

SAR EVALUATION REPORT

IEEE Std 1528-2013

For GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, ANT+, NFC & MST

FCC ID: A3LSMA705GM Model Name: SM-A705GM/DS

Report Number: 12726913-S1V3 Issue Date: 4/8/2019

Prepared for

Samsung Electronics Co. Ltd 129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16677, Korea

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Date	Revisions	Revised By
V1	4/4/2019	Initial Issue	
V2	4/5/2019	Section 1: Updated Highest SAR Values Section 10.1: Updated Table Section 10.8: Updated Table Section 12.2: Updated Table	Coltyce Sanders
V3	4/8/2019	Section 6.5: Updated triggering description	Devin Chang

Table of Contents

1.	Attestation of Test Results	5
2.	Test Specification, Methods and Procedures	6
3.	Facilities and Accreditation	7
4.	SAR Measurement System & Test Equipment	8
4.1.		
4.2.	SAR Scan Procedures	9
4.3.	3. Test Equipment	11
5.	Measurement Uncertainty	11
6.	Device Under Test (DUT) Information	12
6.1.	DUT Description	12
6.2.	2. Wireless Technologies	13
6.3.	3. General LTE SAR Test and Reporting Considerations	14
6.4.	l. LTE (TDD) Considerations	15
6.5.	5. Power Back-off and Triggering Distances	16
7.	RF Exposure Conditions (Test Configurations)	17
8.	Dielectric Property Measurements & System Check	19
8.1.	. Dielectric Property Measurements	19
8.2.	2. System Check	21
9.	Conducted Output Power Measurements	23
9.1.	. GSM	23
9.2.	P. W-CDMA	25
9.3.	3. LTE	29
9.4.	l. LTE Carrier Aggregation	34
9.5.	5. Wi-Fi 2.4GHz (DTS Band)	37
9.6.	S. Wi-Fi 5GHz (U-NII Bands)	39
9.7.	7. Bluetooth	43
10.	Measured and Reported (Scaled) SAR Results	45
10.	1. GSM850	47
10.2	2. GSM1900	47
10.	3. W-CDMA Band II	48
10.	4. W-CDMA Band V	48
10.	.5. LTE Band 5 (10MHz Bandwidth)	49
10.	6. LTE Band 41 (20MHz Bandwidth)	49
	Page 3 of 55	

Report No.	: 12726913 S1V3	Issue Date: 4/8/2019
10.7.	Wi-Fi (DTS Band)	50
10.8.	Wi-Fi (U-NII Band)	51
10.9.	Bluetooth	52
11. SA	R Measurement Variability	53
12. Sir	multaneous Transmission Conditions	54
12.1.	Simultaneous transmission SAR test exclusion considerations	54
12.1.	1. Sum of SAR	54
12.2.	Sum of the SAR for WWAN & Wi-Fi & BT	54
Appendix	Kes	55
Append	dix A: SAR Setup Photos	55
Append	dix B: SAR System Check Plots	55
Append	dix C: SAR Highest Test Plots	55
Append	dix D: SAR Tissue Ingredients	55

1. Attestation of Test Results

Applicant Name		Samsung Electronics Co. Ltd					
FCC ID		A3LSMA705GM					
Model Name		SM-A705GM/DS					
Applicable Standards		Published RF exposure KDB procedures IEEE Std 1528-2013					
			SAR Lim	its (W/Kg)			
Exposure Category		Peak spatial-average (1g of tissue)		Extremities (hands, wrists, ankles, etc.) (10g of tissue)			
General population / Uncontrolled exposure		1.6		4			
DE Evacoure Cond	ditiono	Equipment Class - Highest Reported SAR (W/kg)					
RF Exposure Cond	illoris	PCE	DTS	NII	DSS		
Head		0.320	0.100	0.190	0.023		
Body-worn		0.620	0.070	0.673	0.010		
Hotspot		0.663	0.171	0.644	0.023		
Product specific 1	0g SAR	N/A	N/A	2.698	N/A		
	Head	0.510	0.420	0.510	0.343		
Simultaneous TX	Body-worn	1.293	0.690	1.293	0.630		
	Hotspot	1.307	0.834	1.307	0.686		
Date Tested		3/18/2019 to 4/4/2019					
Test Results		Pass					
111 1/2 ":	\	III Visit and an Osmitas has tracted the above an investigation of the description of the desired in					

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released By:	Prepared By:
JenCung	7-7-
Devin Chang	Remi Rodberg
Senior Test Engineer	Laboratory Technician
UL Verification Services Inc.	UL Verification Services Inc.

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures:

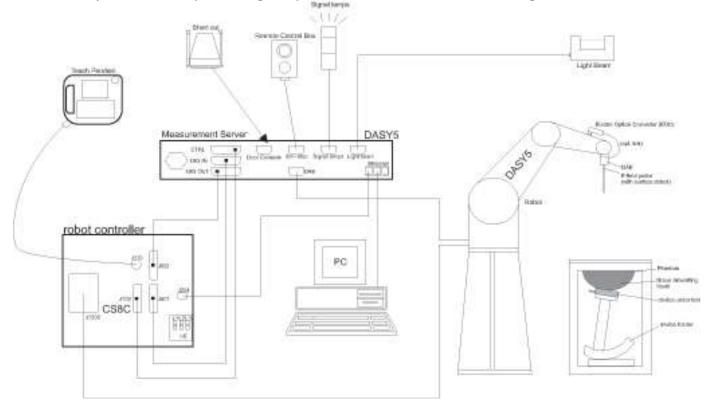
- o 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- 447498 D03 Supplement C Cross-Reference v01
- o 648474 D04 Handset SAR v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02
- o 941225 D01 3G SAR Procedures v03r01
- 941225 D05 SAR for LTE Devices v02r05
- 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02
- o 941225 D06 Hotspot Mode v02r01
- o 941225 D07 UMPC Mini Tablet v01r02

In addition to the above, the following information was used:

- o <u>TCB workshop</u> October 2014; RF Exposure Procedures (Other LTE Considerations)
- TCB workshop October 2015; RF Exposure Procedures (KDB 941225 D05A)
- o TCB workshop April 2016; RF Exposure Procedures (LTE Carrier Aggregation for DL)
- TCB workshop October 2016; RF Exposure Procedures (Bluetooth Duty Factor)
- TCB workshop October 2016; RF Exposure Procedures (DUT Holder Perturbations)
- o TCB workshop May 2017; RF Exposure Procedures (Broadband Liquid Above 3 GHz)
- TCB workshop April 2018; RF Exposure Procedures (LTE DL CA SAR Test Exclusion)

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at


47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	SAR Lab 5
SAR Lab F	
SAR Lab G	
SAR Lab H	

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	$20^{\circ}\pm1^{\circ}$	
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

			≤ 3 GHz > 3 GHz	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	1 st two points closest	1st two points closest	≤ 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
		$\leq 1.5 \cdot \Delta z_{Z_{000}}(n-1)$		
Minimum zoom scan volume	x, y, z		$3 - 4 \text{ GHz}$: $\geq 28 \text{ m}$ $\geq 30 \text{ mm}$ $4 - 5 \text{ GHz}$: $\geq 25 \text{ m}$ $5 - 6 \text{ GHz}$: $\geq 22 \text{ m}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	R&S	ZNLE6	101273-VA	7/16/2019
Network Analyzer	R&S	ZNLE6	101274-mn	3/7/2020
Dielectric Probe kit	SPEAG	DAK-3.5	1082	9/11/2019
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	9/11/2019
Thermometer	Fisher Scientific	Traceable	140562250	3/5/2020

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Signal Generator	Rhode & Schwarz	SMB100A	180968	2/14/2020
Power Sensor	Rhode & Schwarz	NRP18A	100994	2/15/2020

Lab Equipment

<u>Lab Equipment</u>				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
E-Field Probe (SAR Lab E)	SPEAG	EX3DV4	3990	8/17/2019
E-Field Probe (SAR Lab F)	SPEAG	EX3DV4	3902	5/24/2019
E-Field Probe (SAR Lab G)	SPEAG	EX3DV4	7463	7/20/2019
E-Field Probe (SAR Lab H)	SPEAG	EX3DV4	7482	7/23/2019
Data Acquisition Electronics (SAR Lab E)	SPEAG	DAE4	1548	5/3/2019
Data Acquisition Electronics (SAR Lab F)	SPEAG	DAE4	1439	7/10/2019
Data Acquisition Electronics (SAR Lab G)	SPEAG	DAE4	1257	9/14/2019
Data Acquisition Electronics (SAR Lab H)	SPEAG	DAE4	1239	7/11/2019
System Validation Dipole	SPEAG	D835V2	4d142	8/23/2019
System Validation Dipole	SPEAG	D1900V2	5d140	4/11/2019
System Validation Dipole	SPEAG	D2450V2	706	5/18/2019
System Validation Dipole	SPEAG	D2600V2	1006	10/16/2019
System Validation Dipole	SPEAG	D5GHzV2	1003	2/19/2020
System Validation Dipole	SPEAG	D5GHzV2	1138	8/21/2019

Other

Name of Equipment	Manufacturer	Type/Model	T Number	Serial No.	Cal. Due Date
Power Meter	Agilent	N1912A	T1263	MY55196004	1/30/2020
Power Sensor	Agilent	N1921A	T309	MY52270022	2/6/2020
Base Station Simulator	R&S	CMW500	T959	135384	2/16/2020
Base Station Simulator	R&S	CBT Bluetooth Tester	T438	100987	2/14/2020

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	Refer to Appendix A This is a Phablet Device	e (display diagonal dimension > 15	5.0 cm or an overall diagonal dimension > 16.0 cm)							
Back Cover	The Back Cover is not re	· · · · ·	one on an everal diagental annotation.							
Battery Options	The rechargeable batter	ne rechargeable battery is not user accessible.								
Accessory	Headset	-								
Wireless Router (Hotspot)	⊠ Mobile Hotspot (Wi-Fi	Vi-Fi Hotspot mode permits the device to share its cellular data connection with other Wi-Fi-enabled devices. ☑ Mobile Hotspot (Wi-Fi 2.4 GHz) ☑ Mobile Hotspot (Wi-Fi 5.8 GHz)								
Wi-Fi Direct	⊠ Wi-Fi Direct (Wi-Fi 2.4	Vi-Fi Direct enabled devices transfer data directly between each other Wi-Fi Direct (Wi-Fi 2.4 GHz) Wi-Fi Direct (Wi-Fi 5.2/5.8 GHz)								
Bluetooth Tethering	BT Tethering mode perm	its the device to share its cellular d	ata connection with other devices.							
(Hotspot)	□ BT Tethering (Bluetoo)	th 2.4 GHz)								
	S/N N/A R38M20M2S5Y N/A R38M20M2STK	355922100020292 355923100020290 355922100020516 355923100020514	Notes WWAN Radiated Unit #1 WWAN Radiated Unit #2							
Test sample information	N/A R38M208LZLW	355922100000633 355923100000631)	WLAN Radiated Unit #1							
	N/A R38M208LZGP	355922100000591 355923100000599	WLAN Radiated Unit #2							
	N/A R38M208M5WM	355922100002704 355923100002702	WWAN Conducted							
	N/A R38M20M2V9L	355922100020995 355923100020993	WLAN Conducted Unit							
Hardware Version	REV0.1									
Software Version	A705GM.001									

Wireless Technologies 6.2.

Wireless technologies	Frequency bands	Oper	ating mode	Duty Cycle used for SAR testing
	850	Voice (GMSK) GPRS (GMSK)	GSM Class : B Multi-Slot Class:	GSM Voice: 12.5% (E)GPRS: 1 Slot: 12.5% 2 Slots: 25%
GSM	1900	EDGE (8PSK)	Class 33 - 4 Up, 5 Down	3 Slots: 37.5% 4 Slots: 50%
	Does this device support DTN	// (Dual Transfer Mode)? □	Yes ⊠ No	
	Does this device support SV-	DO (1xRTT-1xEVDO)? 🗆 `	Yes ⊠ No	
W-CDMA (UMTS)	Band II Band V	UMTS Rel. 99 (Voice & D HSDPA (Rel. 5) HSUPA (Rel. 6) DC-HSDPA (Rel. 8) HSPA+ (Rel. 7) DL only	100%	
LTE	FDD Band 5 TDD Band 41	QPSK 16QAM 64QAM Rel. 12 Carrier Aggregation	100% (FDD) 63.3% (TDD) Refer to §6.4	
	Does this device support SV-	LTE (1xRTT-LTE)? ☐ Yes	⊠ No	
	2.4 GHz	802.11b 802.11g 802.11n (HT20)		98.29% _(802.11b) ¹
Wi-Fi	5 GHz	802.11a 802.11n (HT20) 802.11n (HT40) 802.11ac (VHT20) 802.11ac (VHT40)		97.11% (802.11n HT20) ² 90.22% (802.11ac VHT80) ²
		802.11ac (VHT80)		
	Does this device support ban	ds 5.60 ~ 5.65 GHz? ⊠ Ye	s 🗆 No	
	Does this device support Ban	d gap channel(s)? ⊠ Yes [□ No	
Bluetooth	2.4 GHz	BR, EDR, LE		77.05% ³

- Refer to §9.5 for measured Duty Cycle. Refer to §9.6 for measured Duty Cycle. Refer to §9.7 for measured Duty Cycle.

General LTE SAR Test and Reporting Considerations 6.3.

Item	Description									
			Frequenc	y range: 824	- 849 MHz (BV	V = 25 MH	<u>z</u>)			
	Band 5 ¹			Channe	l Bandwidth					
		20 MHz	15 MHz	10 MHz ¹	5 MHz	3 MH:	z 1.4 MHz			
	1			20450/	20425/	20415	5/ 20407/			
	Low			829	826.5	825.5	824.7			
	Mid			20525/	20525/	20525	5/ 20525/			
	IVIIU			836.5	836.5	836.5	836.5			
	High			20600/	20625/	20635	5/ 20643/			
Frequency range, Channel Bandwidth,	High			844	846.5	847.5				
Numbers and Frequencies			Frequency	range: 2496 -	2690 MHz (BV	N = 194 M	Hz)			
	Band 41 ²			Channe	l Bandwidth					
		20 MHz	15 MHz	10 MHz	5 MHz	3 MH	z 1.4 MHz			
	Low		39750	/ 2506.0						
	Low-Mid		40185	/ 2549.5						
	Mid		40620	/ 2593.0						
	Mid-High			/ 2636.5						
	High	41490 / 2680.0								
	riigii		71730	7 2000.0						
LTE transmitter and antenna	Refer to App	endix A.								
implementation	<u> </u>									
	Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3									
	Modulati	on Ch	(Mos)	MPR (dB)						
	Modulati	1.4	3.0	5 10	sion bandwidth	20	MPR (GB)			
		MHz	MHz	MHz MH		MHz				
	QPSK	-		2007 1 1000		1000.00				
		> 5	>4	> 8 > 13		> 18	≤ 1			
	16 QAM	1 ≤5	≤4	>8 >1: ≤8 ≤1:	2 ≤ 16	> 18 ≤ 18	≤1			
Marriagnes a green and desire (MDD)	16 QAN 16 QAN	! ≤5 ! >5	≤ 4 > 4	>8 > 13 ≤8 ≤ 13 >8 > 13	2 ≤ 16 2 > 16	> 18 ≤ 18 > 18	≤ 1 ≤ 2			
Maximum power reduction (MPR)	16 QAN 16 QAN 84 QAN	! ≤5 ! >5 ! ≤5	≤4 >4 ≤4	>8 > 12 ≤8 ≤ 12 >8 > 12 ≤8 ≤ 12	2 ≤ 16 2 > 16 2 ≤ 16	> 18 ≤ 18 > 18 = 18	≤ 1 ≤ 2 ≤ 2			
Maximum power reduction (MPR)	16 QAN 16 QAN	1 ≤5 1 >5 1 ≤5 1 >5	≤ 4 > 4	>8 > 13 ≤8 ≤ 13 >8 > 13	2 ≤ 16 2 > 16 2 ≤ 16	> 18 ≤ 18 > 18	≤ 1 ≤ 2			
Maximum power reduction (MPR)	16 QAN 16 QAN 64 QAN 64 QAN 256 QAN	1 ≤ 5 1 > 5 1 ≤ 5 1 ≤ 5	≤4 >4 ≤4	>8 > 1; ≤8 ≤ 1; >8 > 1; ≤8 ≤ 1; >8 ≤ 1; >8 ≤ 1;	2 ≤ 16 2 > 16 2 ≤ 16	> 18 ≤ 18 > 18 = 18	\$1 \$2 \$2 \$3			
Maximum power reduction (MPR)	16 QAN 16 QAN 64 QAN 64 QAN	1 ≤ 5 1 > 5 1 ≤ 5 1 ≤ 5	≤4 >4 ≤4	>8 > 1; ≤8 ≤ 1; >8 > 1; ≤8 ≤ 1; >8 ≤ 1; >8 ≤ 1;	2 ≤ 16 2 > 16 2 ≤ 16	> 18 ≤ 18 > 18 = 18	\$1 \$2 \$2 \$3			
Maximum power reduction (MPR)	16 QAN 16 QAN 64 QAN 64 QAN 256 QAI MPR Built-in	\(\leq 5 \) \(\	≤4 >4 ≤4 >4	>8 >1: ≤8 ≤1: >8 >1: ≤8 ≤1: >8 ≤1: >8 ≥1:	2 ≤ 16 2 > 16 2 ≤ 16 2 ≤ 16 2 > 16	> 18 ≤ 18 > 18 => 18 ≤ 18 => 18	\$1 \$2 \$2 \$3			
Maximum power reduction (MPR)	16 QAN 16 QAN 64 QAN 64 QAN 256 QAI MPR Built-ir The manufa	\(\leq \frac{5}{5} \) \(> 5 \) \(\leq 5 \) \(\leq 5 \) \(> 5 \) \(> 5 \) \(\leq 5 \) \(> 5 \) \(\leq 5 \) \(\le	≤ 4 > 4 ≤ 4 > 4	>8 >1: ≤8 ≤1: >8 >1: ≤8 ≤1: >8 ≤1: >8 ≥1:	2 ≤ 16 2 > 16 2 ≤ 16 2 ≤ 16 2 > 16	> 18 ≤ 18 > 18 => 18 ≤ 18 => 18	\$ 1 \$ 2 \$ 2 \$ 3 \$ 5			
Maximum power reduction (MPR)	16 QAN 16 QAN 64 QAN 256 QAN MPR Built-in The manufa not follow th	s by design cturer MPR value default MPR	≤4 >4 ≤4 >4 >4 slues are alway	> 8 > 1; ≤ 8 ≤ 1; > 8 > 1; ≤ 8 ≤ 1; > 8 > 1; ≥ 1 ≥ 1	2 ≤ 16 2 > 16 2 ≤ 16 2 ≤ 16 2 > 16	> 18 ≤ 18 > 18 => 18 ≤ 18 => 18	\$ 1 \$ 2 \$ 2 \$ 3 \$ 5			
	16 QAM 16 QAM 64 QAM 54 QAM 256 QAI MPR Built-ir The manufa not follow th A-MPR (add	\(\leq \frac{5}{5} \) \(> 5 \) \(\leq 5 \) \(\leq 5 \) \(> 5 \) \(> 5 \) \(\leq 5 \) \(> 5 \) \(\leq 5 \) \(\le	≤4 >4 ≤4 >4 >4 slues are alway	> 8 > 1; ≤ 8 ≤ 1; > 8 > 1; ≤ 8 ≤ 1; > 8 > 1; ≥ 1 ≥ 1	2 ≤ 16 2 > 16 2 ≤ 16 2 ≤ 16 2 > 16	> 18 ≤ 18 > 18 => 18 ≤ 18 => 18	\$ 1 \$ 2 \$ 2 \$ 3 \$ 5			
Maximum power reduction (MPR) Power reduction	16 QAM 16 QAM 64 QAM 256 QAM MPR Built-ir The manufa not follow th A-MPR (add No	i ≥ 5 i ≥ 5 i ≥ 5 i by design cturer MPR va e default MPR itional MPR) v	s 4 > 4 > 4 ≤ 4 > 4 > 4 values are always values. vas disabled	≥ 8 ≥ 1; ≤ 8 ≤ 1; ≥ 8 ≥ 1; ≤ 8 ≤ 1; ≥ 8 ≥ 1; ≥ 1 ays within the	2 ≤ 16 2 > 16 2 ≤ 16 2 ≤ 16 2 > 16 3GPP maximu	> 18 ≤ 18 > 18 ≤ 18 ≤ 18 > 18 > 18	≤1 ≤2 ≤2 ≤3 ≤5			
	16 QAM 16 QAM 64 QAM 256 QAM MPR Built-ir The manufa not follow th A-MPR (add No	i ≥ 5 i ≥ 5 i ≥ 5 i by design cturer MPR va e default MPR itional MPR) v	s 4 > 4 > 4 ≤ 4 > 4 > 4 values are always values. vas disabled	≥ 8 ≥ 1; ≤ 8 ≤ 1; ≥ 8 ≥ 1; ≤ 8 ≤ 1; ≥ 8 ≥ 1; ≥ 1 ays within the	2 ≤ 16 2 > 16 2 ≤ 16 2 ≤ 16 2 > 16 3GPP maximu	> 18 ≤ 18 > 18 ≤ 18 ≤ 18 > 18 > 18	\$ 1 \$ 2 \$ 2 \$ 3 \$ 5			
	16 QAM 16 QAM 64 QAM 64 QAM 256 QAM MPR Built-in The manufa not follow th A-MPR (add No	by design cturer MPR value default MPR) value onfigured base	station simu	> 8 > 1; ≤ 8 ≤ 1; > 8 > 1; ≤ 8 ≤ 1; ≥ 8 ≤ 1; ≥ 8 ≤ 1; ≥ 1 ays within the	2 ≤ 16 2 > 16 2 ≤ 16 2 ≤ 16 2 > 16 3GPP maximu	> 18 ≤ 18 > 18 ≤ 18 ≤ 18 > 18 and power	s 1 s 2 s 2 s 3 s 5 Iowance but may			

- Maximum bandwidth does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices.
 LTE band 41 test channels in accordance with October 2014 TCB workshop for all channels bandwidths.
- SAR Testing for LTE was performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

6.4. LTE (TDD) Considerations

According to KDB 941225 D05 SAR for LTE Devices, for Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

LTE TDD Bands support 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations and Table 4.2-1 for Special subframe configurations.

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS)

1	N	ormal cyclic prefix in	downlink	Ex	tended cyclic prefix is	n downlink	
Special	DwPTS	Up	PTS	DwPTS	Up	PTS	
subframe configuration		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink	
0	6592-T _s	1/2	3.00	7680 · T _s			
1	19760 · T _s			20480 · T _s	(1+X)·2192·T,	(1 . V) 2560 T	
2	21952·T _s	(1+X) · 2192 · T _s	(1+X) · 2560 · T _s	23040-T _s		(1+X)·2560·T _s	
3	24144·T _s			25600-T ₅			
4	26336 · T _s			7680-T _s		(2 . V) 2550 T	
5	6592 · T _s			20480 · T _s	(2 . X) 2102 T		
6	19760 · T _s			23040 · T _s	$(2+X)\cdot 2192\cdot T_s$	(2+X)·2560·T _s	
7	21952 · T _s	(2+X)·2192·T _s	(2+X)·2560·T	12800 · T			
8	24144·T _s			-	72	020	
9 1	13168 · T _s			-		(+)	
10	13168 · T _s	13152 · T _s	12800 · T _s		۰		

Table 4.2-2: Uplink-downlink configurations & Calculated Duty Cycle

Uplink- Downlink	Downlink-to- Uplink Switch-		Subframe Number									Calculated Duty Cycle
Configuration	point Periodicity	0	1	2	3	4	5	6	7	8	9	(%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	63.3%
1	5 ms	D	S	U	U	D	D	S	U	U	D	43.3%
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.3%
3	10 ms	D	S	U	U	U	D	D	D	D	D	31.7%
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.7%
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.7%
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.3%

Calculated Duty Cycle = Extended cyclic prefix in uplink * (T_s) * # of S + # of U / period

Note(s):

This device supports uplink-downlink configurations 0-6. The configuration with highest duty cycle was used for SAR Testing: configuration 0 at 63.3% duty cycle.

6.5. Power Back-off and Triggering Distances

This device supports multiple power back-off modes: WWAN (Hotspot), WWAN (Grip Sensor), and WLAN (RCV+IR Sensor). Each of the power back-off modes operates within specific exposure conditions for certain technologies.

WWAN (Hotspot) and WWAN (Grip Sensor) operate separately. Also, in a situation where both WWAN power back-off modes could be active, WWAN (Grip Sensor) power back-off takes priority. For a detailed description of the grip sensor refer to the WWAN sensor triggering distance data shown in the Operational Description.

WLAN back-off power supports an RCV+IR Sensor. This sensor activates in a held to ear exposure condition. When the sensor activates in this exposure condition, the output power level is reduced. For a detailed description of the RCV+IR sensor refer to the WLAN sensor triggering distance data shown in the Operational Description.

For full details on how each power back-off mode operates, refer to the Operational Description.

Power	Technologies	Exposure Conditions Active						
Back-off mode	<u> </u>		Body-worn	Hotspot	Product Specific 10g			
WWAN (Hotspot)	GSM 1900 W-CDMA B2	N/A	N/A	✓	N/A			
WWAN (Grip Sensor)	GSM 1900 W-CDMA B2 LTE B41	N/A	N/A	N/A	✓			
WLAN (Head)	Wi-Fi 2.4GHz Wi-Fi 5GHz	✓	N/A	N/A	N/A			

Note(s):

Tune-Up Limits for WWAN (Hotspot) and WWAN (Grip Sensor) are both Reduced Average Powers. Please refer to §9 for all power measurements.

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Wireless	RF Exposure	DUT-to-User	Test	Antenna-to-	SAR	Note	
technologies	Conditions	Separation	Position	edge/surface	Required	14010	
			Left Touch	N/A	Yes		
	Head	0 mm	Left Tilt (15°)	N/A	Yes		
	riodd	0 111111	Right Touch	N/A	Yes		
			Right Tilt (15°)	N/A	Yes		
	Body	15 mm	Rear	N/A	Yes		
			Front	N/A	Yes		
			Rear	< 25 mm	Yes		
			Front	< 25 mm	Yes		
WWAN	Hotspot	10 mm	Edge 1 (Top)	> 25 mm	No	1	
(Main Ant. 1)	0.0		Edge 2 (Right)	< 25 mm	Yes		
,			Edge 3 (Bottom)	< 25 mm	Yes		
			Edge 4 (Left)	< 25 mm	Yes		
			Rear				
			Front				
	Product Specifc	0	Edge 1 (Top)	Refer to notes 2 & 3			
	10g	0 mm	Edge 2 (Right)				
			Edge 3 (Bottom)				
			Edge 4 (Left)				
			Left Touch	N/A	Yes		
	111	0	Left Tilt (15°)	N/A	Yes		
	Head	0 mm	Right Touch	N/A	Yes		
			Right Tilt (15°)	N/A	Yes		
	D-4.	45	Rear	N/A	Yes		
	Body	15 mm	Front	N/A	Yes		
			Rear	< 25 mm	Yes		
			Front	< 25 mm	Yes		
WWAN			Edge 1 (Top)	< 25 mm	Yes		
(Main Ant. 2)	Hotspot	10 mm	Edge 2 (Right)	> 25 mm	No	1	
			Edge 3 (Bottom)	> 25 mm	No	1	
			Edge 4 (Left)	< 25 mm	Yes		
			Rear		•		
			Front				
	Product Specifc	0	Edge 1 (Top)	5.4			
	10g	0 mm	Edge 2 (Right)	Kefer t	to notes 2 & 3		
			Edge 3 (Bottom)				
			Edge 4 (Left)				

Notes:

- 1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.
- 2. For Phablet devices: when hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
- 3. For Phablet devices: when hotspot mode applies and power reduction applies to hotspot mode, Product Specific 10-g SAR is required for each test position that has an adjusted SAR to maximum power that is > 1.2 W/kg.
- 4. WWAN Main Antenna #2 supports LTE B41 only.

Wireless technologies	RF Exposure Conditions	DUT-to-User Separation	Test Position	Antenna-to- edge/surface	SAR Required	Note
toormologico	Conditions	Coparation	Left Touch	N/A	Yes	
	Head	0	Left Tilt (15°)	N/A	Yes	
	пеац	0 mm	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Body	15 mm	Rear	N/A	Yes	
	Dody	13 111111	Front	N/A	Yes	
			Rear	< 25 mm	Yes	
	Hotopot		Front < 25 mm		Yes	
WLAN		10 mm	Edge 1 (Top)	< 25 mm	Yes	
WLAIN	Hotspot	10 mm	Edge 2 (Right)	< 25 mm	Yes	
			Edge 3 (Bottom)	> 25 mm	No	1
			Edge 4 (Left)	> 25 mm	No	1
			Rear			
			Front			
	Product Specifc	0 mm	Edge 1 (Top)	Pofor t	to notes 2 & 3	
	10g	O IIIIII	Edge 2 (Right)	ivelet i	O HOLGS Z & S	
			Edge 3 (Bottom)			
			Edge 4 (Left)			

Notes:

- 1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.
- 2. For Phablet devices: when Hotspot Mode is not supported, Product Specific 10-g SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.
- 3. For Phablet devices: when hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
- 4. Wi-Fi Direct is only available in Hand use configuration.

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant (ϵ r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ϵ r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	F	lead	Bo	dy
raiget Frequency (Miriz)	ε _r	σ (S/m)	ε_{r}	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

SAR		Band	Tissue	Frequency	Relati	ve Permittiv	ity (er)	С	onductivity (σ)
Lab	Date	(MHz)	Туре	(MHz)	Measured	Target	Delta (%)	Measured	Target	Delta (%)
				5750	33.78	35.36	-4.48	5.11	5.21	-2.01
Е	3/18/2019	5750	Head	5700	33.89	35.42	-4.32	5.04	5.16	-2.41
				5850	33.63	35.30	-4.73	5.21	5.27	-1.20
				5250	48.00	48.95	-1.94	5.23	5.35	-2.37
E	3/28/2019	5250	Body	5150	48.20	49.09	-1.81	5.09	5.24	-2.74
				5350	47.81	48.82	-2.06	5.37	5.47	-1.86
				5600	47.38	48.48	-2.26	5.70	5.76	-1.13
E	3/28/2019	5600	Body	5500	47.56	48.61	-2.17	5.55	5.64	-1.73
				5725	47.13	48.31	-2.44	5.89	5.91	-0.35
				5750	47.08	48.27	-2.47	5.92	5.94	-0.22
E	3/28/2019	5750	Body	5700	47.18	48.34	-2.40	5.85	5.88	-0.55
				5850	46.92	48.20	-2.66	6.06	6.00	1.05
				5600	35.04	35.53	-1.39	4.94	5.06	-2.38
Е	3/29/2019	5600	Head	5500	35.22	35.65	-1.20	4.82	4.96	-2.82
				5725	34.80	35.39	-1.67	5.09	5.19	-1.83
				5600	46.85	48.48	-3.36	5.85	5.76	1.54
Е	4/1/2019	5600	Body	5500	47.06	48.61	-3.19	5.72	5.64	1.25
				5725	46.60	48.31	-3.54	6.06	5.91	2.56
				5250	36.65	35.93	1.99	4.63	4.70	-1.45
Е	4/4/2019	5250	Head	5150	36.84	36.05	2.20	4.52	4.60	-1.71
				5350	36.46	35.82	1.79	4.76	4.80	-0.88
				835	40.33	41.50	-2.82	0.92	0.90	2.03
F	3/25/2019	835	Head	805	40.32	41.68	-3.26	0.91	0.90	0.98
				850	40.30	41.50	-2.89	0.92	0.92	0.97
				835	54.55	55.20	-1.18	0.98	0.97	0.94
F	3/25/2019	835	Body	805	54.57	55.33	-1.38	0.97	0.97	-0.21
				850	54.52	55.16	-1.16	0.99	0.99	-0.18
				2450	38.25	39.20	-2.42	1.73	1.80	-4.11
G	3/19/2019	2450	Head	2400	38.30	39.30	-2.54	1.69	1.75	-3.52
				2480	38.25	39.16	-2.33	1.74	1.83	-4.83
				2450	50.09	52.70	-4.95	1.97	1.95	0.92
G	3/19/2019	2450	Body	2400	50.14	52.77	-4.99	1.92	1.90	1.32
		- -		2480	50.08	52.66	-4.90	1.99	1.99	-0.06
				2600	38.20	39.01	-2.08	1.93	1.96	-1.59
G	3/25/2019	2600	Head	2495	38.31	39.14	-2.13	1.84	1.85	-0.36
-	1.0.20.0			2690	37.96	38.90	-2.41	2.01	2.06	-2.60
				2600	50.42	52.51	-3.98	2.14	2.16	-0.87
G	3/25/2019	2600	Body	2495	50.52	52.64	-4.03	2.04	2.01	1.33
-	5. 25. 25. 0	_500		2690	50.19	52.40	-4.21	2.24	2.29	-2.29
				1900	39.18	40.00	-2.05	1.45	1.40	3.43
Н	3/25/2019	1900	Head	1850	39.35	40.00	-1.63	1.42	1.40	1.50
	5,20,2010	1000	11000	1920	39.21	40.00	-1.98	1.47	1.40	4.79
				1900	51.67	53.30	-3.06	1.53	1.52	0.66
	3/25/2019	1900	Body	1850	51.74	53.30	-2.93	1.50	1.52	-1.51
Н					U1./4	00.00	2.00	1.00	1.04	-1.01

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole
 center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within $\pm 10\%$ of the manufacturer calibrated dipole SAR target. Refer to Appendix B for the SAR System Check Plots.

SAR		Tissue	Dipole Type	Dipole	Me	easured Resul	Its for 1g SAR		Me	asured Result	ts for 10g SAR		Plot
Lab	Date	Type	_Serial #	Cal. Due Data	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	No.
Е	3/18/2019	Head	D5GHzV2 SN:1138 (5.75 GHz)	8/21/2019	7.460	74.60	82.40	-9.47	2.150	21.50	23.60	-8.90	1,2
Е	3/28/2019	Body	D5GHzV2 SN:1003 (5.25 GHz)	2/19/2020	7.190	71.90	74.40	-3.36	2.020	20.20	20.80	-2.88	
E	3/28/2019	Body	D5GHzV2 SN:1003 (5.60 GHz)	2/19/2020	8.040	80.40	79.30	1.39	2.250	22.50	22.30	0.90	
Е	3/28/2019	Body	D5GHzV2 SN:1003 (5.75 GHz)	2/19/2020	7.550	75.50	76.20	-0.92	2.110	21.10	21.40	-1.40	
E	3/29/2019	Head	D5GHzV2 SN:1003 (5.60 GHz)	2/19/2020	7.840	78.40	82.70	-5.20	2.220	22.20	23.80	-6.72	3,4
Е	4/1/2019	Body	D5GHzV2 SN:1003 (5.25 GHz)	2/19/2020	7.210	72.10	74.40	-3.09	2.040	20.40	20.80	-1.92	
Е	4/4/2019	Head	D5GHzV2 SN:1138 (5.25 GHz)	8/21/2019	7.710	77.10	82.60	-6.66	2.210	22.10	23.80	-7.14	5,6
F	3/25/2019	Head	D835V2 SN:4d142	8/23/2019	0.978	9.78	9.48	3.16	0.642	6.42	6.10	5.25	7,8
F	3/25/2019	Body	D835V2 SN:4d142	8/23/2019	0.947	9.47	9.68	-2.17	0.620	6.20	6.36	-2.52	
G	3/19/2019	Body	D2450V2 SN:706	5/18/2019	4.870	48.70	50.60	-3.75	2.270	22.70	23.70	-4.22	
G	3/19/2019	Head	D2450V2 SN:706	5/18/2019	4.950	49.50	52.60	-5.89	2.300	23.00	24.60	-6.50	9,10
G	3/25/2019	Head	D2600V2 SN:1006	10/16/2019	5.640	56.40	59.31	-4.91	2.530	25.30	26.43	-4.28	
G	3/25/2019	Body	D2600V2 SN:1006	10/16/2019	5.440	54.40	58.52	-7.04	2.400	24.00	26.15	-8.22	11,12
Н	3/25/2019	Head	D1900V2 SN:5d140	4/11/2019	4.170	41.70	38.93	7.12	2.150	21.50	20.14	6.75	13,14
Н	3/25/2019	Body	D1900V2 SN:5d140	4/11/2019	4.210	42.10	41.00	2.68	2.180	21.80	21.05	3.56	

9. Conducted Output Power Measurements

9.1. GSM

Per KDB 941225 D01 3G SAR Procedures:

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

When different maximum output power applies to GSM voice or GPRS/EDGE time slots, GSM voice and GPRS/EDGE time slots should be tested separately to determine compliance by summing the corresponding reported SAR.

The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance

Per October 2013 TCB Workshop:

When the maximum frame-averaged powers levels are within 0.25 dB of each other, test the configuration with the most number of time slots.

Maximum Output Power (Tune-up Limit) for GSM

SAR is not required for EDGE (8PSK) mode because the maximum output power and tune-up limit is \leq 1/4dB higher than GPRS/EDGE (GMSK) or the adjusted SAR of the highest reported SAR of GPRS/EDGE (GMSK) is \leq 1.2W/kg.

GSM850 Measured Results

	Cadian	Time		F		Maximum Av (dE		r	
Mode	Coding Scheme	Slots	Ch No.	Freq. (MHz)	Mea	sured	Tune-u	ıp Limit	
					Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr	
			128	824.2	32.4	23.4			
		1	190	836.6	32.5	23.5	34.0	25.0	
			251	848.8	32.5	23.5			
			128	824.2	29.2	23.2			
		2	190	836.6	29.6	23.5	31.0	25.0	
GPRS/EDGE	CS1		251	848.8	29.6	23.5			
(GMSK)	(GMSK)		128	824.2	27.5	21.4			
		3	190	836.6	27.8	21.8	29.0	24.7	
			251	848.8	27.7	21.7			
		4	128	824.2	26.0	20.0			
			190	836.6	26.4	20.4	28.0	25.0	
			251	848.8	26.4	20.4			
			128	824.2	25.2	16.1			
		1	190	836.6	25.2	16.2	27.5	18.5	
			251	848.8	25.0	16.0			
			128	824.2	22.9	16.9			
		2	190	836.6	22.9	16.9	25.0	19.0	
EDGE	MCS5		251	848.8	22.7	16.6			
(8PSK)	WOOD		128	824.2	21.7	15.7			
		3	190	836.6	21.7	15.7	23.5	19.2	
			251	848.8	21.4	15.3			
			128	824.2	20.2	14.2			
		4	190	836.6	20.4	14.4	22.0	19.0	
			251	848.8	20.0	14.0			

Notes

GPRS/EDGE (GMSK) mode with 4 time slots for Max power, based on the Tune-up Procedure.

GSM1900 Measured Results

	Coding	Time		Freq.	ı	Maximum Av (dE		r	Hots	spot Reduced (dE		ower	Grip s	sensor Reduc		ower
Mode	Scheme	Slots	Ch No.	(MHz)	Meas	sured	Tune-u	ıp Limit	Mea	sured	Tune-u	ıp Limit	Mea	sured	Tune-u	ıp Limit
					Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr
			512	1850.2	29.6	20.6			26.7	17.6			26.0	17.0		
		1	661	1880.0	29.6	20.6	31.0	22.0	27.3	18.2	29.0	20.0	26.3	17.2	28.0	19.0
			810	1909.8	30.1	21.1			27.4	18.4			26.4	17.4		
			512	1850.2	27.1	24.1			24.6	21.6			23.8	20.8		
		2	661	1880.0	27.6	24.6	28.5	22.5	25.4	22.4	26.5	20.5	24.4	21.4	25.5	19.5
GPRS/EDGE	CS1		810	1909.8	28.0	19.0			25.6	16.6			24.6	15.6		19.2
(GMSK)	CST	3	512	1850.2	24.8	15.8			22.6	13.6			21.6	12.6		
			661	1880.0	25.3	16.3	26.5	22.2	25.3	16.3	24.5	20.2	22.3	13.2	23.5	
			810	1909.8	25.8	22.7			25.5	22.5			22.5	19.5		
			512	1850.2	24.0	21.0	25.5		21.9	18.8			20.8	17.8		
		4	661	1880.0	24.6	21.6		22.5	22.6	19.5	23.5	20.5	21.5	18.5	22.5	19.5
			810	1909.8	25.0	22.0			22.8	19.7			21.8	18.7		
			512	1850.2	25.2	16.2	26.0	17.0	22.6	13.6	24.0		21.6	12.6		14.0
		1	661	1880.0	25.5	16.5			23.3	14.2		15.0	22.3	13.2	23.0	
			810	1909.8	26.0	17.0			23.6	14.5			22.6	13.5		
			512	1850.2	22.9	16.9			20.5	14.5			19.5	13.5		
		2	661	1880.0	23.4	17.4	24.0	18.0	21.1	15.1	22.0	16.0	20.1	14.1	21.0	15.0
EDGE	MCS5		810	1909.8	23.5	17.5			21.5	15.4			20.4	14.4		
(8PSK)	WIOOS		512	1850.2	21.9	17.7			20.4	16.1			18.6	14.4		
		3	661	1880.0	22.4	18.1	23.0	18.7	20.9	16.6	21.0	16.7	19.3	15.1	20.5	16.2
			810	1909.8	23.0	18.7			21.0	16.7			19.7	15.4		
			512	1850.2	20.2	17.2			18.0	15.0			16.9	13.9		
		4	661	1880.0	20.7	17.7	21.0	18.0	18.7	15.7	19.0	16.0	17.6	14.6	18.5 15	15.5
		4	810	1909.8	21.0	18.0			19.0	16.0			18.1	15.0		

Notes:

GPRS/EDGE (GMSK) mode with 4 time slots for Max power and 4 time slots for reduced power, based on the Tune-up Procedure.

9.2. W-CDMA

Per KDB 941225 D01 3G SAR Procedures for W-CDMA:

Maximum output power is verified on the high, middle and low channels and using the appropriate 12.2 kbps RMC with TPC (transmit power control) set to all "1's"

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1. A summary of these settings is illustrated below:

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 2
WCDMA Conoral Cottings	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to procedures in table C.10.1.4 of 3GPP TS 34.121-1 A summary of these settings is illustrated below:

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βd	β _d (SF)	βс/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
	(Note 4)	(Note 4)		(Note 4)			
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β _{hs} = 30/15 * β _c.

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β_{hc} = 30/15 * β_c , and Δ_{CQI} = 24/15 with

$$\beta_{hs} = 24/15 * \beta_c.$$

Note 3: CM = 1 for β_o/β_d =12/15, $\beta_h s/\beta_c$ =24/15. For all other combinations of DPDCH, DPCCH and HSDPCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

HSUPA Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to procedures in table C.11.1.3 of 3GPP TS 34.121-1. A summary of these settings is illustrated below:

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βε	βα	βd (SF)	βυβα	βнs (Note1)	βес	βed (Note 4) (Note 5)	βed (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	- 1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	-1	3.0	2.0	17	7.1
5	15/15	0	-		5/15	5/15	47/15	4	1	1.0	0.0	12	67
Note 2	: CM =		3 ₀ = 12/	15, β _{to} /β.	=24/15. F		her combination		DPDCH, I	орссн.	HS- DP	CCH, E-D	pncı
	setting In cas	g the sign e of testi	nalled g	ain facto JE using	rs for the	the TFO	during the more than the control of	easure TF1) to	β _c = 10/1	15 and B	s = 15/15	i.	
Note 3 Note 4 Note 5	setting In cas TS25.	g the sign e of testi 306 Tab	nalled g ng by U le 5.1g.	ain facto JE using	es for the E-DPDC	the TF0 reference H Physic	during the more TFC (TF1,	easure TF1) to	β _c = 10/1	15 and B	s = 15/15	i.	

DC-HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests for DC-HSDPA were completed according to procedures in table C08.1.12 of 3GPP TS 34.121-1. A summary of subtest settings is illustrated below:

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value
Nominal	Avg. Inf. Bit Rate	kbps	60
Inter-TTI	Distance	TTI's	1
Number	of HARQ Processes	Proces ses	6
Informat	ion Bit Payload (N_{DF})	Bits	120
Number	Code Blocks	Blocks	1.
Binary C	hannel Bits Per TTI	Bits	960
Total Av	ailable SML's in UE	SML's	19200
Number	of SML's per HARQ Proc.	SML's	3200
Coding F	Rate		0.15
Number	of Physical Channel Codes	Codes	60 1 6 120 1 960 19200 3200 0.15 1 QPSK
Modulati	on		QPSK
Note 1: Note 2:	The RMC is intended to be use mode and both cells shall trans parameters as listed in the tab Maximum number of transmiss retransmission is not allowed. constellation version 0 shall be	smit with identi le. sion is limited t The redundan	ical o 1, i.e.,

HSPA+

DUT supports HSPA+ DL only. Therefore, conducted power measurements is not required.

SAR measurement is not required for the HSDPA, HSUPA and HSPA⁺. When primary mode and the adjusted SAR is \leq 1.2 W/kg and secondary mode is \leq 1/4 dB higher than the primary mode

Maximum Output Power (Tune-up Limit) for W-CDMA

SAR measurement is not required for the HSDPA, HSUPA, DC-HSDPA and HSPA⁺. When primary mode and the adjusted SAR is ≤ 1.2 W/kg and secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode

W-CDMA Band II Measured Results

Mo	ado.	UL Ch No.	Freq.	Maximum	Averag (dBm)	e Power	Hotspot Redu	ced Ave (dBm)	rage Power	Grip sensor Rec	duced Av (dBm)	verage Power
IVIC	ode	UL Ch No.	(MHz)	Measured Pwr	MPR	Tune-up Limit	Measured Pwr	MPR	Tune-up Limit	Measured Pwr	MPR	Tune-up Limit
	Rel 99	9262	1852.4	23.9			21.9			20.9		
Release 99	(RMC, 12.2	9400	1880.0	24.3	N/A	25.0	22.3	N/A	23.0	21.3	N/A	22.0
	kbps)	9538	1907.6	24.1			22.1			21.1		
		9262	1852.4	22.4			20.4			19.4		
	Subtest 1	9400	1880.0	22.7	0	24.0	20.7	0	22.0	19.8	0	21.0
		9538	1907.6	22.6			20.6			19.6		
		9262	1852.4	22.4			20.4			19.4		
	Subtest 2	9400	1880.0	22.8	0	24.0	20.7	0	22.0	19.8	0	21.0
HSDPA		9538	1907.6	22.6			20.6			19.6		
HSDPA		9262	1852.4	21.9			19.9			18.9		
	Subtest 3	9400	1880.0	22.2	0.5	23.5	20.2	0.5	21.5	19.3	0.5	20.5
		9538	1907.6	22.1			20.1			19.2		
		9262	1852.4	21.9			19.9			18.9		
	Subtest 4	9400	1880.0	22.2	0.5	23.5	20.3	0.5	21.5	19.3	0.5	20.5
		9538	1907.6	22.1			20.1			19.2		
		9262	1852.4	22.4			20.5			19.4		
	Subtest 1	9400	1880.0	22.8	0	24.0	20.8	0	22.0	19.8	0	21.0
	Subtest 1	9538	1907.6	22.6			20.6			19.6		
		9262	1852.4	20.7			18.5			17.4		
	Subtest 2	9400	1880.0	20.9	2	22.0	18.7	2	20.0	17.7	2	19.0
		9538	1907.6	20.7	1		18.6			17.6		
		9262	1852.4	21.4		23.0	19.4	1	21.0	18.3	1	
HSUPA	Subtest 3	9400	1880.0	21.8	1		19.6			18.7		20.0
		9538	1907.6	21.6			19.6			18.6		
		9262	1852.4	20.3			18.4			17.4		
	Subtest 4	9400	1880.0	20.8	2	22.0	18.7	2	20.0	17.7	2	19.0
		9538	1907.6	20.6			18.6			17.6		
		9262	1852.4	22.4			20.4			19.4		
	Subtest 5	9400	1880.0	22.8	0	24.0	20.8	0	22.0	19.8	0	21.0
		9538	1907.6	22.7			20.7			19.7		
		9262	1852.4	22.3			20.3			19.4		
	Subtest 1	9400	1880.0	22.7	0	24.0	20.6	0	22.0	19.7	0	21.0
		9538	1907.6	22.5	1		20.6			19.6		
		9262	1852.4	22.4			20.4			19.4		
	Subtest 2	9400	1880.0	22.7	0	24.0	20.7	0	22.0	19.7	0	21.0
DO HODDA		9538	1907.6	22.6	1		20.6			19.6		
DC-HSDPA		9262	1852.4	21.9			19.9			18.9		
	Subtest 3	9400	1880.0	22.2	0.5	23.5	20.2	0.5	21.5	19.2	0.5	20.5
		9538	1907.6	22.1			20.1			19.1		
		9262	1852.4	21.9			19.9			18.9		
	Subtest 4	9400	1880.0	22.2	0.5	0.5 23.5	20.2	0.5 21.5	19.2	0.5	20.5	
		9538	1907.6	22.1			20.1			19.1		

W-CDMA Band V Measured Results

	and v Mea			Maximum		e Power
Mo	ode	UL Ch No.	Freq. (MHz)		(dBm)	
			(IVII IZ)	Measured Pwr	MPR	Tune-up Limit
	Rel 99	4132	826.4	24.1		
Release 99	(RMC, 12.2	4183	836.6	24.1	N/A	25.0
	kbps)	4233	846.6	23.8		
		4132	826.4	23.0		
	Subtest 1	4183	836.6	23.1	0	24.0
		4233	846.6	22.8		
		4132	826.4	23.1		
	Subtest 2	4183	836.6	23.1	0	24.0
HSDPA		4233	846.6	22.8		
TISSEA		4132	826.4	22.5		
	Subtest 3	4183	836.6	22.6	0.5	23.5
		4233	846.6	22.4		
		4132	826.4	22.6		
	Subtest 4	4183	836.6	22.6	0.5	23.5
		4233	846.6	22.3		
		4132	826.4	23.1		
	Subtest 1	4183	836.6	23.0	0	24.0
		4233	846.6	22.9		
		4132	826.4	21.0		
	Subtest 2	4183	836.6	21.1	2	22.0
		4233	846.6	20.9		
		4132	826.4	22.1		
HSUPA	Subtest 3	4183	836.6	22.2	1	23.0
		4233	846.6	21.8		
		4132	826.4	21.1		
	Subtest 4	4183	836.6	21.1	2	22.0
		4233	846.6	20.8	1	
		4132	826.4	23.1		
	Subtest 5	4183	836.6	23.1	0	24.0
		4233	846.6	22.8		
		4132	826.4	23.0		
	Subtest 1	4183	836.6	23.0	0	24.0
		4233	846.6	22.8	1	
		4132	826.4	23.1		
	Subtest 2	4183	836.6	23.1	0	24.0
DO HOSS		4233	846.6	22.8		
DC-HSDPA		4132	826.4	22.6		
	Subtest 3	4183	836.6	22.6	0.5	23.5
		4233	846.6	22.3	1	
		4132	826.4	22.6		
	Subtest 4	4183	836.6	22.6	0.5	23.5
		4233	846.6	22.3		

9.3. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3

Modulation	Cha	nnel bandy	vidth / Tra	nsmission	bandwidth ((Nee)	MPR (dB)	
F0071618007036.13	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	- AMERICAN	
QPSK	> 5	>4	> 8	> 12	> 16	> 18	≤1	
16 QAM	≤ 5	≤ 4	≤8	≤ 12	≤ 16	≤ 18	51	
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	5.2	
64 QAM	≤ 5	≤ 4	58	≤ 12	≤ 16	≤ 18	≤ 2	
64 QAM	> 5	>4	>8	> 12	> 16	> 18	≤ 3	
256 QAM				≥ 1			≤ 5	

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS 01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A

LTE QPSK configuration has the highest maximum average output power per 3GPP standard.

SAR measurement is not required for the 16QAM, 64QAM. When the highest maximum output power for 16QAM, 64QAM is $\leq \frac{1}{2}$ dB higher than the QPSK or when the reported SAR for the QPSK configuration is ≤ 1.45 W/kg.

Please refer to section 6.3. for LTE detail test channels.

LTE Band 5 Measured Results

	and 5 N				Maximum Ave	erage Power (dBi	n)	
BW (MHz)	Mode	RB Allocation	RB offset		20525	,		Tune-up
(MHz)		Allocation	oliset		836.5 MHz		MPR	Limit
		1	0		23.5		0	25.0
		1	25		23.5		0	25.0
		1	49		23.4		0	25.0
	QPSK	25	0		22.5		1	24.0
		25	12		22.6		1	24.0
		25	25		22.5		1	24.0
		50	0		22.6		1	24.0
		1	0		22.8		1	24.0
		1	25		22.9		1	24.0
		1	49		22.8		1	24.0
10 MHz	16QAM	25	0		21.2		2	23.0
		25	12		21.2		2	23.0
		25	25		21.2		2	23.0
		50	0		21.2		2	23.0
		1	0		21.6		2	23.0
		1	25		21.7		2	23.0
	040414	1	49		21.6		2	23.0
	64QAM	25	0		21.2		3	22.0
		25	12		21.2		3	22.0
		25 50	25 0		21.2		3	22.0 22.0
		50	U			rago Bower (dB		22.0
BW	Mode	RB	RB	20425	20525	erage Power (dBi 20625	,	Tune-up
(MHz)	Wode	Allocation	offset	826.5 MHz	836.5 MHz	846.5 MHz	MPR	Limit
		1	0	23.4	23.6	23.3	0	25.0
		1	12	23.4	23.5	23.1	0	25.0
		1	24	23.5	23.5	23.1	0	25.0
	QPSK	12	0	22.5	22.6	22.2	1	24.0
	Q. O.	12	7	22.5	22.6	22.2	1	24.0
		12	13	22.5	22.6	22.1	1	24.0
		25	0	22.5	22.5	22.2	1	24.0
		1	0	23.0	22.7	22.4	1	24.0
		1	12	22.9	22.6	22.2	1	24.0
		1	24	23.0	22.5	22.2	1	24.0
5 MHz	16QAM	12	0	21.7	21.7	21.3	2	23.0
		12	7	21.7	21.7	21.3	2	23.0
		12	13	21.7	21.7	21.2	2	23.0
		25	0	21.6	21.5	21.3	2	23.0
		1	0	21.6	21.8	21.4	2	23.0
		1	12	21.4	21.8	21.4	2	23.0
		1	24	21.4	21.7	21.4	2	23.0
	64QAM	12	0	20.3	20.7	20.6	3	22.0
		12	7	20.3	20.7	20.7	3	22.0
		12	13	20.2	20.7	20.6	3	22.0
		25	0	20.3	20.7	20.6	3	22.0
					Maximum Ave	erage Power (dBi	n)	
BW (MHz)	Mode	RB Allocation	RB offset	20415	20525	20635	MPR	Tune-up
(-)		Janon		825.5 MHz	836.5 MHz	847.5 MHz	IVII-TX	Limit
		1	0	23.5	23.5	23.1	0	25.0
		1	8	23.5	23.5	23.1	0	25.0
		1	14	23.4	23.4	23.0	0	25.0
	QPSK	8	0	22.4	22.5	22.0	1	24.0
		8	4	22.4	22.5	22.1	1	24.0
		8	7	22.4	22.5	22.1	1	24.0
		15	0	22.4	22.5	22.0	1	24.0
		1	0	22.8	22.6	22.0	1	24.0
			8	22.8	22.6	22.0	1	24.0
		1						24.0
		1	14	22.8	22.4	22.0	1	
3 MHz	16QAM	1 8	14 0	21.5	21.6	21.2	2	23.0
3 MHz	16QAM	1 8 8	14 0 4	21.5 21.6	21.6 21.6	21.2 21.2	2	23.0 23.0
3 MHz	16QAM	1 8 8 8	14 0 4 7	21.5 21.6 21.5	21.6 21.6 21.6	21.2 21.2 21.2	2 2 2	23.0 23.0 23.0
3 MHz	16QAM	1 8 8 8 15	14 0 4 7 0	21.5 21.6 21.5 21.5	21.6 21.6 21.6 21.5	21.2 21.2 21.2 21.2	2 2 2 2	23.0 23.0 23.0 23.0
3 MHz	16QAM	1 8 8 8 8 15	14 0 4 7 0	21.5 21.6 21.5 21.5 21.2	21.6 21.6 21.6 21.5 21.8	21.2 21.2 21.2 21.2 21.8	2 2 2 2 2	23.0 23.0 23.0 23.0 23.0
3 MHz	16QAM	1 8 8 8 15 1	14 0 4 7 0 0 8	21.5 21.6 21.5 21.5 21.2 21.3	21.6 21.6 21.6 21.5 21.8 21.8	21.2 21.2 21.2 21.2 21.8 21.8	2 2 2 2 2 2	23.0 23.0 23.0 23.0 23.0 23.0
3 MHz		1 8 8 8 15 1 1	14 0 4 7 0 0 8 14	21.5 21.6 21.5 21.5 21.2 21.3 21.2	21.6 21.6 21.6 21.5 21.8 21.8 21.7	21.2 21.2 21.2 21.2 21.8 21.8 21.7	2 2 2 2 2 2 2 2	23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0
3 MHz	16QAM 64QAM	1 8 8 8 15 1 1 1 8	14 0 4 7 0 0 8 14	21.5 21.6 21.5 21.5 21.2 21.3 21.2 20.2	21.6 21.6 21.6 21.5 21.8 21.8 21.7 20.5	21.2 21.2 21.2 21.2 21.8 21.8 21.7 20.6	2 2 2 2 2 2 2 2 2 3	23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0
3 MHz		1 8 8 8 15 1 1 1 1 8	14 0 4 7 0 0 0 8 14 0 4	21.5 21.6 21.5 21.5 21.2 21.3 21.2 20.2 20.3	21.6 21.6 21.6 21.5 21.8 21.8 21.7 20.5 20.6	21.2 21.2 21.2 21.2 21.8 21.8 21.7 20.6 20.6	2 2 2 2 2 2 2 2 3 3	23.0 23.0 23.0 23.0 23.0 23.0 23.0 22.0 22
3 MHz		1 8 8 8 15 1 1 1 8	14 0 4 7 0 0 8 14	21.5 21.6 21.5 21.5 21.2 21.3 21.2 20.2	21.6 21.6 21.6 21.5 21.8 21.8 21.7 20.5	21.2 21.2 21.2 21.2 21.8 21.8 21.7 20.6	2 2 2 2 2 2 2 2 2 3	23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0

LTE Band 5 Measured Results (continued)

5111		20				erage Power (dBi	n)				
BW (MHz)	Mode	RB Allocation	RB offset	20407	20525	20643	MPR	Tune-up			
(IVII IZ)		rtilocation	Oliset	824.7 MHz	836.5 MHz	848.3 MHz	WPK	Limit			
		1	0	23.4	23.4	23.0	0	25.0			
		1	3	23.4	23.4	23.0	0	25.0			
		1	5	23.4	23.4	23.0	0	25.0			
	QPSK	3	0	23.3	23.4	23.0	0	25.0			
		3	1	23.3	23.5	23.0	0	25.0			
		3	3	23.3	23.4	23.0	0	25.0			
		6	0	22.3	22.4	22.0	1	24.0			
		1	0	22.4	22.8	22.0	1	24.0			
		1	3	22.5	22.8	22.1	1	24.0			
		1	5	22.4	22.8	22.0	1	24.0			
1.4 MHz	16QAM	3	0	22.4	22.6	22.2	1	24.0			
		3	1	22.4	22.7	22.2	1	24.0			
			3	3	22.4	22.6	22.2	1	24.0		
		6	0	21.5	21.4	21.2	2	23.0			
		1	0	21.2	21.9	21.6	2	23.0			
					1	3	21.3 21.9 21.		21.6	2	23.0
		1	5	21.2	21.9	21.5	2	23.0			
	64QAM	3	0	21.0	21.8	21.6	2	23.0			
		3	1	21.1	21.9	21.6	2	23.0			
		3	3	21.1	21.8	21.6	2	23.0			
		6	0	20.2	20.5	20.7	3	22.0			

LTE Band 41 Measured Results

						Maximum Aver	rage Power (dB	m)				Grip s	sensor Reduced	Average Powe	er (dBm)		
BW (MHz)	Mode	RB Allocation	RB offset	39750	40185	40620	41055	41490	MDD	Tune-up	39750	40185	40620	41055	41490	MDD	Tune-up
(IVII IZ)		Allocation	Oliset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	MPR	Limit	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	MPR	Limit
		1	0	23.6	23.7	23.7	24.0	24.0	0	24.0	21.6	21.7	21.7	22.0	22.0	0	22.0
		1	49	23.5	23.6	23.5	24.0	24.0	0	24.0	21.4	21.5	21.5	22.0	22.0	0	22.0
		1	99	23.4	23.4	23.5	24.0	24.0	0	24.0	21.4	21.4	21.5	21.9	22.0	0	22.0
	QPSK	50	0	22.5	22.6	22.6	23.0	23.0	1	23.0	21.5	21.6	21.6	22.0	22.0	0	22.0
		50	24	22.5	22.6	22.6	23.0	23.0	1	23.0	21.5	21.5	21.5	22.0	22.0	0	22.0
		50	50	22.5	22.5	22.5	23.0	23.0	1	23.0	21.4	21.5	21.5	22.0	22.0	0	22.0
		100	0	22.5	22.5	22.5	23.0	23.0	1	23.0	21.5	21.5	21.5	22.0	22.0	0	22.0
		1	0	22.8	22.7	22.6	23.0	23.0	1	23.0	21.7	21.7	21.6	22.0	22.0	0	22.0
		1	49	22.7	22.5	22.5	23.0	23.0	1	23.0	21.6	21.5	21.4	22.0	22.0	0	22.0
		1	99	22.6	22.4	22.5	23.0	23.0	1	23.0	21.6	21.4	21.4	22.0	22.0	0	22.0
20 MHz	16QAM	50	0	21.6	21.6	21.7	22.0	22.0	2	22.0	21.6	21.6	21.7	22.0	22.0	0	22.0
		50	24	21.6	21.6	21.6	22.0	22.0	2	22.0	21.6	21.6	21.6	22.0	22.0	0	22.0
		50	50	21.6	21.5	21.6	22.0	22.0	2	22.0	21.6	21.5	21.6	22.0	22.0	0	22.0
		100	0	21.6	21.6	21.6	22.0	22.0	2	22.0	21.6	21.6	21.6	22.0	22.0	0	22.0
		1	0 49	22.0 21.9	21.8 21.6	21.7 21.5	21.8 21.7	22.0 22.0	2	22.0 22.0	22.0 22.0	21.6 21.4	21.7 21.5	21.9 21.6	22.0 21.9	0	22.0
		1	99	21.9	21.5	21.5	21.7	22.0	2	22.0	22.0	21.4	21.5	21.5	22.0	0	22.0
	64QAM	50	0	20.6	20.7	20.7	21.0	21.0	3	21.0	21.3	21.4	20.7	20.7	20.6	0	22.0
	04QAW	50	24	20.6	20.6	20.7	21.0	21.0	3	21.0	21.3	21.4	20.6	20.7	20.6	0	22.0
		50	50	20.5	20.6	20.6	21.0	21.0	3	21.0	21.3	21.2	20.6	20.6	20.5	0	22.0
		100	0	20.5	20.6	20.6	21.0	21.0	3	21.0	21.3	21.2	20.6	20.6	20.5	0	22.0
		100	J	20.0	20.0		rage Power (dB		3	21.0	21.0		sensor Reduced			, J	22.0
BW	Mode	RB	RB	39750	40185	40620	41055	41490		Tune-up	39750	40185	40620	41055	41490		Tune-up
(MHz)	mode	Allocation	offset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	MPR	Limit	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	MPR	Limit
		1	0	23.5	23.6	23.6	24.0	24.0	0	24.0	21.5	21.6	21.6	22.0	22.0	0	22.0
		1	37	23.4	23.5	23.5	24.0	24.0	0	24.0	21.4	21.5	21.5	22.0	22.0		22.0
		1	74	23.4	23.4	23.4	23.9	23.9	0	24.0	21.4	21.4	21.4	22.0	21.9		22.0
	QPSK	36	0	22.4	22.5	22.5	23.0	23.0	1	23.0	21.4	21.6	21.5	22.0	22.0		22.0
		36	20	22.4	22.5	22.5	23.0	23.0	1	23.0	21.4	21.5	21.5	22.0	22.0		22.0
		36	39	22.4	22.5	22.5	23.0	23.0	1	23.0	21.4	21.5	21.5	22.0	22.0		22.0
		75	0	22.4	22.5	22.5	22.9	23.0	1	23.0	21.5	21.5	21.5	21.9	22.0		22.0
		1	0	22.7	22.7	22.7	23.0	23.0	1	23.0	21.6	21.6	21.7	22.0	22.0		22.0
		1	37	22.6	22.5	22.6	23.0	23.0	1	23.0	21.5	21.5	21.5	22.0	22.0		22.0
		1	74	22.5	22.4	22.6	23.0	22.9	1	23.0	21.6	21.4	21.5	22.0	22.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22.0
15 MHz	16QAM	36	0	21.5	21.6	21.6	22.0	22.0	2	22.0	21.6	21.7	21.5	22.0	22.0		22.0
		36	20	21.5	21.6	21.6	22.0	22.0	2	22.0	21.6	21.6	21.6	22.0	22.0		22.0
		36	39	21.5	21.5	21.5	22.0	22.0	2	22.0	21.5	21.5	21.6	22.0	22.0	0	22.0
		75	0	21.5	21.6	21.6	22.0	22.0	2	22.0	21.5	21.6	21.6	22.0	22.0	0	22.0
		1	0	21.2	21.6	22.0	21.8	22.0	2	22.0	22.0	21.8	22.0	21.6	21.2	0	22.0
		1	37	21.1	21.4	21.8	21.8	22.0	2	22.0	22.0	21.8	21.8	21.4	21.1	0	22.0
		1	74	21.1	21.3	21.8	21.6	21.9	2	22.0	21.9	21.7	21.8	21.3	21.1	0	22.0
	64QAM	36	0	20.6	20.6	20.7	21.0	21.0	3	21.0	21.1	21.1	20.7	20.6	20.6	0	22.0
		36	20	20.6	20.6	20.7	21.0	21.0	3	21.0	21.1	21.1	20.7	20.6	20.6	0	22.0
		36	39	20.5	20.5	20.6	21.0	21.0	3	21.0	21.2	21.2	20.6	20.5	20.5	0	22.0
		75	0	20.5	20.6	20.6	21.0	21.0	3	21.0	21.1	21.0	20.6	20.6	20.5	0	22.0
BW		RB	RB			Maximum Aver	rage Power (dB	m)				Grip s	sensor Reduced	Average Powe	er (dBm)		
(MHz)	Mode	Allocation	offset	39750	40185	40620	41055	41490	MPR	Tune-up	39750	40185	40620	41055	41490	MPR	Tune-up
							2636.5 MHz			Limit	SEUC MILI-	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz		Limit
				2506 MHz	2549.5 MHz	2593 MHz		2680 MHz			2506 MHz						
		1	0	23.5	23.6	23.5	23.9	24.0	0	24.0	21.5	21.5	21.5	22.0	22.0	0	22.0
		1	25	23.5 23.4	23.6 23.5	23.5 23.5	23.9 24.0	24.0 24.0	0	24.0 24.0	21.5 21.4	21.5 21.4	21.5 21.5	22.0 22.0	22.0 22.0	0	22.0
	0501	1 1 1	25 49	23.5 23.4 23.3	23.6 23.5 23.4	23.5 23.5 23.5	23.9 24.0 23.9	24.0 24.0 24.0	0	24.0 24.0 24.0	21.5 21.4 21.4	21.5 21.4 21.4	21.5 21.5 21.5	22.0 22.0 21.9	22.0 22.0 22.0	0	22.0 22.0
	QPSK	1 1 1 25	25 49 0	23.5 23.4 23.3 22.0	23.6 23.5 23.4 22.1	23.5 23.5 23.5 22.0	23.9 24.0 23.9 22.6	24.0 24.0 24.0 22.6	0 0 1	24.0 24.0 24.0 23.0	21.5 21.4 21.4 21.5	21.5 21.4 21.4 21.5	21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0	22.0 22.0 22.0 22.0	0 0	22.0 22.0 22.0
	QPSK	1 1 1 25 25	25 49 0 12	23.5 23.4 23.3 22.0 22.0	23.6 23.5 23.4 22.1 22.1	23.5 23.5 23.5 22.0 22.1	23.9 24.0 23.9 22.6 22.6	24.0 24.0 24.0 22.6 22.5	0 0 1 1	24.0 24.0 24.0 23.0 23.0	21.5 21.4 21.4 21.5 21.5	21.5 21.4 21.4 21.5 21.5	21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0	22.0 22.0 22.0 22.0 22.0	0 0 0	22.0 22.0 22.0 22.0
	QPSK	1 1 1 25 25 25	25 49 0 12 25	23.5 23.4 23.3 22.0 22.0 22.0	23.6 23.5 23.4 22.1 22.1 22.0	23.5 23.5 23.5 22.0 22.1 22.0	23.9 24.0 23.9 22.6 22.6 22.6	24.0 24.0 24.0 22.6 22.5 22.6	0 0 1 1 1	24.0 24.0 24.0 23.0 23.0 23.0	21.5 21.4 21.4 21.5 21.5 21.5	21.5 21.4 21.4 21.5 21.5 21.5	21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0 22.0	22.0 22.0 22.0 22.0 22.0 22.0	0 0 0 0	22.0 22.0 22.0 22.0 22.0
	QPSK	1 1 1 25 25	25 49 0 12 25 0	23.5 23.4 23.3 22.0 22.0 22.0 21.9	23.6 23.5 23.4 22.1 22.1 22.0 22.0	23.5 23.5 23.5 22.0 22.1 22.0 22.0	23.9 24.0 23.9 22.6 22.6 22.6 22.6	24.0 24.0 24.0 22.6 22.5 22.6 22.5	0 0 1 1	24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0	21.5 21.4 21.4 21.5 21.5 21.5 21.5	21.5 21.4 21.4 21.5 21.5 21.5 21.5	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0 22.0 22.0 22.0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	0 0 0 0 0	22.0 22.0 22.0 22.0 22.0 22.0 22.0
	QPSK	1 1 1 25 25 25 50 1	25 49 0 12 25 0	23.5 23.4 23.3 22.0 22.0 22.0 21.9 22.7	23.6 23.5 23.4 22.1 22.1 22.0 22.0 22.6	23.5 23.5 23.5 22.0 22.1 22.0 22.0 22.6	23.9 24.0 23.9 22.6 22.6 22.6 22.6 22.6 23.0	24.0 24.0 24.0 22.6 22.5 22.6 22.5 22.6 22.5 23.0	0 0 1 1 1 1 1	24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0 22.0 22.0 22.0 22.0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	0 0 0 0 0 0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
	QPSK	1 1 1 25 25 25 50 1	25 49 0 12 25 0 0 25	23.5 23.4 23.3 22.0 22.0 22.0 21.9 22.7 22.7	23.6 23.5 23.4 22.1 22.1 22.0 22.0 22.6 22.5	23.5 23.5 23.5 22.0 22.1 22.0 22.0 22.6 22.5	23.9 24.0 23.9 22.6 22.6 22.6 22.6 22.6 23.0 23.0	24.0 24.0 24.0 22.6 22.5 22.6 22.5 23.0 23.0	0 0 1 1 1 1 1	24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.6	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.5 21.6 21.5	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0 22.0 22.0 22.0 22.0 22.0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	0 0 0 0 0 0 0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
10 MHz		1 1 25 25 25 50 1 1	25 49 0 12 25 0 0 25 49	23.5 23.4 23.3 22.0 22.0 22.0 21.9 22.7 22.7 22.7	23.6 23.5 23.4 22.1 22.1 22.0 22.0 22.6 22.5 22.4	23.5 23.5 23.5 22.0 22.1 22.0 22.0 22.6 22.5 22.6	23.9 24.0 23.9 22.6 22.6 22.6 22.6 23.0 23.0 23.0	24.0 24.0 24.0 22.6 22.5 22.6 22.5 23.0 23.0 23.0	0 0 1 1 1 1 1 1 1	24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.5 21.6 21.5	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.6 21.5 21.5 21.6	22.0 22.0 21.9 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	0 0 0 0 0 0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
10 MHz	QPSK	1 1 25 25 25 50 1 1 1 25	25 49 0 12 25 0 0 25 49	23.5 23.4 23.3 22.0 22.0 22.0 22.0 22.7 22.7 22.7 22.7	23.6 23.5 23.4 22.1 22.1 22.0 22.0 22.6 22.5 22.4 21.6	23.5 23.5 23.5 22.0 22.1 22.0 22.0 22.0 22.6 22.5 22.6 21.6	23.9 24.0 23.9 22.6 22.6 22.6 22.6 23.0 23.0 23.0 22.0	24.0 24.0 24.0 22.6 22.5 22.6 22.5 23.0 23.0 23.0 22.0	0 1 1 1 1 1 1 1 1	24.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.5 21.5 21.6 21.6 21.6	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	0 0 0 0 0 0 0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
10 MHz		1 1 1 25 25 25 25 25 25 25 25 25 25	25 49 0 12 25 0 0 25 49 0	23.5 23.4 23.3 22.0 22.0 22.0 21.9 22.7 22.7 22.7 21.5 21.5	23.6 23.5 23.4 22.1 22.0 22.0 22.6 22.5 22.4 21.6 21.6	23.5 23.5 23.5 22.0 22.1 22.0 22.0 22.6 22.5 22.6 21.6 21.6	23.9 24.0 23.9 22.6 22.6 22.6 22.6 23.0 23.0 23.0 22.0 22.0	24.0 24.0 24.0 22.6 22.5 22.6 22.5 23.0 23.0 23.0 22.0 22.0	0 0 1 1 1 1 1 1 1 1 2	24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	0 0 0 0 0 0 0 0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
10 MHz		1 1 1 25 25 25 25 25 25 25 25 25 25	25 49 0 12 25 0 0 25 49 0 12 25	23.5 23.4 23.3 22.0 22.0 22.0 21.9 22.7 22.7 22.7 22.7 21.5 21.5	23.6 23.5 23.4 22.1 22.0 22.0 22.6 22.5 22.4 21.6 21.5	23.5 23.5 23.5 22.0 22.1 22.0 22.6 22.5 22.6 21.6 21.6 21.5	23.9 24.0 23.9 22.6 22.6 22.6 23.0 23.0 23.0 23.0 22.0 22.0	24.0 24.0 24.0 22.6 22.5 22.6 22.5 23.0 23.0 23.0 22.0 22.0	0 0 1 1 1 1 1 1 1 1 2 2	24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 22.0 22	21.5 21.4 21.4 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	0 0 0 0 0 0 0 0 0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
10 MHz		1 1 25 25 50 1 1 1 25 25 25 50 50 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 49 0 12 25 0 0 25 49 0 12 25 0	23.5 23.4 23.3 22.0 22.0 22.0 21.9 22.7 22.7 22.7 21.5 21.5 21.5	23.6 23.5 23.4 22.1 22.1 22.0 22.0 22.6 22.5 22.4 21.6 21.6 21.5	23.5 23.5 23.5 22.0 22.1 22.0 22.0 22.6 22.5 22.6 21.6 21.6 21.5	23.9 24.0 23.9 22.6 22.6 22.6 23.0 23.0 23.0 22.0 22.0 22.0	24.0 24.0 22.6 22.5 22.5 22.6 22.5 23.0 23.0 23.0 22.0 22.0 22.0	0 0 1 1 1 1 1 1 1 1 2 2 2	24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 22.0 22	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	0 0 0 0 0 0 0 0 0 0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
10 MHz		1 1 25 25 25 50 1 1 25 25 50 1 1	25 49 0 12 25 0 0 25 49 0 12 25 0 0	23.5 23.4 23.3 22.0 22.0 22.0 21.9 22.7 22.7 22.7 21.5 21.5 21.6 21.1	23.6 23.5 23.4 22.1 22.0 22.0 22.0 22.6 22.5 22.4 21.6 21.6 21.5 21.5	23.5 23.5 23.5 22.0 22.1 22.0 22.0 22.6 22.6 21.6 21.6 21.5 21.5	23.9 24.0 23.9 22.6 22.6 22.6 22.6 23.0 23.0 23.0 22.0 22.0 22.0 22.1	24.0 24.0 24.0 22.6 22.5 22.5 23.0 23.0 23.0 22.0 22.0 22.0 22.0	0 0 1 1 1 1 1 1 1 1 2 2 2 2	24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 22.0 22	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	0 0 0 0 0 0 0 0 0 0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
10 MHz		1 1 1 25 25 25 50 1 1 1 1	25 49 0 12 25 0 0 25 49 0 12 25 0 0 25 49 0 12 25 0 0 25 49 0 12 25 0 0 0 12 25 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0	23.5 23.4 23.3 22.0 22.0 22.0 22.7 22.7 22.7 22.7 21.5 21.5 21.6 21.1 21.1	23.6 23.5 23.4 22.1 22.1 22.0 22.6 22.5 22.4 21.6 21.6 21.6 21.7 21.6	23.5 23.5 23.5 22.0 22.1 22.0 22.6 22.6 22.6 21.6 21.6 21.6 21.5 21.6 21.8	23.9 24.0 23.9 22.6 22.6 22.6 23.0 23.0 23.0 22.0 22.0 22.0 22.1 21.7 21.8	24.0 24.0 24.0 22.6 22.5 22.6 22.5 23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0	0 0 1 1 1 1 1 1 1 2 2 2 2 2	24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 22.0 22	21.5 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	21.5 21.4 21.4 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	0 0 0 0 0 0 0 0 0 0 0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
10 MHz	16QAM	1 1 1 25 25 25 50 1 1 1 1 1 1	25 49 0 12 25 0 0 25 49 0 12 25 0 0 12 25 49 0 12 25 49 0 12 49 0 12 49 14 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18	23.5 23.4 23.3 22.0 22.0 22.0 22.0 21.9 22.7 22.7 21.5 21.5 21.6 21.1 21.1	23.6 23.5 23.4 22.1 22.1 22.0 22.0 22.6 22.5 22.4 21.6 21.5 21.6 21.7 21.6 21.6 21.6	23.5 23.5 23.5 22.0 22.1 22.0 22.0 22.6 22.6 21.6 21.6 21.6 21.5 21.6 21.8 21.8	23.9 24.0 23.9 22.6 22.6 22.6 22.6 23.0 23.0 23.0 22.0 22.0 22.0 21.7 21.8 21.7	24.0 24.0 24.0 22.6 22.5 22.6 22.5 23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0 22.0	0 0 1 1 1 1 1 1 2 2 2 2 2 2 2	24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 22.0 22	21.5 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.7 21.8	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.1 22.0 21.1 21.1 21.1 21.1	0 0 0 0 0 0 0 0 0 0 0 0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
10 MHz		1 1 25 25 25 50 1 1 1 1 25 50 1 1 1 1 25 50 1 1 1 1 1 25 50 1 1 1 1 1 25 50 1 1 1 1 1 25 50 1 1 1 1 25 50 1 1 1 1 25 50 1 1 1 1 25 50 1 1 1 1 25 50 1 1 1 1 25 50 1 1 1 1 1 25 50 1 1 1 1 1 25 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 49 0 12 25 0 0 25 49 0 12 25 0 0 12 25 49 0 12 25 49 0 12 25 49 0 0 12 12 12 12 12 12 12 12 12 12	23.5 23.4 23.3 22.0 22.0 22.0 22.0 21.9 22.7 22.7 21.5 21.5 21.6 21.1 21.1 20.6	23.6 23.5 23.4 22.1 22.1 22.0 22.0 22.6 22.5 22.4 21.6 21.6 21.7 21.6 21.7 21.6 21.7 21.6 21.7 21.6 20.5	23.5 23.5 23.5 23.5 22.0 22.1 22.0 22.0 22.6 22.6 21.6 21.6 21.6 21.9 21.8 20.5	23.9 24.0 23.9 22.6 22.6 22.6 22.6 23.0 23.0 23.0 22.0 22.0 22.0 21.7 21.8 21.7	24.0 24.0 24.0 24.0 22.6 22.5 22.6 22.5 23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0	0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3	24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	21.5 21.4 21.4 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.7 21.6 21.7 21.8	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
10 MHz	16QAM	1 1 1 25 25 25 50 1 1 1 1 1 1	25 49 0 12 25 0 0 25 49 0 12 25 0 0 12 25 49 0 12 25 49 0 12 49 0 12 49 14 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18	23.5 23.4 23.3 22.0 22.0 22.0 22.0 21.9 22.7 22.7 21.5 21.5 21.6 21.1 21.1	23.6 23.5 23.4 22.1 22.1 22.0 22.0 22.6 22.5 22.4 21.6 21.5 21.6 21.7 21.6 21.6 21.6	23.5 23.5 23.5 22.0 22.1 22.0 22.0 22.6 22.6 21.6 21.6 21.6 21.5 21.6 21.8 21.8	23.9 24.0 23.9 22.6 22.6 22.6 22.6 23.0 23.0 23.0 22.0 22.0 22.0 21.7 21.8 21.7	24.0 24.0 24.0 22.6 22.5 22.6 22.5 23.0 23.0 23.0 22.0 22.0 22.0 22.0 22.0 22.0	0 0 1 1 1 1 1 1 2 2 2 2 2 2 2	24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 22.0 22	21.5 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	21.5 21.4 21.4 21.5 21.5 21.5 21.5 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.7 21.8	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.0 22.0 21.9 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.1 22.0 21.1 21.1 21.1 21.1	0 0 0 0 0 0 0 0 0 0 0 0	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0

LTE Band 41 Measured Results (continued)

		RB				Maximum Ave	rage Power (dB	m)	Grip sensor Average Power (dBm)								
BW (MHz)	Mode	Allocation	RB offset	39750	40185	40620	41055	41490	MPR	Tune-up	39750	40185	40620	41055	41490	MPR	Tune-up
(, moodion	O.I.OOL	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	IVIPR	Limit	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	IVIPK	Limit
		1	0	23.4	23.6	23.5	23.9	23.9	0	24.0	21.3	21.4	21.5	22.0	21.9	0	22.0
		1	12	23.3	23.5	23.5	24.0	24.0	0	24.0	21.4	21.4	21.5	22.0	21.9	0	22.0
		1	24	23.3	23.5	23.5	23.8	24.0	0	24.0	21.3	21.4	21.5	22.0	21.9	0	22.0
	QPSK	12	0	22.4	22.5	22.5	23.0	23.0	1	23.0	21.4	21.5	21.6	22.0	22.0	0	22.0
		12	7	22.4	22.5	22.5	23.0	23.0	1	23.0	21.4	21.6	21.6	22.0	22.0	0	22.0
		12	13	22.4	22.5	22.5	23.0	23.0	1	23.0	21.4	21.5	21.5	22.0	22.0	0	22.0
		25	0	22.4	22.5	22.5	23.0	23.0	1	23.0	21.4	21.5	21.5	22.0	22.0	0	22.0
	16QAM	1	0	22.4	22.5	22.7	23.0	23.0	1	23.0	21.5	21.5	21.5	22.0	22.0	0	22.0
		1	12	22.4	22.5	22.6	23.0	23.0	1	23.0	21.5	21.5	21.5	22.0	22.0	0	22.0
		1	24	22.4	22.5	22.6	23.0	23.0	1	23.0	21.5	21.4	21.5	22.0	22.0	0	22.0
5 MHz		12	0	21.5	21.5	21.6	22.0	22.0	2	22.0	21.5	21.6	21.6	22.0	22.0	0	22.0
		12	7	21.6	21.5	21.7	22.0	22.0	2	22.0	21.5	21.6	21.6	22.0	22.0	0	22.0
		12	13	21.5	21.5	21.6	22.0	22.0	2	22.0	21.5	21.6	21.6	22.0	22.0	0	22.0
		25	0	21.5	21.6	21.6	22.0	22.0	2	22.0	21.5	21.6	21.6	22.0	22.0	0	22.0
		1	0	21.2	21.8	22.0	21.8	22.0	2	22.0	22.0	21.8	22.0	21.7	21.3	0	22.0
		1	12	21.3	21.7	21.9	21.9	22.0	2	22.0	22.0	21.9	22.0	21.7	21.3	0	22.0
		1	24	21.2	21.6	21.9	21.8	22.0	2	22.0	22.0	21.8	22.0	21.7	21.2	0	22.0
	64QAM	12	0	20.5	20.5	20.6	21.0	21.0	3	21.0	21.2	21.2	20.6	20.5	20.5	0	22.0
		12	7	20.5	20.5	20.7	21.0	21.0	3	21.0	21.2	21.2	20.7	20.5	20.5	0	22.0
		12	13	20.5	20.5	20.6	21.0	21.0	3	21.0	21.2	21.2	20.7	20.5	20.5	0	22.0
		25	0	20.6	20.5	20.5	21.0	21.0	3	21.0	21.1	21.2	20.6	20.5	20.5	0	22.0

9.4. LTE Carrier Aggregation

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

For inter-band carrier aggregation with uplink assigned to one E-UTRA band (Table 5.6A-1), the requirements in subclause 6.2.3 apply.

For inter-band carrier aggregation with one component carrier per operating band and the uplink active in two E-UTRA bands, the requirements in subclause 6.2.3 apply for each uplink component carrier.

For intra-band contiguous carrier aggregation the allowed Maximum Power Reduction (MPR) for the maximum output power applicable to the DUT in table below. In case the modulation format is different on different component carriers then the MPR is determined by the rules applied to higher order of those modulations.

Modulation	CA bandwidth Class B and C / Smallest Component Carrier Transmission Bandwidth Configuration											
	25 RB	50 RB	75 RB	100 RB								
QPSK	> 8 and ≤ 25	> 12 and ≤ 50	> 16 and ≤ 75	> 18 and ≤ 100	≤ 1							
QPSK	> 25	> 50	> 75	> 100	≤ 2							
16 QAM	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1							
16 QAM	> 8 and ≤ 25	> 12 and ≤ 50	> 16 and ≤ 75	> 18 and ≤ 100	≤ 2							
16 QAM	> 25	> 50	> 75	> 100	≤ 3							
64 QAM	≤ 8 and allocation wholly contained within a single CC	≤ 12 and allocation wholly contained within a single CC	≤ 16 and allocation wholly contained within a single CC	≤ 18 and allocation wholly contained within a single CC	≤ 2							
64 QAM	> 8 or allocation extends across two CC's	> 12 or allocation extends across two CC's	> 16 or allocation extends across two CC's	> 18 or allocation extends across two CC's	≤ 3							

For PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH WPDK modulation for the corresponding transmission bandwidth.

For intra-band contiguous carrier aggregation bandwidth class C with non-contiguous resource allocation, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1 is specified as follows

MPR = CEIL
$$\{\min(M_A, M_{IM5}), 0.5\}$$

Where MA is defined as follows

$$M_A =$$
 8.2 ;0 \leq A $<$ 0.025
9.2 - 40A ;0.025 \leq A $<$ 0.05
8 - 16A ;0.05 \leq A $<$ 0.25
4.83 - 3.33A ;0.25 \leq A \leq 0.4

Page 34 of 55

$$3.83 - 0.83A$$
 ; $0.4 \le A \le 1$

and MIM5 is defined as follows

$$M_{\text{IM5}} = 4.5$$
 ; $\Delta_{\text{IM5}} < 1.5 * BW _{\text{Channel_CA}}$

6.0 ; 1.5 * BW Channel_CA $\leq \Delta_{IM5} < BW$ Channel_CA/2 + Δf_{ooB}

M_A ; $\Delta_{\text{IM5}} \ge BW \text{ Channel_CA}/2 + \Delta f_{\text{ooB}}$

Where

$$A = N_{RB_alloc} / N_{RB_agg}$$

$$\Delta_{\text{IM5}} = \max(\left| F_{\text{C}_agg} - (3*F_{\text{agg}_alloc_low} - 2*F_{\text{agg}_alloc_high}) \right|, \left| F_{\text{C}_agg} - (3*F_{\text{agg}_alloc_high} - 2*F_{\text{agg}_alloc_low}) \right|)$$

CEIL{M_A, 0.5} means rounding upwards to closest 0.5dB, i.e. MPR \in [3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5]

For intra-band carrier aggregation, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For intra-band non-contiguous carrier aggregation with one uplink carrier on the PCC, the requirements in the subclause 6.2.3 apply. For intra-band non-contiguous aggregation with two uplink carriers the MPR is defined tfor those E-UTRA bands where maximum possible $W_{GAP} \le 42.2$ MHz as follows

$$MPR = CEIL\{M_{A,} 0.5\}$$

Where M_N is defined as follows

$$M_N = -0.125N + 18.25$$
 ; $2 \le N \le 50$

-0.0333 N + 13.67 ; $50 < \text{N} \le 200$

Where $N = N_{RB}$ alloc is the number of allocated resource blocks.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5A apply.

LTE Down-Link Carrier Aggregation

The tables below show the supported frequency bands of the device for DL Inter-band and DL Intra-band combinations.

Power measurements were performed on the channel with the highest maximum output power from Tune-up Procedure.

When carrier aggregation is limited to downlink only, uplink maximum output power (single carrier) is measured for the supported combinations of downlink carrier aggregation listed in the table below. In applying the power measurement procedures of KDB 941225 D05A for DL CA to qualify for UL SAR test exclusion, power measurement is required only for the subset in each row with the largest combination of frequency bands and CCs (far right most configuration highlighted in the table below).

Index	2CC	Restriction	Completely Covered by M easurement Superset	Index	3CC	Restriction	Completely Covered by Measurement Superset					
	Intra-Band	Contiguous		Intra-Band Non-Contiguous								
2CC# 1	CA_5B	N/A	No	3CC# 1	CA_41A-41C	N/A	No					
2CC# 2	CA_41C	N/A	No									
	Intra-Band No	n-Contiguous										
2CC# 1	CA_5A-5A	N/A	No									
2CC# 2	CA_41A-41A	N/A	No									
	Inter-	Band										
2CC# 1	CA_5A-41A	41A SCC Only	No									

In applying the power measurement procedures of KDB 941225 D05A for DL CA to qualify for UL SAR test exclusion, power measurement is required only for the CA configuration with the largest aggregated DL CA BW in each frequency band, independently for contiguous and non-contiguous CA; however, if the same frequency band is used for both contiguous and non-contiguous CA, power measurement was performed using the configuration with the largest aggregated BW and maximum output power among contiguous and non-contiguous CA.

DL Intra-Band Contiguous Measured Results

	E-UTRA CA			CC1 (UL)			CC2 (DL)				CC3 (DL)				CA		
	configuration (BCS)	Mode	BW (MHz)	Channel	Freq (MHz)	RB,Offset	BW (MHz)	Channel	Freq (MHz)	BW (MHz)	Channel	Freq (MHz)	Aggregated BW	MPR	Inactive (dBm)	CA Active (dBm)	Delta (dBm)
	CA_5B	QPSK	10	20476	831.6	1,0	10	2575	886.5				20	0	23.64	23.57	-0.07
	CA_41C	QPSK	20	40521	2583.1	1,49	20	40719	2602.9				40	0	23.23	23.18	-0.05

DL Intra-Band Non-Contiguous Measured Results

			CC1 (UL)			CC2 (DL)				CC3 (DL)						
E-UTRA CA configuration	Mode	BW (MHz)	Channel	Freq (MHz)	RB,Offset	BW (MHz)	Channel	Freq (MHz)	BW (MHz)	Channel	Freq (MHz)	Aggregated BW	MPR	CA Inactive (dBm)	(dBm)	Delta (dBm)
CA_5A-5A	QPSK	10	20450	829	1,0	10	2600	889				20	0	23.59	23.50	-0.09
CA_41A-41A	QPSK	20	39750	2506	1,49	20	41490	2680				40	0	23.31	23.27	-0.04
CA_41A-41C	QPSK	20	39750	2506	1,49	20	41292	2660.2	20	41490	2680	60	0	23.31	23.24	-0.07

DL Inter-Band (2 Bands) Measured Results

			CC1 (UL)			CC2 (DL)				CC3 (DL)						
E-UTRA CA configuration	Mode	BW (MHz)	Channel	Freq (MHz)	RB,Offset	BW (MHz)	Channel	Freq (MHz)	BW (MHz)	Channel	Freq (MHz)	Aggregated MPF	MPR	CA Inactive (dBm)	CA Active (dBm)	Delta (dBm)
CA_5A-41A	QPSK	10	20525	836.5	1,24	20	40620	2593				30	0	23.60	23.58	-0.02

9.5. Wi-Fi 2.4GHz (DTS Band)

Wi-Fi 2.4GHz Measured Results

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$.

				Freq.	Maximum	Average Po	wer (dBm)	Reduced	Average Pow	rer (dBm)
Band	Mode	Data Rate	Ch#	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)	Meas Pwr	Tune-up	SAR Test (Yes/No)
			1	2412	18.6	19.0		13.8	14.0	
2000			6	2437	18.6	19.0		14.0	14.0	Yes
DSSS 2.4 GHz	2.4 GHz 802.11b	1 Mbps	11	2462	18.7	19.0	Yes	13.8	14.0	
2.1 0112			12	2467	18.6	19.0	1	14.0	14.0	
		13	2472	18.6	19.0	1	14.0	14.0		
	802.11g	6 Mbps	1	2412		16.0			14.0	
			2	2417		18.0	No		14.0	No
			6	2437		18.0			14.0	
	802.11g		11	2462		18.0			14.0	
			12	2467		18.0			14.0	
OFDM			13	2472		4.0			4.0	
2.4 GHz			1	2412		16.0			14.0	
			2	2417		18.0	1		14.0	
	802.11n	6 E Mbpo	6	2437		18.0	No		14.0	No
	(HT20)	6.5 Mbps	11	2462		18.0			14.0	140
			12	2467		18.0	7		14.0	
			13	2472		3.0			3.0	

Note(s):

SAR is not required for channels 12 and 13 because the tune-up limit and the measured output power for these two channels are not greater than those for the default test channels.

Duty Factor Measured Results

Mode	Type	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
802.11b	1 Mbps	8.622	8.772	98.29%	1.02

Note(s):

Duty Cycle = (T on / period) * 100%

Duty Cycle plots

802.11b

9.6. Wi-Fi 5GHz (U-NII Bands)

When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac modes, the channel in the lower order/sequence 802.11 mode (i.e. a, g, n then ac) is selected. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

Wi-Fi 5 GHz Measured Results

When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is \leq 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.

				Freq.	Maximum	n Average Pov	wer (dBm)	Reduced	Average Pow	ver (dBm)
Band	Mode	Data Rate	Ch#	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)	Meas Pwr	Tune-up	SAR Test (Yes/No)
			36	5180		18.0			11.0	
	802.11a	6 Mbps	40	5200		18.0	No		11.0	No
	002.11a	6 Mbps	44	5220		18.0	INO		11.0	INO
			48	5240		18.0			11.0	
			36	5180	18.5	19.0			11.0	
	802.11n	6 E Mbno	40	5200	18.8	19.0	Yes		11.0	No
	(HT20)	6.5 Mbps	44	5220	18.7	19.0	res		11.0	INO
			48	5240	18.6	19.0			11.0	
UNII-1			36	5180	18.9	19.0			11.0	
5.2 GHz	802.11ac	0.5.14	40	5200	18.8	19.0]		11.0]
	(VHT20)	6.5 Mbps	44	5220	19.0	19.0	No		11.0	No
			48	5240	18.8	19.0			11.0	
	802.11n	42.5 Mbms	38	5190		18.0	Na		11.0	NI=
	(HT40)	13.5 Mbps	46	5230		18.0	No		11.0	No
	802.11ac	42.5 Mb==	38	5190		18.0	Na		11.0	NI=
	(VHT40)	13.5 Mbps	46	5230		18.0	No		11.0	No
	802.11ac (VHT80)	29.3 Mbps	42	5210		16.0	No	10.9	11.0	Yes
				Frea.	Freq. Maximum Average Power (dBm)		. ,		Average Pow	rer (dBm)
Band	Mode	Data Rate	Ch#	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)	Meas Pwr	Tune-up	SAR Test (Yes/No)
			52	5260		18.0	(100,10)		11.0	
	802.11a	6 Mbps	56	5280		18.0	No		11.0	No
	002.11a	6 Mbbs	60	5300		18.0	INO		11.0	INO
			64	5320		18.0			11.0	
			52	5260	18.6	19.0			11.0	
	802.11n	C E Mhan	56	5280	18.7	19.0	V		11.0	NI-
	(HT20)	6.5 Mbps	60	5300	19.0	19.0	Yes		11.0	No
			64	5320	18.9	19.0			11.0	
UNII-2A			52	5260	18.8	19.0			11.0	
5.3 GHz	802.11ac	0.5.4	56	5280	19.0	19.0	1		11.0	1
	(VHT20)	6.5 Mbps	60	5300	19.0	19.0	No		11.0	No
			64	5320	19.0	19.0	1		11.0	1
	802.11n	40.5.141	54	5270		18.0	N.		11.0	NI
	(HT40)	13.5 Mbps	62	5310		18.0	No		11.0	No
	802.11ac	40.5.11	54	5270		18.0			11.0	.,
	(VHT40)	13.5 Mbps	62	5310		18.0	No		11.0	No
	802.11ac (VHT80)	29.3 Mbps	58	5290		16.0	No	10.8	11.0	Yes

				Freq.	Maximun	n Average Po	wer (dBm)	Reduced	Average Pow	ver (dBm)	
Band	Mode	Data Rate	Ch#	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)	Meas Pwr	Tune-up	SAR Test (Yes/No)	
			100	5500		18.0			11.0		
	000.44-	C Mhaa	116	5580		18.0	N ₁ -		11.0	Na	
	802.11a	6 Mbps	124	5620		18.0	No		11.0	No	
			144	5720		18.0			11.0		
			100	5500	18.7	19.0			11.0		
	802.11n	6.5 Mbps	116	5580	19.0	19.0	Yes		11.0	No	
	(HT20)	0.5 Mbps	124	5620	18.9	19.0	165		11.0	INU	
			144	5720	18.9	19.0			11.0		
			100	5500	18.9	19.0			11.0	No	
	802.11ac	6.5 Mbps	116	5580	19.0	19.0	No		11.0		
	(VHT20)	6.5 Mibps	124	5620	18.8	19.0	INO		11.0	INO	
UNII-2C 5.5 GHz			144	5720	18.9	19.0			11.0		
0.0 0112			102	5510		18.0			11.0		
	802.11n (HT40)	42 5 Mbma	118	5590		18.0	N ₁ -		11.0	No	
		13.5 Mbps	126	5630		18.0	No		11.0	NO	
			142	5710		18.0			11.0		
			102	5510		18.0			11.0		
	802.11ac	13.5 Mbps	118	5590		18.0	N ₁ -		11.0	Na	
	(VHT40)		126	5630		18.0	No		11.0	No	
			142	5710		18.0			11.0		
			106	5530		16.0	No	10.6	11.0		
	802.11ac (VHT80)	29.3 Mbps	122	5610		16.0		11.0	11.0	Yes	
	(11100)		138	5690		16.0		11.0	11.0		
				Freq.	Maximun	n Average Po	wer (dBm)	Reduced	Average Pow	ver (dBm)	
Band	Mode	Data Rate	Ch#	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)	Meas Pwr	Tune-up	SAR Test (Yes/No)	
			149	5745		18.0			11.0		
	802.11a	6 Mbps	157	5785		18.0	No		11.0	No	
			165	5825		18.0			11.0		
			149	5745	18.7	19.0			11.0		
	802.11n (HT20)	6.5 Mbps	157	5785	18.8	19.0	Yes		11.0	No	
	(11120)		165	5825	18.6	19.0			11.0		
UNII-3			149	5745	19.0	19.0			11.0		
5.8 GHz	802.11ac (VHT20)	6.5 Mbps	157	5785	19.0	19.0	No		11.0	No	
	(*11120)		165	5825	18.9	19.0			11.0]	
	802.11n	40 E Mba -	151	5755		18.0	Nie		11.0	Ma	
	(HT40)	13.5 Mbps	159	5795		18.0	No		11.0	No	
	802.11ac	40 5 141	151	5755		18.0	N1-		11.0	NI-	
	(VHT40)	13.5 Mbps	159	5795		18.0	No		11.0	No	
	802.11ac (VHT80)	29.3 Mbps	155	5775		16.0	No	10.8	11.0	Yes	

Duty Factor Measured Results

Mode	Type	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
802.11n	HT20	1.345	1.385	97.11%	1.03

Note(s):

Duty Cycle = (T on / period) * 100%

Duty Cycle plots

802.11n HT20

Duty Factor Measured Results

Mode	Type	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
802.11ac	VHT80	0.332	0.368	90.22%	1.11

Note(s):

Duty Cycle = (T on / period) * 100%

Duty Cycle plots

802.11ac VHT80

9.7. Bluetooth

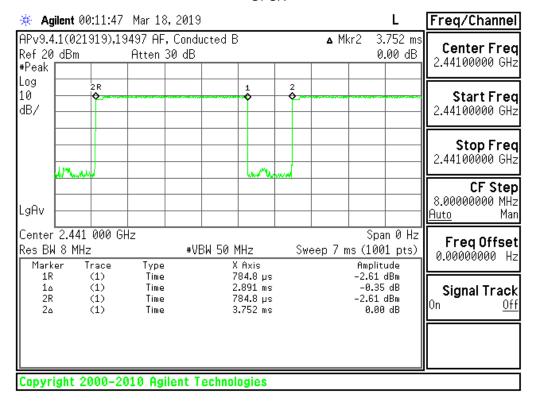
Bluetooth Measured Results

SAR measurement is not required for the QPSK, 8PSK, and BLE. When the secondary mode is $\leq \frac{1}{4}$ dB higher than

the primary mode.

			Freq.	Maximum	n Average Pov	ver (dBm)
Band	Mode	Ch#	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)
	1	0	2402	12.0	12.0	
	BR GFSK	39	2441	12.0	12.0	Yes
		78	2480	11.7	12.0	
	EDR, π/4 DQPSK	0	2402	10.3	12.0	
		39	2441	9.8	12.0	No
2.4		78	2480	9.8	12.0	
2.4		0	2402	10.1	12.0	
	EDR, 8-DPSK	39	2441	9.4	12.0	No
	O DI OIX	78	2480	9.6	12.0	
	0		2402	0.5	2.0	
	LE, GFSK	19	2440	0.5	2.0	No
	OI OIX	39	2480	0.5	2.0	

Duty Factor Measured Results


Mode	Type	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
GFSK	DH5	2.891	3.752	77.05%	1.30

Note(s):

Duty Cycle = (T on / period) * 100%

Duty Cycle plots

GFSK

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN and Bluetooth = Measured SAR *Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 648474 D04 Handset SAR (Phablet Only):

For smart phones, with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm.

When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

Additional 1-g SAR testing at 5 mm is not required when hotspot mode 10-g extremity SAR is not required for the surfaces and edges; since all 1-g reported SAR < 1.2 W/kg.

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply.

KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power,

Page 45 of 55

channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the <u>initial test position(s)</u> by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The <u>initial test position(s)</u> is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the <u>reported SAR</u> for the <u>initial test position</u> is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has
 the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤
 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands
 independently for SAR.

To determine the <u>initial test position</u>, Area Scans were performed to determine the position with the <u>Maximum Value of SAR</u> (measured). The position that produced the highest <u>Maximum Value of SAR</u> is considered the worst case position; thus used as the <u>initial test position</u>.

10.1. GSM850

RF		Pow er	Dist.	Test			Pow er	(dBm)	1-g SAF	R (W/kg)	Plot																					
Exposure Conditions	Mode	Back- off	(mm)	Position Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.																						
				Left Touch	190	836.6	28.0	26.4	0.119	0.172																						
Head GPRS 4 Slots	OFF	0	Left tilt	190	836.6	28.0	26.4	0.071	0.103																							
		0	Right Touch	190	836.6	28.0	26.4	0.150	0.217	1																						
				Right Tilt	190	836.6	28.0	26.4	0.065	0.094																						
Dody worn	GPRS 4	I OFF	4 OFF	OFF	15	Rear	190	836.6	28.0	26.4	0.198	0.286	2																			
Body-w orn	Slots		15	Front	190	836.6	28.0	26.4	0.106	0.153																						
				Rear	190	836.6	28.0	26.4	0.459	0.663	3																					
	0000 4					-	-				-	-	-		<u> </u>				-			-			Front	190	836.6	28.0	26.4	0.101	0.146	
Hotspot	GPRS 4 Slots	OFF	10	Edge 2	190	836.6	28.0	26.4	0.156	0.225																						
·	0.010	ots		Edge 3	190	836.6	28.0	26.4	0.169	0.244																						
				Edge 4	190	836.6	28.0	26.4	0.049	0.071																						

10.2. GSM1900

RF		Power	Dist.	Test			Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Exposure Conditions	Mode	Back-off	f (mm)	Position	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.	
				Left Touch	661	1880.0	25.5	24.6	0.091	0.112	4	
Head GPRS 4 Slots	OFF	0	Left Tilt	661	1880.0	25.5	24.6	0.069	0.085			
		U	Right Touch	661	1880.0	25.5	24.6	0.085	0.105			
				Right Tilt	661	1880.0	25.5	24.6	0.065	0.080		
Dody worn	GPRS	I OFF	OFF	15	Rear	661	1880.0	25.5	24.6	0.091	0.112	
Body-worn	4 Slots		OFF 15	Front	661	1880.0	25.5	24.6	0.093	0.114	5	
				Rear	661	1880.0	23.5	22.6	0.171	0.213		
				Front	661	1880.0	23.5	22.6	0.180	0.224	6	
Hotspot	GPRS 4 Slots	ON	10	Edge 2	661	1880.0	23.5	22.6	0.076	0.095		
·	. 51010	Slots		Edge 3	661	1880.0	23.5	22.6	0.172	0.214		
				Edge 4	661	1880.0	23.5	22.6	0.087	0.108		

Note(s):

Hotspot mode supports power reduction. When the measured SAR is scaled to the maximum tune-up limit, the adjusted SAR is < 1.2 W/kg. Therefore, Product Specific 10g SAR testing is not required for this band in accordance with KDB 648474 §2.5 b.

10.3. W-CDMA Band II

RF		Power	Dist.	Test				(dBm)	1-g SAR (W/kg)		Plot
Exposure Conditions	Mode	Back-off	(mm)	Position	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Touch	9400	1880.0	25.0	24.3	0.238	0.280	
Rel 99 Head RMC 12.2 kbps	OFF	0	Left Tilt	9400	1880.0	25.0	24.3	0.234	0.275		
		0	Right Touch	9400	1880.0	25.0	24.3	0.261	0.307	7	
				Rightt Tilt	9400	1880.0	25.0	24.3	0.250	0.294	
Dody worn	Rel 99 RMC	OFF 15	15	Rear	9400	1880.0	25.0	24.3	0.528	0.620	8
Body-worn	12.2 kbps	OFF	10	Front	9400	1880.0	25.0	24.3	0.275	0.323	
				Rear	9400	1880.0	23.0	22.3	0.534	0.627	9
	Rel 99			Front	9400	1880.0	23.0	22.3	0.487	0.572	
Hotspot	RMC	ON	10	Edge 2	9400	1880.0	23.0	22.3	0.239	0.281	
	12.2 kbps	pps		Edge 3	9400	1880.0	23.0	22.3	0.521	0.612	
				Edge 4	9400	1880.0	23.0	22.3	0.492	0.578	

Note(s):

Hotspot mode supports power reduction. When the measured SAR is scaled to the maximum tune-up limit, the adjusted SAR is < 1.2 W/kg. Therefore, Product Specific 10g SAR testing is not required for this band in accordance with KDB 648474 §2.5 b.

10.4. W-CDMA Band V

RF		Power	Dist.	Test			Power	(dBm)	1-g SAF	R (W/kg)	Plot
Exposure Conditions	Mode	Back-off	(mm)	Position	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Touch	4183	836.6	25.0	24.1	0.130	0.160	
Rel 99 Head RMC	OFF	0	Left Tilt	4183	836.6	25.0	24.1	0.078	0.096		
пеац	Head RMC 12.2 kbps	OFF	0	Right Touch	4183	836.6	25.0	24.1	0.178	0.219	10
	·			Rightt Tilt	4183	836.6	25.0	24.1	0.080	0.098	
Body-worn	Rel 99 RMC	OFF)FF 15	Rear	4183	836.6	25.0	24.1	0.224	0.276	11
Body-Wolff	12.2 kbps	OH		Front	4183	836.6	25.0	24.1	0.116	0.143	
				Rear	4183	836.6	25.0	24.1	0.495	0.609	12
	Rel 99			Front	4183	836.6	25.0	24.1	0.111	0.137	
Hotspot	RMC	OFF	10	Edge 2	4183	836.6	25.0	24.1	0.172	0.212	
	12.2 kbps	ops		Edge 3	4183	836.6	25.0	24.1	0.173	0.213	
				Edge 4	4183	836.6	25.0	24.1	0.054	0.066	

10.5. LTE Band 5 (10MHz Bandwidth)

RF		Power	Dist.	Test			RB	RB	Power	(dBm)	1-g SAR (W/kg)		Plot
Exposure Conditions	Mode	Back-off	(mm)	Position	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left	20525	836.5	1	0	25.0	23.5	0.108	0.153	
				Touch	20323	030.3	25	12	24.0	22.6	0.095	0.132	
				Left Tilt	20525	836.5	1	0	25.0	23.5	0.057	0.081	
Head	QPSK	OFF	0	(15°)	20020	830.3	25	12	24.0	22.6	0.049	0.068	
rieau	QFSK	OII	U	Right	20525	836.5	1	0	25.0	23.5	0.127	0.179	13
			Touch	20020	830.3	25	12	24.0	22.6	0.113	0.157		
				Right Tilt	20525	836.5	1	0	25.0	23.5	0.057	0.081	
				(15°)	20020	630.3	25	12	24.0	22.6	0.051	0.071	
Body-worn QPSK				Rear	20525	836.5	1	0	25.0	23.5	0.154	0.218	14
	OFF	15	Near	20020	030.3	25	12	24.0	22.6	0.142	0.197		
Body-worn	QFSK	OIT	13	Front	20525	836.5	1	0	25.0	23.5	0.077	0.109	
				TIOIL	20020	030.3	25	12	24.0	22.6	0.068	0.094	
				Rear	20525	836.5	1	0	25.0	23.5	0.346	0.489	15
				rteal	20020	030.3	25	12	24.0	22.6	0.314	0.435	
				Front	20525	836.5	1	0	25.0	23.5	0.078	0.110	
				TIOIL	20020	830.3	25	12	24.0	22.6	0.069	0.096	
Hotspot	OPSK	OFF	10	Edge 2	20525	836.5	1	0	25.0	23.5	0.119	0.168	
Hotspot QPSK	011	10	Luge 2	20020	030.3	25	12	24.0	22.6	0.104	0.144		
			Edge 3	20525	836.5	1	0	25.0	23.5	0.108	0.153		
				Edge 3	20020	000.0	25	12	24.0	22.6	0.096	0.133	
				Edge 4	20525	836.5	1	0	25.0	23.5	0.041	0.058	
				Luge +	20020	030.5	25	12	24.0	22.6	0.034	0.047	

10.6. LTE Band 41 (20MHz Bandwidth)

RF		Power	Dist.	Test			RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Exposure Conditions	Mode	Back-off	(mm)	Position	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Touch	40620	2593.0	1	0	24.0	23.7	0.122	0.131	
				Leit Touch	40620	2593.0	50	0	23.0	22.6	0.095	0.104	
				Left Tilt	40620	2593.0	1	0	24.0	23.7	0.102	0.109	
Head	QPSK	OFF	0	Leit Tiit	40020	2595.0	50	0	23.0	22.6	0.080	0.088	
ricau	QFSK	OIT	U	Right Touch	40620	2593.0	1	0	24.0	23.7	0.299	0.320	16
				ragin roucii	40020	2555.0	50	0	23.0	22.6	0.251	0.275	
				Right Tilt	40620	2593.0	1	0	24.0	23.7	0.143	0.153	
				Kight filt	40020	2393.0	50	0	23.0	22.6	0.111	0.122	
				Rear	40620	2593.0	1	0	24.0	23.7	0.216	0.231	17
Body-Worn	QPSK	OFF 15	Real	40020	2393.0	50	0	23.0	22.6	0.170	0.186		
Body-Wolli	QFSK	OIT	OFF 15	Front	40620	2593.0	1	0	24.0	23.7	0.052	0.056	
				TIOIL	40020	2555.0	50	0	23.0	22.6	0.041	0.045	
				Rear	40620	2593.0	1	0	24.0	23.7	0.378	0.405	18
				rteal	40020	2555.0	50	0	23.0	22.6	0.368	0.404	
				Front	40620	2593.0	1	0	24.0	23.7	0.100	0.107	
				TIOIL	40020	2393.0	50	0	23.0	22.6	0.076	0.083	
Hotsnot	OPSK	OFF	10	Edge 1	40620	2593.0	1	0	24.0	23.7	0.050	0.054	
Hotspot QPSK	011	10	Luge	40020	2393.0	50	0	23.0	22.6	0.037	0.041		
			Edge 2	40620	2593.0	1	0	24.0	23.7	0.014	0.015		
				Edge 2	40020	2000.0	50	0	23.0	22.6	0.010	0.011	
				Edge 3	40620	2593.0	1	0	24.0	23.7	0.239	0.256	
				Lage 3	-10020	2000.0	50	0	23.0	22.6	0.186	0.204	

10.7. Wi-Fi (DTS Band)

When the 802.11b reported SAR of the highest measured maximum output power channel is \leq 0.8 W/kg, no further SAR testing is required. If SAR is > 0.8 W/kg and \leq 1.2 W/kg, SAR is required for the next highest measured output power channel. Finally, if SAR is > 1.2 W/kg, SAR is required for the third channel.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

RF Exposure		Power	Dist.					Area Scan	Power	(dBm)	1-g SAF	R (W/kg)	Plot																	
Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	Freq. (MHz)	Duty Cycle	Max. SAR (W/kg)	Tune-up Limit	Meas.	Meas.	Scaled	No.																	
				Left Touch	6	2437	98.29%	0.055	14.0	14.0																				
Head	802.11b	ON	0	Left Tilt	6	2437	98.29%	0.082	14.0	14.0																				
пеац	1 Mbps	ON	U	Right Touch	6	2437	98.29%	0.055	14.0	14.0																				
				Right Tilt	6	2437	98.29%	0.069	14.0	14.0	0.098	0.100	19																	
Body-worn	802.11b	OFF	15	Rear	11	2462	98.29%	0.080	19.0	18.7	0.064	0.070	20																	
Body-wolff	1 Mbps	OFF	15	Front	11	2462	98.29%	0.018	19.0	18.7																				
				Rear	11	2462	98.29%	0.226	19.0	18.7	0.157	0.171	21																	
Hotenot	802.11b	OFF	OFF 10 -	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	Front	11	2462	98.29%	0.038	19.0	18.7			
	1 Mbps	OFF		Edge 1	11	2462	98.29%	0.077	19.0	18.7																				
					Edge 2	11	2462	98.29%	0.022	19.0	18.7																			

Note(s):

SAR testing is not required for OFDM mode(s) because the adjusted SAR is ≤ 1.2 W/kg.

10.8. Wi-Fi (U-NII Band)

UNII-1 &2A

When the specified maximum output power is the same for both UNII band I and UNII band 2A, begin SAR measurement in UNII band 2A; and if the highest <u>reported</u> SAR for UNII band 2A is

- o ≤ 1.2 W/kg, SAR is not required for UNII band I
- > 1.2 W/kg, both bands should be tested independently for SAR.

UNII-2A

U.V.I.								A O	Pow er (dBm)		3m) 1-g SAR (W/kg)			
RF Exposure Conditions	Mode	Pow er Back-off	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Duty Cycle	Area Scan Max. SAR (W/kg)	Tune-up Limit	Meas.	Meas.	Scaled	Plot No.	
				Left Touch	58	5290	90.22%	0.263	11.0	10.8				
Head	802.11ac	ON	0	Left Tilt	58	5290	90.22%	0.363	11.0	10.8	0.154	0.179	22	
nead	(VHT80)	ON	U	Right Touch	58	5290	90.22%	0.246	11.0	10.8				
				Right Tilt	58	5290	90.22%	0.269	11.0	10.8				
Body-w orn	802.11n	OFF	15	Rear	60	5300	97.11%	1.370	19.0	19.0	0.654	0.673	23	
Body-worn	HT20	OFF	15	Front	60	5300	97.11%	0.283	19.0	19.0	0.135	0.139		
RF Exposure		Pow er	Dist.					Area Scan	Pow er	(dBm)	10-g SA	R (W/kg)	Plot	
Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	Freq. (MHz)	Duty Cycle	Max. SAR (W/kg)	Tune-up Limit	Meas.	Meas.	Scaled	No.	
				Rear	60	5300	97.11%	28.600	19.0	19.0	2.620	2.698	24	
				ixeai	64	5320	97.11%	21.700	19.0	18.9	2.270	2.392		
Product Specific 10g	802.11n HT20	OFF	0	Front	60	5300	97.11%	2.800	19.0	19.0				
					Edge 1	60	5300	97.11%	11.100	19.0	19.0	1.050	1.081	
				Edge 2	60	5300	97.11%	2.950	19.0	19.0				

Note(s):

Reported SAR for UNII-2A is < 1.2 W/kg and 3.0 W/kg (Product Specific 10g), therefore SAR is not required for UNII-1.

UNII-2C

RF Exposure		Pow er	Dist.					Area Scan	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	Freq. (MHz)	Duty Cycle	Max. SAR (W/kg)	Tune-up Limit	Meas.	Meas.	Scaled	No.
			Left Touch	122	5610	90.22%	0.221	11.0	11.0				
Head	802.11ac		0	Left Tilt	122	5610	90.22%	0.275	11.0	11.0	0.113	0.125	25
ricad	(VHT80)	OIV.	O	Right Touch	122	5610	90.22%	0.220	11.0	11.0			
				Right Tilt	122	5610	90.22%	0.243	11.0	11.0			
Body-w orn	802.11n	OFF	15	Rear	116	5580	97.11%	1.180	19.0	19.0	0.539	0.555	26
Body-Worn	HT20	Ori	2	Front	116	5580	97.11%	0.174	19.0	19.0	0.089	0.092	
RF Exposure		Pow er	Dist.					Area Scan	Pow er	(dBm)	10-g SA	R (W/kg)	Plot
Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	Freq. (MHz)	Duty Cycle	Max. SAR (W/kg)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Rear	116	5580	97.11%	16.100	19.0	19.0	1.860	1.915	27
Product	802.11n	OEE	0	Front	116	5580	97.11%	1.540	19.0	19.0			
Specific 10g	Specific 10g HT20	OFF	OFF 0	Edge 1	116	5580	97.11%	8.480	19.0	19.0	0.775	0.798	
				Edge 2	116	5580	97.11%	0.558	19.0	19.0			

UNII-3

RF Exposure		Power	Dist.					Area Scan	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	Freq. (MHz)	Duty Cycle	Max. SAR (W/kg)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Touch	155	5775	90.22%	0.241	11.0	10.8			
Head	802.11ac	ON	0	Left Tilt	155	5775	90.22%	0.359	11.0	10.8	0.164	0.190	28
пеац	VHT80	ON	U	Right Touch	155	5775	90.22%	0.234	11.0	10.8			
				Right Tilt	155	5775	90.22%	0.268	11.0	10.8	0.398	0.462	
Body-worn	802.11n	OFF	15	Rear	157	5785	97.11%	0.938	19.0	18.8	0.403	0.435	29
Body-wolfi	HT20	OFF	15	Front	157	5785	97.11%	0.175	19.0	18.8	0.087	0.094	
				Rear	157	5785	97.11%	1.310	19.0	18.8	0.597	0.644	30
Hotspot	802.11n	I OFF	10	Front	157	5785	97.11%	0.241	19.0	18.8			
noispot	HT20		FF 10	Edge 1	157	5785	97.11%	1.090	19.0	18.8	0.456	0.492	
				Edge 2	157	5785	97.11%	0.158	19.0	18.8			

10.9. Bluetooth

DE E		Dist				Power	(dBm)	1-g SAF	R (W/kg)	DI-4
RF Exposure Conditions	Mode	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	Plot No.
			Left Touch	39	2441	12.0	12.0	0.017	0.017	
Llood	OFOK	0	Left Tilt	39	2441	12.0	12.0	0.021	0.021	
Head	GFSK	U	Right Touch	39	2441	12.0	12.0	0.018	0.018	
			Right Tilt	39	2441	12.0	12.0	0.023	0.023	31
Body-worn	GFSK	SK 15	Rear	39	2441	12.0	12.0	0.010	0.010	32
Body-wolfi	Grok	15	Front	39	2441	12.0	12.0	-	•	
			Rear	39	2441	12.0	12.0	0.023	0.023	33
Hotopot	GFSK	10	Front	39	2441	12.0	12.0	0.003	<0.001	
Hotspot	GFSK	SK 10	Edge 1	39	2441	12.0	12.0	0.010	0.010	
			Edge 2	39	2441	12.0	12.0	0.002	<0.001	

Note(s):
1. For results listed with "-", the SAR result is less than 0.001 W/kg.

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note(s):

Repeated measurement is not required when the original highest measured 1g SAR is < 0.8 W/kg

Product specific 10g SAR

Frequency				Repeated	Highest	First Repeated	
Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	SAR (Yes/No)	Measured SAR (W/kg)	Measured SAR (W/kg)	Largest to Smallest SAR Ratio
5300	Wi-Fi 802.11a/n/ac	Product Specific 10g	Rear	Yes	2.620	2.48	1.06

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is < 1.20.

12. Simultaneous Transmission Conditions

RF Exposure Condition	Item	Capable Trans	smit Co	onfigurations
	1	GSM(Voice)	+	DTS
	2	GSM(Voice)	+	U-NII
	3	GSM(Voice)	+	BT
	4	GSM(GPRS/EDGE)	+	DTS
I I a a d	5	GSM(GPRS/EDGE)	+	U-NII
Head Body-w orn	6	GSM(GPRS/EDGE)	+	BT
Hotspot	7	W-CDMA	+	DTS
riotopot	8	W-CDMA	+	U-NII
	9	W-CDMA	+	BT
	10	LTE	+	DTS
	11	LTE	+	U-NII
	12	LTE	+	BT

Notes:

- 1. DTS & UNII (5.8GHz) supports Hotspot.
- 2. GPRS/EDGE, W-CDMA, and LTE support Hotspot.
- 3. VolP is supported in GPRS/EDGE, W-CDMA, and LTE.
- 4. DTS Radio cannot transmit simultaneously with Bluetooth Radio.
- 5. U-NII Radio cannot transmit simultaneously with Bluetooth Radio.

Note(s)

Product Specific 10g SAR does not require simultaneous transmission analysis.

12.1. Simultaneous transmission SAR test exclusion considerations

KDB 447498 D01 General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

12.1.1. Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

12.2. Sum of the SAR for WWAN & Wi-Fi & BT

RF		Standalone	SAR (W/kg)		∑ 1-g SAR (W/kg)				
Exposure conditions	1	2	3	4	1+2	1+3	1+4		
Conditions	WWAN	Wi-Fi 2.4G	Wi-Fi 5G	BT					
Head	0.320	0.100	0.190	0.023	0.420	0.510	0.343		
Body-worn	0.620	0.070	0.673	0.010	0.690	1.293	0.630		
Hotspot	0.663	0.171	0.644	0.023	0.834	1.307	0.686		

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is ≤ 0.04 for all circumstances that require SPLSR calculation.

Appendixes

Refer to separated files for the following appendixes.

Appendix A: SAR Setup Photos

Appendix B: SAR System Check Plots

Appendix C: SAR Highest Test Plots

Appendix D: SAR Tissue Ingredients

Appendix E: SAR Probe Certificates

Appendix F: SAR Dipole Certificates

END OF REPORT