Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SSchweizerlacher KallbrierdienstCService sulsse d'étalonnageSServizio svizzero di taraturaSSwiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

AI

Certificate No: D2450V2-797_Sep17

Calibration date:	September 11, 20 s the traceability to nation inties with confidence put d in the closed laborator	dure for dipole validation kits about 017 onal standards, which realize the physical un robability are given on the following pages are the physical unterpresent temperature (22 ± 3) of the following states of the physical s	10/03/2017 Extended PNV J/20/2018 Ills of measurements (SI). Ind are part of the certificate. Extended
This calibration certificate documents The measurements and the uncertain All calibrations have been conducted	s the traceability to nationate the second state of the second seco	ional standards, which realize the physical un robability are given on the following pages ar	
The measurements and the uncertain All calibrations have been conducted	nties with confidence p I in the closed laborator	robability are given on the following pages ar	
		ry facility: environment temperature (22 \pm 3)°4	10/1/190
Calibration Equipment used (M&TE c	critical for calibration)		
Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
ower meler NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
ower sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
ower sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
eference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
ype-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
eference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
econdary Standards	ID#	Check Date (in house)	Scheduled Check
ower meter EPM-442A	SN: GB37480704	07-Oot-15 (In house check Oct-16)	In house check: Oct-18
1	SN: US37292783	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092917	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
•	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Vetwork Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Mart
		·····	
Approved by:	Katja Pokovic	Technical Manager	Cliff
	, [.]	· · · · ·	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters;

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the ٠ nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

à

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	18. 18. us ut	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.1 W/kg ± 17.0 % (k≃2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 7.4 jΩ
Return Loss	~ 21.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 9.1 jΩ
Return Loss	- 20.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 24, 2006

DASY5 Validation Report for Head TSL

Date: 11.09.2017

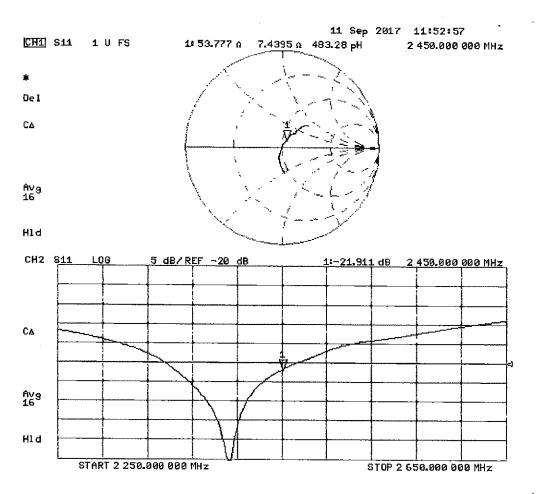
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ϵ_r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg

Impedance Measurement Plot for Head TSL

i.

.

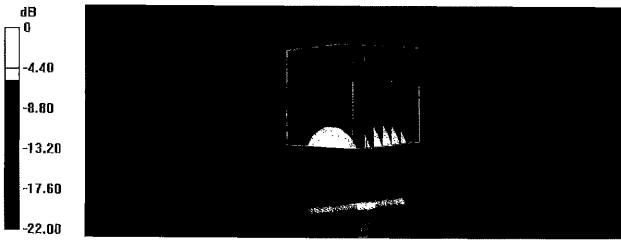
DASY5 Validation Report for Body TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

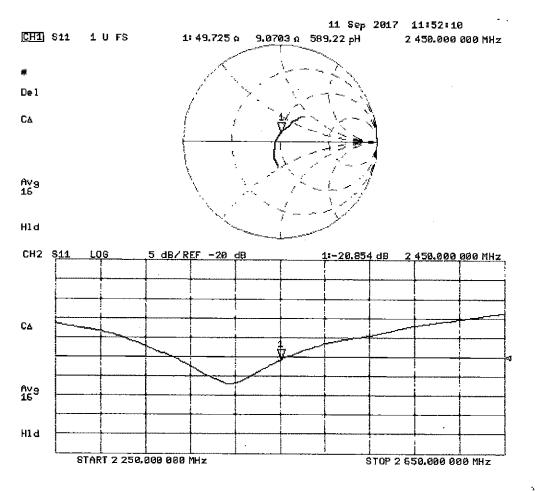
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 S/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.4 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (measured) = 20.3 W/kg

 $0 \, dB = 20.3 \, W/kg = 13.07 \, dBW/kg$

Impedance Measurement Plot for Body TSL

ţ,

. PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

PCTEST

D2450V2 - SN: 797

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 11, 2018

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	7720	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/30/2018	Annuai	8/30/2019	MY40003841
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	СВТ	N/A
SPEAG	DAK-3,5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2018	Annual	7/11/2019	1322
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3319
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	1368
Anritsu	MA2411B	Puise Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA24118	Puise Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/22/2017	Annuəl	10/22/2018	1328004
Aglient	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	C8T	N/A	CBT	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	СВТ	N/A

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

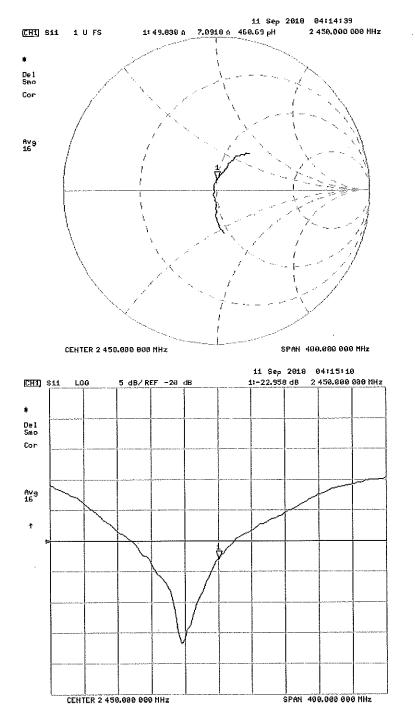
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	3KOK-

Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 797	09/11/2018	

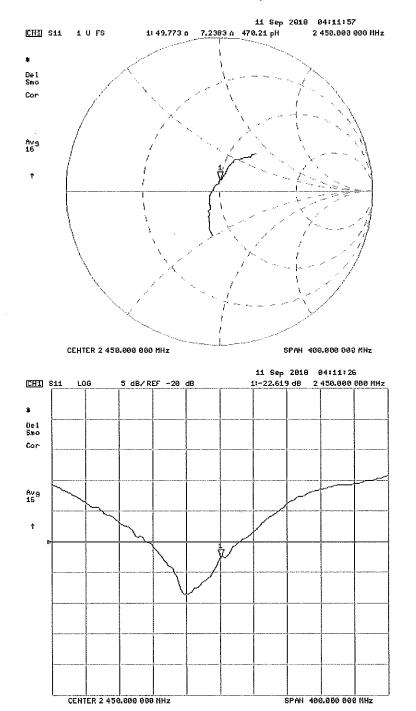
DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date		Certificate SAR Target Head (1g) W/kg @ 20.0 dBm			Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Head SAR		Certificate Impedance Head (Ohm) Real		Difference (Ohm) Real		Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/11/2018	1.152	5.27	5.52	4.74%	2.48	2.54	2.42%	53.8	49.8	4	7.4	7.1	0.3	-21.9	-23	-4.80%	PASS


Calibration Date	Extension Date		Certificate SAR Target Body (1g) W/kg @ 20.0 dBm			Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real		Certificate Impedance Body (Ohm) Imaginary		Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/11/2018	1.152	5.11	5.17	1.17%	2.42	2.37	-2.07%	49.7	49.8	0.1	9.1	7.2	1.9	-20.9	-22.6	-8.20%	PASS

Object:	Date Issued:	Dego 2 of 4
D2450V2 – SN: 797	09/11/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2450V2 SN: 797	09/11/2018	

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 – SN: 797	09/11/2018	

PCTEST ENGINEERING LABORATORY, INC. 18855 Adams Ct, Morgan Hill, CA 95037 USA

Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D2450V2 - SN: 797

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

September 9, 2019

Extended Calibration date:

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/27/2019	Annual	6/27/2020	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	7417
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	665
SPEAG	EX3DV4	SAR Probe	7/15/2019	Annual	7/15/2020	7547
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1323
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091

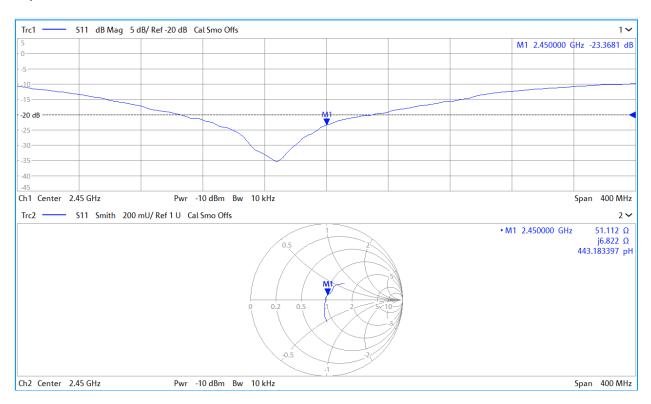
Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

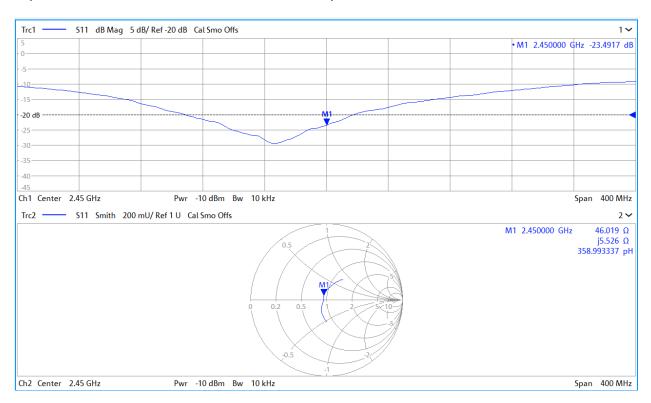
Object:	Date Issued:	Daga 1 of 4
D2450V2 – SN: 797	09/9/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(96)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/9/2019	1.152	5.27	5.19	-1.52%	2.48	2.41	-2.82%	53.8	51.1	2.7	7.4	6.8	0.6	-21.9	-23.4	-6.70%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(40-) 10/0	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/9/2019	1.152	5.11	5.17	1.17%	2.42	2.38	-1.65%	49.7	46	3.7	9.1	5.5	3.6	-20.9	-23.5	-12.40%	PASS

Object:	Date Issued:	Dogo 2 of 4
D2450V2 – SN: 797	09/9/2019	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dogo 2 of 4
D2450V2 – SN: 797	09/9/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dogo 4 of 4
D2450V2 – SN: 797	09/9/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Client **PC Test** Certificate No: D1900V2-5d149_Oct18

CALIBRATION CERTIFICATE

Object	D1900V2 - SN:5d149				
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo			
Calibration date:	October 23, 2018		BNV 10-30-2018		
	•	onal standards, which realize the physical uni robability are given on the following pages and			
All calibrations have been conducte	ed in the closed laborato	y facility: environment temperature (22 \pm 3)°C	c and humidity < 70%.		
Calibration Equipment used (M&TE	E critical for calibration)				
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19		
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19		
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19		
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19		
Type-N mismatch combination	SN: 5047,2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19		
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18		
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19		
	1				
Secondary Standards	ID #	Check Date (in house)	Scheduled Check		
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20		
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20		
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20		
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20		
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19		
	Name	Function	Signature		
Calibrated by:	Jeton Kastrati	Laboratory Technician			
			Q =		
			in the second		
Approved by:	Katja Pokovic	Technical Manager	RIAL		
			Issued: October 23, 2018		
This calibration certificate shall not	be reproduced except in	I full without written approval of the laboratory.			

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
or a reading of the star (10 g) of field for	condition	
SAR measured	250 mW input power	5.11 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 6.3 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω + 8.2 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.193 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

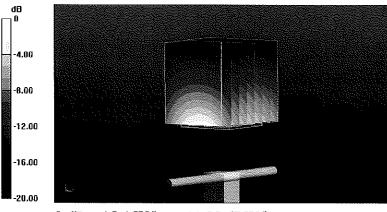
Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 23.10.2018

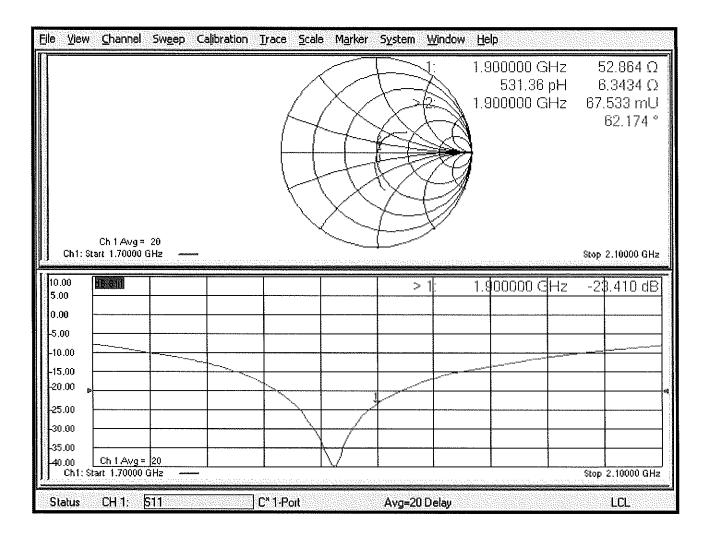
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ S/m; $\epsilon_r = 40.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.5 W/kg **SAR(1 g) = 9.8 W/kg; SAR(10 g) = 5.11 W/kg** Maximum value of SAR (measured) = 15.4 W/kg

0 dB = 15.4 W/kg = 11.88 dBW/kg

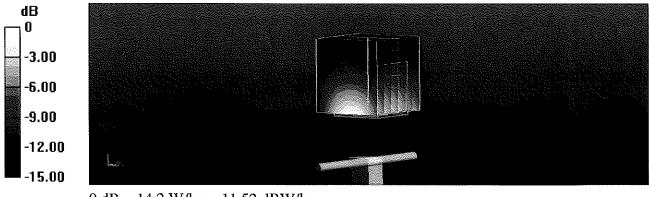
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.47 S/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.1 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dBW/kg

Impedance Measurement Plot for Body TSL

<u>File V</u> iew	<u>Channel Swe</u> ep (Calibration <u>T</u> race <u>S</u> cale M	arker System <u>W</u> indow <u>H</u> elp	
	Ch 1 Avg = 20		1: 1.90000 684. 1.900000	48 pH - 8.1713 Ω
Ch1: S	itart 1.70000 GHz			Stop 2.10000 GHz
10.00 5.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00 Ch1: S	Ch 1 Avg = 20 tart 1.70000 GHz			CGHz -21.519 dB
Status	CH 1: 511	C* 1-Port	Avg=20 Delay	LCL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-719_Aug19

CALIBRATION CERTIFICATE

Object	D2450V2 - SN:7	19	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources b	etween 0.7-3 GHz
Calibration date:	August 14, 2019		BNW 68 20 20 9
		onal standards, which realize the physical units or robability are given on the following pages and a	
All calibrations have been conducte	ed in the closed laborato	ry facility: environment temperature (22 \pm 3)°C a	nd humidity < 70%.
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047,2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	tills
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory.	Issued: August 15, 2019

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.1 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.25 W/kg

SAR measured	250 mW input power	6.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1 .95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.8 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.6 Ω + 5.6 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.0 Ω + 8.4 jΩ
Return Loss	- 21.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.150 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

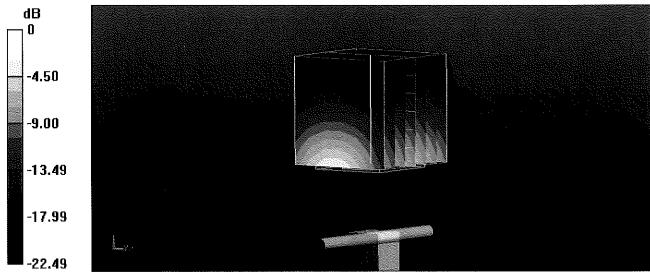
Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 14.08.2019

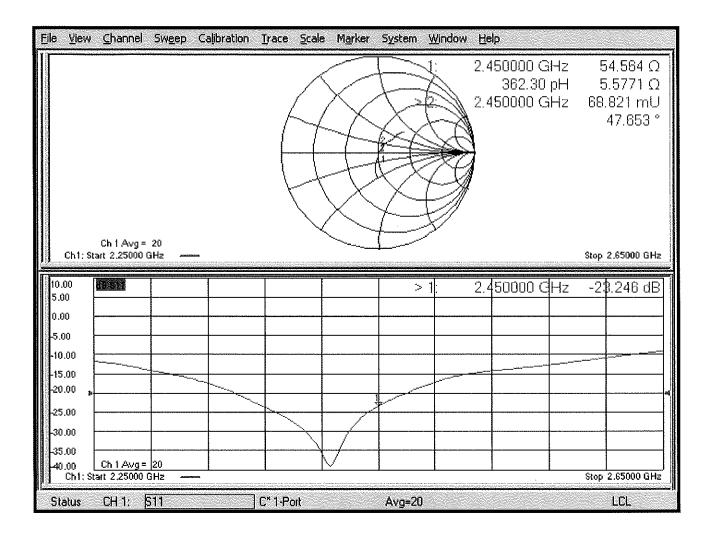
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.83 S/m; ϵ_r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 117.1 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.25 W/kg Maximum value of SAR (measured) = 21.8 W/kg

0 dB = 21.8 W/kg = 13.38 dBW/kg

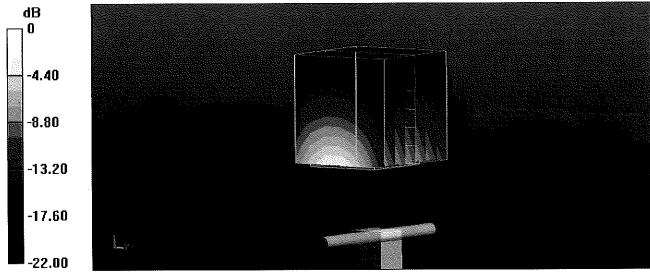
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.08.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.01 S/m; ϵ_r = 50.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.94, 7.94, 7.94) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 25.6 W/kg **SAR(1 g) = 13 W/kg; SAR(10 g) = 6.09 W/kg** Maximum value of SAR (measured) = 20.0 W/kg

0 dB = 20.0 W/kg = 13.01 dBW/kg

Impedance Measurement Plot for Body TSL

<u>File V</u> iew	<u>C</u> hannel Sv	v <u>e</u> ep Calibratio	n <u>T</u> race <u>S</u> cale	Marker S <u>y</u> s	tem <u>W</u> indo	ow <u>H</u> elp			
Ch1: 3t2	Ch 1 Avg = 20 art 2.25000 GHz		A				0000 GHz 546.95 pH 0000 GHz	8 83. ;	1.000 Ω .4196 Ω 658 mU 78.464 °
	olouhe/weight duitestarie tugegotten ge	***************************************							
10.00					> 1;	2.45	60000 GHz	-2	.550 dB
10.00 5.00 0.00					> 1;	2.45	60000 GHz	-2	.550 dB
5.00 - 0.00 - -5.00 -					> 1;	2.45	0000 GHz	-2	.550 dB
5.00 - Q,00 -					> 1:	2.45	0000 GHz	-2	.550 dB
5.00 - 0.00 - -5.00 - -18.00 - -15.00 -					> 1:	2.45	0000 GHz	-2	.550 dB
5.00 - 0.00 - -5.00 - -10.00 - -15.00 -					> 1:	2.45	0000 GHz	-2	.550 dB
5.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00					> 1:	2.45	0000 GHz	-2	.550 dB
5.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00	Ch 1 Avg = 20 rart 2.25000 GHz				> 1:	2.45	0000 GHz		.550 dB

Calibration Laboratory of

PC Test

Client

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage C
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2600V2-1064_Jun19

CALIBRATION CERTIFICATE

Object	D2600V2 - SN:10)E/	
	D200072-011.11		
			BNV 07/81/2019
Calibration procedure(s)	QA CAL-05.v11		17/81/2014
		dure for SAR Validation Source	
	Culibration 11000	Care for CAIT validation bedice.	S Detween 0.7-0 On Z
	1		
Calibration date:	June 14, 2019		
		onal standards, which realize the physical u	
The measurements and the uncerta	ainties with confidence p	robability are given on the following pages a	nd are part of the certificate.
All calibrations have been conducte	ed in the closed laborator	ry facility: environment temperature (22 \pm 3)°	°C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	1111 -
			MINE
			Milling The second seco
Approved by:	Katja Pokovic	Technical Manager	2111
		.	tell-
	an a		
			Issued: June 20, 2019
This calibration cortificate shall not	he reproduced event in	full without written approval of the laborator	,
The canonation centricate shall not	se reproduced except in	nui minoui writteri appioval ol tre laborator	y.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3 ± 6 %	2.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	58.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.5 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

,

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω - 6.9 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 4.4 jΩ
Return Loss	- 24.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.151 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

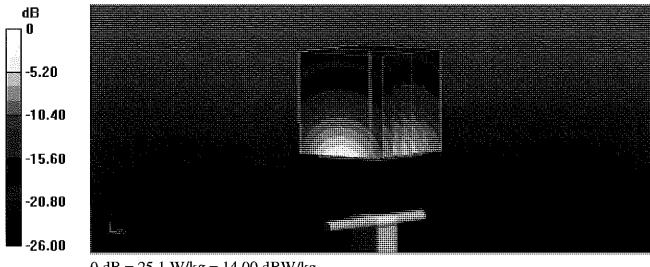
Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.03 S/m; ϵ_r = 37.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 120.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.2 W/kg **SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.59 W/kg** Maximum value of SAR (measured) = 25.1 W/kg

Impedance Measurement Plot for Head TSL

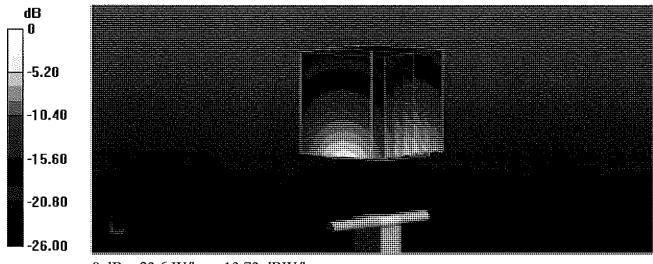
File View	<u>C</u> hannel Sw <u>e</u> ep	o Ca <u>l</u> ibration <u>T</u>	race <u>S</u> cale I	M <u>a</u> rker S <u>y</u> stem	<u>W</u> indow <u>H</u> elp		
			X		A)0000 GHz 8.8630 pF)0000 GHz	49.847 Ω -6.9066 Ω 69.025 mU -87.316 °
Chi:S	Ch 1 Avg = 20 Start 2.40000 GHz						Stop 2.80000 GHz
10.00 5.00 -5.00 -10.00 -15.00 -20.00 -25.00 -35.00 -35.00 -40.00 -Ch1: S	Ch 1 Avg = 20 Start 2,40000 GHz =						-23.220 dB
Status	CH 1: 511	C	1-Port	Avg=20 [)elay		LCL

DASY5 Validation Report for Body TSL

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\varepsilon_r = 50.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.6 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 23.6 W/kg

0 dB = 23.6 W/kg = 13.73 dBW/kg

Impedance Measurement Plot for Body TSL

File	View	<u>C</u> hannel	Sw <u>e</u> ep	Calibration	<u>T</u> race <u>S</u> cal	e M <u>a</u> rker	S <u>v</u> stem <u>W</u> ir	ndow <u>H</u>	elp		
		Ch 1 Avg =	20						600000 GHz 14.009 pF 600000 GHz	-4.3 56.9	645 Ω 1696 Ω 44 mU 24.93 °
	Ch1: St	art 2.40000								Stop 2.8	80000 GHz
10. 5.0		ALE AND					> 1;	2.	\$00000 dHz	-74 (391 dB
-30 -35 -40	00 00. 00. 00. 00. 00.	<u>Ch 1 Avg =</u> art 2.40000	20 3Hz —								

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA * *** - 121-- 41 Multilat

Accreditation No.: SCS 0108

Client

lient PC Test		Certifi	cate No: D2600V2-1126_Aug19
ALIBRATION C	ERTIFICATE		
Dbject	D2600V2 - SN:1*	126	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation So	
Calibration date:	August 14, 2019		BNV 08/30/20
		onal standards, which realize the phy robability are given on the following p	
All calibrations have been conducte	ed in the closed laborato	ry facility: environment temperature (2	22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19) In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	in house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18) In house check: Oct-19
	Name	Function	Signature_ (
Calibrated by:	Claudio Leubler	Laboratory Technician	
-			UCI
Approved by:	Katja Pokovic	Technical Manager	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

LE I

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3 ± 6 %	2.00 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.5 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.41 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.4 ± 6 %	2.19 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.3 Ω - 7.2 jΩ
Return Loss	- 22.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.3 Ω - 5.5 jΩ
Return Loss	- 22.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.155 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

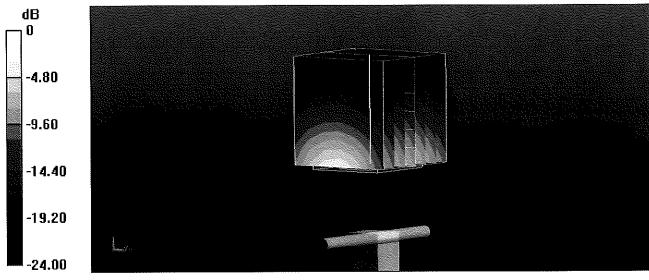
_		
	Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 14.08.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1126


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2 S/m; ϵ_r = 37.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 118.5 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 29.0 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.41 W/kg Maximum value of SAR (measured) = 23.8 W/kg

0 dB = 23.8 W/kg = 13.77 dBW/kg

Impedance Measurement Plot for Head TSL

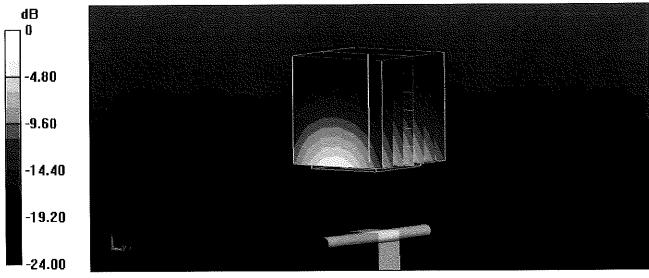
<u>File View Channel Sweep</u>	Calibration Trace Scale M	arker System <u>W</u> indov	√ <u>H</u> elp	
Ch 1 Avg = 20			2.600000 GHz 8.4707 pF 2.600000 GHz	48.290 Ω -7.2265 Ω 75.350 mU -99.111 °
Ch1: Start 2.40000 GHz				Stop 2.80000 GHz
10.00 19.01 5.00 0.00		> 1;	2.800000 GHz	-22.458 dB
-5.00				
-10.00				Stop 2.80000 GHz

DASY5 Validation Report for Body TSL

Date: 14.08.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1126


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.19 S/m; ϵ_r = 50.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.3 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (measured) = 22.9 W/kg

0 dB = 22.9 W/kg = 13.60 dBW/kg

Impedance Measurement Plot for Body TSL

<u>File View</u>	<u>C</u> hannel S	iw <u>e</u> ep Ca	libration (<u>Trace S</u> cale	e M <u>a</u> rker	S <u>v</u> stem	Window	<u>H</u> elp			
	Ch 1 Avg = 2	0		A			À.	2.600000 C 11.131 2.800000 C	рF	-5,49 76,115	
Ch1: \$	tart 2.40000 GH					•	000,000004400252462-973			Stop 2,800	IOO GHz
10.00						> `	1ŀ	2.600000 C			'1 dB
5.00 0.00 -5.00				-						-22.07	
0.00											
0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00											
0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00		0								-22.07	

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D2450V2-981_Aug18

S

CALIBRATION CERTIFICATE

Object	D2450V2 - SN:9	81, 81, 81, 81, 81, 81, 81, 81, 81, 81,	
Calibration procedure(s)	QA CAL-05.v10		
	Calibration proce	edure for dipole validation kits ab	ove 700 MHz
		· · · · · · · · · · · · · · · · · · ·	/
			BNV 19-26/201
	· .		19-26/201
Calibration date:	August 16, 2018	n and an and a second	
This calibration certificate docume The measurements and the uncert	nts the traceability to nat ainties with confidence p	ional standards, which realize the physical ur probability are given on the following pages ar	nits of measurements (SI). nd are part of the certificate.
		ny facility: environment temperature (22 ± 3)°	
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sel The
Approved by:	Katja Pokovic	Technical Manager	Lold -
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	Issued: August 23, 2018

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL ConvF N/A	tissue simulating liquid sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.0 Ω + 2.3 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω + 4.7 jΩ
Return Loss	- 26.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 30, 2014	

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom		
Filantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
		TO USAGE WILL COARSDVZ-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.0 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.0 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.3 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.2 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.74 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	34.7 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	17.5 W/kg ± 16.9 % (k=2)

DASY5 Validation Report for Head TSL

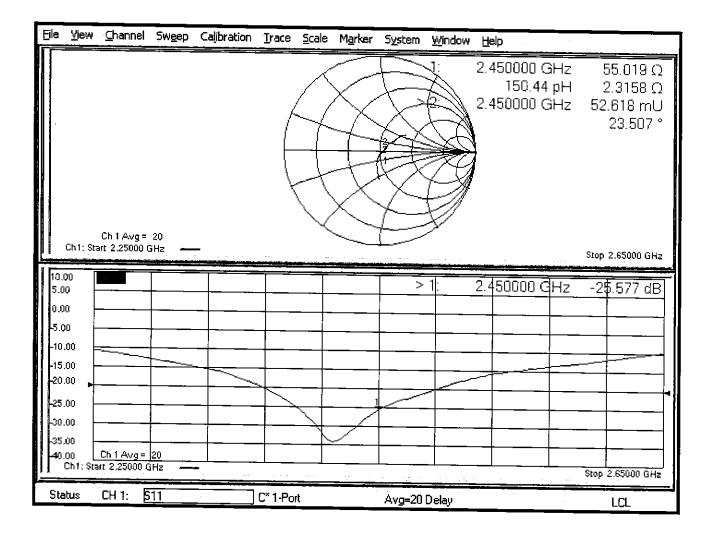
Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ϵ_r = 37.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 116.6 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 22.1 W/kg

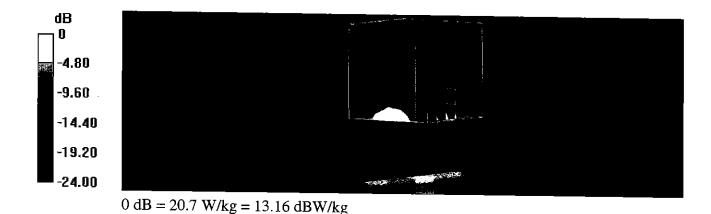
0 dB = 22.1 W/kg = 13.44 dBW/kg

DASY5 Validation Report for Body TSL

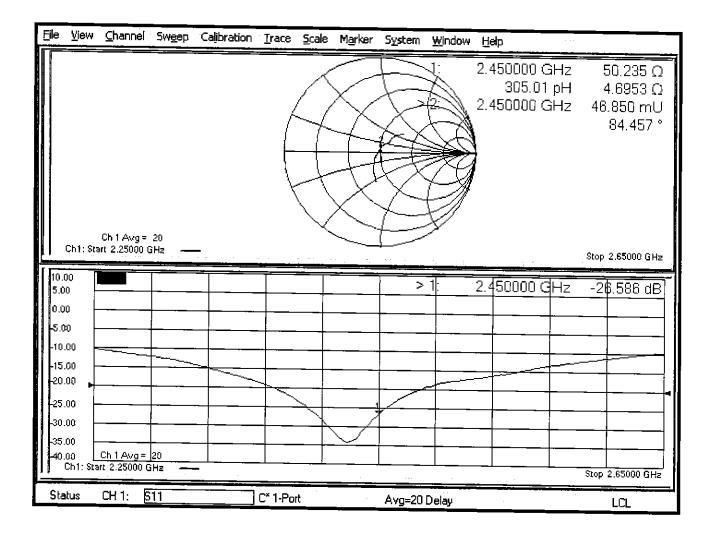
Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.02 S/m; ϵ_r = 51.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.0 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.3 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.11 W/kg Maximum value of SAR (measured) = 20.7 W/kg

Impedance Measurement Plot for Body TSL

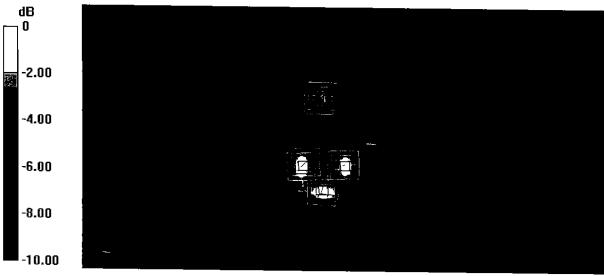
Date: 16.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW ; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.85 S/m; ϵ_r = 40.2; ρ = 1000 kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

SAM Head Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.2 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 22.0 W/kg

SAM Head Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.3 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.35 W/kg Maximum value of SAR (measured) = 21.7 W/kg

SAM Head Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.0 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.11 W/kg Maximum value of SAR (measured) = 20.5 W/kg

SAM Head Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.03 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 15.8 W/kg SAR(1 g) = 8.74 W/kg; SAR(10 g) = 4.4 W/kg Maximum value of SAR (measured) = 13.5 W/kg

0 dB = 22.0 W/kg = 13.42 dBW/kg

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

51 V 1720/2018

Multilateral Agreement for the recognition of calibration certificates
Client PC Test

Accredited by the Swiss Accreditation Service (SAS)

	icate N		2.2	000	- D-	c18
сепи	icate n	(): LC	La Plan	400	8 1 15	610

CALIBRATION CERTIFICATE

The Swiss Accreditation Service is one of the signatories to the EA

Object

ES3DV3 - SN:3288

Calibration procedure(s)

QA CAL-01.99, QA CAL-23.95, QA CAL-25.96 Calibration procedure for doctmetric E-field probes

Calibration date:

December 11, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Duine and Otan davida			Scheduled Calibration
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	- SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
			· · · · · · · · · · · · · · · · · · ·
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	and the second second
			and the second s
Approved by:	Katja Pokovic	Technical Manager	All
			Issued: December 13, 2018
This calibration certificate	shall not be reproduced except i	n full without written approval of the labor	ratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization &	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., ϑ = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Accreditation No.: SCS 0108

.

Probe ES3DV3

SN:3288

Manufactured: July 6, 2010 Calibrated:

December 11, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.13	1.09	1.09	± 10.1 %
DCP (mV) ^B	103.7	106.0	104.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	Β dB√μV	С	D dB	VR mV	Unc [⊨] (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	191.1	±3.0 %
		Y	0.0	0.0	1.0		196.5	
		Z	0.0	0.0	1.0		194.8	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V ^{−1}	T3 ms	T4 V⁻²	T5 V⁻¹	Т6
X	42.42	304.2	35.17	23.59	0.843	5.100	1.279	0.215	1.009
Y	45.72	323.4	34.48	25.10	1.269	5.100	1.663	0.175	1.011
Z	44.40	317.9	35.06	25.34	1.194	5.100	1.225	0.273	1.011

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁶ Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

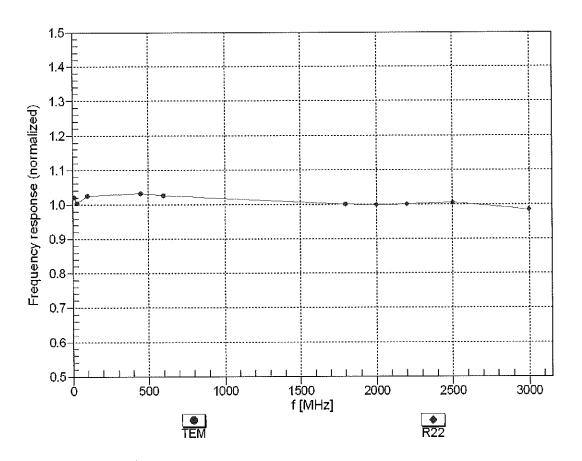
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.75	6.75	6.75	0.80	1.17	± 12.0 %
835	41.5	0.90	6.48	6.48	6.48	0.64	1.34	± 12.0 %
1750	40.1	1.37	5.52	5.52	5.52	0.43	1.66	± 12.0 %
1900	40.0	1.40	5.30	5.30	5.30	0.74	1.23	± 12.0 %
2300	39.5	1.67	4.94	4.94	4.94	0.55	1.47	± 12.0 %
2450	39.2	1.80	4.63	4.63	4.63	0.68	1.37	± 12.0 %
2600	39.0	1.96	4.47	4.47	4.47	0.80	1.27	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

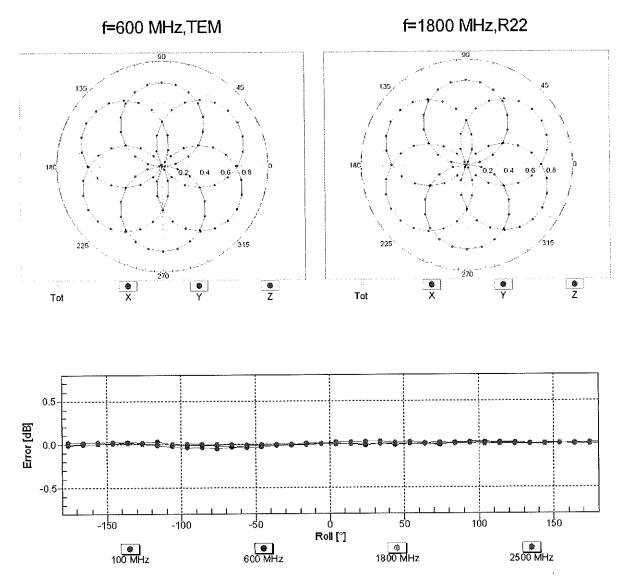
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

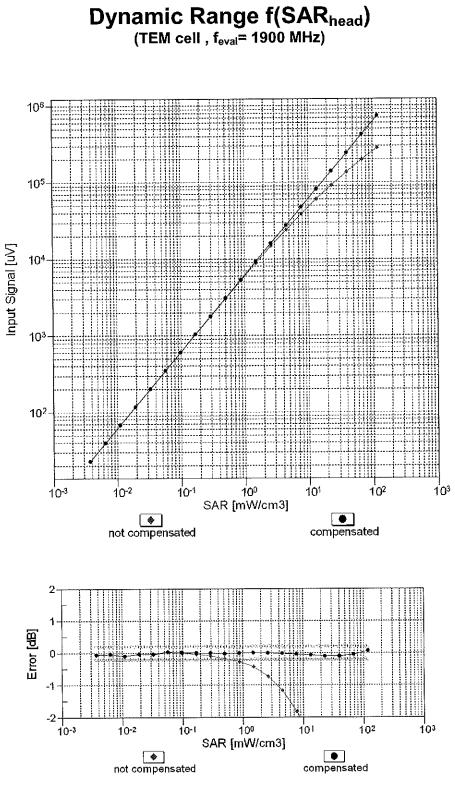

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.38	6.38	6.38	0.60	1.40	± 12.0 %
835	55.2	0.97	6.21	6.21	6.21	0.60	1.40	± 12.0 %
1750	53.4	1.49	5.09	5.09	5.09	0.45	1.67	± 12.0 %
1900	53.3	1.52	4.89	4.89	4.89	0.56	1.55	± 12.0 %
2300	52.9	1.81	4.57	4.57	4.57	0.71	1.32	± 12.0 %
2450	52,7	1.95	4.50	4.50	4.50	0.70	1.30	± 12.0 %
2600	52.5	2.16	4.38	4.38	4.38	0.80	1.20	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

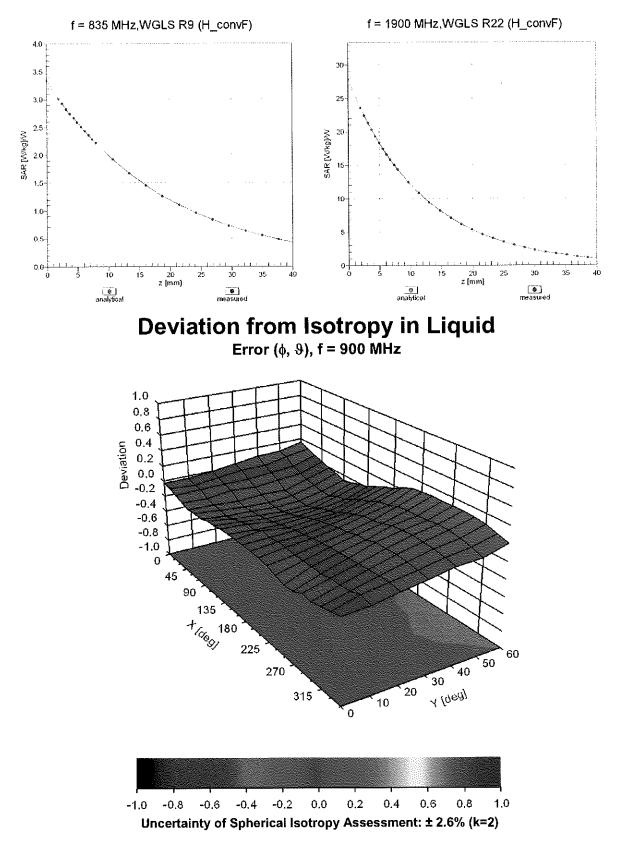
^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to \pm 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Triangular
94.1
enabled
disabled
337 mm
10 mm
10 mm
4 mm
2 mm
2 mm
2 mm
3 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k≕2)
0	CW	X	0.00	0.00	1.00	0.00	191.1	± 3.0 %
		Y	0.00	0.00	1.00		196.5	
		Z	0.00	0.00	1.00		194.8	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	6.24	76.67	15.81	10.00	25.0	± 9.6 %
		Y	9.09	81.21	18.14		25.0	
10011		Z	6.22	76.01	15.93		25.0	
10011- CAB	UMTS-FDD (WCDMA)	×	0.85	64.24	12.79	0.00	150.0	± 9.6 %
		Y	0.99	66.97	14.74		150.0	
		Z	0.84	64.26	12.74	0.44	150.0	10.04
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	×	1.17	63.37	14.30	0.41	150.0	± 9.6 %
		L	1.24	64.74	15,45		150.0	
		Z	1.16	63.48	14.32		150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	×	4.87	66.95	17.04	1.46	150.0	± 9.6 %
		Y	4.96	67.25	17.32		150.0	ļ
		Z	4.89	66.97	17.05		150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	X	100.00	117.46	29.69	9.39	50.0	± 9.6 %
		Y	100.00	118.87	30.88		50.0	
		Z	100.00	117.65	30.17		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	×	100.00	117.25	29.63	9.57	50.0	± 9.6 %
		Y	100.00	118.78	30.89		50.0	
		Z	100.00	117.55	30.17	0.50	50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	×	100.00	114.32	27.30	6.56	60.0	± 9.6 %
		Y	100.00	115.92	28.46		60.0	
		Z	100.00	114.14	27.52	10 ===	60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	14.49	106.35	41.86	12.57	50.0	± 9.6 %
		Y	35.14	132.48	50.59		50.0	
40000		Z X	17.38 18.23	109.14 106.85	42.18 37.52	9.56	50.0 60.0	± 9.6 %
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)					9.56		I 9.0 %
		Y	31.69 19.94	119.75 107.22	41.58 37.22		60.0	
10027-	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	Z X	100.00	113.24	26,09	4.80	60.0 80.0	± 9.6 %
DAC		Y	400.00	115.16	27.33		80.0	
		Z	100.00	112.68	26.08		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	113.00	25.31	3.55	100.0	± 9.6 %
0110		Y	100.00	115.51	26.77		100.0	<u> </u>
		z	100.00	112.04	25.10		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	x	9.83	91.59	30.93	7.80	80.0	±9.6 %
		Y	14.24	99.61	33.83		80.0	<u> </u>
		Z	11.04	93.01	31.13		80.0	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	112.24	25.90	5.30	70.0	± 9.6 %
		Y	100.00	114.24	27.20		70.0	
		Z	100.00	112.05	26.08		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	×	100.00	109.56	22.52	1.88	100.0	± 9.6 %
		Y	100.00	114.84	25.05		100.0	
		Z	100.00	108.38	22.17		100.0	

ES3DV3-SN:3288

December 11, 2018

10032-	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	109.17	21.47	1.17	100.0	± 9.6 %
CAA			400.00	447.00	05.00		400.0	
		Y	100.00	117.68	25.23		100.0	
40000		Z	100.00	107.06	20.70	F 00	100.0	100%
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Х	31.59	105.89	28.05	5.30	70.0	± 9.6 %
		Y	45.55	111.97	30.13		70.0	
		Ζ	23.03	100.25	26.50		70,0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Х	3.87	77.59	17.36	1.88	100.0	± 9.6 %
		Y	7.94	87.73	21.39		100.0	
		Z	4.00	77.59	17.40		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	2.17	71.58	14.70	1.17	100.0	± 9.6 %
		Y	3.80	79.25	18.25		100.0	
		Z	2.27	71.81	14.83		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	52.58	113.84	30.16	5.30	70.0	±9.6 %
		Υ	75.42	120.08	32.21		70.0	
		Z	33.31	106.06	28.16		70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Х	3.59	76.73	17.02	1.88	100.0	± 9.6 %
		Y	7.22	86.52	20.98		100.0	
		Z	3.75	76.83	17.09		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Х	2,19	71.91	14.93	1.17	100.0	±9.6 %
		Y	3.90	79.88	18.59		100.0	
		Ζ	2.30	72.18	15.07		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	1.10	65.55	11.57	0.00	150.0	±9.6 %
		Υ	1.54	69.93	14.28		150.0	
		Z	1.13	65.72	11.73		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	112.53	26.64	7.78	50.0	± 9.6 %
		Y	100.00	114.28	27.90		50.0	
		Z	100.00	112.67	27.03		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	107.70	4.22	0.00	150.0	±9.6 %
		Y	0.00	100.41	3.59		150.0	
		Z	0.00	120.42	8.19		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	100.00	119.69	31.98	13.80	25.0	±9.6 %
		Y	48.39	109.13	30.30		25.0	
		Z	58.19	111.18	30.43		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	100.00	117.41	29.98	10.79	40.0	±9.6 %
		Y	79.06	115.65	30.55		40.0	
··· ·		1	70.00	440.00	29.54		40.0	
		Z	72.30	113.22	1 20.01		50.0	± 9.6 %
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	72.30 41.93	113.22	29.91	9.03	50.0	1 9.0 %
	UMTS-TDD (TD-SCDMA, 1.28 Mcps)		41.93 29.97	108.97 103.37	29.91 28.82	9.03	50.0	1 9.0 %
		X	41.93	108.97 103.37 98.69	29.91			1 9.0 %
	UMTS-TDD (TD-SCDMA, 1.28 Mcps) EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X Y Z X	41.93 29.97 23.56 6.89	108.97 103.37 98.69 83.98	29.91 28.82 27.10 27.22	9.03	50.0 50.0 100.0	± 9.6 %
CAA 10058-		X Y Z X Y	41.93 29.97 23.56 6.89 9.07	108.97 103.37 98.69 83.98 89.65	29.91 28.82 27.10 27.22 29.47		50.0 50.0 100.0 100.0	
CAA 10058-	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X Y Z X Y Z	41.93 29.97 23.56 6.89 9.07 7.67	108.97 103.37 98.69 83.98 89.65 85.42	29.91 28.82 27.10 27.22 29.47 27.53	6.55	50.0 50.0 100.0 100.0 100.0	± 9.6 %
CAA 10058-		X Y Z X Y Z X	41.93 29.97 23.56 6.89 9.07	108.97 103.37 98.69 83.98 89.65 85.42 64.83	29.91 28.82 27.10 27.22 29.47 27.53 15.08		50.0 50.0 100.0 100.0 100.0 110.0	
CAA 10058- DAC 10059-	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X Y Z X Y Z X Y	41.93 29.97 23.56 6.89 9.07 7.67	108.97 103.37 98.69 83.98 89.65 85.42	29.91 28.82 27.10 27.22 29.47 27.53	6.55	50.0 50.0 100.0 100.0 100.0	± 9.6 %
CAA 10058- DAC 10059-	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X Y Z X Y Z X	41.93 29.97 23.56 6.89 9.07 7.67 1.25	108.97 103.37 98.69 83.98 89.65 85.42 64.83	29.91 28.82 27.10 27.22 29.47 27.53 15.08	6.55	50.0 50.0 100.0 100.0 100.0 110.0	± 9.6 %
CAA 10058- DAC 10059- CAB 10060-	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5	X Y Z X Y Z X Y	41.93 29.97 23.56 6.89 9.07 7.67 1.25 1.37	108.97 103.37 98.69 83.98 89.65 85.42 64.83 66.69	29.91 28.82 27.10 27.22 29.47 27.53 15.08 16.45	6.55	50.0 50.0 100.0 100.0 100.0 110.0 110.0	± 9.6 %
CAA 10058- DAC 10059- CAB	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X Y Z X Y Z X Y Z	41.93 29.97 23.56 6.89 9.07 7.67 1.25 1.37 1.27	108.97 103.37 98.69 83.98 89.65 85.42 64.83 66.69 65.07	29.91 28.82 27.10 27.22 29.47 27.53 15.08 16.45 15.14	6.55 0.61	50.0 50.0 100.0 100.0 100.0 110.0 110.0 110.0	± 9.6 %

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	4.84	85.60	23.20	2.04	110.0	± 9.6 %
		Y	10.62	98.65	27.68		110.0	
		Z	5.56	86.94	23.43		110.0	1
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.60	66.69	16.30	0.49	100.0	± 9.6 %
		Y	4,69	67.02	16.59		100.0	
		Z	4,62	66.69	16.30		100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.63	66.83	16.43	0.72	100.0	± 9.6 %
		Y	4,72	67.16	16.72		100.0	
	**************************************	Z	4.65	66.84	16.43		100.0	
10064- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.91	67.11	16.69	0.86	100.0	± 9.6 %
		Y	5.01	67.44	16.97		100.0	
		Z	4.93	67.13	16.69		100.0	
10065- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.81	67.08	16.84	1.21	100.0	± 9.6 %
		Y	4.91	67.44	17.13		100.0	
~~~~~		Z	4.84	67.12	16.85		100.0	
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	4.84	67.17	17.05	1.46	100.0	± 9.6 %
		Y	4.96	67.54	17.35		100.0	
		Z	4.88	67.22	17.07		100.0	
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.16	67.50	17.60	2.04	100.0	± 9.6 %
		Y	5.28	67.83	17.88		100.0	
		Z	5.21	67.54	17.60		100.0	
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.23	67.59	17.86	2.55	100.0	± 9.6 %
		Y	5.36	67.99	18.17		100.0	
		Z	5.29	67.68	17.89	<u> </u>	100.0	
10069- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.32	67.64	18.07	2.67	100.0	± 9.6 %
		Y	5.45	68.03	18.39		100.0	
		Z	5.37	67,72	18.10		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	4.99	67.13	17.42	1.99	100.0	± 9.6 %
		Y	5.09	67.46	17.70		100.0	
		z	5.02	67.17	17.43		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	4.99	67.53	17.69	2.30	100.0	± 9.6 %
	<u> </u>	Y	5.11	67.92	17.99		100.0	
		Z	5.04	67.60	17.71		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.10	67.83	18.10	2.83	100.0	± 9.6 %
		Y	5.23	68.26	18.42		100.0	
		Z	5.15	67.94	18.13	1	100.0	
10074- CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.12	67.86	18.32	3.30	100.0	± 9.6 %
		Y	5.26	68.31	18.66		100.0	
		Z	5.18	67.98	18.36		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.19	68.08	18.71	3.82	90.0	± 9.6 %
		Y	5.35	68.62	19.08	1	90.0	
		Z	5.28	68.27	18.77		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.23	67.97	18.89	4.15	90.0	± 9.6 %
		Y	5.39	68.49	19.26		90.0	
		Z	5.31	68.15	18.95	[	90.0	
10077-						+·····	4	
	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.27	68.07	19.00	4.30	90.0	± 9.6 %
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)		5.27	68.07 68.60	19.00 19.38	4.30	90.0 90.0	± 9.6 %

10081-	CDMA2000 (1xRTT, RC3)	X	0.61	62.32	9.35	0.00	150.0	± 9.6 %
CAB								
		Y	0.74	64.78	11.38		150.0	
		Z	0.61	62.34	9.39	4 77	150.0	1069/
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	1.14	60.55	5.66	4.77	80.0	±9.6 %
		Y	1.45	61.81	6.79		80.0	
		Ζ	1.33	61.07	6.17		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	114.39	27.35	6.56	60.0	± 9.6 %
		Y	100.00	115.99	28.52		60.0	
		Z	100.00	114.23	27.58		60.0	
10097- CAB	UMTS-FDD (HSDPA)	Х	1.62	65.79	14.04	0.00	150.0	± 9,6 %
		<u>Y</u>	1.78	67.49	15.30		150.0	
		Z	1.61	65.76	14.04		150.0	1000
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	1.58	65.72	14.00	0.00	150.0	±9.6 %
		Y	1.74	67.44	15.28		150.0	
		Z	1.58	65.69	13.99		150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	×	18.34	106.95	37.55	9.56	60.0	±9.6 %
		Y	31.67	119.68	41.55		60.0	
		Z	19.99	107.23	37.22		60.0	
10100- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	×	2.78	68.40	15.45	0.00	150.0	±9.6 %
		Y	3.04	70.07	16.43		150.0	
		Z	2.79	68.47	15.43		150.0	
10101- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.06	66.64	15.18	0.00	150.0	± 9.6 %
		Y	3.19	67.51	15.78		150.0	
		Z	3.06	66.68	15.17		150.0	
10102- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.17	66.68	15.31	0.00	150.0	± 9.6 %
		Y	3.29	67.48	15.87		150.0	
		Z	3.17	66.71	15.30		150.0	
10103- CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	8.02	79.01	21.59	3.98	65.0	± 9.6 %
		Y	8.44	79.45	21.80		65.0	
		Z	8.25	78.96	21.46		65.0	
10104- CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	7.51	76.34	21.32	3.98	65.0	± 9.6 %
		Y	8.14	77.48	21.87		65.0	
		Z	7.76	76.48	21.29		65.0	
10105- CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	7.39	76.00	21.50	3.98	65.0	± 9.6 %
		Y	7.49	75.83	21.47		65.0	
		Z	7.70	76.31	21.54		65.0	ļ
10108- CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.41	67.68	15.23	0.00	150.0	± 9.6 %
		Y	2.65	69.34	16.25		150.0	
		Z	2.43	67.74	15.22		150.0	
10109- CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.69	66.38	14.94	0.00	150.0	± 9.6 %
		Y	2.84	67.34	15.64		150.0	
		Z	2.70	66.40	14.95		150.0	
10110- CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	1.93	66.68	14.63	0.00	150.0	± 9.6 %
		Y	2.14	68.47	15.82		150.0	
		Z	1.94	66.73	14.64		150.0	
10111- CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.36	66.79	14.88	0.00	150.0	± 9.6 %
070		Y	2.53	68.00	15.78		150.0	1
			L.00	1 00.00	1 10.10		10010	

10112-	LTE-FDD (SC-FDMA, 100% RB, 10	X	2.82	66.47	15.05	0.00	150.0	± 9.6 %
CAG	MHz, 64-QAM)							
		Y	2.96	67.34	15.71		150.0	
40440		Z	2.83	66.48	15.05	0.0-	150.0	
10113- CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.51	67.02	15.07	0.00	150.0	± 9.6 %
		Y	2.68	68.15	15.92		150.0	
		Z	2.52	67.03	15.09		150,0	
10114- CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.02	67.05	16.17	0.00	150.0	± 9.6 %
		Y	5.10	67.38	16.42		150.0	
40445		Z	5.03	67.06	16.15	0.00	150.0	
10115- CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.28	67.15	16.23	0.00	150.0	±9.6 %
		Y	5.37	67.48	16.48		150.0	
40440		Z	5.30	67.17	16.22	0.00	150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.11	67.23	16.18	0.00	150.0	± 9.6 %
		Y	5.19	67.55	16.44		150.0	
40445		Z	5.11	67.23	16.17	0.05	150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	4.99	66.92	16.12	0.00	150.0	± 9.6 %
		Y	5.06	67.22	16.36		150.0	
40440		Z	4.99	66.90	16.09		150.0	
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.37	67.37	16.35	0.00	150.0	±9.6 %
		Y	5.46	67.70	16.60		150.0	
40440		Z	5.38	67.38	16.34		150.0	1000
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.09	67.20	16.18	0.00	150.0	± 9.6 %
		Y	5.17	67.51	16.43		150.0	
		Z	5.10	67.20	16.16		150.0	
10140- CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.19	66.70	15.23	0.00	150.0	± 9.6 %
		Y	3.33	67.50	15.80		150.0	
		Z	3.20	66.72	15.22		150.0	
10141- CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.32	66.85	15.43	0.00	150.0	± 9.6 %
		Y	3.45	67.60	15.96		150.0	
		Z	3.33	66.87	15.42		150.0	
10142- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	1.67	66.25	13.92	0.00	150.0	± 9.6 %
		Y	1.90	68.32	15.35		150.0	
		Z	1.69	66.31	13.96		150.0	
10143- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.11	66.79	14.05	0.00	150.0	± 9.6 %
		Y	2.35	68.49	15.29		150.0	
		Z	2.13	66.84	14.13		150.0	
10144- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	1.96	65.04	12.67	0.00	150.0	± 9.6 %
		Y	2.15	66.40	13.78		150.0	
		Z	1.98	65.11	12.78		150.0	
10145- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	0.91	62.04	8.96	0.00	150.0	± 9.6 %
		Y	1.08	64.00	10.69		150.0	
		Z	0.93	62.23	9.21		150.0	
10146- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	1.46	63.31	9.13	0.00	150.0	± 9.6 %
		Y	2.12	67.43	11.83		150.0	
		Z	1.64	64.44	10.03		150.0	
10147- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	1.58	64.11	9.66	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	2.61	69.87	13.06		150.0	
		Z	1.82	65.59	10.73		150.0	

		,	<b>A</b> = 7	·····	· · · ·	0.0-		
10149- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	2.70	66.43	14.99	0.00	150.0	± 9.6 %
		Y	2.85	67.39	15.69		150.0	
		Z	2.71	66.46	14.99		150.0	
10150- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	Х	2.83	66.51	15.09	0.00	150.0	± 9.6 %
		Y	2.97	67.39	15.74		150.0	
		Z	2.84	66.53	15.09		150.0	
10151- CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	8.63	81.75	22.67	3.98	65.0	± 9.6 %
		Y	9.56	83.05	23.22		65.0	
		Z	8.80	81.43	22.44		65.0	
10152- CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	Х	7.08	76.45	21.00	3,98	65.0	± 9.6 %
		Y	7.78	77.80	21.67		65.0	
		Ζ	7.34	76.60	20.99		65.0	
10153- CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	Х	7.56	77.60	21.84	3.98	65.0	±9.6 %
		Υ	8.22	78.75	22.41		65.0	
		Ζ	7.82	77.69	21.80		65.0	
10154- CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	1.96	66.95	14.82	0.00	150.0	±9.6 %
		Y	2.18	68.80	16.04		150.0	
	······	Ζ	1.97	67.02	14.84		150.0	
10155- CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	Х	2.36	66.81	14.90	0.00	150.0	±9.6 %
		Y	2.53	68.02	15.80		150.0	
		Ζ	2.37	66.81	14.92		150.0	
10156- CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	Х	1.49	65.86	13.36	0.00	150.0	±9.6 %
		Y	1.73	68.22	15.00		150.0	
		Ζ	1.50	65.96	13.45		150.0	
10157- CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	Х	1.74	65.04	12.33	0.00	150.0	± 9.6 %
		Y	1.97	66.76	13.67		150.0	
		Ζ	1.77	65.14	12.46		150.0	
10158- CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.51	67.08	15.11	0.00	150.0	±9.6 %
		Y	2.69	68.21	15.97		150.0	
		Ζ	2.52	67.08	15.13		150.0	
10159- CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	1.82	65.33	12.53	0.00	150.0	± 9.6 %
		Y	2.06	67.13	13.90		150.0	
		Z	1.85	65.45	12.68		150.0	
10160- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.50	67.33	15.24	0.00	150.0	± 9.6 %
		Y	2.69	68.61	16.11		150.0	
		Z	2.51	67.34	15.23		150.0	
10161- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	2.72	66.41	14.96	0.00	150.0	±9.6 %
		Y	2.86	67.32	15.65		150.0	
		Z	2.73	66.43	14.97	[	150.0	
10162- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	2.83	66.62	15.11	0.00	150.0	± 9.6 %
		Y	2.97	67.49	15.77		150.0	ļ
		Z	2.84	66.62	15.11		150.0	
10166- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	3.44	69.49	18.93	3.01	150.0	± 9.6 %
		Y	3.74	71.12	19.94		150.0	
		Z	3.54	69.89	19.15		150.0	
10167- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	4.25	72.83	19.54	3.01	150.0	± 9.6 %
CAF	·····		1.00	75.04	20.98	1	150.0	1
		Y	4.98	75.61	Z0.90		1 100.0	

10168- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	4.80	75.44	21.03	3.01	150.0	±9.6 %
		Y	5.66	78.37	22.46		150.0	
	· · · · · · · · · · · · · · · · · · ·	Ż	5.04	76.01	21.30		150.0	
10169- CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	2.83	68.75	18.61	3.01	150.0	± 9.6 %
		Y	3.21	71.38	20.14		150.0	
		Z	2.97	69.43	18.96		150.0	
10170- CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	3.99	75.54	21.31	3.01	150.0	±9.6 %
		Y	5.30	81.05	23.77		150.0	
		Z	4.32	76.64	21.77		150.0	
10171- AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	3.21	70.99	18.32	3.01	150.0	± 9.6 %
		Y	4.07	75.35	20.48		150.0	
		Z	3.43	71.82	18.71		150.0	
10172- CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	×	22.60	110.62	34.58	6.02	65.0	± 9.6 %
		Y	48.93	125.83	38.92		65.0	
		Z	16.45	103.03	32.18		65.0	
10173- CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	72.94	125.95	36.27	6.02	65.0	±9.6 %
		Y	100.00	130.47	37.35		65.0	
		Z	80.34	126.17	36.18		65.0	
10174- CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	46.54	116.03	33.12	6.02	65.0	± 9.6 %
		Y	100.00	128.69	36.37		65.0	
		Z	52.96	116.84	33.20		65.0	
10175- CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	2.80	68.45	18.36	3.01	150.0	± 9.6 %
		Y	3.17	71.05	19.89		150.0	
		Z	2.93	69.12	18.71		150.0	
10176- CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	4.00	75.57	21.32	3.01	150.0	±9.6 %
		Y	5.31	81.08	23.78		150.0	
		Z	4.32	76.67	21.79		150.0	
10177- CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	2.82	68.59	18.45	3.01	150.0	± 9.6 %
		Y	3.20	71.20	19.98		150.0	
		Z	2.95	69.26	18.80		150.0	
10178- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	3.96	75.36	21.21	3.01	150.0	± 9.6 %
		Y	5,25	80.81	23.65		150.0	
		Z	4.28	76.44	21.67	]	150.0	
10179- CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	3.55	73.11	19.66	3.01	150.0	± 9.6 %
		Y	4.63	78.06	21.98		150.0	
		Z	3.83	74.06	20.09		150.0	
10180- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	3.20	70.94	18.28	3.01	150.0	± 9.6 %
		Y	4.05	75.27	20.43		150.0	
		Z	3.42	71.76	18.67		150.0	
10181- CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	2.82	68.57	18.44	3.01	150.0	±9.6 %
		Y	3.19	71.19	19.97		150.0	
		Z	2.95	69.25	18.79		150.0	
10182- CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	3.95	75.33	21.20	3.01	150.0	± 9.6 %
		Y	5.24	80.78	23.64	1	150.0	
		Z	4.27	76.41	21.66		150.0	
10183- AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	3.19	70.91	18.27	3.01	150.0	± 9.6 %
		Υ	4.04	75.24	20.41	İ	150.0	
			1 <b>T</b> .VT	10.24	20.41		1 100.0	

10184- CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	x	2.83	68.62	18.46	3.01	150.0	± 9.6 %
		Y	3.20	71.23	19.99		150.0	
		Z	2.96	69.29	18.81		150.0	
10185- CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	Х	3.97	75.41	21.24	3.01	150.0	± 9.6 %
		Y	5.27	80.87	23.68		150.0	
		Ζ	4.29	76.50	21.70		150.0	
10186- AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	3.21	70.98	18.31	3.01	150.0	± 9.6 %
		Y	4.07	75.33	20.45		150.0	
		Ζ	3.43	71.80	18.69		150.0	
10187- CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	Х	2.84	68.68	18.53	3.01	150.0	± 9.6 %
		Y	3.22	71.30	20.06		150.0	
		Z	2.97	69.35	18.88		150.0	
10188- CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	Х	4.11	76.12	21.64	3.01	150.0	± 9.6 %
		Y	5.49	81.77	24.13		150.0	
		Ζ	4.45	77.25	22,11		150.0	
10189- AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	Х	3.28	71.42	18.59	3.01	150.0	± 9.6 %
		Y	4.19	75.89	20.78		150.0	
		Ζ	3.52	72.27	18.99		150.0	
10193- CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.40	66.45	15.78	0.00	150.0	± 9.6 %
0/10		Y	4.48	66.78	16.08		150.0	
		Ζ	4.40	66.42	15.77		150.0	
10194- CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	Х	4.55	66.73	15.92	0.00	150.0	± 9.6 %
		Y	4.65	67.08	16.22		150.0	ĺ
		Z	4.57	66.72	15.91		150.0	
10195- CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	x	4.59	66.77	15.94	0.00	150.0	± 9.6 %
0		Y	4.69	67.11	16.23		150.0	
		Z	4.61	66.75	15.93		150.0	
10196- CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.39	66.48	15.78	0.00	150.0	± 9.6 %
		Y	4.48	66.83	16.10		150.0	
		Z	4.40	66.46	15.78		150.0	
10197- CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	4.57	66.75	15.93	0.00	150.0	± 9.6 %
		Y	4.66	67.10	16.23		150.0	
		Ζ	4.58	66.74	15.92		150.0	
10198- CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.59	66.78	15.95	0.00	150.0	± 9.6 %
		Y	4.69	67.13	16.25		150.0	
		Z	4.61	66.77	15.94		150.0	İ
10219- CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	×	4.34	66.48	15.74	0.00	150.0	± 9.6 %
		Y	4.43	66.84	16.06		150.0	
		Z	4.35	66.47	15.73	1	150.0	
10220- CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.56	66.71	15.92	0.00	150.0	± 9.6 %
		Y	4.65	67.07	16.22		150.0	
······································		Z	4.57	66.71	15.91		150.0	
10221- CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X	4.61	66.72	15.94	0.00	150.0	± 9.6 %
		Y	4.70	67.06	16.23		150.0	[
	**************************************	Z	4.62	66.71	15.93		150.0	1
10222-	IEEE 802.11n (HT Mixed, 15 Mbps,	X	4.96	66.91	16.10	0.00	150.0	± 9.6 %
	I BPSK)							
CAC	BPSK)	Y	5.03	67.23	16.35		150.0	

10223- CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.26	67.19	16.27	0.00	150.0	± 9.6 %
***		Y	5.35	67.49	16.51		150.0	
		Z	5.28	67.21	16.27		150.0	
10224- CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5,00	67.01	16.08	0.00	150.0	± 9.6 %
		Y	5.08	67.33	16.33		150.0	
		Z	5.01	67.01	16.06		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	2.63	65.42	14.42	0.00	150.0	± 9.6 %
		Y	2.75	66.16	15.09		150.0	
		Z	2.64	65.42	14.46		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	×	87.54	129.49	37.24	6.02	65.0	± 9.6 %
		Y	100.00	130.69	37.49		65.0	
40007		Z	95.28	129.48	37.08		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	70.84	123.19	34.95	6.02	65.0	± 9.6 %
		Y	100.00	128.18	36.17		65.0	
10000		Z	72.30	122.22	34.60		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	23.91	111.94	35.01	6.02	65.0	±9.6 %
		Y	100.00	140.30	42.50		65.0	
		Z	32.77	116.73	36.13		65.0	
10229- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	73.51	126.08	36.31	6.02	65.0	± 9.6 %
40020		Y	100.00	130.46	37.35		65.0	
		Z	80.80	126.27	36.21		65.0	
10230- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	60.26	120.23	34.13	6.02	65.0	± 9.6 %
		Y	100.00	128.03	36.07		65.0	
		Z	62.58	119.56	33.86		65.0	
10231- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	21.94	110.07	34.40	6.02	65.0	± 9.6 %
		Y	96,90	139.48	42.23		65.0	
		Z	29.83	114.70	35.49		65.0	
10232- CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	73.48	126.08	36.32	6.02	65.0	± 9.6 %
		Y	100.00	130.47	37.36		65.0	
		Z	80.83	126.29	36.22		65.0	
10233- CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	60.09	120.20	34.13	6.02	65.0	± 9.6 %
		Y	100.00	128.05	36.08		65.0	
		Z	62.48	119.55	33.86		65.0	
10234- CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	20.42	108.40	33.79	6.02	65.0	± 9.6 %
		Y	85.29	136.53	41.39		65.0	
		Z	27.51	112.84	34.85	<u> </u>	65.0	
10235- CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	74.06	126.24	36.36	6.02	65.0	± 9.6 %
	······································	Y	100.00	130.49	37.36		65.0	
		Z	81.47	126.44	36.26		65.0	
10236- CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	×	61.46	120.53	34.20	6.02	65.0	± 9.6 %
		Y	100.00	127.99	36.05		65.0	
		Z	63.70	119.84	33.93		65.0	
10237- CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	22.09	110.25	34.45	6.02	65.0	± 9.6 %
		Y	99.25	140.00	42.36		65.0	
		Z	30.12	114.93	35.55		65.0	
10238- CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	73.45	126.09	36.32	6.02	65.0	± 9.6 %
		Y	100.00	130.48	37.36		65.0	
		Z	80.85	126.30	36.22		65.0	1

10239- CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	Х	59.93	120.17	34.12	6.02	65.0	± 9.6 %
		Υ	100.00	128.07	36.08		65.0	
		Z	62.38	119.54	33.86		65.0	
10240- CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	х	22.01	110.18	34.43	6.02	65.0	±9.6 %
		Y	98.83	139.93	42.34		65.0	
		Z	30.00	114.86	35.53		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	Х	11.17	88.32	28.11	6.98	65.0	± 9.6 %
		Y	14.12	92.90	29.93		65.0	
		Ζ	11.94	88.91	28.24		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	Х	10.58	87.20	27.63	6.98	65.0	± 9.6 %
		Y	11.64	88.74	28.35		65.0	
		Ζ	11.55	88.22	27.92		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	х	8.01	82.52	26.78	6.98	65.0	± 9.6 %
0		Y	8.59	83.63	27.39		65.0	
		Z	8.75	83.76	27.20		65.0	-
10244- CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	7.49	77.98	18.72	3.98	65.0	± 9.6 %
		Y	9.57	81.63	20.57		65.0	
		Z	8.24	79.09	19.36		65.0	
10245- CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	7.15	77.05	18.30	3.98	65.0	± 9.6 %
		Y	9.11	80.61	20.14		65.0	
		Ż	7.89	78.19	18.96		65.0	
10246- CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	7.31	80.59	19.91	3.98	65.0	± 9.6 %
		Y	9.28	84.03	21.54		65.0	
		Ż	7.54	80.49	19.93		65.0	
10247- CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	6.19	75.83	18.78	3.98	65.0	± 9.6 %
	10-82/10/	Y	7.08	77.67	19.84		65.0	
		z	6.46	76.00	18.90		65.0	
10248- CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	6.07	75.10	18.47	3.98	65.0	± 9.6 %
		Y	6.95	76.95	19.55		65.0	
		Z	6.36	75.34	18.62		65.0	
10249- CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	9.60	85.58	22.75	3.98	65.0	± 9.6 %
0/ ()		Y	11.62	88.40	24.00		65.0	
		Z	9.64	84.99	22.52		65.0	
10250- CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	7.52	79.44	22.06	3.98	65.0	± 9.6 %
		Y	8.31	80,79	22.74		65.0	
		Z	7.79	79.47	22.02		65.0	
10251- CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	6.92	76.78	20.63	3.98	65.0	± 9.6 %
		Y	7.69	78.24	21.42		65.0	
		Z	7.19	76.91	20.66		65.0	
10252-	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	9.67	85.65	23.94	3.98	65.0	± 9.6 %
CAF		Y	11.12	87.60	24.76	1	65.0	
			9.78	85.11	23.65	-	65.0	
		Z	1 0.10			1		
10253-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	Z X	6.93	75.93	20.74	3.98	65.0	± 9.6 %
	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	Х	6.93	75.93		3.98		± 9.6 %
10253-		X Y	6.93 7.59	75.93 77.20	21.41	3.98	65.0	± 9.6 %
10253- CAF 10254-	16-QAM)	Х	6.93	75.93		3.98		± 9.6 %
10253- CAF	16-QAM)	X Y Z	6.93 7.59 7.18	75.93 77.20 76.07	21.41 20.74		65.0 65.0	

10255- CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	8.26	81.20	22.65	3.98	65.0	±9.6 %
		Y	9.16	82,56	23.25		65.0	
		Z	8.45	80.97	22.45		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	5.31	72.46	15.37	3.98	65.0	±9.6 %
		Y	7.14	76.50	17.57		65.0	
		Z	6.06	73.94	16.26		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	5.06	71.46	14.84	3.98	65.0	±9.6 %
		Y	6.72	75.28	16.99		65.0	
		Z	5.76	72.92	15.73		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	4.98	74.24	16.51	3.98	65.0	± 9.6 %
		Y	6.52	77.88	18.42		65.0	
		Z	5.35	74.75	16.84		65.0	0.0.0/
10259- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	6.73	77.24	19.99	3.98	65.0	± 9.6 %
		Y	7.58	78,86	20.90		65.0	1
100		Z	6.99	77.33	20.04	<b>.</b>	65.0	
10260- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	6.69	76.84	19.83	3.98	65.0	± 9.6 %
		Y	7.52	78.42	20.73		65.0	
1		Z	6.96	76.96	19.90	0.00	65.0	
10261- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	9.07	84.65	22.90	3.98	65.0	±9.6 %
		Y	10.71	87.04	23.97		65.0	
		Z	9.18	84.16	22.68		65.0	
10262- CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	7.50	79.37	22.01	3.98	65.0	± 9.6 %
		Y	8.30	80.73	22.69		65.0	
		Z	7.77	79.40	21.97		65.0	
10263- CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	6.91	76.76	20.63	3.98	65.0	± 9.6 %
		Y	7.68	78.22	21.41		65.0	
		Z	7.18	76.89	20.65		65.0	
10264- CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	9.55	85.40	23.83	3.98	65.0	± 9.6 %
		Y	11.00	87.37	24.66		65.0	1
		Z	<del>9</del> .67	84.88	23.54		65.0	
10265- CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	7.08	76.46	21.01	3.98	65.0	± 9.6 %
		Υ	7.78	77.80	21.68		65.0	
		Z	7.34	76.60	20.99		65.0	
10266- CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	7.56	77.59	21.83	3.98	65.0	± 9.6 %
		Y	8.22	78.74	22.40		65.0	
		Z	7.81	77.68	21.79		65.0	
10267- CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	8.61	81.70	22.65	3.98	65.0	± 9.6 %
		Y	9.54	83.00	23.20		65.0	l
		Z	8.78	81.39	22.42		65.0	
10268- CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	7.64	76.16	21.36	3.98	65.0	± 9.6 %
		Y	8.22	77.19	21.86		65.0	
		Z	7.88	76.29	21.33		65.0	
10269- CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	7.58	75.72	21.23	3.98	65.0	± 9.6 %
		Y	8.14	76.72	21.73		65.0	
		Z	7.82	75.87	21.21		65.0	
10270- CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	7.95	78.32	21.55	3.98	65.0	± 9.6 %
		Y	8.58	79.24	21.95		65.0	
		Z	8.14	78.21	21.40		65.0	

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP	X	2.42	65.66	14.26	0.00	150.0	± 9.6 %
	Rel8.10)	Y	2.54	66.55	15.02		150.0	ļ
40075		Z	2.42	65.63	14.28	0.00	150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.38	65.51	13.67	0.00	150.0	± 9.6 %
		Υ	1.55	67.64	15.15		150.0	
		Z	1.37	65.53	13.65		150.0	
10277- CAA	PHS (QPSK)	X	3.00	63.81	8.90	9.03	50.0	± 9.6 %
		Y	3.74	65.65	10.52		50.0	
		Z	3.50	64.83	9.85		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	6.31	75.25	16.86	9.03	50.0	± 9.6 %
		Y	7.73	77.90	18.55		50.0	
		Z	6.71	75.50	17.26		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	6.44	75.48	17.00	9.03	50.0	± 9.6 %
		Y	7.87	78.12	18.68		50.0	
		Z	6.83	75.71	17.39		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	0.97	64.09	10.56	0.00	150.0	± 9.6 %
		Y	1.25	67.20	12.74		150.0	
		Z	1.00	64.23	10.70		150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	Х	0.60	62.22	9.27	0.00	150.0	± 9.6 %
		Y	0.73	64.60	11.26		150.0	
		Z	0.60	62.23	9.31		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	Х	0.65	63.74	10.44	0.00	150.0	± 9.6 %
		Y	0.90	68.02	13.35		150.0	
		Z	0.65	63.74	10.46		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	0.79	65.96	12.01	0.00	150.0	± 9.6 %
		Y	1.33	73.30	16.16		150.0	
		Z	0.79	65.97	12.05		150.0	·····
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	16.78	93.84	26.47	9.03	50.0	± 9.6 %
		Y	14.66	91.28	26.06		50.0	
		Ż	13.94	89.83	25.22		50.0	·
10297- AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	2.42	67.75	15.29	0.00	150.0	± 9.6 %
		Y	2.66	69.43	16.31		150.0	
		Z	2.43	67.82	15.27		150.0	
10298- AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.17	64.16	11.29	0.00	150.0	± 9.6 %
		Y	1.41	66.65	13.15		150.0	
		Z	1.20	64.34	11.47	[	150.0	
10299- AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	2.07	66.78	12.02	0.00	150.0	± 9.6 %
		Y	3.21	72.39	15.13		150.0	
		Z	2.34	68.19	12.96		150.0	1
10300- AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	1.65	63.55	9.70	0.00	150.0	± 9.6 %
		Y	2.09	66.20	11.60		150.0	
		Z	1,79	64.31	10.35		150.0	
10301- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	4.96	66.63	17.66	4.17	80.0	± 9.6 %
		Y	5.40	68.26	18.68		80.0	ļ
		Z	5.12	67.10	17.89		80.0	
10302- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	5.40	67.04	18.27	4.96	80.0	± 9.6 %
<u> </u>		Y	5.77	68,38	19.15		80.0	1

10303- AAA	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	X	5.19	66.81	18.14	4.96	80.0	± 9.6 %
		Y	5.57	68.27	19.10		80.0	
		Z	5.33	67.21	18.34		80.0	
10304- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	4.95	66.49	17.52	4.17	80.0	±9.6 %
		Y	5.28	67.74	18.36		80.0	
	······································	Z	5.07	66.79	17.68		80.0	
10305- AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	5.33	71.69	20.97	6.02	50.0	± 9.6 %
		Y	6.67	76.67	23.65		50.0	
		Z	5.94	73.75	21.94		50.0	
10306- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	5.25	69.25	20.07	6.02	50.0	± 9.6 %
		Y	5.72	70.35	20.68		50.0	
		Z	5.58	70.41	20.67		50.0	
10307- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	5.21	69.62	20.11	6.02	50.0	± 9.6 %
		Y	5.70	70.74	20.71		50.0	
		Z	5.59	70.95	20.78		50.0	
10308- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	5.23	70.00	20.32	6.02	50.0	±9.6 %
		Y	5.75	71.18	20.94		50.0	
		Z	5.64	71.43	21.03		50.0	
10309- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	5.30	69.44	20.21	6.02	50.0	± 9.6 %
		Y	5.79	70.61	20.85		50.0	
		Z	5.65	70.64	20.82		50.0	
10310- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	5.23	69.44	20.10	6.02	50.0	± 9.6 %
		Y	5.71	70.52	20.69		50.0	
		Z	5.59	70.66	20.72		50.0	
10311- AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	2.76	67.15	15.05	0.00	150.0	± 9.6 %
		Y	3.01	68.71	15,98		150.0	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Z	2.77	67.21	15.04		150.0	
10313- AAA	iDEN 1:3	X	6.69	78.91	18.28	6.99	70.0	± 9.6 %
		Y	8.21	81.16	19.29		70.0	
		Z	6.41	77.39	17.66		70.0	
10314- AAA	IDEN 1:6	X	10.80	90.27	25.03	10.00	30.0	±9.6 %
		Y	13.17	92.20	25.68		30.0	
		Z	9.96	87.29	23.81		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.05	62.92	13.97	0.17	150.0	±9.6 %
		Y	1.11	64.25	15.15		150.0	
		Z	1.04	62.98	13.97		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.48	66.60	16.01	0.17	150.0	±9.6 %
		Y	4.57	66.95	16.31		150.0	
		Z	4.49	66.60	16.00		150.0	
10317- AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.48	66.60	16.01	0.17	150.0	± 9.6 %
		Y	4.57	66.95	16.31		150.0	l
		Z	4.49	66.60	16.00		150.0	
10400- AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4,53	66.77	15.91	0.00	150.0	± 9.6 %
		Y	4.64	67.15	16.22	1	150.0	
		Z	4.55	66.77	15.90		150.0	
10401- AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.30	67.15	16.23	0.00	150.0	± 9.6 %
		Y	5.37	67.42	16.46	1	150.0	
		Z	5.31	67.15	16.21	1	150.0	

10402-	IEEE 802.11ac WiFi (80MHz, 64-QAM,	Х	5.52	67.30	16.17	0.00	150.0	± 9.6 %
AAD	99pc duty cycle)	Y	5.60	67.64	16.40		150.0	
		Y Z	5.50	67.61 67.31	16.40		150.0	
10403-	CDMA2000 (1xEV-DO, Rev. 0)	X	0.97	64.09	10.10	0.00	115.0	± 9.6 %
AAB	CDWA2000 (TXEV-DO, Rev. 0)		0.37	04.03	10.00	0.00	110.0	10.070
7010		Y	1.25	67.20	12.74		115.0	
		Z	1.00	64.23	10.70	······································	115.0	
10404-	CDMA2000 (1xEV-DO, Rev. A)	X	0.97	64.09	10.56	0.00	115.0	± 9.6 %
AAB								
		Y	1.25	67.20	12.74		115.0	
		Ζ	1.00	64.23	10.70		115.0	
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	116.01	27.29	0.00	100.0	±9.6 %
		Y	100.00	117.87	28.36		100.0	
		Z	100.00	117.33	28.06		100.0	
10410- AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	X	100.00	121.05	29.92	3.23	80.0	± 9.6 %
		Y	100.00	121.81	30.57		80.0	
		Z	100.00	120.53	29.90	ļ	80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	0.95	61.88	13.25	0.00	150.0	± 9.6 %
		Y	0.99	62.95	14.33		150.0	
		Z	0.93	61.85	13.22		150.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	4.40	66.48	15.86	0.00	150.0	±9.6 %
		Y	4.48	66.82	16.16		150.0	
		Z	4.41	66.46	15.85		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.40	66.48	15.86	0.00	150.0	± 9.6 %
<u>,,,,</u>		Y	4.48	66.82	16.16		150.0	
		Z	4.41	66.46	15.85		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.39	66.63	15.88	0.00	150.0	± 9.6 %
		Y	4.48	66.98	16.18		150.0	
		Z	4.39	66.61	15.86		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.41	66.58	15.88	0.00	150.0	± 9.6 %
		Y	4.50	66.93	16.18		150.0	
		Z	4.42	66.56	15.87		150.0	Į
10422- AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.52	66.60	15.91	0.00	150.0	± 9.6 %
		Y	4.61	66.93	16.20		150.0	
		Z	4.53	66.58	15.90		150.0	
10423- AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.67	66.88	16.01	0.00	150.0	± 9.6 %
		Y	4.77	67.23	16.31		150.0	
		Z	4.68	66.87	16.00		150.0	
10424- AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.59	66.82	15.98	0.00	150.0	± 9.6 %
		Y	4.69	67.18	16.28		150.0	
		Z	4.60	66.81	15.97		150.0	
10425- AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.22	67.18	16.24	0.00	150.0	± 9.6 %
		Y	5.30	67.49	16.48		150.0	
		Z	5.23	67.17	16.22		150.0	
10426- AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.25	67.29	16.29	0.00	150.0	± 9.6 %
		Y	5.32	67.56	16.52	1	150.0	1
							1 100.0	

40407		1				T		
10427- AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.24	67.18	16.24	0.00	150.0	±9.6 %
AAD		Y	5.32	07.50	40.40		450.0	
		Z	5.32	67.50	16.49		150.0	
10430-	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	3.95	67.20 70.04	16.23	0.00	150.0	1000
AAD	CTE-1 DD (OF DMA, 5 MHZ, E-1W 3.1)		3.90	70.04	17.27	0.00	150.0	± 9.6 %
		Y	4.09	70.48	17.72		150.0	
		Z	3.97	69.98	17.29	<u> </u>	150.0 150.0	· · · · · · · · · · · · · · · · · · ·
10431-	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.02	66.87	15.69	0.00		100%
AAD	$E^{-1} D^{-1} $	$  \uparrow$	4.02	00.07	15.09	0.00	150.0	± 9.6 %
7 0 10		Y	4.14	67.34	16.10		150.0	
		Z	4.04	66.86	15.70		150.0	
10432-	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.35	66.83	15.87	0.00	150.0	± 9.6 %
AAC			1.00	00.00	10.01	0.00	100.0	1 3.0 %
		Y	4.45	67.22	16.21		150.0	
	**************************************	Z	4.36	66.82	15.87		150.0	· · · ·
10433-	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.61	66.85	16.00	0.00	150.0	± 9.6 %
AAC							10010	
		Y	4.70	67.21	16.30		150.0	
		Z	4.62	66.84	15.99		150.0	
10434-	W-CDMA (BS Test Model 1, 64 DPCH)	X	3.96	70.56	17.00	0.00	150.0	± 9.6 %
AAA	· · · · · · · · · · · · · · · · · · ·			1				
		Y	4.15	71.19	17.59		150.0	
		Z	3.98	70.52	17.06		150.0	8
10435-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz,	X	100.00	120.82	29.81	3.23	80.0	±9.6%
AAF	QPSK, UL Subframe=2,3,4,7,8,9)							
		Y	100.00	121.59	30.47		80.0	
		Z	100.00	120.31	29.80		0,08	
10447-	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1,	X	3.24	66.49	14.60	0.00	150.0	± 9.6 %
AAD	Clipping 44%)							
		Υ	3.41	67.22	15.27		150.0	
10110		Z	3.27	66.51	14.67		150.0	
10448-	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1,	X	3.87	66.65	15.54	0.00	150.0	±9.6 %
AAD	Clippin 44%)	<u> </u>					(	
		Y	3.99	67.12	15.96		150.0	
10110		Z	3.89	66.63	15.55		150.0	
10449-	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1,	X	4.17	66.64	15.75	0.00	150.0	± 9.6 %
AAC	Cliping 44%)		4.07	07.04	10.10		450.0	
		Y	4.27	67.04	16.10		150.0	
40450		Z	4.18	66.62	15.75		150.0	
10450-	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1,	X	4.38	66.60	15.84	0.00	150.0	± 9.6 %
AAC	Clipping 44%)	Y	\$ A7	00.07	40.45		450.0	
		3	4.47	66.97	16.15		150.0	
10451-	W-CDMA (BS Test Model 1, 64 DPCH,	Z X	4.39	66.59	15.82	0.00	150.0	100%
10451- AAA	Clipping 44%)		3.07	66.37	13.99	0.00	150.0	± 9.6 %
~~~		Y	3.28	67.28	14 70		150.0	
		Z	3.28	66.44	14.79		150.0	
10456-	IEEE 802.11ac WiFi (160MHz, 64-QAM,	X	6.16	67.89	14.10 16.51	0.00	150.0	+060/
AAB	99pc duty cycle)	^	0.10	01.09	10.01	0.00	150.0	± 9.6 %
1010		Y	6.19	68.07	16.66		150.0	
	· · · · · · · · · · · · · · · · · · ·	Z	6.19	67.84	16.46		150.0	
10457-	UMTS-FDD (DC-HSDPA)	X	3.71	65.16	15.55	0.00	150.0	± 9.6 %
AAA		^	0.11	00.10	10.00	0.00	100.0	1 3.0 70
		Y	3.76	65.47	15.86		150.0	
		Z	3.70	65.13	15.54		150.0	
10458-	CDMA2000 (1xEV-DO, Rev. B, 2	X	3.56	69.52	16.11	0.00	150.0	± 9.6 %
AAA	carriers)		0.00	00.02		0.00	100.0	- 3.0 /0
		Y	3.80	70.49	16.94		150.0	
		Z	3.60	69.58	16.25		150.0	
10459-	CDMA2000 (1xEV-DO_Rev_B_3		4.82	1 68 13	17.51	1 () (11)	1 150 0	1 + 4 6 %
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	4.82	68.13	17.51	0.00	150.0	± 9.6 %
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X Y	4.82	68.13 68.06	17.51	0.00	150.0	± 9.6 %

10460-	UMTS-FDD (WCDMA, AMR)	х	0.72	64.25	13.06	0.00	150.0	± 9.6 %
AAA		Y	0.85	67.52	15.41		150.0	
		r Z	0.85	64.27	13.01		150.0	
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	126.16	32.32	3,29	80.0	± 9.6 %
1001		Y	100.00	128.30	33.57		80.0	
		Ζ	100.00	125.51	32.24		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	5.29	76.66	15.10	3.23	80.0	± 9.6 %
		Y	100.00	107.26	23.61		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Z X	19.76 1.77	89.48 65.52	19.03 10.51	3.23	80.0 80.0	± 9.6 %
	04-QAW, CE SUBIRAINE=2,0,4,7,0,0)	Y	62.77	98,74	20.70		80.0	
		Ż	3.01	69.97	12.51		80.0	
10464- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.40	30.88	3.23	80.0	± 9.6 %
		Y	100.00	125.93	32.30		80.0	
		Z	100.00	122.95	30.89		80.0	
10465- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	3.53	72.68	13.71	3.23	80.0	± 9.6 %
		Y	100.00	106.62	23.31		80.0	
		Z	8.88	81.40	16.74		80.0	
10466- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	1.58	64.43	10.00	3.23	80.0	± 9.6 %
		Y	17.28	86.47	17.66		80.0	
10467- AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Z X	2.45 100.00	67.96 123.70	<u>11.70</u> 31.01	3.23	80.0 80.0	± 9.6 %
		Y	100.00	126.21	32.43		80.0	
		Ż	100.00	123.23	31.02		80.0	
10468- AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	3.92	73.71	14.09	3.23	80.0	± 9.6 %
		Y	100.00	106.83	23.40		80.0	
		Z	10.75	83.35	17.32		80.0	
10469- AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	1.58	64.46	10.01	3.23	80.0	± 9.6 %
		Y	18.16	86.94	17.78		80.0	
		Z	2.46	68.02	11.72		80.0	
10470- AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	100.00	123.72	31.01	3.23	80.0	± 9.6 %
		Y	100.00	126.24	32.43		80.0	
10471- AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Z X	100.00 3.86	123.25 73.56	<u>31.02</u> 14.02	3.23	80.0	± 9.6 %
		Y	100.00	106.76	23.37		80.0	
		Z	10.54	83.13	17.24		80.0	
10472- AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	Х	1.57	64.40	9.97	3.23	80,0	± 9.6 %
		Y	17.74	86.68	17.69		80.0	
		Z	2.44	67.93	11.67		80.0	
10473- AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	123.69	31.00	3.23	80.0	± 9.6 %
		Y	100.00	126.21	32.42		80.0	Į
10474-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-	Z X	100.00 3.82	123.22 73.48	<u>31.00</u> 13.99	3.23	80.0 80.0	± 9.6 %
AAE	QAM, UL Subframe=2,3,4,7,8,9)	Y	100.00	106.76	23.36		80.0	
		Z	100.00	82.98	17.20		80.0	+
10475- AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	1.56	64.37	9.96	3.23	80.0	± 9.6 %
/ ⁻ // ⁻		Y	17.32	86.47	17.64		80.0	
		z	2.42	67.89	11.66		80.0	-

10477- AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	3.53	72.67	13.69	3.23	80.0	± 9.6 %
		Y	100.00	106.55	23,26		80.0	
		Z	8.97	81.48	16.74		80.0	
10478- AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	1.56	64.31	9.93	3.23	80.0	± 9.6 %
	·····	Y	16.59	86.04	17.51		80.0	
		Z	2.40	67.79	11.61		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	17.18	97.84	26.15	3.23	80.0	± 9.6 %
		Y	67.82	119.39	32.25		80.0	
		Z	23.68	102.24	27.47		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	13.44	87.88	21.01	3.23	80.0	± 9.6 %
		Y	73.56	110.56	27.54		80.0	
10.101		Z	18.97	92.14	22.47		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	8.48	81.26	18.55	3.23	80.0	± 9.6 %
		Y	35.81	99.73	24.39		80.0	
40400		Z	11.84	85.18	20.01	0.00	80.0	
10482- AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.92	70.56	15.40	2.23	80.0	±9.6 %
		Y	4.78	77.09	18.38		80.0	L
40400	LTE-TDD (SC-FDMA, 50% RB, 3 MHz,	Z	3.15	71.16	15.69	0.00	80.0	
10483- AAB	16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.51	73.02	15.95	2.23	80.0	± 9.6 %
		Y	9.30	82.76	20.00		80.0	
40404	LTE TOD (CO EDMA CON DD 2 MUL	Z	5.86	76.22	17.39	0.00	80.0	1000
10484- AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.12	71.69	15.43	2.23	80.0	±9.6 %
		<u>Y</u>	7.87	80.35	19.20		80.0	ļ
40405		Z	5.24	74.59	16.79		80.0	
10485- AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.63	73.64	17.76	2.23	80.0	± 9.6 %
		Y	5.34	79.18	20.20		80.0	
40400		Z	3.86	74.09	17.92	0.00	80.0	
10486- AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.28	69.11	15.32	2.23	80.0	± 9.6 %
		Y	4.18	72.40	17.08		80.0	
40.407		Z	3.45	69.50	15.54		80.0	
10487- AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	×	3.26	68.70	15.13	2.23	80.0	± 9.6 %
		Y	4.11	71.80	16.83		80.0	[
		Z	3.43	69.09	15.36		80.0	
10488- AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.97	73.40	18.62	2.23	80.0	±9.6 %
		Y	5.12	77.21	20.31	.	80.0	[
40400		Z	4.20	73,83	18.71	0.0	80.0	
10489- AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.77	69.90	17.16	2.23	80.0	± 9.6 %
		Y	4.35	71.94	18.26		80.0	_
10.100		Z	3.92	70.17	17.26		80.0	
10490- AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.86	69.73	17.11	2.23	80.0	± 9.6 %
		<u>Y</u>	4.41	71.64	18.15		80.0	ļ
10101		Z	4.01	70.00	17.20	0.00	80.0	
10491- AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.15	71.88	18.23	2.23	80.0	± 9.6 %
		Y	4.95	74.53	19.47		80.0	ļ
10.000		Z	4.34	72.24	18.30		80.0	
10492- AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.11	69.22	17.29	2.23	80.0	± 9.6 %
		Y	4.57	70.76	18.13		80.0	ļ
	1	Z	4.26	69.48	17.37	1	80.0	

10493- AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.17	69.09	17.25	2.23	80.0	±9.6 %
		Y	4.62	70.56	18.06		80.0	
		Z	4.32	69.34	17.33		80.0	
10494-	LTE-TDD (SC-FDMA, 50% RB, 20 MHz,	X	4.47	73.20	18.63	2.23	80.0	± 9.6 %
10494- AAF	QPSK, UL Subframe=2,3,4,7,8,9)					2,20		<u> </u>
		Y	5.50	76.30	20.00		80.0	
		Z	4.69	73.58	18.69		80.0	
10495- AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.15	69.55	17.49	2.23	80.0	± 9.6 %
		Y	4.64	71.19	18.35		80.0	
		Z	4.30	69.84	17.56		80.0	
10496- AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Х	4.22	69.31	17.43	2.23	80,0	±9.6 %
		Y	4.68	70.81	18.23		80.0	
		Z	4.37	69.57	17.50		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.90	65.16	11.93	2.23	80.0	± 9.6 %
7001	Mil2, Qr 610, 62 600 and 2,0,4,1,0,0	Y	3.10	70.87	14.94		80.0	
		Z	2.09	65.87	12.38	·	80.0	
10498-	LTE-TDD (SC-FDMA, 100% RB, 1.4	X	1.49	60.55	8.58	2.23	80.0	± 9.6 %
10498- AAA	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)		1.43		0.00	2.20	00.0	2 3.0 70
		Y	1.97	63.21	10.49		80.0	
		Z	1.63	61.16	9.08		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.44	60.12	8.21	2.23	80.0	± 9.6 %
		İΥ	1.88	62.52	10.01		80.0	
		Z	1.59	60.72	8.71		80.0	
10500- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.73	73.39	18.06	2.23	80.0	± 9.6 %
		Y	5.11	77.97	20.12		80.0	
·····		Ż	3.96	73.80	18.18		80.0	
10501- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.53	69.63	16.11	2.23	80.0	± 9,6 %
		Y	4.28	72.30	17.56		80.0	
		Z	3.69	69.93	16.27		80.0	
10502- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.56	69,43	15.97	2.23	80.0	± 9.6 %
		Y	4.30	72.01	17.39	İ	80.0	
		Ż	3.73	69.73	16.13		80.0	
10503- AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	3.91	73.20	18.52	2.23	80.0	± 9.6 %
		Y	5.05	76.99	20.21		80.0	
				10.00			80.0	
	····	Z			18.61		00.0	1
10504- AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Z X	4.14 3.75	73.63 69.80	18.61 17.10	2.23	80.0	± 9.6 %
		X Y	4.14	73.63 69.80 71.84	17.10 18.20	2.23	80.0 80.0	± 9.6 %
		X	4.14 3.75	73.63 69.80	17.10	2.23	80.0	± 9.6 %
		X Y Z X	4.14 3.75 4.33 3.90 3.83	73.63 69.80 71.84 70.07 69.64	17.10 18.20 17.20 17.05	2.23	80.0 80.0 80.0 80.0	± 9.6 %
AAE 10505-	16-QAM, UL Subframe=2,3,4,7,8,9)	X Y Z X Y	4.14 3.75 4.33 3.90 3.83 4.39	73.63 69.80 71.84 70.07 69.64 71.55	17.10 18.20 17.20 17.05 18.10		80.0 80.0 80.0 80.0 80.0	
AAE 10505-	16-QAM, UL Subframe=2,3,4,7,8,9)	X Y Z X Y Z	4.14 3.75 4.33 3.90 3.83	73.63 69.80 71.84 70.07 69.64	17.10 18.20 17.20 17.05		80.0 80.0 80.0 80.0	
AAE 10505-	16-QAM, UL Subframe=2,3,4,7,8,9)	X Y Z X Y Z X	4.14 3.75 4.33 3.90 3.83 4.39	73.63 69.80 71.84 70.07 69.64 71.55 69.90 73.06	17.10 18.20 17.20 17.05 18.10 17.15 18.56		80.0 80.0 80.0 80.0 80.0 80.0 80.0	
AAE 10505- AAE 10506-	16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10	X Y Z X Y Z X Y	4.14 3.75 4.33 3.90 3.83 4.39 3.98	73.63 69.80 71.84 70.07 69.64 71.55 69.90	17.10 18.20 17.20 17.05 18.10 17.15	2.23	80.0 80.0 80.0 80.0 80.0 80.0	± 9.6 %
AAE 10505- AAE 10506-	16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10	X Y Z X Y Z X	4.14 3.75 4.33 3.90 3.83 4.39 3.98 4.43	73.63 69.80 71.84 70.07 69.64 71.55 69.90 73.06	17.10 18.20 17.20 17.05 18.10 17.15 18.56	2.23	80.0 80.0 80.0 80.0 80.0 80.0 80.0	± 9.6 %
AAE 10505- AAE 10506-	16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL	X Y Z X Y Z X Y	4.14 3.75 4.33 3.90 3.83 4.39 3.98 4.43 5.45	73.63 69.80 71.84 70.07 69.64 71.55 69.90 73.06 76.14	17.10 18.20 17.20 17.05 18.10 17.15 18.56 19.92	2.23	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	± 9.6 %
AAE 10505- AAE 10506- AAE 10507-	16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10	X Y Z X Y Z X Y Z	4.14 3.75 4.33 3.90 3.83 4.39 3.98 4.43 5.45 4.65	73.63 69.80 71.84 70.07 69.64 71.55 69.90 73.06 76.14 73.43	17.10 18.20 17.20 17.05 18.10 17.15 18.56 19.92 18.62	2.23	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	± 9.6 %

10508- AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.21	69.24	17.39	2.23	80.0	± 9.6 %
		Y	4.66	70.74	18.19		80.0	
		Z	4.35	69.50	17.45		80.0	
10509- AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.74	71.77	18.10	2.23	80.0	± 9.6 %
		Y	5.47	73.93	19.10		80.0	
		Z	4.92	72.05	18.14		80.0	
10510- AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.61	69.17	17.49	2.23	80.0	± 9.6 %
	······································	Y	5.04	70.50	18.18		80.0	
		Z	4.76	69.43	17.55		80.0	
10511- AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.67	68.95	17.44	2.23	80.0	± 9.6 %
	····	Y	5.07	70.18	18.09		80.0	
	····	Z	4.81	69.20	17.49		80.0	
10512- AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.93	73.11	18.49	2.23	80.0	±9.6 %
		Y	5.92	75.87	19.69		80.0	
40540		Z	5.14	73.45	18.53		80.0	
10513- AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.50	69.40	17.57	2,23	80.0	± 9.6 %
		Y	4.96	70.86	18.32		80.0	
		Z	4.65	69.68	17.64		80.0	
10514- AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.53	69.02	17.47	2.23	80.0	± 9.6 %
		Y	4.94	70.35	18.17		80.0	
		Z	4.67	69.29	17.53		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.91	61.95	13.22	0.00	150.0	±9.6 %
		Y	0.95	63.11	14.37		150.0	
		Z	0.89	61.92	13.19		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.43	63.99	12.55	0.00	150.0	±9.6 %
		Y	0.56	69.22	16.17		150.0	
10517	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	Z	0.41	64.06	12.42	0.00	150.0	
10517- AAA	Mbps, 99pc duty cycle)	X	0.73	62.78	13.11	0.00	150.0	± 9.6 %
		Y Z	0.79 0.71	64.79 62.78	14.83 13.06		150.0 150.0	
10518- AAB	IEEE 802.11a/h WiFl 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.39	66.55	15.83	0.00	150.0	±9.6 %
		Y	4.48	66.89	16.14		150.0	
		Z	4.40	66.53	15.82		150.0	
10519- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.55	66.76	15.95	0.00	150.0	± 9.6 %
		Y	4.65	67.11	16.25		150.0	
18551		Z	4.57	66.75	15.94		150.0	
10520- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.40	66.68	15.85	0.00	150.0	± 9.6 %
		Y	4.50	67.06	16.16		150.0	
10521- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	Z X	4.42 4.34	66.67 66.65	15.84 15.82	0.00	150.0 150.0	± 9.6 %
, , , , , , , , , , , , , , , , , , , ,		Y	4.44	67.04	16.15	1	150.0	
		Z	4.35	66.64	15.81		150.0	
10522- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.40	66.78	15.93	0.00	150.0	±9.6 %
		Y	4.50	67.17	16.25		150.0	
		Z	4.41	66.77	15.92	1	150.0	

				<u>.</u>				
10523- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.29	66.67	15.78	0.00	150.0	±9.6 %
		Y	4.39	67.04	16.10		150.0	
		Z	4.30	66.64	15.76		150.0	
10524- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.34	66.70	15.89	0.00	150.0	± 9.6 %
		Y	4.44	67.08	16.21		150.0	
		Z	4.35	66.69	15.88		150.0	
10525- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.35	65.77	15.50	0.00	150.0	± 9.6 %
		Y	4.44	66.13	15.81		150.0	
		Z	4.35	65.74	15.48		150.0	
10526- AAB	IEEE 802.11ac WIFI (20MHz, MCS1, 99pc duty cycle)	X	4.49	66.08	15.63	0.00	150.0	±9.6 %
		Y	4.59	66.48	15.95		150.0	
		Z	4.50	66.07	15.61		150.0	
10527- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.41	66.03	15.55	0.00	150.0	±9.6 %
		Y	4.52	66.43	15.88		150.0	
-		Z	4.42	66.02	15.54		150.0	
10528- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.43	66.05	15.59	0.00	150.0	±9.6 %
		Y	4.53	66.45	15.92		150.0	
		Z	4.44	66.04	15.58		150.0	
10529- AAB	IEEE 802.11ac WIFI (20MHz, MCS4, 99pc duty cycle)	X	4.43	66.05	15,59	0.00	150.0	± 9.6 %
		Y	4.53	66.45	15.92		150.0	
		Z	4.44	66.04	15.58		150.0	
10531- AAB	IEEE 802.11ac WIFI (20MHz, MCS6, 99pc duty cycle)	X	4.40	66.10	15.58	0.00	150.0	±9.6 %
		Y	4.51	66.53	15.92		150.0	
		Z	4.42	66.10	15.57		150.0	
10532- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.27	65.94	15.50	0.00	150.0	± 9.6 %
		Y	4.38	66.38	15.85		150.0	
		Z	4.28	65.94	15.49		150.0	
10533- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.43	66.11	15.58	0.00	150.0	±9,6 %
		Y	4.54	66.51	15.91		150.0	
		Z	4.44	66.09	15.57		150.0	
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	4.99	66.22	15.73	0.00	150.0	± 9.6 %
		Y	5.08	66.55	15.99		150.0	
		Z	5.00	66.21	15.71		150.0	
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.05	66.39	15,82	0.00	150.0	± 9.6 %
		Y	5.14	66.74	16.08		150.0	
		Z	5.06	66.40	15.80		150.0	
10536- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	4.93	66.33	15.76	0.00	150.0	± 9.6 %
		Y	5.01	66.69	16.03		150.0	
		Z	4.93	66.33	15.74		150.0	
10537- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	4.98	66.30	15.75	0.00	150.0	± 9.6 %
		Y	5.07	66.65	16.02		150.0	ļ
		Z	4.99	66.30	15.74		150.0	
10538- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.06	66.32	15.80	0.00	150.0	± 9.6 %
		Y	5.15	66.66	16.07		150.0	
		Z	5.07	66.32	15.79		150.0	
10540- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	4.99	66.30	15.81	0.00	150.0	± 9.6 %
		Y	5.09	66.67	16.09		150.0	
		Z	5.00	66.31	15.80		150.0	

10541- AAB 10542-	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	4.97	66.19	15.74	0.00	150.0	± 9.6 %
								1
10542		Y	5.06	66.55	16.01		150.0	
10542		Z	4.98	66.20	15.73		150.0	
AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.13	66.30	15.82	0.00	150.0	±9.6 %
		Y	5.22	66.63	16.07		150.0	
		Z	5.14	66.30	15.80		150.0	
10543- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.20	66.33	15.86	0.00	150.0	±9.6 %
		Y	5.29	66.66	16.11		150.0	
10544- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	Z X	<u>5.21</u> 5.33	66.33 66.35	15.84 15.76	0.00	150.0 150.0	± 9.6 %
		Y	5.40	66.67	16.00		150.0	
		Z	5.33	66.35	15.74		150.0	
10545- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.52	66.80	15.94	0.00	150.0	±9.6 %
		Y	5.59	67.10	16.17		150.0	
		Z	5.52	66.79	15.92		150.0	
10546- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.37	66.50	15.80	0.00	150.0	±9.6 %
		Y	5.45	66.85	16.05		150.0	
10547-	IEEE 802.11ac WiFi (80MHz, MCS3,	Z X	5.38 5.45	66.51 66.58	15.79 15.84	0.00	150.0 150.0	+0.0 %
AAB	99pc duty cycle)	А Т Т Т	5.45	66.90	15.84	0.00	150.0	± 9.6 %
		Z	5.45	66.58	15.82		150.0	
10548- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	5.66	67.41	16.23	0.00	150.0	± 9.6 %
		Y	5.76	67.80	16.50		150.0	
		Z	5.67	67.45	16.23		150.0	
10550- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.42	66.63	15.88	0.00	150.0	± 9.6 %
		Y	5.49	66.91	16.10		150.0	
		Z	5.42	66.61	15.85		150.0	
10551- AAB	IEEE 802.11ac WIFI (80MHz, MCS7, 99pc duty cycle)	X	5.40	66.55	15.80	0.00	150.0	± 9.6 %
		Y	5.49	66.92	16.06		150.0	
		Z	5.41	66.58	15.80		150.0	
10552- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.33	66.42	15.74	0.00	150.0	± 9.6 %
		Y	5.41	66.74	15.97		150.0	
10553- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	Z X	<u>5.33</u> 5.40	66.41 66.42	<u>15.72</u> 15.77	0.00	150.0 150.0	± 9.6 %
		Y	5.48	66.76	16.01		150.0	
		Z	5.41	66.43	15.76	·····	150.0	
10554- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.75	66.73	15.87	0.00	150.0	±9.6 %
		Y	5.81	67.03	16.09		150.0	
		Z	5.75	66.74	15.85		150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	5.86	67.02	15.99	0.00	150.0	± 9.6 %
		Y	5.93	67.33	16.22		150.0	
10550		Z	5.87	67.03	15.98	0.00	150.0	
10556- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	5.89	67.08	16.02	0.00	150.0	± 9.6 %
		Y	5.96	67.39	16.24		150.0	<u> </u>
	1	Z	5.89	67.08	16.00		150.0	
10557-	IEEE 802.11ac WIFi (160MHz, MCS3,	X	5.84	66.95	15.97	0.00	150.0	± 9.6 %
10557- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X Y	5.84 	66.95 67.27	15.97	0.00	150.0	± 9.6 %

				r				
10558- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	5.88	67.09	16.06	0.00	150.0	±9.6 %
		Y	5.96	67.43	16.30		150.0	
		z	5.89	67.11	16.05		150.0	
10560- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	5.88	66.96	16.03	0.00	150.0	± 9.6 %
		Y	5.96	67.28	16.26		150.0	
		Z	5.88	66.97	16.02		150.0	
10561- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	5.82	66.95	16.06	0.00	150.0	±9.6 %
		Y	5.89	67.26	16.29		150.0	
		z	5.82	66.96	16.05		150.0	
10562- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	5.90	67.20	16.19	0.00	150.0	±9.6 %
		Y	5.99	67.59	16.45		150.0	
		Z	5.91	67.25	16.19		150.0	
10563- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	5.99	67.15	16.13	0.00	150.0	±9.6 %
		Y	6.11	67.60	16.42		150.0	
		Z	6.02	67.22	16.14		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	4.73	66.69	16.05	0.46	150.0	± 9.6 %
		Y	4.81	67.02	16.34		150.0	
		Z	4.74	66.67	16.04	·	150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	X	4.93	67,10	16.36	0.46	150.0	± 9.6 %
7001		Y	5.03	67.43	16.64		150.0	
		Z	4.95	67.09	16.35		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	4.77	66.92	16.16	0.46	150.0	± 9.6 %
		Y	4.86	67.28	16.46		150.0	
		Z	4.78	66.92	16.16		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	4.79	67.28	16.50	0.46	150.0	± 9.6 %
7000	Or Divi, 24 Mops, cope duty cycle)	Y	4.89	67.62	16.78		150.0	
		Z	4.81	67.28	16.49		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	4.69	66.74	15.95	0.46	150.0	± 9.6 %
,		Y	4.79	67.12	16.27		150.0	
		Z	4.70	66.74	15.95		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	4.77	67.43	16.60	0.46	150.0	± 9.6 %
		Y	4.86	67.75	16.86		150.0	
		Z	4.78	67.42	16.58		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	4.79	67.27	16.52	0.46	150.0	± 9.6 %
		Y	4.88	67.60	16.79		150.0	
		Z	4.80	67.26	16.50	1	150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.17	63.92	14.55	0.46	130.0	± 9.6 %
·		Y	1.26	65.53	15.82		130.0	
		Z	1.18	64.09	14.59		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.18	64.38	14.83	0.46	130.0	±9.6 %
		Y	1.28	66.13	16.18		130.0	
		Z	1.19	64.56	14.88		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	1.16	73.40	17.12	0.46	130.0	±9.6%
AAA		Y	3.60	91.72	24.40		130.0	
						1	130.0	1
		7	1.24	/4.20	1.ZZ		1 100.0	1
10574-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	Z X	1.24 1.20	74.20 68.26	17.22 16.69	0.46	130.0	± 9.6 %
	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)					0.46		± 9.6 %

December 11, 2018

.

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.54	66.55	16.13	0.46	130.0	± 9.6 %
AAA	OFDM, 6 Mbps, 90pc duty cycle)						10010	
		Y	4.63	66.89	16.43		130.0	
		Z	4.55	66.55	16.13		130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.56	66.71	16.20	0.46	130.0	± 9.6 %
		Υ	4.65	67.05	16.49		130.0	
		Z	4.57	66.71	16.19		130.0	
10577- AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	4.74	66.97	16.36	0.46	130.0	± 9.6 %
		Y	4.84	67.31	16.65		130.0	
		Z	4.76	66.97	16.35		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	4.64	67.09	16.44	0.46	130.0	± 9.6 %
		Y	4.74	67.44	16.73		130.0	
40570		Z	4.66	67.10	16.44		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.41	66.39	15.75	0.46	130.0	± 9.6 %
		Y	4.51	66.80	16.10		130.0	
40500		Z	4.43	66.40	15.76		130.0	
10580- AAA	IEEE 802.11g WIFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4,45	66.46	15.79	0.46	130.0	±9.6 %
		Y	4.56	66.87	16.14		130.0	
1050		Z	4.47	66.47	15.79		130.0	
10581- 	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	4.54	67.14	16.39	0.46	130.0	± 9.6 %
		Y	4.64	67.51	16.69		130.0	
		Z	4.56	67.14	16.38		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	4.35	66.17	15.55	0.46	130.0	±9.6 %
		Y	4.46	66.59	15.91		130.0	
		Z	4.37	66.18	15.55		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.54	66.55	16.13	0.46	130.0	± 9.6 %
		Y	4.63	66.89	16.43		130.0	
		Z	4.55	66.55	16.13		130.0	
10584- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.56	66.71	16.20	0.46	130.0	± 9.6 %
		Y	4.65	67.05	16.49		130.0	
		Z	4.57	66.71	16.19		130.0	
10585- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	4.74	66.97	16.36	0.46	130.0	± 9.6 %
		Y	4,84	67.31	16.65		130.0	
		Z	4.76	66.97	16.35		130.0	
10586- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.64	67.09	16.44	0.46	130.0	± 9.6 %
		Y	4.74	67.44	16.73		130.0	
		Z	4.66	67.10	16.44		130.0	
10587- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.41	66.39	15.75	0.46	130.0	± 9.6 %
		Υ	4.51	66.80	16.10		130.0	
		Z	4.43	66.40	15.76		130.0	
10588- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.45	66.46	15.79	0.46	130.0	± 9.6 %
		Y	4.56	66.87	16.14		130.0	
		Z	4.47	66.47	15.79		130.0	
10589- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.54	67.14	16.39	0.46	130.0	± 9.6 %
		Y	4.64	67.51	16.69		130.0	
		Z	4.56	67.14	16.38		130.0	
10590- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.35	66.17	15.55	0.46	130.0	±9.6 %
		Y	4.46	66.59	15.91		130.0	
		Z	4.37	66.18	15.55		130.0	

10591- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.69	66.63	16.25	0.46	130.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	4.77	66.94	16.53		130.0	
		Z	4.70	66.62	16.24		130.0	
10592- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	4.82	66.93	16.38	0.46	130.0	± 9.6 %
		Y	4.92	67.26	16.65		130.0	
		Z	4.84	66.94	16.37		130.0	
10593- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	×	4.74	66.82	16.24	0.46	130.0	± 9.6 %
70.00		Y	4.84	67,17	16.54		130.0	
		Z	4.76	66.83	16.24		130.0	
10594- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	×	4.80	66.99	16.40	0.46	130.0	± 9.6 %
		Y	4.89	67.32	16.69		130.0	
		Z	4.81	67.00	16.40		130.0	
10595- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.76	66.96	16.31	0.46	130.0	± 9,6 %
		Y	4.86	67.29	16.59		130.0	
		Z	4.78	66,96	16.30		130.0	
10596- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.70	66.94	16.30	0.46	130.0	± 9.6 %
		Y	4.80	67.30	16.60		130.0	
		Z	4.72	66.94	16.30		130.0	
10597- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	×	4.65	66.82	16.16	0.46	130.0	± 9.6 %
		Y	4.75	67.19	16.47		130.0	
		Z	4.67	66.83	16.16		130.0	
10598- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.63	67.02	16.41	0.46	130.0	±9.6 %
		Y	4.73	67.38	16.71		130.0	
		Z	4.65	67.03	16.41		130.0	
10599- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.37	67.18	16.53	0.46	130.0	± 9.6 %
70.0		Y	5.44	67.44	16.74		130.0	
		Z	5.38	67.17	16.51		130.0	1
10600- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.50	67.63	16.73	0.46	130.0	± 9.6 %
		Y	5.58	67.89	16.95		130.0	
		- ż	5.51	67.62	16.70		130.0	
10601- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.39	67.35	16.60	0.46	130.0	± 9.6 %
		Y	5.46	67.62	16.83		130.0	
		Z	5.40	67.34	16.58		130.0	1
10602- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.52	67.50	16.61	0.46	130.0	± 9.6 %
		Y	5.58	67.73	16.81		130.0	
		Z	5.52	67.47	16.57		130.0	
10603- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.58	67.75	16.86	0.46	130.0	± 9.6 %
		Y	5.64	67.97	17.05		130.0	
		Z	5.58	67.72	16.82		130.0	
10604- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.46	67.44	16.69	0.46	130.0	± 9.6 %
		Y	5.49	67.56	16.83		130.0	
		Z	5.44	67.35	16.62		130.0	
10605- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.50	67.54	16.74	0.46	130.0	± 9.6 %
		Y	5.57	67.81	16.96		130.0	
		Z	5.51	67.54	16.72		130.0	1
10606-	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.23	66.82	16.23	0.46	130.0	± 9.6 %
ААН								
AAB		Y	5.30	67.08	16.45		130.0	

10607- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.52	65.90	15.85	0.46	130.0	± 9.6 %
		Y	4.61	66.24	16.14		130.0	
		Z	4.53	65.89	15.84		130.0	
10608- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.68	66.25	16.00	0.46	130.0	± 9.6 %
		Y	4.78	66.62	16.30		130.0	
		Z	4.69	66.26	16.00		130.0	
10609- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.57	66.09	15.83	0.46	130.0	± 9.6 %
		Y	4.68	66.48	16.14		130.0	
10010		Z	4.59	66.09	15.82		130.0	
10610- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	×	4.62	66.25	15.99	0.46	130.0	± 9.6 %
		Y	4.72	66.62	16.30		130.0	
40044		Z	4.64	66.25	15.99		130.0	
10611- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	4.54	66.06	15.84	0.46	130.0	± 9.6 %
		Y	4.64	66.44	16.15		130.0	
40010		Z	4.55	66.06	15.83		130.0	
10612- AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	×	4.53	66.19	15.88	0.46	130.0	± 9.6 %
		Y	4.65	66.61	16.21		130.0	
100/-		Z	4.56	66.20	15.87		130.0	
10613- AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	4.53	66.06	15.75	0.46	130.0	± 9.6 %
		Y	4.65	66.48	16.09		130.0	
		Z	4.56	66.07	15.75		130.0	
10614- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.49	66.22	15.97	0.46	130.0	± 9.6 %
		Y	4.59	66.63	16.29		130.0	
		Z	4.50	66.23	15.97		130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.53	65.91	15.63	0.46	130.0	± 9.6 %
		Y	4.65	66.31	15.96		130.0	
	······································	Z	4.55	65.91	15.62		130.0	
10616- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.17	66.35	16.09	0.46	130.0	± 9.6 %
		Y	5.25	66.67	16.33		130.0	
		Z	5.18	66.35	16.08		130.0	
10617- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.24	66.56	16.17	0.46	130.0	± 9.6 %
		Y	5.33	66.88	16.42		130.0	
		Z	5.25	66.57	16.16		130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.13	66.56	16.18	0,46	130.0	± 9.6 %
		Y	5.21	66.87	16.42		130.0	
		Z	5.14	66.55	16.16		130.0	
10619- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.14	66.35	16.02	0.46	130.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.22	66.67	16.27		130.0	
		Z	5.15	66.35	16.00		130.0	
10620- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.22	66.39	16.09	0.46	130.0	±9.6 %
		Y	5.31	66.71	16.33		130.0	
		Z	5.24	66.39	16.07		130.0	
10621- AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.23	66.51	16.27	0,46	130.0	±9,6 %
		Y	5.31	66.82	16.50		130.0	
		Z	5.24	66.52	16.25		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.25	66.68	16.34	0.46	130.0	± 9.6 %
		Y	5.32	66.98	16.57		130.0	
		Z	5.25	66.68	16.33			

								+ 1
10623- AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.12	66.18	15.96	0.46	130.0	± 9.6 %
		Y	5.21	66.54	16.23		130.0	
		Z	5.13	66.21	15.96		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.31	66.42	16.15	0.46	130.0	±9.6 %
		Y	5.39	66.73	16.39		130.0	
		Z	5.32	66.42	16.14		130.0	
10625- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	5.54	67.00	16.50	0.46	130.0	± 9.6 %
		Y	5.70	67.55	16.86		130.0	
		Z	5.60	67.16	16.56		130.0	
10626- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.49	66.43	16.07	0.46	130.0	±9.6 %
		Y	5.56	66.73	16.30		130.0	
		Z	5,49	66.44	16.06		130.0	
10627- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	5.74	67.06	16.36	0.46	130.0	± 9.6 %
		Y	5.80	67.32	16.56		130.0	
		Z	5.74	67.05	16.33		130.0	
10628- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.50	66.46	15.99	0.46	130.0	± 9.6 %
		Y	5.58	66.80	16.24		130.0	
		Z	5.51	66.49	15.98		130.0	
10629- AAB	IEEE 802.11ac WIFi (80MHz, MCS3, 90pc duty cycle)	X	5.59	66.58	16.04	0.46	130.0	± 9.6 %
		Y	5.66	66.87	16.26	1	130.0	
		Z	5.59	66.58	16.03		130.0	
10630- AAB	IEEE 802.11ac WIFI (80MHz, MCS4, 90pc duty cycle)	X	5.95	67.87	16.70	0.46	130.0	± 9.6 %
		Y	6.07	68.30	16.99		130.0	
		Z	5.99	67.96	16.72		130.0	
10631- AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	5.85	67.66	16.77	0.46	130.0	± 9.6 %
		Y	5.95	68.03	17.02		130.0	
		Z	5.87	67.71	16.78		130.0	
10632- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.71	67.13	16.53	0.46	130.0	± 9.6 %
		Y	5.76	67.35	16.70		130.0	
		Z	5.71	67.11	16.50		130.0	
10633- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.57	66.65	16.12	0.46	130.0	± 9.6 %
		Y	5.64	66.95	16.34		130.0	
······································		Z	5.57	66.65	16.10		130.0	
10634- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.54	66.65	16.17	0.46	130.0	± 9.6 %
		Y	5.62	66.97	16.40		130.0	1
		Z	5.55	66.67	16.16		130.0	ļ
10635- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.43	66.00	15.59	0.46	130.0	± 9.6 %
		Y	5.51	66.37	15.86		130.0	
		Z	5.44	66.03	15.58		130.0	
10636- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	5.92	66.82	16.19	0.46	130.0	± 9.6 %
		Y	5.98	67.08	16.38	<u> </u>	130.0	
		Z	5.92	66.82	16.16		130.0	
10637- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.07	67.20	16.36	0.46	130.0	± 9.6 %
		Y	6.13	67.48	16.57		130.0	<u>ļ</u>
		Z	6.07	67.21	16.35		130.0	1
10638- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.07	67.17	16.32	0.46	130.0	± 9.6 %
		Y	6.13	67.45	16.53		130.0	
		Z	6.07	67.17	16.30		130.0	1

10639- AAC	IEEE 802.11ac WiFl (160MHz, MCS3, 90pc duty cycle)	X	6.03	67.08	16.32	0.46	130.0	± 9.6 %
		Y	6.10	67.37	16.53		130.0	
		Z	6.03	67.09	16.31	1	130.0	
10640- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.03	67.08	16.27	0.46	130.0	± 9.6 %
	***	Y	6.10	67.40	16.49		130.0	1
10041		Z	6.04	67.10	16.26		130.0	
10641- AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.11	67.09	16.29	0.46	130.0	± 9.6 %
·		Y	6.16	67.35	16.49		130.0	
10642-		Z	6.10	67.08	16.27		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.12	67.25	16.54	0.46	130.0	± 9.6 %
		Y	6.18	67.52	16.73		130.0	
10643-	IEEE 802.11ac WiFi (160MHz, MCS7,	Z	6.12	67.26	16.52		130.0	
AAC	90pc duty cycle)	X	5.97	66.99	16.30	0.46	130.0	± 9.6 %
		Y	6.04	67.27	16.51		130.0	
10644-		Z	5.97	66.99	16.28		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.07	67.28	16.47	0.46	130.0	± 9.6 %
		Y	6.17	67.67	16.73	<u> </u>	130.0	
10645-		Z	6.09	67.34	16.48		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.22	67.39	16.49	0.46	130.0	± 9.6 %
		<u> </u>	6.35	67.86	16.79		130.0	
10646-		Z	6.25	67.47	16.51		130.0	
AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	46.26	130.91	43.60	9.30	60.0	± 9.6 %
		Y	100.00	147.58	47.83		60.0	
40047		Z	58.34	134.03	44.02		60.0	
10647- AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	38.17	127.34	42.82	9.30	60.0	± 9.6 %
		Y	100.00	148.89	48.39		60.0	
10010		Z	50.85	131.86	43.65		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.53	61.12	8.14	0.00	150.0	± 9.6 %
		Y	0.61	62.66	9.68		150.0	
		Z	0.53	61.13	8.17		150.0	
10652- AAD	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.78	67.42	16.36	2.23	80.0	± 9.6 %
		Y	4.10	68,60	17.11		80.0	
		Z	3.87	67.58	16.44		80.0	
10653- AAD	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	4.33	66.88	16.68	2.23	80.0	± 9.6 %
· · · · · · · · · · · · · · · · · · ·		Y	4.58	67.74	17.23		80.0	
10051		Z	4.41	67.04	16.74		80.0	
10654- AAD	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	4.32	66.55	16.73	2.23	80.0	± 9.6 %
		Y	4.55	67.37	17.24		80.0	
40055		Z	4.40	66.72	16.78		80.0	
10655- AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.39	66.51	16.77	2.23	80.0	± 9.6 %
		Y	4.61	67.34	17.28		80.0	
40050		Z	4.47	66.69	16.83		80.0	
10658- AAA	Pulse Waveform (200Hz, 10%)	Х	100.00	115.33	28.90	10.00	50.0	± 9.6 %
		Y	46.45	105.93	27.47		50.0	
40075		Z	36.14	101.41	25.87		50.0	
10659- AAA	Pulse Waveform (200Hz, 20%)	X	100.00	111.86	26.34	6.99	60.0	±9.6 %
		Y	100.00	113.84	27.67		60.0	
		Z	100.00	112.19	26,79		60.0	

December 11, 2018

10660- AAA	Pulse Waveform (200Hz, 40%)	X	100.00	109.38	23.97	3.98	80.0	± 9.6 %
/001		Y	100.00	112.06	25.50		80.0	
		Z	100.00	109.17	24.09		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	X	100.00	108.23	22.30	2.22	100.0	± 9.6 %
		Y	100.00	112.70	24.51		100.0	
		Z	100.00	107.44	22.12		100.0	
10662- AAA	Pulse Waveform (200Hz, 80%)	X	100.00	104.63	19.32	0.97	120.0	± 9.6 %
,		Y	100.00	114.33	23.49		120.0	
		Z	100.00	102.50	18.52		120.0	
10670- AAA	Bluetooth Low Energy	X	100.00	110.10	23.42	2.19	100.0	± 9.6 %
AMA			100.00	113.74	25.27		100.0	
		Ż	100.00	109.20	23.18		100.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- The complex admittance with respect to the probe aperture was measured
- The complex relative permittivity ε' can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_r\varepsilon_0}{\left[\ln(b/a)\right]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp\left[-j\omega r(\mu_0\varepsilon_r'\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho' \cos \phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures

Description: Aqueous solution with surfactants and inhibitors Declarable, or hazardous components:

CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	1. 1. 1. 1. 1. 1.
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	1
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C16	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	1.

Figure D-1 Composition of the Tissue Equivalent Matter

	FCC ID: A3LSMA705U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	08/25/19 - 10/10/19	Portable Handset			Page 1 of 3
© 201	9 PCTEST Engineering Laboratory, I	nc.			REV 21.3 M 02/15/2019

Phon	hauast io +41 Ispeag	44 245	5 9700	Fax +	41 44	eitzerländ 245 9779 som									
Mea	sure	ment	t Cer	lifica	te / N	laterial 1	Test								
Prod	Nume luct No ufactur	÷.	SL	AAH L	sue Si 16 BC	mulating (Batch: 1	Liquid (HE 81031-2)	BL600-1	000QV	6)			-		
Mea	surem	ent M	elhod	÷				_							
TSL	dielect	ric par	amete	ars me	asure	d using cal	brated DA	K probe.	-	-		-		-	
Tarra	et Par	amele						-	-	-			-		-
Targ	et para	meter	s as d	efined	in the	IEEE 1520	and IEC	62209 cor	nplian	e stan	dards.		-	-	-
						-		-		-		_			-
Ambi	Condi ent Co	ndition	n 22%	2:30	% harn	idity						_	-	_	-
TSL Test	Tempe	raturo	22"0))ct-18		2.1									- 7
Oper	ator	-	CL.												
	tional Density		nation	-				_	_		_	_			-
	leat-c		y												
lesu		_													
(MHz	Meas	e"	Isigm	Targe eps		Diff.to Tar	gei (%) A-sigma	15.0						_	
800	43.8	20.5	0.91	41.7	0.90	5.1	1.4	10.0				-		_	-
835	43.0		0.92	41.6	0.91	5.3 5.4	1.5	5.0 S.	1	-	-	-			
900	43.7	19.7	0.93	41.5	0.92	5.3 4.6	1.5	H-5.0					-	-	
1400	42.5	15.0	1.17	40.6	1.18	4.7	-0.8	A10.0	-			_	_		
450	42.5	14.8	1,19	40.5	1.20	4.9	-0.8	-15.0	500 15	00 2500	3500 4	500 5500	6500 750	0 8500 9	9500
625	42.2	14.2	1.29	40.3	1.30	4.8	+0.7	15.0			Freque	ncy MHz	_		
650	42.2	14.2	1.30	40.3	1.31	4.8	-0.5	10.0			-	-			
700	42,1	14.0	1.33	40.2	1.34	4.8	-0.9	5.0 0.0	-	Λ					-
1800	41.9	13.9	1.36	40.1	1.37	4.8	-0.8	0.0 Comput	N	1		/			
1810	41.9 41.9	13.8 13.8	1.40	40.0	1.40	4.7	0.0	\$10.0			\sim	2			
850	41.8	13.8	1.42	40.0	1.40	4.7	0.7	-15.0		-					
1950	41.8	13.7	1.45	40.0	1.40	4.5	3.6 5.7	5200	36.3		3500 45 Freque		3500 7500		
2000	41.6	13.6	1.51	40.0	1.40	4.0	7.9	5250	36.2	15.8	4.63	36.0 35.9	4.66	0.0	-1.7
2050	41.6	13.6	1.55	39,9 39,8	1,44	4.2	7.3	5300	36.1	15.9	4.69	35.9	4,76	0.7	-1,4
1150	41,4	13.5	1.62	39.7	1.53	4.2	5.7	5600	35.8	16.2	6.04	35.6 35.5	4.96	0.3	-0.9 -0.6
250	41.4 41.3	13.5 13.5	1,65	39.6 39.6	1.58	4.4	4,6 4.2	5700	35.4	16.2	5.15	35.4	5,17	0.0	0.3
	41.2	13.5	1.72	39.5	1.67	4.4	3.2	6000	34.9	16,3	5.50	35.3	5.48	-0.2	0.0
300	41.1	13.5	1.76	39.4 39.3	1,71	4.4	2.9	6500	34.0	16.9	6.12	34.5	6.07	-1,4	0.9
2300 2350	- Annelli	18.5	1.84	30,2	1,80	4,6	2.2	7500	33.1	17.3 17.6	6.74 7.36	33,9 33.3	6.65 7.24	-2.3	1.3
2300 2350 2450	41.0	13.5	1,88	39.1 39.1	1.85	4.5	1.4	8000	31.4 30,6	17.9	7.97	32.7	7.84	-4.1	1.7
2300 2350 2400 2450 2500 2550	41.0 40.9 40.8	13.5						0000	30,0			32.1	8.45	-5.0	1.6
2300 2350 2400 2450 2550 2550 2550	40.9 40.8 40.8	13.5 13.8	1.96	39,0	1.98	4.6	10.2	9000	29.7	18.4	9.20	31.5	9,08	-5.9	1.3
2300 2350 2450 2550	40.9 40.8		1.	39.0 37.9 37.7	1.98 2.91 3.12	4.6 0.8 3.1	10.2 -5.8 -6.1	9000 9500 10000	29.7 28.9 20.1	18,4 18,5 18,7	9.20 9.80 10.40	31.5 31.0 30.4	9,08 9.71 10.36	-5.9 -6.8 -7.6	1.3 0.9 0.4

Figure D-2 750 – 5800 MHz Head Tissue Equivalent Matter

	FCC ID: A3LSMA705U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	08/25/19 - 10/10/19	Portable Handset			Page 2 of 3
© 20′	9 PCTEST Engineering Laboratory, I	nc.			REV 21.3 M 02/15/2019

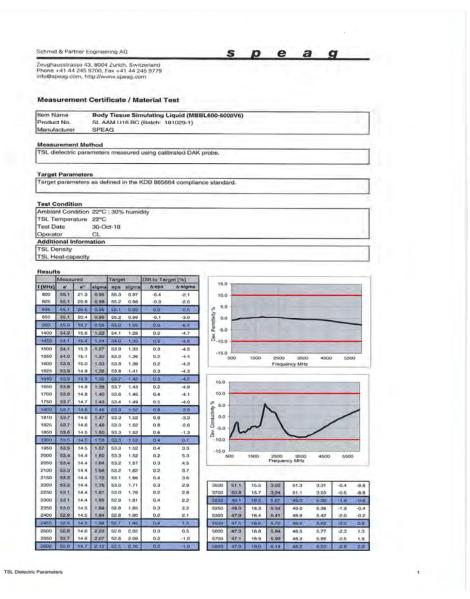


Figure D-3 750 – 5800 MHz Body Tissue Equivalent Matter

	FCC ID: A3LSMA705U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	08/25/19 - 10/10/19	Portable Handset			Page 3 of 3
© 201	9 PCTEST Engineering Laboratory, I	nc.			REV 21.3 M 02/15/2019

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

	SAR System valuation Summary – Tg												
SAR	FREQ.		PROBE			COND.	PERM.	C	W VALIDATIO	N	M	OD. VALIDATIO	N
SYSTEM #	[MHz]	DATE	SN	PROBE C	AL. POINT	(σ)	(ɛr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
0	750	8/27/2019	7538	750	Head	0.885	41.82	PASS	PASS	PASS	N/A	N/A	N/A
0	835	8/7/2019	7538	835	Head	0.926	42.299	PASS	PASS	PASS	GMSK	PASS	N/A
н	835	6/6/2019	7406	835	Head	0.93	43.8	PASS	PASS	PASS	GMSK	PASS	N/A
0	1750	8/7/2019	7538	1750	Head	1.37	40.428	PASS	PASS	PASS	N/A	N/A	N/A
0	1900	8/29/2019	7538	1900	Head	1.43	39.112	PASS	PASS	PASS	GMSK	PASS	N/A
E	2450	9/5/2019	7417	2450	Head	1.855	39.542	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
L	2450	9/5/2019	7410	2450	Head	1.85	39.32	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
L	2600	9/5/2019	7410	2600	Head	1.98	39.106	PASS	PASS	PASS	TDD	PASS	N/A
н	5250	6/10/2019	7406	5250	Head	4.59	36.819	PASS	PASS	PASS	OFDM	N/A	PASS
н	5600	6/10/2019	7406	5600	Head	4.978	34.167	PASS	PASS	PASS	OFDM	N/A	PASS
н	5750	6/10/2019	7406	5750	Head	5.15	33.901	PASS	PASS	PASS	OFDM	N/A	PASS
1	750	5/16/2019	7357	750	Body	0.937	56.547	PASS	PASS	PASS	N/A	N/A	N/A
н	835	7/11/2019	7406	835	Body	0.978	54.026	PASS	PASS	PASS	GMSK	PASS	N/A
G	1750	7/11/2019	7409	1750	Body	1.445	53.92	PASS	PASS	PASS	N/A	N/A	N/A
J	1900	2/8/2019	7488	1900	Body	1.571	52.538	PASS	PASS	PASS	GMSK	PASS	N/A
G	1900	8/15/2019	7409	1900	Body	1.585	50.851	PASS	PASS	PASS	GMSK	PASS	N/A
Р	2450	9/6/2019	3288	2450	Body	1.948	51.831	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
К	2450	3/6/2019	7417	2450	Body	2.039	50.67	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
к	2450	9/6/2019	7547	2450	Body	1.996	51.898	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
к	2600	9/5/2019	7547	2600	Body	2.716	52.04	PASS	PASS	PASS	TDD	PASS	N/A
L	5250	7/31/2019	7410	5250	Body	5.165	47.068	PASS	PASS	PASS	OFDM	N/A	PASS
L	5600	7/31/2019	7410	5600	Body	5.629	46.485	PASS	PASS	PASS	OFDM	N/A	PASS
L	5750	7/31/2019	7410	5750	Body	5.842	46.222	PASS	PASS	PASS	OFDM	N/A	PASS

Table E-1 SAR System Validation Summary – 1g

Table E-2 SAR System Validation Summary – 10g

									J g				
SAR FREQ.			PROBE			COND.	PERM.	C	W VALIDATIO	N	M	OD. VALIDATIO	N
SYSTEM #	[MHz]	DATE	SN	PROBE C	AL. POINT	(σ)	(ɛr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
G	1750	7/11/2019	7409	1750	Body	1.445	53.92	PASS	PASS	PASS	N/A	N/A	N/A
G	1900	8/15/2019	7409	1900	Body	1.585	50.851	PASS	PASS	PASS	GMSK	PASS	N/A
к	2450	9/6/2019	7547	2450	Body	1.996	51.898	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
к	2600	9/5/2019	7547	2600	Body	2.716	52.04	PASS	PASS	PASS	TDD	PASS	N/A
L	5250	7/31/2019	7410	5250	Body	5.165	47.068	PASS	PASS	PASS	OFDM	N/A	PASS
L	5600	7/31/2019	7410	5600	Body	5.629	46.485	PASS	PASS	PASS	OFDM	N/A	PASS
L	5750	7/31/2019	7410	5750	Body	5.842	46.222	PASS	PASS	PASS	OFDM	N/A	PASS

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

	FCC ID: A3LSMA705U		SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX E:
	08/25/19 - 10/10/19	Portable Handset			Page 1 of 1
20	19 PCTEST Engineering Laboratory, I	Inc.			REV 21.3 M 02/15/2019

© 2

APPENDIX G POWER REDUCTION VERIFICATION

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

G.1 Power Verification Procedure

The power verification was performed according to the following procedure:

- 1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered.
- 2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
- 3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

G.2 Distance Verification Procedure

The distance verification procedure was performed according to the following procedure:

- 1. A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom.
- The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
- 3. Steps 1 and 2 were repeated for low, mid, and high bands, as appropriate (see note below Table G-2 for more details).
- 4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

FCC ID: A3LSMA705U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
08/25/19 - 10/10/19	Portable Handset			Page 1 of 3
© 2019 PCTEST Engineering Laboratory, Inc.	•			REV 20.05 M

G.3 Main Antenna Verification Summary

Table G-1
Power Measurement Verification for Main Antenna

	Mechanism(s)			Conducted Power (dBm)									
1st	2nd	3rd	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)	Mechanism #2 (Reduced)	Mechanism #3 (Reduced)						
Hotspot On			GSM1900	28.73	27.81								
Grip			GSM1900	28.80	26.54								
Hotspot On	Grip		GSM1900	28.75	27.76	26.48							
Grip	Hotspot On		GSM1900	28.76	26.48	26.51							
Hotspot On			UMTS 1900	23.14	22.09								
Grip			UMTS 1900	23.12	21.10								
Hotspot On	Grip		UMTS 1900	23.12	22.10	21.11							
Grip	Hotspot On		UMTS 1900	23.11	21.12	21.09							
Hotspot On			LTE FDD Band 4	24.07	21.28								
Grip			LTE FDD Band 4	24.05	20.30								
Hotspot On	Grip		LTE FDD Band 4	24.08	21.26	20.29							
Grip	Hotspot On		LTE FDD Band 4	24.06	20.32	20.31							
Hotspot On			LTE FDD Band 66	24.22	21.56								
Grip			LTE FDD Band 66	24.28	20.55								
Hotspot On	Grip		LTE FDD Band 66	24.32	21.52	20.52							
Grip	Hotspot On		LTE FDD Band 66	24.29	20.54	20.56							
Hotspot On			LTE FDD Band 2	24.30	22.52								
Grip			LTE FDD Band 2	24.36	22.50								
Hotspot On	Grip		LTE FDD Band 2	24.27	22.56	22.51							
Grip	Hotspot On		LTE FDD Band 2	24.28	22.57	22.53							
Hotspot On			LTE FDD Band 7	22.35	19.59								
Grip			LTE FDD Band 7	22.32	19.58								
Held-to-Ear			LTE FDD Band 7	22.55	20.38								
Hotspot On	Grip		LTE FDD Band 7	22.34	19.59	19.57							
Grip	Hotspot On		LTE FDD Band 7	22.35	19.58	19.57							
Held-to-Ear	Grip		LTE FDD Band 7	22.43	20.18	20.20							
Grip	Held-to-Ear		LTE FDD Band 7	22.50	19.62	20.25							
Hotspot On	Held-to-Ear		LTE FDD Band 7	22.37	19.47	20.26							
Held-to-Ear	Hotspot On		LTE FDD Band 7	22.47	20.23	20.21							
Hotspot On	Held-to-Ear	Grip	LTE FDD Band 7	22.36	19.45	20.30	20.23						
Hotspot On	Grip	Held-to-Ear	LTE FDD Band 7	22.44	19.46	19.54	20.20						
Held-to-Ear	Hotspot On	Grip	LTE FDD Band 7	22.55	20.23	20.20	20.21						
Held-to-Ear	Grip	Hotspot On	LTE FDD Band 7	22.46	20.25	20.25	20.23						
Grip	Hotspot On	Held-to-Ear	LTE FDD Band 7	22.42	19.60	19.42	20.25						
Grip	Held-to-Ear	Hotspot On	LTE FDD Band 7	22.36	19.54	20.26	20.23						

Table G-2 **Distance Measurement Verification for Main Antenna**

Machaniana (a)	Test Condition	Dand	Distance Meas	Minimum Distance per	
Mechanism(s)	Test condition	Band	Moving Toward	Moving Away	Manufacturer (mm)
Grip	Phablet - Back Side	Mid	17	22	8
Grip	Phablet - Back Side	High	11	12	8
Grip	Phablet - Bottom Edge	Mid	7	10	5

*Note: Mid band refers to: GSM 1900, UMTS B2, LTE B2/4/66; High band refers to LTE B7

FCC ID: A3LSMA705U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
08/25/19 - 10/10/19	Portable Handset			Page 2 of 3
© 2019 PCTEST Engineering Laboratory, Inc.	•			REV 20.05 M

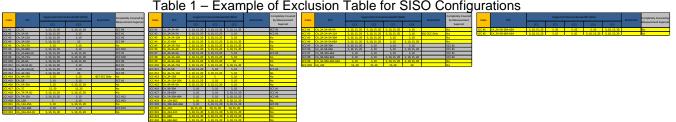
G.4 WIFI Verification Summary

Mechanism(s)		Conducted F	Power (dBm)										
1st	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)										
Held-to-Ear	802.11b	18.93	13.97										
Held-to-Ear	802.11g	17.06	13.14										
Held-to-Ear	802.11n (2.4GHz)	17.06	13.21										
Held-to-Ear	802.11a	16.81	9.91										
Held-to-Ear	802.11n (5GHz, 20MHz BW)	17.19	9.21										
Held-to-Ear	802.11ac (20MHz BW)	16.46	8.35										
Held-to-Ear	802.11n (5GHz, 40MHz BW)	16.19	9.09										
Held-to-Ear	802.11ac (40MHz BW)	16.21	9.23										
Held-to-Ear	802.11ac (80MHz BW)	14.72	9.91										

Table G-3 Power Measurement Verification WIFI

FCC ID: A3LSMA705U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
08/25/19 - 10/10/19	Portable Handset			Page 3 of 3
© 2019 PCTEST Engineering Laboratory, Inc.	•			REV 20.05 M

APPENDIX H: DOWNLINK LTE CA RF CONDUCTED POWERS


1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

C

- The supported combinations were arranged by the number of component carriers in columns. •
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA 2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components . carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.

Table 1 – Example of Exclusion Table for SISO Configurations

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the maximum average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive. All bands

		CTEST	SAR EVALUATION REPORT	SAMSUNG	Reviewed by:
	FCC ID: A3LSMA705U	······································	SAR EVALUATION REPORT	SAMSONG	Quality Manager
	Test Dates:	DUT Type:			APPENDIX H:
	08/25/19 – 10/10/19	Portable Handset			Page 1 of 3
© 201	9 PCTEST Engineering Laboratory, Inc.	•			REV 21.3 M
					02/15/2019

required for SAR testing per FCC KDB procedures were considered. Based on the measured maximum powers below, no additional SAR tests were required for DLCA SAR configurations.

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KDB 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

Base Station Simulator	←	Wireless Device
Simulator		

Figure 1 DL CA Power Measurement Setup

1.3 Downlink Carrier Aggregation RF Conducted Powers

1.3.1 LTE Band 13 as PCC

	Table 1																		
	Maximum Output Powers																		
	PCC SCC1 SCC2 Power															wer			
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-2A-13A	LTE B13	10	23230	782	QPSK	1	25	5230	751	LTE B2	20	900	1960	LTE B2	20	700	1940	24.46	24.47
CA_2A-4A-13A	LTE B13	10	23230	782	QPSK	1	25	5230	751	LTE B2	20	900	1960	LTE B4	20	2175	2132.5	24.50	24.47
CA_2A-13A-66A	LTE B13	10	23230	782	QPSK	1	25	5230	751	LTE B2	20	900	1960	LTE B66	20	66786	2145	24.48	24.47
CA_4A-4A-13A	LTE B13	10	23230	782	QPSK	1	25	5230	751	LTE B4	20	2175	2132.5	LTE B4	10	2350	2150	24.46	24.47
CA_13A-66A-66A	LTE B13	10	23230	782	QPSK	1	25	5230	751	LTE B66	20	66786	2145	LTE B66	20	67236	2190	24.47	24.47
CA_13A-66B	LTE B13	10	23230	782	QPSK	1	25	5230	751	LTE B66	15	66786	2145	LTE B66	5	66879	2154.3	24.53	24.47
CA_13A-66C	LTE B13	10	23230	782	QPSK	1	25	5230	751	LTE B66	20	66786	2145	LTE B66	20	66984	2164.8	24.51	24.47

FCC ID: A3LSMA705U		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H:
08/25/19 - 10/10/19	Portable Handset			Page 2 of 3
2019 PCTEST Engineering Laboratory, Inc.				REV 21.3 M
				02/15/2019

1.3.2 LTE Band 5 as PCC

							Maxi	mum	Outpu	It Pow	ers								
					PCC						S	CC 1				Power			
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_5A-5A (1)	LTE B5	3	20415	825.5	QPSK	1	0	2415	870.5	LTE B5	5	2625	891.5	-	-			24.75	24.76
CA_2A-2A-5A	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B2	20	900	1960	LTE B2	20	700	1940	24.71	24.68
CA_2A-4A-5A	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B2	20	900	1960	LTE B4	20	2175	2132.5	24.72	24.68
CA_2A-5B	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B5	10	2497	878.7	LTE B2	20	900	1960	24.68	24.68
CA_2A-5A-66A	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B2	20	900	1960	LTE B66	20	66786	2145	24.72	24.68
CA_4A-4A-5A	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B4	20	2175	2132.5	LTE B4	10	2350	2150	24.75	24.68
CA_4A-5B	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B5	10	2497	878.7	LTE B4	20	2175	2132.5	24.71	24.68
CA_5A-5A-66A	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B5	10	2600	889	LTE B66	20	66786	2145	24.70	24.68
CA_5A-66A-66A	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B66	20	66786	2145	LTE B66	20	67236	2190	24.68	24.68
CA_5A-66B	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B66	15	66786	2145	LTE B66	5	66879	2154.3	24.70	24.68
CA_5A-66C	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B66	20	66786	2145	LTE B66	20	66984	2164.8	24.74	24.68
CA_5B-66A	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B5	10	2497	878.7	LTE B66	20	66786	2145	24.74	24.68

Table 2

1.3.3 LTE Band 66 as PCC

Table 3 **Maximum Output Powers**

	-																		
					PCC						SC	CC 1				SCC 2		Pov	wer
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-66A	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B2	20	900	1960	-	-	-	-	24.21	24.19
CA_2A-2A-66A	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B2	20	900	1960	LTE B2	20	700	1940	24.20	24.19
CA_2A-5A-66A	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B2	20	900	1960	LTE B5	10	2525	881.5	24.24	24.19
CA_2A-13A-66A	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B2	20	900	1960	LTE B13	10	5230	751	24.22	24.19
CA_2A-66A-66A	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B66	20	66536	2120	LTE B2	20	900	1960	24.21	24.19
CA_2A-66B	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B66	5	66968	2163.2	LTE B2	20	900	1960	24.23	24.19
CA_2A-66C	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B66	20	66890	2155.4	LTE B2	20	900	1960	24.22	24.19
CA_5A-5A-66A	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B5	10	2525	881.5	LTE B5	5	2425	871.5	24.20	24.19
CA_5A-66A-66A	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B66	20	66536	2120	LTE B5	10	2525	881.5	24.23	24.19
CA_5A-66B	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B66	5	66968	2163.2	LTE B5	10	2525	881.5	24.22	24.19
CA_5A-66C	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B66	20	66890	2155.4	LTE B5	10	2525	881.5	24.20	24.19
CA_5B-66A	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B5	10	2525	881.5	LTE B5	5	2453	874.3	24.21	24.19
CA_13A-66A-66A	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B66	20	66536	2120	LTE B13	10	5230	751	24.20	24.19
CA_13A-66B	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B66	5	66968	2163.2	LTE B13	10	5230	751	24.21	24.19
CA_13A-66C	LTE B66	15	132597	1772.5	QPSK	1	74	67061	2172.5	LTE B66	20	66890	2155.4	LTE B13	10	5230	751	24.19	24.19

1.3.4 LTE Band 2 as PCC

Table 4 Maximum Output Powers

					PCC						CC 1				Power				
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-4A	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B4	20	2175	2132.5		-	-	-	24.18	24.18
CA_2A-66A	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B66	20	66786	2145	-	-	-	-	24.20	24.18
CA_2A-2A-4A	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B2	20	700	1940	LTE B4	20	2175	2132.5	24.17	24.18
CA_2A-2A-5A	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B2	20	700	1940	LTE B5	10	2525	881.5	24.18	24.18
CA_2A-2A-13A	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B2	20	700	1940	LTE B13	10	5230	751	24.19	24.18
CA_2A-2A-66A	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B2	20	700	1940	LTE B66	20	66786	2145	24.18	24.18
CA_2A-4A-4A	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B4	20	2175	2132.5	LTE B4	10	2350	2150	24.16	24.18
CA_2A-4A-5A	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B4	20	2175	2132.5	LTE B5	10	2525	881.5	24.18	24.18
CA_2A-4A-13A	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B4	20	2175	2132.5	LTE B13	10	5230	751	24.16	24.18
CA_2A-5B	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B5	10	2525	881.5	LTE B5	5	2453	874.3	24.19	24.18
CA_2A-5A-66A	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B5	10	2525	881.5	LTE B66	20	66786	2145	24.16	24.18
CA_2A-13A-66A	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B13	10	5230	751	LTE B66	20	66786	2145	24.17	24.18
CA_2A-66A-66A	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B66	20	66786	2145	LTE B66	20	67236	2190	24.18	24.18
CA_2A-66B	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B66	15	66786	2145	LTE B66	5	66879	2154.3	24.20	24.18
CA_2A-66C	LTE B2	20	18900	1880	QPSK	1	0	900	1960	LTE B66	20	66786	2145	LTE B66	20	66984	2164.8	24.18	24.18

FCC ID: A3LSMA705U	THE ANTICE AND A	SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H:
08/25/19 - 10/10/19	Portable Handset			Page 3 of 3
© 2019 PCTEST Engineering Laboratory, Inc.	·			REV 21.3 M 02/15/2019