-2013 Section 6.10.5

AC Power-line conducted emissions: ANSI C63.10-2013, Section 6.2.

Page 20 of 49

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

ANSI C63.10, Section 11.6 : Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

NOTE: For ON TIME measurement:

ON Time over 1msec period x No. of pulses over 100msec period = ON TIME 159us x 13 pulses = 2.067msec

					Duty Cycle
					Correction Factor
	ON Time		Duty Cycle	Duty	for Average
Mode	В	Period	x	Cycle	Measurements
	(msec)	(msec)	(linear)	(%)	(dB)
2.4GHz Band					
	2.067	100.00	0.021	2.07%	-33.69

DUTY CYCLE PLOTS

Ref Level 107.00 dBµV	• RBW			SGL		▽
 Att 10 dB Input 1 DC 	SWT 1 ms < VBW	50 MHz Off			Frequency 2.40	20000 GHz
1 Zero Span					MIL	 1Pk Clrw 66.51 dBµV
100 dBµV					INTL:	539.000 µs
					D2[1] -0.28 dB 159.000 μs
90 dBµV						199.000 µs
80 dBµV						
70 dBµV				<u>0</u> 2		
(0. db.))				4		
60 dBµV						
50 dBµV						
unional de trouverte	William Manushin worth	Membershilling	an the Problem	Marcharley	had how will be when the	in which is sull
40 BEH/	ha 1 har 1 44 - 144 - 1-4		* P • • • •		where the set of the set	the start of the s
30 dBµV						
20 dBµV						
10 dBµV						
CF 2.402 GHz			1001 pts			100.0 µs/
2 Marker Table Type Ref Trc		1	1			
Type Ref Trc M1 1 D2 M1 1	X-Value 539.0 μs 159.0 μs	4-Value 66.51 dBj -0.28 d	IV 1B	Function	Function Re	suit
			Ready	26. 1	02.2019 Ref Level 0:11:50	RBW
10:11:51 26.02.2019						

Page 21 of 49

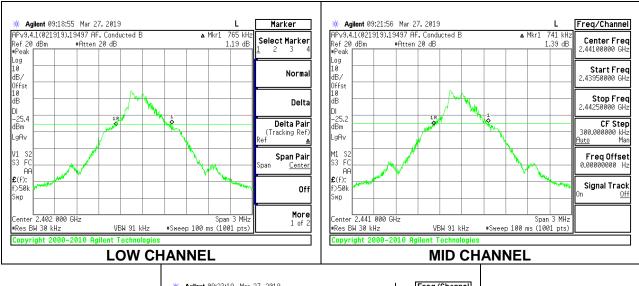
100 dBµV Image: state st	MultiView 😑 Spec	trum 🖾 R	eceiver (X					
1 Zero Span 100 dbµV 10	 Att 10 dE 	3 🖷 SWT 100 ms 🖷 V	'BW 50 MHz				SGL Fr	equency 2.4	020000 GHz
90 dBµV		C PS Off N	lotch Off					_	●1Pk Clrw
90 dBµV 80 dBµV 70 dBµV 60 dBµV 60 dBµV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
80 dBµV - <t< td=""><td>100 dBµV</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	100 dBµV								
80 dBµv	90 dBuV								
70 dBµ7									
60 dμμ 60 dμμ </td <td>80 dBµV</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	80 dBµV								
60 dμμ 60 dμμ </td <td></td> <td></td> <td></td> <td>n</td> <td></td> <td></td> <td></td> <td>0</td> <td></td>				n				0	
50 dBµV 40 dBµV 30 dBµV	70 dBµY								
ынжы уламинды наяладын налады уламды уламды уламды уламды налаланды нараланды нараланды наланды наланды наланды 40 авру	60 dBµV								
иние и должите и политирии и политирии развити и политири и политири и политири и политири и политири и полити 40 дври —									
40 dBµV									
30 deµv		multilitienter	and the second stand to the stands	North Malanta Marine	N Mahamata Min	Mr.M. M.	another when the	Mulinan	he had he have been been been been been been been be
	40 dBµV								
	30 dBµV								
an allowed									
20 ub/	20 dBµV								
10 dBµV CF 2.402 GHz 1001 pts 10.0 m				1001	pts				10.0 ms/
						(111111)	## 26.02.2 10:0	2019 Ref Leve	

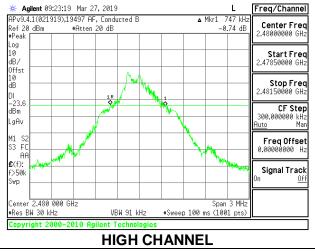
Page 22 of 49

9.2. 20dB BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 5% of the 20 dB bandwidth. The VBW is set to approximately three times RBW. The sweep time is coupled

RESULTS

Channel	Frequency	20dB Bandwidth	Frequency Edge	Limit	Margin
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Low	2402	0.765	2401.6175	2400	-1.62
Mid	2441	0.741	N/A	N/A	N/A
High	2480	0.747	2480.3735	2483.5	-3.13

Page 23 of 49

Page 24 of 49

10. RADIATED TEST RESULTS

DATE: 4/29/2019

LIMITS

FCC §15.249 FCC §15.205 and §15.209

Operation within the bands 902–928 MHz, 2400–2483.5 MHz, 5725–5875 MHZ, and 24.0–24.25 GHz.

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/ meter)	Field strength of harmonics (microvolts/ meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

(e) As shown in Sec. 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

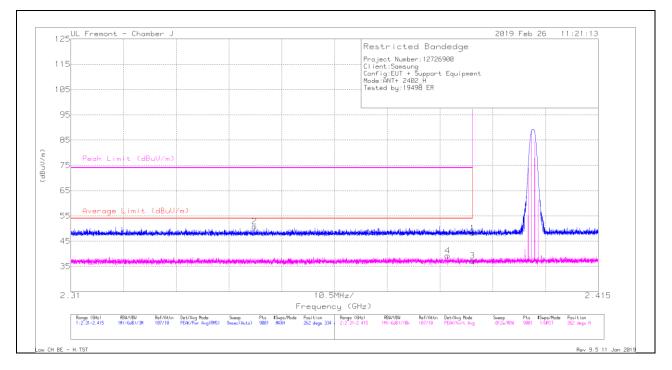
For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T (10 kHz) video bandwidth with peak detector for average measurements.

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest output power was tested.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

2D antenna use - For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel), parallel and perpendicular are the worst orientations, therefore testing was performed on these two orientations only.

KDB 414788 OFS and Chamber Correlation Justification


Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

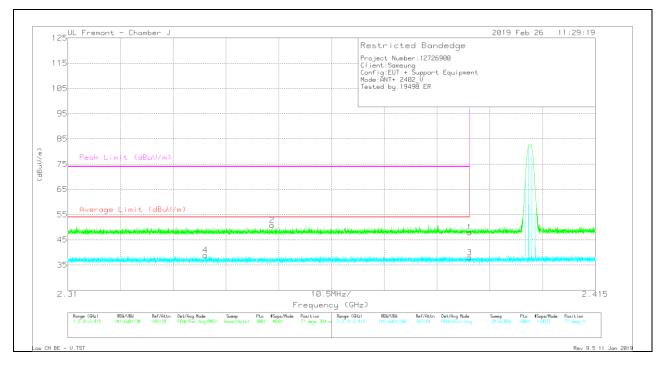
Page 26 of 49

10.1. TRANSMITTER ABOVE 1 GHz

BANDEDGE (LOW CHANNEL)

HORIZONTAL RESULT

Trace Markers


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0067 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	41.97	Pk	32	-25.8	48.17	-	-	74	-25.83	262	334	Н
2	* 2.347	44.72	Pk	31.9	-25.8	50.82	-	-	74	-23.18	262	334	Н
3	* 2.39	31.07	VA1T	32	-25.8	37.27	54	-16.73	-	-	262	334	Н
4	* 2.385	33.03	VA1T	32	-25.8	39.23	54	-14.77	-	-	262	334	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

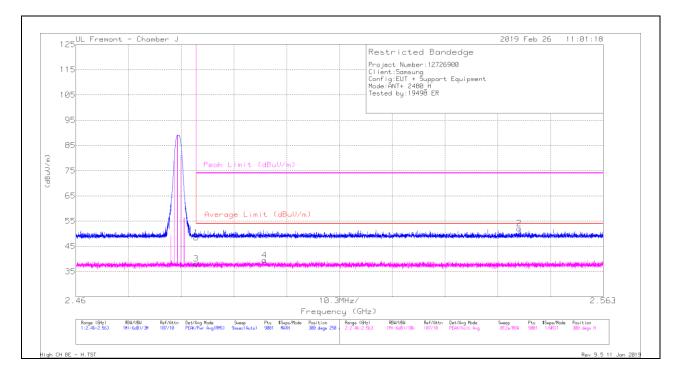
VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

VERTICAL RESULT

Trace Markers

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	Corrected	Average	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading (dBuV)		AT0067 (dB/m)	(dB)	Reading (dBuV/m)	Limit (dBuV/m)	(dB)	Limit (dBuV/m)	Margin (dB)	(Degs)	(cm)	
1	* 2.39	41.76	Pk	32	-25.8	47.96	-	-	74	-26.04	77	394	V
2	* 2.351	44.71	Pk	31.9	-25.8	50.81	-	-	74	-23.19	77	394	V
3	* 2.39	31.79	VA1T	32	-25.8	37.99	54	-16.01	-	-	77	394	V
4	* 2.337	32.82	VA1T	31.9	-25.8	38.92	54	-15.08	-	-	77	394	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

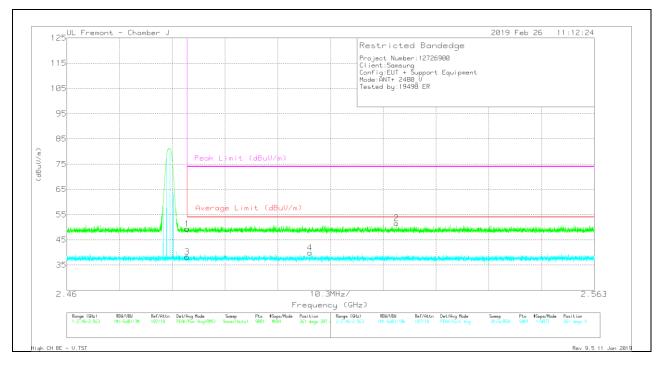
Page 28 of 49

BANDEDGE (HIGH CHANNEL)

HORIZONTAL RESULT

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0067 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	41.75	Pk	32.5	-25.8	48.45	-	-	74	-25.55	300	250	н
2	2.547	45.29	Pk	32.5	-25.7	52.09	-	-	74	-21.91	300	250	Н
3	* 2.484	31.46	VA1T	32.5	-25.8	38.16	54	-15.84	-	-	300	250	Н
4	* 2.497	32.65	VA1T	32.5	-25.7	39.45	54	-14.55	-	-	300	250	Н


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

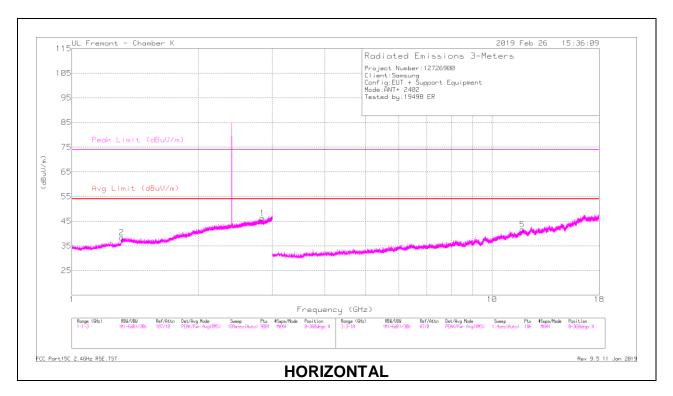
Page 29 of 49

VERTICAL RESULT

Trace Markers

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	Corrected	Average	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AT0067	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 2.484	42.55	Pk	32.5	-25.8	49.25	-	-	74	-24.75	261	387	V
2	2.524	44.79	Pk	32.5	-25.7	51.59	-	-	74	-22.41	261	387	V
3	* 2.484	31.49	VA1T	32.5	-25.8	38.19	54	-15.81	-	-	261	387	V
4	2.507	33.1	VA1T	32.5	-25.7	39.9	54	-14.1	-	-	261	387	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 30 of 49

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL RESULTS

115<mark>UL Fremont - Chamber K</mark> 2019 Feb 26 15:36:09 Radiated Emissions 3-Meters Project Number:12726900 105 Config:EUT + Support Equipment Mode:ANT+ 2402 Tested by:19498 ER 95 85 Peak Limit (dBuV/m) 75 æ 65 dBul Avg Limit (dBuV/m) 55 3 45 4 Frequency (GHz) Range (GHz) RBW/VBW Range (GHz) RBU/VBW Ref/Attn Det/Avg Mode Sweep Pts #Sups/Mode Position Ref/Attn Det/Avg Mode Ѕиеер Pto #Swpa/Mode Pasition FCC Part15C 2.4GHz RSE.TST Rev 9.5 11 Jan 2019 VERTICAL

Page 31 of 49

RADIATED EMISSIONS

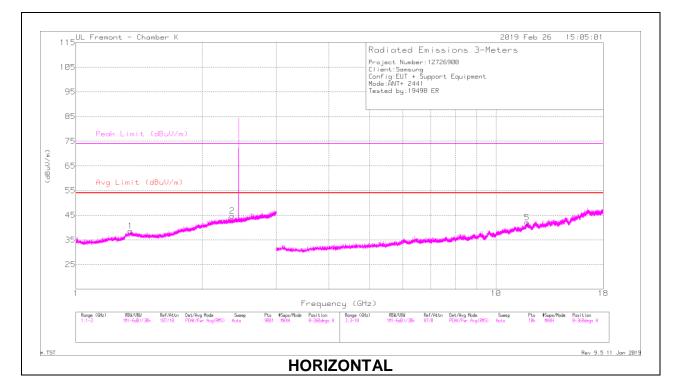
Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	Corrected	Avg	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		T344	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 2.84	32.34	PKFH	32.3	-13.1	51.54	-	-	74	-22.46	287	212	Н
	* 2.84	22.84	VA1T	32.3	-13.1	42.04	54	-11.96	-	-	287	212	Н
2	* 1.314	32.26	PKFH	28.9	-17.1	44.06	-	-	74	-29.94	167	153	Н
	* 1.314	23.32	VA1T	28.9	-17.1	35.12	54	-18.88	-	-	167	153	Н
4	* 1.331	32.8	PKFH	29.2	-16.9	45.1	-	-	74	-28.9	312	110	V
	* 1.331	23.12	VA1T	29.2	-16.9	35.42	54	-18.58	-	-	312	110	V
3	* 2.764	32.3	PKFH	32.3	-13.1	51.5	-	-	74	-22.5	103	220	V
	* 2.764	23.72	VA1T	32.3	-13.1	42.92	54	-11.08	-	-	103	220	V
5	* 11.822	30.31	PKFH	38.4	-19.6	49.11	-	-	74	-24.89	147	211	Н
	* 11.823	20.15	VA1T	38.4	-19.6	38.95	54	-15.05	-	-	147	211	Н
6	* 11.616	30.72	PKFH	38.2	-20.4	48.52	-	-	74	-25.48	248	356	V
	* 11.614	20.25	VA1T	38.2	-20.4	38.05	54	-15.95	-	-	248	356	V

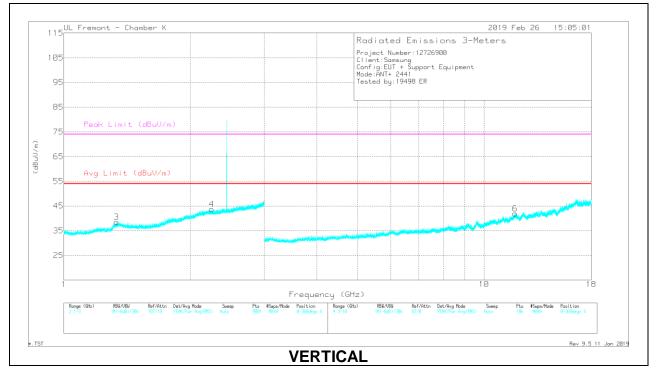
* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

PKFH FHSS/BT RB=100k for Frequencies<1GHz / RB=1MHz for Frequencies>1GHz, VB=3 x RB, Peak VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

 UL VERIFICATION SERVICES INC.

 47173 Benicia Street, Fremont, CA 94538; USA


 TEL:(510) 771-1000


 FAX:(510) 661-0888

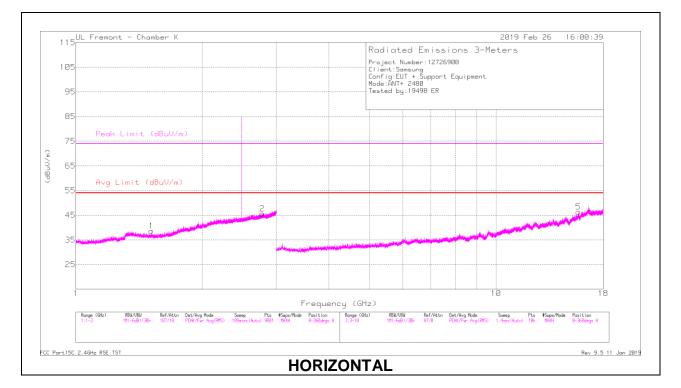
 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

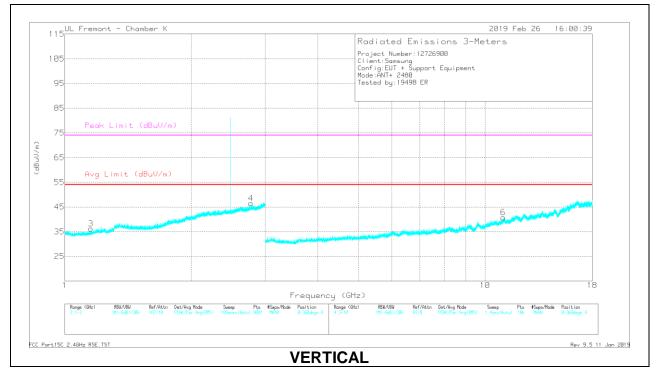
Page 32 of 49

MID CHANNEL RESULTS

RADIATED EMISSIONS

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	Corrected	Avg	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		T344	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 1.349	32.82	PKFH	29.4	-16.9	45.32	-	-	74	-28.68	89	137	Н
	* 1.35	22.84	VA1T	29.4	-16.9	35.34	54	-18.66	-	-	89	137	Н
2	* 2.354	33.22	PKFH	31.7	-14.4	50.52	-	-	74	-23.48	228	170	Н
	* 2.354	22.98	VA1T	31.7	-14.4	40.28	54	-13.72	-	-	228	170	Н
3	* 1.336	33.68	PKFH	29.2	-16.9	45.98	-	-	74	-28.02	75	168	V
	* 1.333	22.87	VA1T	29.2	-16.9	35.17	54	-18.83	-	-	75	168	V
4	* 2.247	33.42	PKFH	31.9	-14.7	50.62	-	-	74	-23.38	222	194	V
	* 2.247	23.14	VA1T	31.9	-14.7	40.34	54	-13.66	-	-	222	194	V
5	* 11.851	29.89	PKFH	38.4	-19.8	48.49	-	-	74	-25.51	112	135	Н
	* 11.852	20.31	VA1T	38.4	-19.8	38.91	54	-15.09	-	-	112	135	Н
6	* 11.858	30.23	PKFH	38.4	-19.8	48.83	-	-	74	-25.17	14	165	V
	* 11.855	20.72	VA1T	38.4	-19.8	39.32	54	-14.68	-	-	14	165	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


PKFH FHSS/BT RB=100k for Frequencies<1GHz / RB=1MHz for Frequencies>1GHz, VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 34 of 49

HIGH CHANNEL RESULTS

RADIATED EMISSIONS

Marker	Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	Corrected	Avg	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		T344	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)		(dBuV/m)	(dB)			
1	* 1.514	33.42	PKFH	28.1	-16.4	45.12	-	-	74	-28.88	237	165	Н
	* 1.514	23.05	VA1T	28.1	-16.4	34.75	54	-19.25	-	-	237	165	Н
2	* 2.779	33.16	PKFH	32.3	-13.2	52.26	-	-	74	-21.74	258	256	Н
	* 2.779	23.32	VA1T	32.3	-13.2	42.42	54	-11.58	-	-	258	256	Н
3	* 1.155	33.21	PKFH	27.5	-17.5	43.21	-	-	74	-30.79	76	183	V
	* 1.152	22.81	VA1T	27.5	-17.4	32.91	54	-21.09	-	-	76	183	V
4	* 2.775	32.27	PKFH	32.3	-13.2	51.37	-	-	74	-22.63	58	317	V
	* 2.775	23.45	VA1T	32.3	-13.2	42.55	54	-11.45	-	-	58	317	V
5	* 15.702	28.81	PKFH	40.8	-17.5	52.11	-	-	74	-21.89	189	273	Н
	* 15.703	18.61	VA1T	40.8	-17.5	41.91	54	-12.09	-	-	189	273	Н
6	* 11.047	30.28	PKFH	37.9	-21.1	47.08	-	-	74	-26.92	353	214	V
	* 11.046	20.7	VA1T	37.9	-21.1	37.5	54	-16.5	-	-	353	214	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

PKFH FHSS/BT RB=100k for Frequencies<1GHz / RB=1MHz for Frequencies>1GHz, VB=3 x RB, Peak VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

 UL VERIFICATION SERVICES INC.

 47173 Benicia Street, Fremont, CA 94538; USA

 TEL:(510) 771-1000

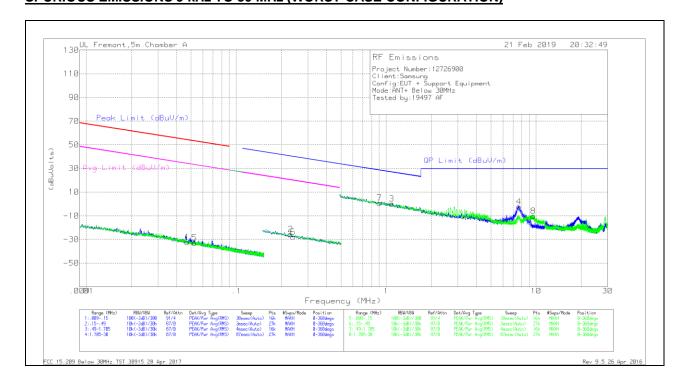
 FAX:(510) 661-0888

 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 36 of 49

10.2. FUNDAMENTAL FREQUENCY RADIATED EMISSION

Frequency	Meter	Det	AF	Amp/Cbl/Fltr/Pad	DC	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
(GHz)	Reading		AT0067	(dB)	Corr	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
	(dBuV)		(dB/m)		(dB)	(dBuV/m)				(dB)			
	72.06	PKFH	32.1	-14.8	0	89.36	-	-	114	-24.64	150	105	Н
2.402	72.06	AVG	32.1	-14.8	-33.69	55.67	94	-38.33	-	-	150	105	Н
2.402	67.3	PKFH	32.1	-14.8	0	84.6	-	-	114	-29.37	188	109	V
	67.3	AVG	32.1	-14.8	-33.69	50.91	94	-43.09	-	-	188	109	V
	71.48	PKFH	32.4	-14.8	0	89.08	-	-	114	-24.92	301	183	Н
2.441	71.48	AVG	32.4	-14.8	-33.69	55.39	94	-38.61	-	-	301	183	Н
2.441	63.35	PKFH	32.4	-14.8	0	80.95	-	-	114	-33.05	243	108	V
	63.35	AVG	32.4	-14.8	-33.69	47.26	94	-46.74	-	-	243	108	V
	71.61	PKFH	32.5	-14.7	0	89.41	-	-	114	-24.59	293	151	Н
2.480	71.61	AVG	32.5	-14.7	-33.69	55.72	94	-38.28	-	-	293	151	Н
2.460	66.5	PKFH	32.5	-14.7	0	84.3	-	-	114	-29.7	175	147	V
	66.5	AVG	32.5	-14.7	-33.69	50.61	94	-43.39	-	-	175	147	V


PKFH - FHSS: RB=1MHz VB=3 x RB, Peak AVG = Peak Reading + Duty Cycle Correction Factor Duty Cycle Correction Factor = -33.69 dB

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 37 of 49

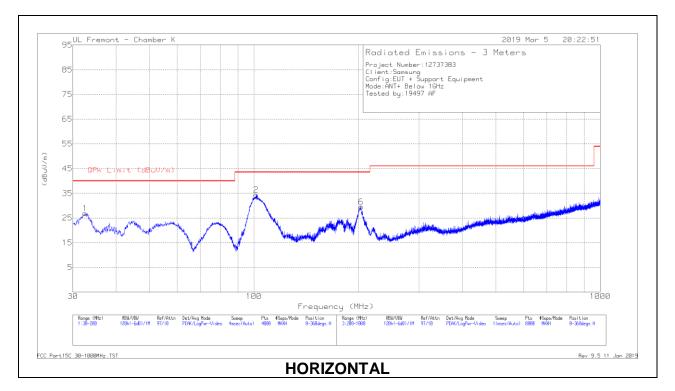
10.3.

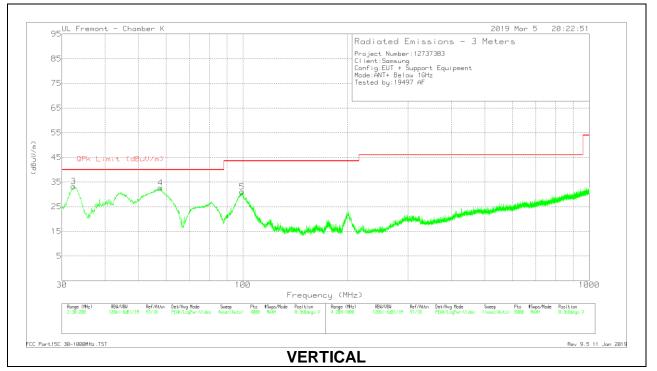
SPURIOUS EMISSIONS 9 kHz TO 30 MHz (WORST-CASE CONFIGURATION)

Below 30 MHz Data

Trace Markers

Marker	Frequency	Meter	Det	Loop	Cables	Dist	Corrected	Peak Limit	Margin	Avg Limit	Margin	Peak Limit	Margin	Avg Limit	Margin	Azimuth
	(MHz)	Reading		Antenna	(dB)	Corr	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)
		(dBuV)		(dBm)		300m	(dBuVolts)									
1	.04713	34.8	Pk	13	0	-80	-32.2	54.12	-86.32	34.12	-66.32	-	-	-	-	0-360
5	.05257	34.43	Pk	12.7	0	-80	-32.87	53.17	-86.04	33.17	-66.04	-	-	-	-	0-360
2	.23037	43.34	Pk	11	.1	-80	-25.56	-	-	-	-	40.37	-65.93	20.37	-45.93	0-360
6	.23945	41.15	Pk	11	.1	-80	-27.75			-	-	40.03	-67.78	20.03	-47.78	0-360


Pk - Peak detector


Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dBm)	Cables (dB)	Dist Corr 30m	Corrected Reading (dBuVolts)	QP Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
7	.902	29.57	Pk	11.1	.1	-40	.77	28.51	-27.74	-	-	-	-	0-360
3	1.08956	28.75	Pk	11.3	.1	-40	.15	26.88	-26.73	-	-	-	-	0-360
4	7.69222	26.53	Pk	10.9	.4	-40	-2.17	29.5	-31.67	-	-	-	-	0-360
8	9.59696	18.49	Pk	10.8	.4	-40	-10.31	29.5	-39.81	-	-	-	-	0-360

Pk - Peak detector

10.4. WORST CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 39 of 49

Below 1GHz Data

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF PRE0184052 (dB/m)	Amp/Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	32.5081	33.47	Pk	25	-31.6	26.87	40	-13.13	0-360	199	Н
2	101.546	48.67	Pk	16.6	-30.9	34.37	43.52	-9.15	0-360	299	Н
3	32.4231	39.72	Pk	25.1	-31.6	33.22	40	-6.78	0-360	100	V
	32.3651	37.43	Qp	25.1	-31.6	30.93	40	-9.07	132	103	V
4	57.7597	50.8	Pk	13.2	-31.3	32.7	40	-7.3	0-360	100	V
5	99.4205	46.02	Pk	15.9	-30.9	31.02	43.52	-12.5	0-360	100	V
6	203.9005	42.39	Pk	17.3	-30.2	29.49	43.52	-14.03	0-360	100	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

Qp - Quasi-Peak detector

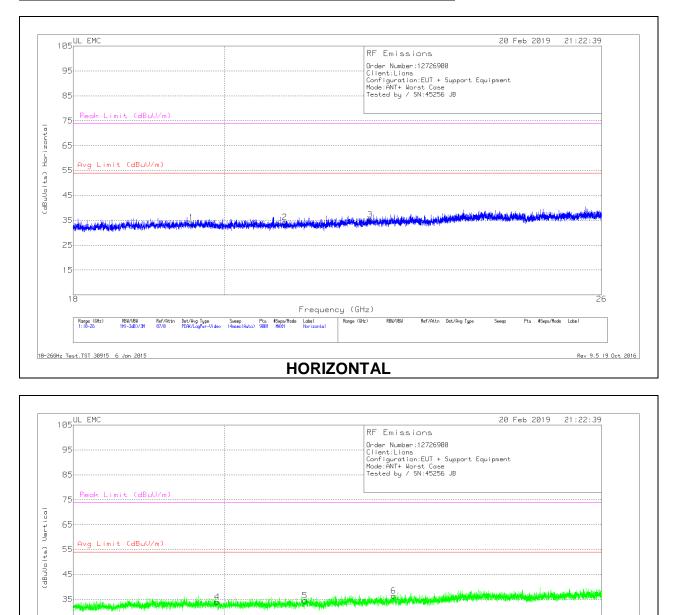
Page 40 of 49

25 15

18

Range (GHz)

18–26GHz Test.TST 30915 6 Jan 2015


RBM/UBM

Ref/Attn Det/Avg Type

Sweep Pt:

10.5. WORST CASE 18-26 GHz

SPURIOUS EMISSIONS 18-26 GHz (WORST-CASE CONFIGURATION)

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 771-1000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 41 of 49

Frequency (GHz)

VERTICAL

Label

Range (GHz) 2:18-26 RBM/UBM Ref/Attn Det/Avg Type Sweep Pts #Swps/Mode Lobel IN(-3dB)/3M 87/8 PER//Logfur-Uideo 14wsec(Auto) 9981 NRXH Uertic

Rev 9.5 19 Oct 2016

18 – 26GHz DATA

Marker	Frequency	Meter	Det	T447 AF	Amp/Cbl	Dist Corr	Corrected	Avg Limit	Margin	Peak Limit	PK
	(GHz)	Reading		(dB/m)	(dB)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin
		(dBuV)					(dBuVolts)				(dB)
1	19.543	35.95	Pk	32.8	-25.1	-9.5	34.15	54	-19.85	74	-39.85
2	20.854	36.13	Pk	33	-25.4	-9.5	34.23	54	-19.77	74	-39.77
3	22.131	36.41	Pk	33.4	-25	-9.5	35.31	54	-18.69	74	-38.69
4	19.896	35.82	Pk	32.7	-25	-9.5	34.02	54	-19.98	74	-39.98
5	21.149	36.32	Pk	33	-25.3	-9.5	34.52	54	-19.48	74	-39.48
6	22.495	37.21	Pk	33.5	-24.8	-9.5	36.41	54	-17.59	74	-37.59

Pk - Peak detector

Page 42 of 49

11. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

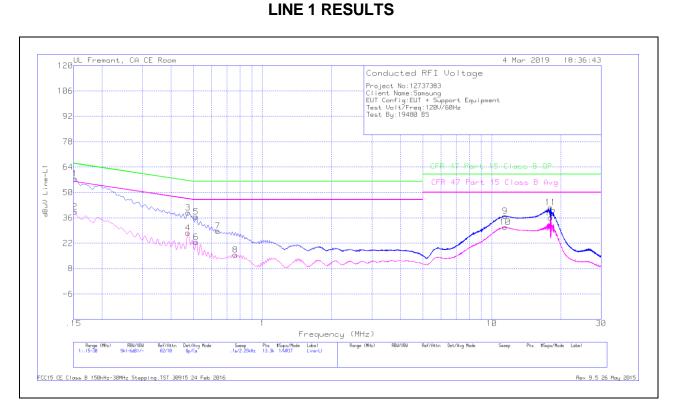
FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 "
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.


The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 43 of 49

AC Power Line Norm


Trace Markers

Range	1: Line-L1 .	15 - 30MH	lz								
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN L1	LC Cables C1&C3	Limiter (dB)	Corrected Reading dBuV	CFR 47 Part 15 Class B QP	QP Margin (dB)	CFR 47 Part 15 Class B Avg	Av(CISPR) Margin (dB)
1	.15225	47.39	Qp	.1	0	10.1	57.59	65.88	-8.29	-	-
2	.15225	29.13	Ca	.1	0	10.1	39.33	-	-	55.88	-16.55
3	.474	28.78	Qp	0	0	10.1	38.88	56.44	-17.56	-	-
4	.474	17.72	Ca	0	0	10.1	27.82	-	-	46.44	-18.62
5	.5145	26.52	Qp	0	0	10.1	36.62	56	-19.38	-	-
6	.5145	12.59	Ca	0	0	10.1	22.69	-	-	46	-23.31
7	.63825	18.66	Qp	0	0	10.1	28.76	56	-27.24	-	-
8	.762	5.55	Ca	0	0	10.1	15.65	-	-	46	-30.35
9	11.43825	26.4	Qp	.1	.2	10.2	36.9	60	-23.1	-	-
10	11.44725	20.42	Ca	.1	.2	10.2	30.92	-	-	50	-19.08
11	18.02625	31.04	Qp	.1	.3	10.3	41.74	60	-18.26	-	-
12	18.0465	25.38	Ca	.1	.3	10.3	36.08	-	-	50	-13.92

Qp - Quasi-Peak detector

Ca - CISPR average detection

LINE 2 RESULTS

Trace Markers

Range 2: Line-L2 .15 - 30MHz											
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN L2	LC Cables C2&C3	Limiter (dB)	Corrected Reading dBuV	CFR 47 Part 15 Class B QP	QP Margin (dB)	CFR 47 Part 15 Class B Avg	Av(CISPR) Margin (dB)
13	.15225	44.75	Qp	.1	0	10.1	54.95	65.88	-10.93	-	-
14	.17025	26.36	Ca	0	0	10.1	36.46	-	-	54.95	-18.49
15	.4785	28.29	Qp	0	0	10.1	38.39	56.37	-17.98	-	-
16	.47625	22.17	Ca	0	0	10.1	32.27	-	-	46.4	-14.13
17	.97575	17.3	Qp	0	.1	10.1	27.5	56	-28.5	-	-
18	.97575	9.69	Ca	0	.1	10.1	19.89	-	-	46	-26.11
19	4.0425	15.65	Qp	0	.1	10.1	25.85	56	-30.15	-	-
20	4.08413	7.05	Ca	0	.1	10.1	17.25	-	-	46	-28.75
21	11.4585	30.38	Qp	.1	.2	10.2	40.88	60	-19.12	-	-
22	11.5215	22.01	Ca	.1	.2	10.2	32.51	-	-	50	-17.49
23	18.08925	28.85	Qp	.1	.3	10.3	39.55	60	-20.45	-	-
24	17.9835	20.97	Ca	.1	.3	10.3	31.67	-	-	50	-18.33

Qp - Quasi-Peak detector

Ca - CISPR average detection