

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT

LTE

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 6/25 – 7/26, 8/17 - 8/28/2018 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1808210161.A3L

FCC ID:

A3LSMA600T

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type: Model: EUT Type: FCC Classification: FCC Rule Part(s): Test Procedure(s): Certification SM-A600T Portable Handset PCS Licensed Transmitter Held to Ear (PCE) 22, 24, & 27 ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset Page		Page 1 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

TABLE OF CONTENTS

1.0	INTF	RODUCTION	5
	1.1	Scope	5
	1.2	PCTEST Test Location	5
	1.3	Test Facility / Accreditations	5
2.0	PRO	DUCT INFORMATION	6
	2.1	Equipment Description	6
	2.2	Device Capabilities	6
	2.3	Test Configuration	6
	2.4	EMI Suppression Device(s)/Modifications	6
3.0	DES	CRIPTION OF TESTS	7
	3.1	Measurement Procedure	7
	3.2	Block A Frequency Range	7
	3.3	Cellular - Base Frequency Blocks	7
	3.4	Cellular - Mobile Frequency Blocks	7
	3.5	PCS - Base Frequency Blocks	8
	3.6	PCS - Mobile Frequency Blocks	8
	3.7	AWS - Base Frequency Blocks	8
	3.8	AWS - Mobile Frequency Blocks	9
	3.9	BRS/EBS Frequency Block	9
	3.10	Radiated Power and Radiated Spurious Emissions	10
4.0	MEA	SUREMENT UNCERTAINTY	11
5.0	TES	T EQUIPMENT CALIBRATION DATA	12
6.0	SAM	PLE CALCULATIONS	14
7.0	TES	T RESULTS	15
	7.1	Summary	15
	7.2	Occupied Bandwidth	17
	7.3	Spurious and Harmonic Emissions at Antenna Terminal	46
	7.4	Band Edge Emissions at Antenna Terminal	75
	7.5	Peak-Average Ratio	123
	7.6	Radiated Power (ERP/EIRP)	130
	7.7	Radiated Spurious Emissions Measurements	138
	7.8	Frequency Stability / Temperature Variation	153
8.0	CON	CLUSION	166

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset	lset Page 2 l	
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.4 08/10/2018

MEASUREMENT REPORT FCC Part 22, 24, & 27

			Ef	RP	EI	RP		
Mode	FCC Rule Part	Tx Frequency (MHz)	Max. Pow er (W)	Max. Pow er (dBm)	Max. Pow er (W)	Max. Pow er (dBm)	Emission Designator	Modulation
LTE Band 71	27	665.5 - 695.5	0.046	16.64			4M57G7D	QPSK
LTE Band 71	27	665.5 - 695.5	0.034	15.30			4M54W7D	16QAM
LTE Band 71	27	668 - 693	0.047	16.75			9M05G7D	QPSK
LTE Band 71	27	668 - 693	0.037	15.68			9M02W7D	16QAM
LTE Band 71	27	670.5 - 690.5	0.051	17.10			13M5G7D	QPSK
LTE Band 71	27	670.5 - 690.5	0.041	16.10			13M6W7D	16QAM
LTE Band 71	27	673 - 688	0.050	16.96			18M0G7D	QPSK
LTE Band 71	27	673 - 688	0.037	15.64			18M0W7D	16QAM
LTE Band 12	27	699.7 - 715.3	0.074	18.70	0.122	20.85	1M10G7D	QPSK
LTE Band 12	27	699.7 - 715.3	0.057	17.53	0.093	19.68	1M11W7D	16QAM
LTE Band 12	27	700.5 - 714.5	0.079	18.97	0.129	21.12	2M74G7D	QPSK
LTE Band 12	27	700.5 - 714.5	0.063	17.97	0.103	20.12	2M73W7D	16QAM
LTE Band 12	27	701.5 - 713.5	0.079	18.98	0.130	21.13	4M58G7D	QPSK
LTE Band 12	27	701.5 - 713.5	0.064	18.05	0.105	20.20	4M57W7D	16QAM
LTE Band 12	27	704 - 711	0.079	18.96	0.129	21.11	9M07G7D	QPSK
LTE Band 12	27	704 - 711	0.058	17.61	0.095	19.76	9M09W7D	16QAM
LTE Band 5	22H	824.7 - 848.3	0.103	20.14	0.169	22.29	1M11G7D	QPSK
LTE Band 5	22H	824.7 - 848.3	0.080	19.01	0.131	21.16	1M10W7D	16QAM
LTE Band 5	22H	825.5 - 847.5	0.104	20.16	0.170	22.31	2M73G7D	QPSK
LTE Band 5	22H	825.5 - 847.5	0.080	19.05	0.132	21.20	2M73W7D	16QAM
LTE Band 5	22H	826.5 - 846.5	0.102	20.10	0.168	22.25	4M57G7D	QPSK
LTE Band 5	22H	826.5 - 846.5	0.082	19.13	0.134	21.28	4M55W7D	16QAM
LTE Band 5	22H	829 - 844	0.106	20.24	0.173	22.39	8M99G7D	QPSK
LTE Band 5	22H	829 - 844	0.081	19.09	0.133	21.24	8M96W7D	16QAM

EUT Overview (<1GHz)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 2 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 3 of 166
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.4 08/10/2018

			EIRP			
Mode	FCC Rule Part	Tx Frequency (MHz)	Max. Pow er (W)	Max. Pow er (dBm)	Emission Designator	Modulation
LTE Band 66/4	27	1710.7 - 1779.3	0.204	23.10	1M10G7D	QPSK
LTE Band 66/4	27	1710.7 - 1779.3	0.159	22.00	1M11W7D	16QAM
LTE Band 66/4	27	1711.5 - 1778.5	0.212	23.26	2M72G7D	QPSK
LTE Band 66/4	27	1711.5 - 1778.5	0.150	21.75	2M72W7D	16QAM
LTE Band 66/4	27	1712.5 - 1777.5	0.210	23.21	4M56G7D	QPSK
LTE Band 66/4	27	1712.5 - 1777.5	0.154	21.88	4M55W7D	16QAM
LTE Band 66/4	27	1715 - 1775	0.213	23.28	9M06G7D	QPSK
LTE Band 66/4	27	1715 - 1775	0.152	21.83	9M05W7D	16QAM
LTE Band 66/4	27	1717.5 - 1772.5	0.222	23.47	13M5G7D	QPSK
LTE Band 66/4	27	1717.5 - 1772.5	0.159	22.02	13M6W7D	16QAM
LTE Band 66/4	27	1720 - 1770	0.208	23.18	18M0G7D	QPSK
LTE Band 66/4	27	1720 - 1770	0.149	21.74	18M0W7D	16QAM
LTE Band 2	24E	1850.7 - 1909.3	0.167	22.23	1M12G7D	QPSK
LTE Band 2	24E	1850.7 - 1909.3	0.122	20.85	1M12W7D	16QAM
LTE Band 2	24E	1851.5 - 1908.5	0.174	22.40	2M73G7D	QPSK
LTE Band 2	24E	1851.5 - 1908.5	0.124	20.94	2M72W7D	16QAM
LTE Band 2	24E	1852.5 - 1907.5	0.167	22.22	4M60G7D	QPSK
LTE Band 2	24E	1852.5 - 1907.5	0.125	20.98	4M55W7D	16QAM
LTE Band 2	24E	1855 - 1905	0.179	22.54	9M04G7D	QPSK
LTE Band 2	24E	1855 - 1905	0.129	21.09	9M05W7D	16QAM
LTE Band 2	24E	1857.5 - 1902.5	0.189	22.76	13M6G7D	QPSK
LTE Band 2	24E	1857.5 - 1902.5	0.137	21.37	13M6W7D	16QAM
LTE Band 2	24E	1860 - 1900	0.166	22.21	18M0G7D	QPSK
LTE Band 2	24E	1860 - 1900	0.128	21.07	18M0W7D	16QAM
LTE Band 7	27	2502.5 - 2567.5	0.104	20.16	4M58G7D	QPSK
LTE Band 7	27	2502.5 - 2567.5	0.078	18.93	4M55W7D	16QAM
LTE Band 7	27	2505 - 2565	0.115	20.61	9M06G7D	QPSK
LTE Band 7	27	2505 - 2565	0.091	19.57	9M06W7D	16QAM
LTE Band 7	27	2507.5 - 2562.5	0.105	20.20	13M6G7D	QPSK
LTE Band 7	27	2507.5 - 2562.5	0.076	18.80	13M6W7D	16QAM
LTE Band 7	27	2510 - 2560	0.105	20.20	18M1G7D	QPSK
LTE Band 7	27	2510 - 2560	0.074	18.69	18M0W7D	16QAM
		FUT Overvie	W (>10U-)			

EUT Overview (>1GHz)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 4 of 166
© 2018 PCTEST Engineering Laboratory Inc			V 8 4 08/10/2018	

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage E of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 5 of 166
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.4 08/10/2018

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMA600T**. The test data contained in this report pertains only to the emissions due to the EUT's LTE function.

Test Device Serial No.: 30684, 30957, 31062, 30905, 30684

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC, ANT+

LTE Band 66 (1710 - 1780 MHz) overlaps the entire frequency range of LTE Band 4 (1710 - 1755 MHz). Therefore, test data provided in this report covers Band 4 as well as Band 66.

2.3 Test Configuration

The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

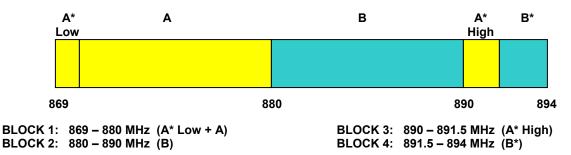
2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

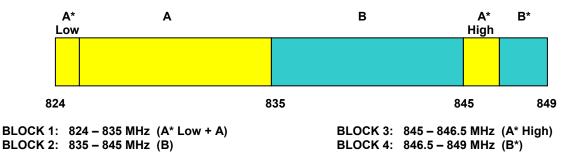
FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 6 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 6 of 166
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.4 08/10/2018

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

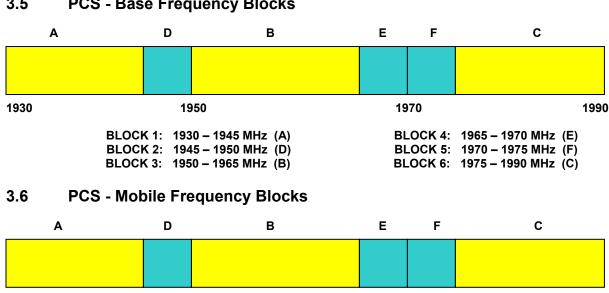

The measurement procedures described in the document titled "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-E-2016) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

3.2 Block A Frequency Range


<u>698-746 MHz band</u>. The following frequencies are available for licensing pursuant to this part in the 698-746 MHz band: (1) Three paired channel blocks of 12 megahertz each are available for assignment as follows:

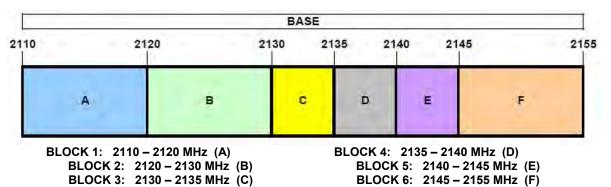
Block A: 698-704 MHz and 728-734 MHz; Block B: 704-710 MHz and 734-740 MHz; and Block C: 710-716 MHz and 740-746 MHz.

3.3 Cellular - Base Frequency Blocks


3.4 Cellular - Mobile Frequency Blocks

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 7 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page / 01 100
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

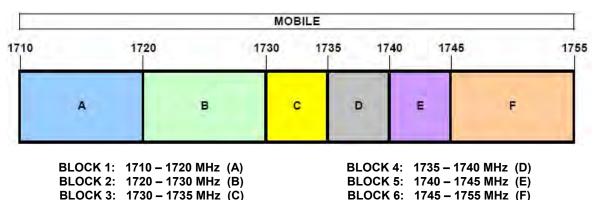
1850



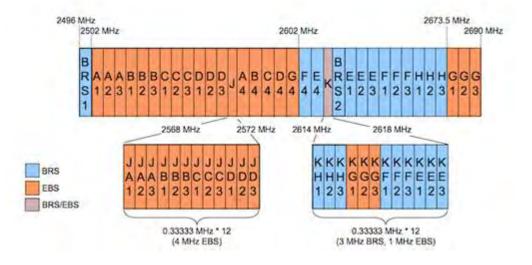
BLOCK 1:	1850 – 1865 MHz (A)
BLOCK 2:	1865 – 1870 MHz (D)
BLOCK 3:	1870 – 1885 MHz (B)

1870

3.7 **AWS - Base Frequency Blocks**


FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 8 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Fage 8 01 100
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.


3.5 **PCS - Base Frequency Blocks**

3.8 AWS - Mobile Frequency Blocks

3.9 BRS/EBS Frequency Block

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 9 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

3.10 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168 D01 v03r01.

Per the guidance of ANSI/TIA-603-E-2016, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

Pd [dBm] = Pg [dBm] - cable loss [dB] + antenna gain [dBd/dBi]

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g [dBm]}$ – cable loss [dB].

The calculated P_d levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log₁₀(Power [Watts]). For Band 7, the calculated P_d levels are compared to the absolute spurious emission limit of -25dBm which is equivalent to the required minimum attenuation of 55 + 10log₁₀(Power [Watts]).

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 166	
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 10 of 166	
© 2018 PCTEST Engineering Lab	2018 PCTEST Engineering Laboratory, Inc.				

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 11 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 11 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	LTx2	LIcensed Transmitter Cable Set	1/23/2018	Annual	7/23/2018	LTx2
Agilent	N9020A	MXA Signal Analyzer	1/24/2018	Annual	1/24/2019	US46470561
Agilent	N9038A	MXE EMI Receiver	6/11/2018	Annual	6/11/2019	MY51210133
Agilent	N9030A	PXA Signal Analyzer (26.5GHz)	8/28/2017	Annual	8/28/2018	MY49432391
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2017	Biennial	10/10/2019	121034
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/23/2016	Biennial	8/23/2018	135427
Espec	ESX-2CA	Environmental Chamber	3/28/2018	Annual	3/28/2019	17620
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	3/28/2018	Biennial	3/28/2020	128337
Mini Circuits	TVA-11-422	RF Power Amp	RF Power Amp N/A		QA1317001	
Mini Circuits	PWR-SEN-4GHS	USB Power Sensor	3/30/2018	Annual	3/30/2019	11401010036
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator N/A		11208010032		
Mini-Circuits	PWR-SEN-4RMS	USB Power Sensor	3/30/2018	Annual	3/30/2019	11210140001
Mini-Circuits	TVA-11-422	RF Power Amp		N/A	-	QA1303002
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator		N/A		11403100002
Rohde & Schwarz	CMW500	Radio Communication Tester		N/A		100976
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	1/24/2018	Annual	7/24/2018	100040
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/31/2017	Annual	7/31/2018	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	8/11/2017	Annual	8/11/2018	103200
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/2/2018	Annual	7/2/2019	102131
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	6/18/2018	Annual	6/18/2019	102134
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Tx	4/30/2018	Biennial	4/30/2020	9105-2403
Sunol	DRH-118	Horn Antenna (1-18GHz)	8/11/2017	Biennial	8/11/2019	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	4/19/2018	Biennial	4/19/2020	A051107

Table 5-1. Test Equipment (Test Date Range 6/25 – 7/26/2018)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 12 of 166	
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 12 of 166	
© 2018 PCTEST Engineering Lab	2018 PCTEST Engineering Laboratory, Inc.				

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	LTx3	Licensed Transmitter Cable Set	8/10/2017	Annual	8/10/2018	LTx3
Agilent	N9030A	PXA Signal Analyzer (44GHz)	5/25/2018	Annual	5/25/2019	MY52350166
Anritsu	MT8820C	Radio Communication Analyzer	1/30/2018	Annual	1/30/2019	6201300731
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2017	Biennial	10/10/2019	121034
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/23/2016	Biennial	8/23/2018	135427
Espec	ESX-2CA	Environmental Chamber	3/28/2018	Annual	3/28/2019	17620
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	3/28/2018	Biennial	3/28/2020	128337
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	12/1/2016	Biennial	12/1/2018	125518
Huber + Suhner	Sucoflex 102A	40GHz Radiated Cable Set	1/23/2018	Annual	1/23/2019	251425001
Mini Circuits	TVA-11-422	RF Power Amp		N/A		QA1317001
Mini Circuits	PWR-SEN-4GHS	USB Power Sensor	3/30/2018	Annual	3/30/2019	11401010036
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator		N/A		11208010032
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	1/24/2018	Annual	1/24/2019	100040
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/31/2017	Annual	7/31/2018	100348
Rohde & Schwarz	CMW500	Radio Communication Tester	11/3/2017	Annual	11/3/2018	100976
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	6/18/2018	Annual	6/18/2019	102134
Sunol	DRH-118	Horn Antenna (1-18GHz)	8/11/2017	Biennial	8/11/2019	A050307
Sunol	JB6	Bi-Log Antenna (30M - 6GHz)	9/27/2016	Biennial	9/27/2018	A082816

Table 5-2. Test Equipment (Test Date Range 8/17 - 8/28/2018)

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 12 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 13 of 166
© 2018 PCTEST Engineering Lat	V 8.4 08/10/2018			

6.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission – LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80).

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 14 of 166	
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 14 of 166	
© 2018 PCTEST Engineering Lab	2018 PCTEST Engineering Laboratory, Inc.				

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMA600T
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	<u>LTE</u>

FCC Part Test Test **Test Description Test Limit** Reference Section(s) Condition Result 2.1049 PASS Occupied Bandwidth N/A Section 7.2 2.1051 > 43 + 10log₁₀ (P[Watts]) at 2.917(a) Section 7.3, 24.238(a) Out of Band Emissions Band Edge and for all out-of-PASS 7.4 27.53(g) band emissions 27.53(h) Undesirable emissions must PASS Section 7.3, 27.53(m) Out of Band Emissions meet the limits detailed in 7.4 27.53(m) CONDUCTED 24.232(d) Peak-Average Ratio < 13 dB PASS Section 7.5 See RF See RF **Transmitter Conducted** 2.1046 N/A Exposure Exposure **Output Power** Report Report 2.1055 < 2.5 ppm (Part 22) and 22.355 fundamental emissions stay Frequency Stability PASS Section 7.8 24.235 within authorized frequency 27.54 block (Part 227)

Table 7-1. Summary of Conducted Test Results

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 15 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
22.913(a)(5)	Effective Radiated Power / Equivalent Isotropic Radiated Power (Band 5)	< 7 Watts max. ERP		PASS	Section 7.6
27.50(c)(10)	Effective Radiated Power / Equivalent Isotropic Radiated Power (Band 71, 12)	< 3 Watts max. ERP		PASS	Section 7.6
24.232(c) 27.50(h)(2)	Equivalent Isotropic Radiated Power (Band 2, 71)	< 2 Watts max. EIRP	RADIATED	PASS	Section 7.6
27.50(d)(4)	Equivalent Isotropic Radiated Power (Band 66/4)	< 1 Watts max. EIRP		PASS	Section 7.6
2.1053 22.917(a) 24.238(a) 27.53(g) 27.53(h)	Undesirable Emissions	> 43 + 10log ₁₀ (P[Watts]) for all out-of-band emissions		PASS	Section 7.7
27.53(m)	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 27.53(m)		PASS	Section 7.7

Table 7-2. Summary of Radiated Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots (Sections 7.2, 7.3, 7.4, 7.5) were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "LTE Automation," Version 4.8.
- 5) For operation <1GHz, the EIRP limits in the table above are referenced to the specifications written in the relevant Radio Standards Specifications for Innovation, Science, and Economic Development Canada.

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 16 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 16 of 166
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.4 08/10/2018

7.2 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	MSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 17 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 17 of 166
2 2018 PCTEST Engineering Laboratory, Inc. V 8.4 08/10/2018				

Plot 7-1. Occupied Bandwidth Plot (Band 71 - 5.0MHz QPSK - Full RB Configuration)

Plot 7-2. Occupied Bandwidth Plot (Band 71 - 5.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 19 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 18 of 166
2018 PCTEST Engineering Laboratory, Inc.			V 8.4 08/10/2018	

Plot 7-3. Occupied Bandwidth Plot (Band 71 - 10.0MHz QPSK - Full RB Configuration)

Plot 7-4. Occupied Bandwidth Plot (Band 71 - 10.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 10 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 19 of 166
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.4 08/10/2018

Keysight Spectrum Analyzer - Occupied	BW					-	
IXI RL RF 50 Ω DC	CORREC	SENSE:INT Center Freq: 680.5000 Trig: Free Run	000 MHz Avg Hold: 100/100	05:26:27 PM / Radio Std: N		Trace/I	Detector
	#IFGain:Low	#Atten: 36 dB		Radio Devic	e: BTS		
10 dB/div Ref 40.00 dE	3m						
20.0	Marcolust		h (Lifferfacture			СІ	ear Write
10.0							
-10.0	anarat .		- Marine -				Average
-30.0				and a state of the	- marguran		
-40.0						'	Max Hold
Center 680.5 MHz Res BW 360 kHz		#VBW 1.1 M	Hz		7.5 MHz p 1 ms		Min Hold
Occupied Bandwid		Total Po	ower 31.9	9 dBm			
	13.539 MH						Detector Peak▶
Transmit Freq Error	-3.903 k	Hz % of OE	SW Power 99	9.00 %		Auto	Man
x dB Bandwidth	15.38 M	Hz x dB	-26	.00 dB			
MSG			STATU	s			

Plot 7-5. Occupied Bandwidth Plot (Band 71 - 15.0MHz QPSK - Full RB Configuration)

Plot 7-6. Occupied Bandwidth Plot (Band 71 - 15.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 20 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

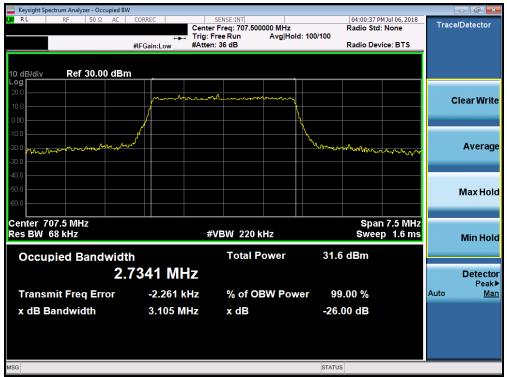
Plot 7-7. Occupied Bandwidth Plot (Band 71 - 20.0MHz QPSK - Full RB Configuration)

Plot 7-8. Occupied Bandwidth Plot (Band 71 - 20.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 21 of 166
© 2018 PCTEST Engineering Laboratory, Inc. V 8.4 08/10/2018				

Band 12

Plot 7-9. Occupied Bandwidth Plot (Band 12 - 1.4MHz QPSK - Full RB Configuration)


Plot 7-10. Occupied Bandwidth Plot (Band 12 - 1.4MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 166	
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 22 of 166	
© 2018 PCTEST Engineering Laboratory. Inc.			V 8.4 08/10/2018		

Plot 7-11. Occupied Bandwidth Plot (Band 12 - 3.0MHz QPSK - Full RB Configuration)

Plot 7-12. Occupied Bandwidth Plot (Band 12 - 3.0MHz 16-QAM - Full RB Configuration)

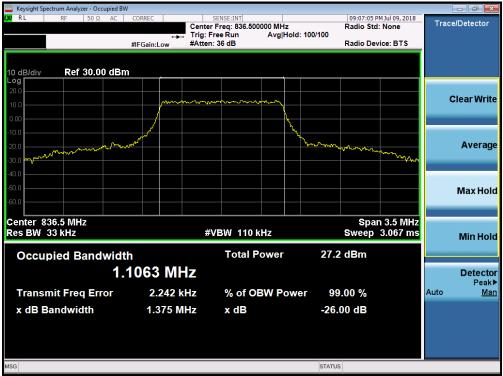
FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 23 of 166
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.4 08/10/2018	

Plot 7-13. Occupied Bandwidth Plot (Band 12 - 5.0MHz QPSK - Full RB Configuration)

Plot 7-14. Occupied Bandwidth Plot (Band 12 - 5.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 24 of 166
2018 PCTEST Engineering Laboratory, Inc. V 8.4 08/10/2018				

Plot 7-15. Occupied Bandwidth Plot (Band 12 - 10.0MHz QPSK - Full RB Configuration)



Plot 7-16. Occupied Bandwidth Plot (Band 12 - 10.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 25 of 166
2018 PCTEST Engineering Laboratory, Inc.				V 8.4 08/10/2018

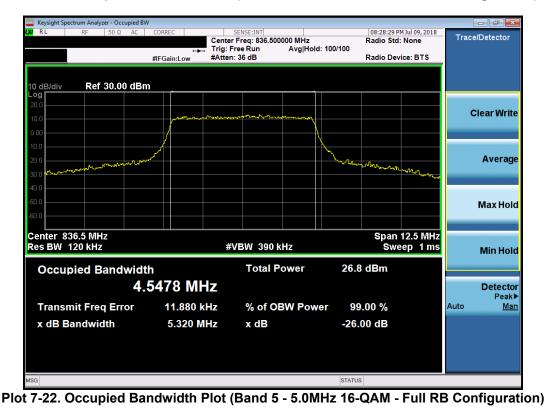
Band 5

Plot 7-17. Occupied Bandwidth Plot (Band 5 - 1.4MHz QPSK - Full RB Configuration)

Plot 7-18. Occupied Bandwidth Plot (Band 5 - 1.4MHz 16-QAM - Full RB Configuration)

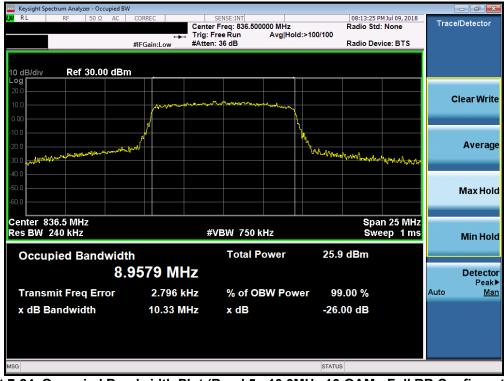
FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 26 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 26 of 166
© 2018 PCTEST Engineering Laboratory Inc			V 8 4 08/10/2018	


Plot 7-19. Occupied Bandwidth Plot (Band 5 - 3.0MHz QPSK - Full RB Configuration)

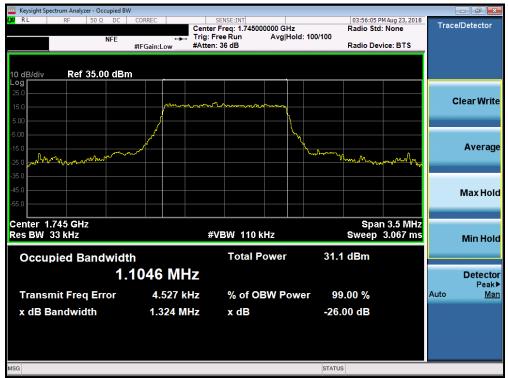

Plot 7-20. Occupied Bandwidth Plot (Band 5 - 3.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 166	
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 27 of 166	
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.4 08/10/2018	

Plot 7-21. Occupied Bandwidth Plot (Band 5 - 5.0MHz QPSK - Full RB Configuration)


Approved by: PCTEST MEASUREMENT REPORT SAMSUNG FCC ID: A3LSMA600T (CERTIFICATION) Quality Manager

Test Report S/N: Test Dates: EUT Type: Page 28 of 166 1M1808210161.A3L 6/25 - 7/26, 8/17 - 8/28/2018 Portable Handset © 2018 PCTEST Engineering Laboratory, Inc. V 8.4 08/10/2018 All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.


Plot 7-23. Occupied Bandwidth Plot (Band 5 - 10.0MHz QPSK - Full RB Configuration)

Plot 7-24. Occupied Bandwidth Plot (Band 5 - 10.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 166	
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 29 of 166	
2018 PCTEST Engineering Laboratory, Inc. V 8.4 08/10/2018					

Plot 7-25. Occupied Bandwidth Plot (Band 66/4 - 1.4MHz QPSK - Full RB Configuration)

Plot 7-26. Occupied Bandwidth Plot (Band 66/4 - 1.4MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 30 of 166
© 2018 PCTEST Engineering Laboratory Inc			V 8 4 08/10/2018	

Plot 7-27. Occupied Bandwidth Plot (Band 66/4 - 3.0MHz QPSK - Full RB Configuration)

Plot 7-28. Occupied Bandwidth Plot (Band 66/4 - 3.0MHz 16-QAM - Full RB Configuration)

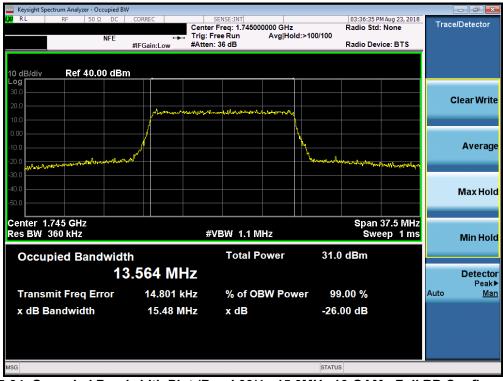
FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 166	
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 31 of 166	
2018 PCTEST Engineering Laboratory, Inc.			V 8.4 08/10/2018		

Plot 7-29. Occupied Bandwidth Plot (Band 66/4 - 5.0MHz QPSK - Full RB Configuration)

Plot 7-30. Occupied Bandwidth Plot (Band 66/4 - 5.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 32 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

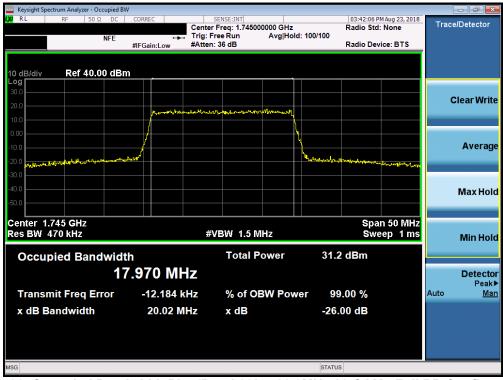
Plot 7-31. Occupied Bandwidth Plot (Band 66/4 - 10.0MHz QPSK - Full RB Configuration)


Plot 7-32. Occupied Bandwidth Plot (Band 66/4 - 10.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 33 of 166
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.4 08/10/2018

🔤 Keysight Spectrum Analyzer - Occupied B	W			
LXIRL RF 50Ω DC		SENSE:INT r Freq: 1.745000000 GHz Free Run Avg Hold: 10	03:36:20 PM Aug 23, 2018 Radio Std: None	Trace/Detector
NFE		n: 36 dB	Radio Device: BTS	
				Í
10 dB/div Ref 40.00 dB	m			
Log 30.0				
20.0				Clear Write
10.0	and a second a second second	warder ward a stream the		
0.00				
-10.0	1			Average
	Short	<u>٦</u>	and the second sec	Arrenuge
-20.0 milyer hard with a start of the start			and the second the second seco	
-40.0				Max Hold
-50.0				
Center 1.745 GHz			Span 37.5 MHz	
Res BW 360 kHz	#	VBW 1.1 MHz	Sweep 1 ms	
		Total Power	31.7 dBm	
Occupied Bandwid		Total Power	31./ UBIII	
1	3.525 MHz			Detector
Transmit Freq Error	-1.453 kHz	% of OBW Power	99.00 %	Peak▶ Auto <u>Man</u>
x dB Bandwidth	15.37 MHz	x dB	-26.00 dB	
MSG			STATUS	

Plot 7-33. Occupied Bandwidth Plot (Band 66/4 - 15.0MHz QPSK - Full RB Configuration)


Plot 7-34. Occupied Bandwidth Plot (Band 66/4 - 15.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Deee 24 of 400
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 34 of 166
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.4 08/10/2018

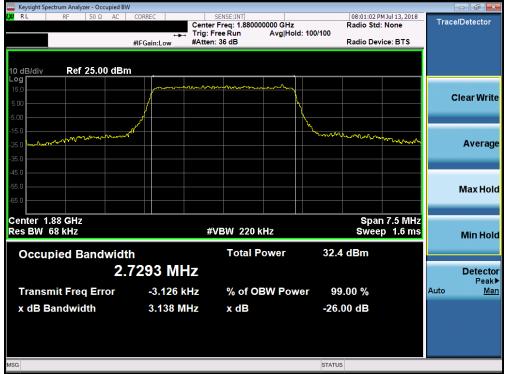
Keysight Spectrum Analyzer - Occupied BV	V						X
IX RL RF 50Ω DC	1	SENSE:INT Center Freq: 1.74500000 Frig: Free Run A #Atten: 36 dB	0 GHz vg Hold: 100/100	03:41:49 PMA Radio Std: N Radio Devic	lone	Trace/Detec	ctor
10 dB/div Ref 40.00 dBn	n						
30.0 20.0		Land Contract States and the second states and the second states and the second states and the second states and	uniting			Clear	Write
10.0						Δνο	erage
-20.0			- Innore	hall from the second	ing and the second s	AVC	rage
-40.0						Мах	Hold
Center 1.745 GHz Res BW 470 kHz		#VBW 1.5 MHz			50 MHz p 1 ms	Min	Hold
Occupied Bandwidt	^h 3.049 MHz	Total Pow	ver 32.9	dBm		Det	ector
Transmit Freq Error	1.630 kH		Power 99	9.00 %			Peak► <u>Man</u>
x dB Bandwidth	20.31 MH	z xdB	-26.	00 dB			
MSG			STATU	S			

Plot 7-35. Occupied Bandwidth Plot (Band 66/4 - 20.0MHz QPSK - Full RB Configuration)

Plot 7-36. Occupied Bandwidth Plot (Band 66/4 - 20.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 35 of 166
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.4 08/10/2018

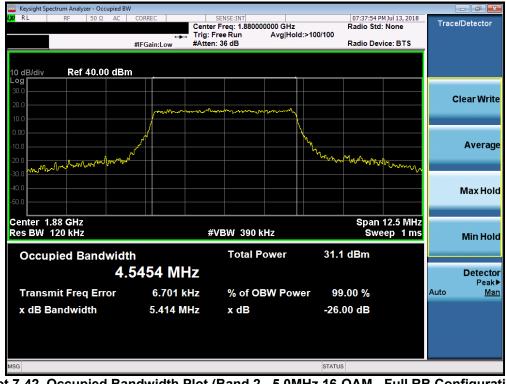
Band 2


Plot 7-37. Occupied Bandwidth Plot (Band 2 - 1.4MHz QPSK - Full RB Configuration)

Plot 7-38. Occupied Bandwidth Plot (Band 2 - 1.4MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 26 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 36 of 166
2018 PCTEST Engineering Laboratory Inc			V 8 4 08/10/2018	

Plot 7-39. Occupied Bandwidth Plot (Band 2 - 3.0MHz QPSK - Full RB Configuration)


Plot 7-40. Occupied Bandwidth Plot (Band 2 - 3.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Deep 07 of 400
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 37 of 166
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.4 08/10/2018

Plot 7-41. Occupied Bandwidth Plot (Band 2 - 5.0MHz QPSK - Full RB Configuration)

Plot 7-42. Occupied Bandwidth Plot (Band 2 - 5.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 38 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

Plot 7-43. Occupied Bandwidth Plot (Band 2 - 10.0MHz QPSK - Full RB Configuration)


Plot 7-44. Occupied Bandwidth Plot (Band 2 - 10.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 166	
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 39 of 166	
© 2018 PCTEST Engineering Laboratory, Inc. V 8.4 08/10/20					

Plot 7-45. Occupied Bandwidth Plot (Band 2 - 15.0MHz QPSK - Full RB Configuration)

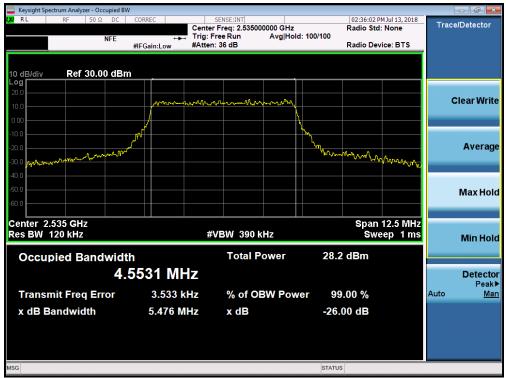
Plot 7-46. Occupied Bandwidth Plot (Band 2 - 15.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	AMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 40 of 166	
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 40 of 166	
© 2018 PCTEST Engineering Laboratory, Inc. V 8.4 08/10/2018					

Keysight Spectrum Analyzer - Occupied BW	1					
IXI RL RF 50 Ω AC	Center Trig: F		Radio Sto d:>100/100		Trace/I	Detector
	#IFGain:Low #Atten	:: 36 dB	Radio De	vice: BTS		
10 dB/div Ref 40.00 dBn	1					
Log 30.0						
20.0					CI	ear Write
10.0	potraction	moundurant				
0.00	/ · · · · · · · · · · · · · · · · · · ·	l l				
-10.0	(Average
	Mart		Man Marian Marian			Average
-20.0 population that the for the for the formation of th				www.alicavia.illo		
-40.0						Max Hold
-50.0						
Center 1.88 GHz				ın 50 MHz		
Res BW 470 kHz	#	VBW 1.5 MHz	Sw	eep 1 ms		Min Hold
Occupied Bandwidt	h	Total Power	32.6 dBm			
18	.022 MHz					Detector
			00.00.00		A	Peak►
Transmit Freq Error	21.152 kHz	% of OBW Pow	er 99.00 %		Auto	Man
x dB Bandwidth	20.13 MHz	x dB	-26.00 dB			
MSG			STATUS			

Plot 7-47. Occupied Bandwidth Plot (Band 2 - 20.0MHz QPSK - Full RB Configuration)

Plot 7-48. Occupied Bandwidth Plot (Band 2 - 20.0MHz 16-QAM - Full RB Configuration)


FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 44 of 400	
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 41 of 166	
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018				

Band 7

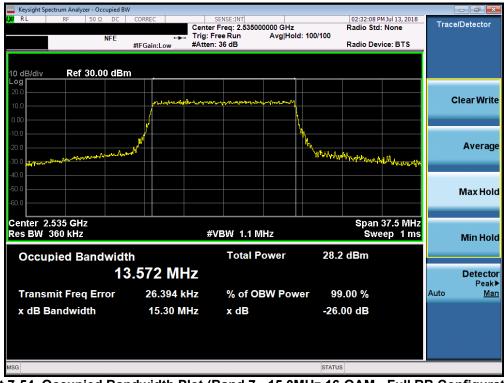
Keysight Spectrum Analyzer - Occupied BW RL RF 50 Ω DC		SENSE:INT r Freq: 2.535000000 GHz	Radio Std	MJul 13, 2018 : None	Trace/Detector
NFE		Free Run Avg Hold n: 36 dB	: 100/100 Radio Dev	rice: BTS	
10 dB/div Ref 30.00 dBm _∘og 20 0					
10.0		han market and the second s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Clear Writ
20.0 30.0			"hh	Manhan	Averag
50.0					Max Hol
enter 2.535 GHz es BW 120 kHz Occupied Bandwidth		VBW 390 kHz Total Power		12.5 MHz eep 1 ms	Min Ho
	798 MHz		LUIU GEIM		Detect Peal
Transmit Freq Error	3.125 kHz	% of OBW Pow	er 99.00 %	A	uto <u>Ma</u>
x dB Bandwidth	5.656 MHz	x dB	-26.00 dB		
G			STATUS		


Plot 7-49. Occupied Bandwidth Plot (Band 7 - 5.0MHz QPSK - Full RB Configuration)

Plot 7-50. Occupied Bandwidth Plot (Band 7 - 5.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 42 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 42 of 166
© 2018 PCTEST Engineering Laboratory Inc				V 8 4 08/10/2018

Plot 7-51. Occupied Bandwidth Plot (Band 7 - 10.0MHz QPSK - Full RB Configuration)


Plot 7-52. Occupied Bandwidth Plot (Band 7 - 10.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 42 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 43 of 166
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.4 08/10/2018

Plot 7-53. Occupied Bandwidth Plot (Band 7 - 15.0MHz QPSK - Full RB Configuration)

Plot 7-54. Occupied Bandwidth Plot (Band 7 - 15.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dana 44 of 400	
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 44 of 166	
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018				

Keysight Spectrum Analyzer - Occupied	BW				
KX RL RF 50Ω DC	CORREC #IFGain:Low	SENSE:INT Center Freq: 2.535000000 G Trig: Free Run Avg #Atten: 36 dB	Hz Radio St Hold: 100/100	PMJul 13, 2018 d: None evice: BTS	Trace/Detector
10 dB/div Ref 30.00 dE	3m				
20.0	wheenwh	magnage and a grant and an and a grant of parts	~~		Clear Write
-10.0	/				Average
-30.0 สุมประวทยามุรับประวทยามุรับประวทยามุรับประวทยามุรับประวทยามุรับประวทยามุรับประวทยามุรับประวทยาม ุรับประวทยาม			Le Month manifest Man	******	
-50.0					Max Hold
Center 2.535 GHz Res BW 470 kHz		#VBW 1.5 MHz		an 50 MHz ⁄eep 1 ms	Min Hold
Occupied Bandwid	^{ith} 8.051 MH	Total Power	29.9 dBm		Detector
Transmit Freq Error	6.840 kł	Iz % of OBW P			Peak▶ Auto <u>Man</u>
x dB Bandwidth	20.08 MI	Hz x dB	-26.00 dB		
MSG			STATUS		

Plot 7-55. Occupied Bandwidth Plot (Band 7 - 20.0MHz QPSK - Full RB Configuration)

Plot 7-56. Occupied Bandwidth Plot (Band 7 - 20.0MHz 16-QAM - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 166	
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 45 of 166	
© 2018 PCTEST Engineering Laboratory, Inc. V 8.4 08/10/20					

7.3 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

For Band 7, the minimum permissible attenuation level of any spurious emission is $55 + \log_{10}(P_{[Watts]})$.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

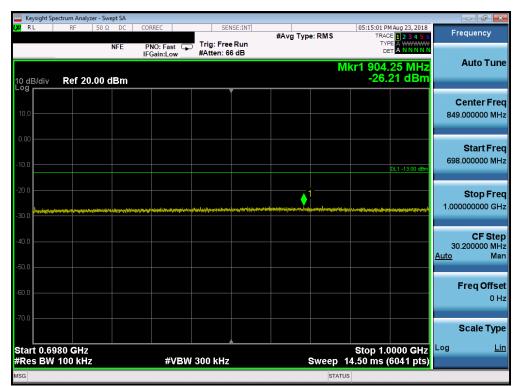
- 1. Start frequency was set to 30MHz and stop frequency was set to at least 10 * the fundamental frequency (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes


Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 166	
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 46 of 166	
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018				

Keysight Spectrum A							
C RL RF	50 Ω DC	PNO: Fast	SENSE:INT Trig: Free Run #Atten: 46 dB	#Avg Type	: RMS	05:14:50 PM Aug 23, 2018 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N	Frequency
10 dB/div Ref	20.00 dBm	II Guilleow			Mk	r1 661.65 MHz -44.35 dBm	Auto Tur
10.0							Center Fre 346.000000 MH
10.0						DL1 -13.00 dBm	Start Fre 30.000000 Mi
20.0							Stop Fre 662.000000 Mi
40.0 50.0		. We as block a start for an all searching and		Ange dagt of An July and p Development		1	CF Ste 63.200000 MI <u>Auto</u> Mi
60.0							Freq Offs 0
70.0						Stop 662.0 MHz	Scale Typ
Res BW 100		#VBW	300 kHz	Sv	weep 30.	34 ms (12641 pts)	
ISG					STATUS		

Plot 7-57. Conducted Spurious Plot (Band 71 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-58. Conducted Spurious Plot (Band 71 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 166		
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 47 of 166		
© 2018 PCTEST Engineering Lab	2018 PCTEST Engineering Laboratory, Inc.					

🔤 Keysight Spectrum Analy						
LXV RL RF	50 Ω DC	CORREC	SENSE:INT	#Avg Type: RMS	05:15:31 PM Aug 23, 2018 TRACE 1 2 3 4 5 6	Frequency
	NFE	PNO: Fast 🖵 IFGain:Low	Trig: Free Run #Atten: 34 dB			Auto Tune
10 dB/div Ref 0.	00 dBm			N	1kr1 9.755 0 GHz -37.14 dBm	Auto Tune
			Ĭ			Center Freq
-10.0					DL1 -13.00 dBm	5.500000000 GHz
-20.0						Start Freq
-30.0					1	1.000000000 GHz
-40.0		~~~				Stop Freq
-50.0						10.000000000 GHz
						CF Ster
-60.0						900.000000 MHz Auto Mar
-70.0						
-80.0						Freq Offset 0 Hz
-90.0						
						Scale Type
Start 1.000 GHz #Res BW 1.0 MH	z	#VBW	3.0 MHz	Sweep /	Stop 10.000 GHz 15.60 ms (18001 pts)	Log <u>Lin</u>
MSG				STAT		

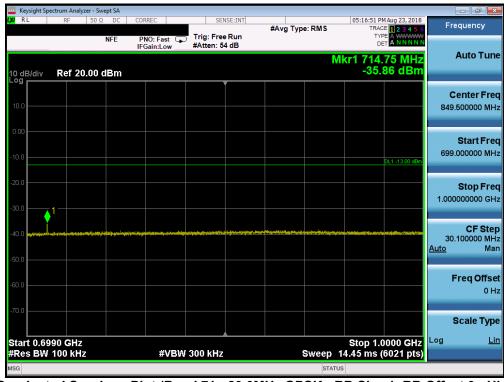
Plot 7-59. Conducted Spurious Plot (Band 71 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-60. Conducted Spurious Plot (Band 71 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 166	
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 48 of 166	
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018				

	pectrum Analyze										
LX/IRL	RF	50 Ω DC	CORREC	SEN	ISE:INT	#Avg Typ	e: RMS		MAug 23, 2018	Fr	equency
		NFE	PNO: Fast IFGain:Low	Trig: Free #Atten: 5				TYF DE	20 MHz 58 dBm		Auto Tune
10 dB/div Log	Ref 20.	00 dBm						-34.	98 aBM		
10.0											enter Freq .000000 MHz
-10.0									DL1 -13.00 dBm	698	Start Freq .000000 MHz
-20.0										1.000	Stop Freq
-30.0 -1 -40.0 -40.0	nit (edistrita projecture	alalystering and allowed a	yanyalayina ta'ini katana ta'ini yanya ta'u yana	eydericyyn elyderryd	an dan Herender Mehren	an a	an a marina da ang ang ang ang ang ang ang ang ang an	andre ann an	l agent dig van dae d	30 <u>Auto</u>	CF Step 200000 MHz Man
-50.0										H	F req Offset 0 Hz
-70.0											Scale Type
Start 0.6 #Res BW	980 GHz / 100 kHz		#VBW	300 kHz			Sweep 1	Stop 1.0 4.50 ms ()000 GHz 6041 pts)	Log	<u>Lin</u>
MSG							STATUS				

Plot 7-61. Conducted Spurious Plot (Band 71 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


Plot 7-62. Conducted Spurious Plot (Band 71 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 166	
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 49 of 166	
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018				

	pectrum Analyze							
LX/ RL	RF	50 Ω DC	CORREC	SENS	#Avg Ty	pe: RMS	05:16:42 PM Aug 23, 2018 TRACE 1 2 3 4 5 6	Frequency
		NFE	PNO: Fast 🕞 IFGain:Low	Trig: Free F #Atten: 54		М	Kr1 661.25 MHz	Auto Tune
10 dB/div Log	Ref 20.	00 dBm					-38.24 dBm	
10.0								Center Freq 346.500000 MHz
-10.0							DL1 -13.00 dBm	Start Freq 30.000000 MHz
-20.0								Stop Freq 663.000000 MHz
-40.0		Bernine Petrika (Selay)	Negelen gi plantisk synositetisk for			a tala sa	rhoutena hapistach storenne service	CF Step 63.300000 MHz <u>Auto</u> Man
-50.0								Freq Offset 0 Hz
-70.0								Scale Type
Start 30. #Res BW	0 MHz 100 kHz		#VBW	/ 300 kHz		Sweep 30	Stop 663.0 MHz).38 ms (12661 pts)	Log <u>Lin</u>
MSG			<i>"</i> , , , , , , , , , , , , , , , , , , ,			STATUS		

Plot 7-63. Conducted Spurious Plot (Band 71 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-64. Conducted Spurious Plot (Band 71 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dega 50 of 166			
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 50 of 166			
2018 PCTEST Engineering Laboratory, Inc. V 8.4 08/10/2018							

	ectrum Analyz									
L <mark>XI</mark> RL	RF	50 Ω DC	CORREC		SE:INT	#Avg Typ	e: RMS	TRAC	MAug 23, 2018	Frequency
		NFE	PNO: Fast 🖵 IFGain:Low	Trig: Free #Atten: 3				TY D	PE A WWWWW ET A N N N N N	
10 dB/div Log	Ref 0.0	00 dBm					M	(r1 9.79 -39.	6 0 GHz 30 dBm	Auto Tune
-10.0									DL1 -13.00 dBm	Center Free 5.500000000 GH:
-20.0										Start Fred 1.000000000 GH:
-40.0			_~~~	~~~	~~~		~~~			Stop Free 10.000000000 GH:
-60.0										CF Step 900.000000 MH: <u>Auto</u> Mar
-80.0										Freq Offse 0 H:
-90.0										Scale Type
Start 1.00 #Res BW			#VBW	3.0 MHz		s	weep 1	Stop 10 5.60 ms <u> (1</u>	.000 GHz 8001 pts)	
MSG							STATU	·		

Plot 7-65. Conducted Spurious Plot (Band 71 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

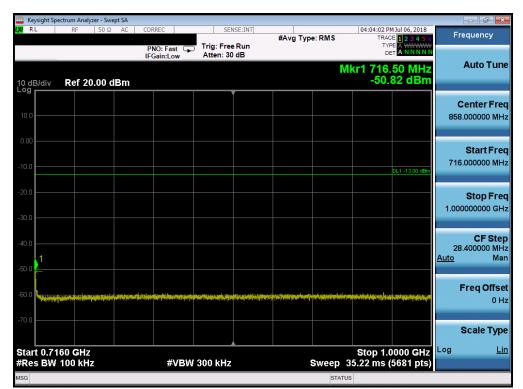
FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 51 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 51 01 100
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

Start 30.0 MHz

#Res BW 100 kHz

Keysight Spectrum Analyzer - Swept SA RI 04:03:57 PM Jul 06, 2018 Frequency #Avg Type: RMS TRACE 1 2 3 4 5 PNO: Fast Trig: Free Run Atten: 30 dB Auto Tune Mkr1 697.20 MHz -34.67 dBm Ref 20.00 dBm 10 dB/div **Center Freq** 363.950000 MHz Start Freq 30.000000 MHz Stop Freq 697.900000 MHz CF Step 66.790000 MHz Man Auto **Freq Offset** 0 Hz Scale Type

Plot 7-66. Conducted Spurious Plot (Band 12 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

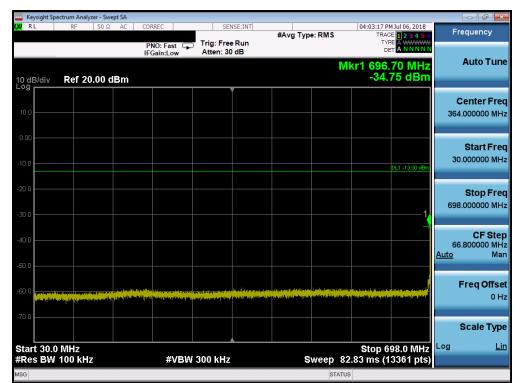

#VBW 300 kHz

Stop 697.9 MHz Sweep 82.82 ms (13359 pts)

STATUS

Log

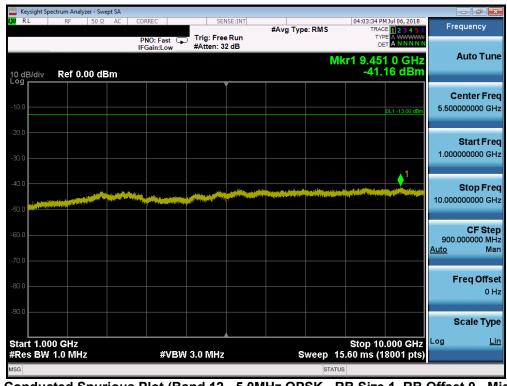
Lin


Plot 7-67. Conducted Spurious Plot (Band 12 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 52 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 52 of 166
© 2018 PCTEST Engineering La	V 8 4 08/10/2018			

	oectrum Analyzer - S										
(XI RL	RF 50	Ω AC O	ORREC	SEN	ISE:INT	#Avg Typ	e: RMS		MJul 06, 2018	Fr	equency
		I	PNO: Fast 🕞 FGain:Low	Trig: Free #Atten: 3				TYF DE			
10 dB/div Log	Ref 0.00 c	IBm					M	kr1 8.64 -40.) 5 GHz 93 dBm		Auto Tune
-10.0									DL1 -13.00 dBm		Center Freq
-20.0											
-30.0										1.00	Start Freq
-40.0		teal			, and the second live						Stop Freq
-50.0		titi ashido ^{nika dhekito}			and the second secon	in the local part of the line			alta merudan	10.00	0000000 GHz
-60.0										900 Auto	CF Step .000000 MHz Man
-70.0											
-80.0											F req Offset 0 Hz
-90.0											Scale Type
Start 1.00 #Res BW			#VBW	/ 3.0 MHz		S	weep <u>1</u>	⊥ Stop 10 5.60 ms (1	000 0112	Log	Lin
MSG							STATU				

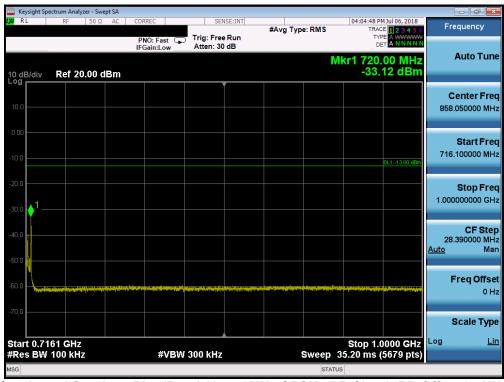
Plot 7-68. Conducted Spurious Plot (Band 12 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


Plot 7-69. Conducted Spurious Plot (Band 12 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 166	
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 53 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

🧧 Keysight Spectrum Analyzer - Swept SA											
LX/RL	RF 50 Ω	AC C	ORREC	SEN	ISE:INT	#Avg Typ	e: RMS		1 Jul 06, 2018 E 1 2 3 4 5 6	Fre	equency
			PNO: Fast 🕞	Trig: Free Atten: 30				TYF DE			Auto Tune
10 dB/div Log	Ref 20.00 d	Bm					M	kr1 717. -46.	50 MHz 30 dBm		Auto Tune
											enter Freq
10.0										858	.000000 MHz
0.00											Start Freq
-10.0									DL1 -13.00 dBm	716	.000000 MHz
-20.0											Stop Freq
-30.0										1.000	000000 GHz
											CF Step
-40.0										28 <u>Auto</u>	400000 MHz Man
-50.0											
-60.0			in the second							F	req Offset 0 Hz
-70.0											
											Scale Type
Start 0.71 #Res BW			#VBW	300 kHz			Sweep 3	Stop 1.0 35.22 ms (1000 GHz 5681 pts)	Log	<u>Lin</u>
MSG							STATUS	S			

Plot 7-70. Conducted Spurious Plot (Band 12 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


Plot 7-71. Conducted Spurious Plot (Band 12 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 54 of 166		
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 54 of 166	
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018				

	ectrum Analyzer											
LXI RL	RF	50 Ω AC	CORREC		SEN	ISE:INT	#Avg Typ	e: RMS		PM Jul 06, 2018	Fr	equency
			PNO: F	ast 🖵	Trig: Free Atten: 30		• 71		-			
			ii Gain.i	LOW	,				Mkr1 69	4.15 MHz		Auto Tune
10 dB/div	Ref 20.0	00 dBm							-5	5.85 dBm		
												Senter From
10.0												enter Freq
											004	
0.00												
											20	Start Freq
-10.0										DL1 -13.00 dBm	30	
-20.0												
-20.0												Stop Freq
-30.0											698	.000000 MHZ
												CF Step
-40.0											66	.800000 MHz
50.0											<u>Auto</u>	Man
-50.0												
-60.0	At in without a the distance lines					a di da ca da di carite ca	united to the second	والمراجع والم	and the first state of the	nay Markinson		Freq Offset
and the state	anipated of these at the	alasal addination	Alexandria (a faitheach	والتراوية والمتحققة والم	a bladi gʻigʻa ya aktiri ya katiri	السل رانت. وهم داما وا _ر به الال	and the second of the later of the	and the second	ويتحد وتواطر بالكام الأوم الترواسات	and a set of the billing in the billing of the set of t		0 Hz
-70.0												
												Scale Type
Start 30.0									Stop	698.0 MHz	Log	Lin
#Res BW	100 kHz		;	#VBW	300 kHz		s	weep	82.83 ms	(13361 pts)		
MSG								ST	ATUS			

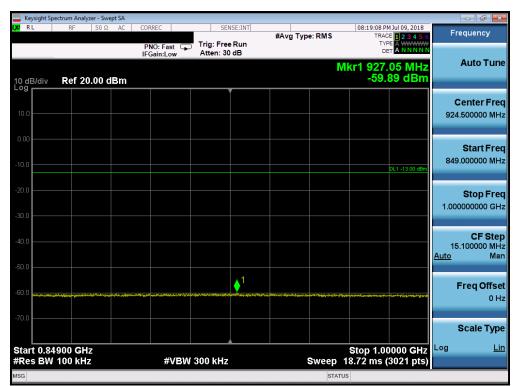
Plot 7-72. Conducted Spurious Plot (Band 12 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-73. Conducted Spurious Plot (Band 12 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:		Dama 55 of 100				
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 55 of 166				
© 2018 PCTEST Engineering Laboratory, Inc.								

		ctrum Anal												
l,XI RI		RF	50 Ω	AC	CORREC	0	SEN	ISE:INT	#Avg Typ	e: RMS		MJul 06, 2018	Fre	equency
					PNO: IFGain	Fast 😱 n:Low	Trig: Free #Atten: 3		0 ,1		TYF DE			Auto Tune
10 dE Log	3/div	Ref 0	.00 dE	sm							lkr1 8.67 -40.	85 dBm		
							,							enter Freq
-10.0												DL1 -13.00 dBm	5.500	000000 GHz
-20.0														Start Freq
-30.0													1.000	000000 GHz
-40.0											1			
													10.000	Stop Freq
-50.0	الانتخاص													
-60.0														CF Step
-70.0													<u>Auto</u>	Man
-80.0													F	req Offset
														0 Hz
-90.0													:	Scale Type
		0 GHz									Stop 10	.000 GHz	Log	Lin
#Res	s BW	1.0 MH	z			#VBW	3.0 MHz		s	weep	15.60 ms (1	8001 pts)		
MSG										STAT	US			

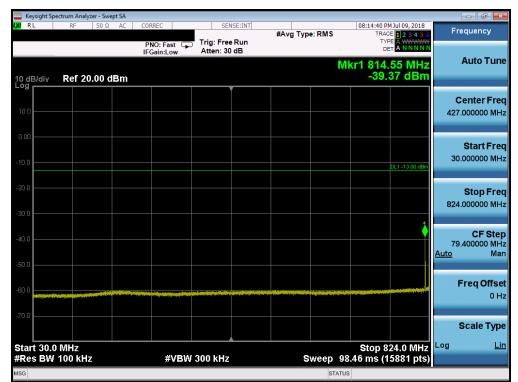
Plot 7-74. Conducted Spurious Plot (Band 12 - 5.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)


FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 56 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 50 01 100
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

Band 5

	ectrum Analyzer - Sv										
LX/IRL	RF 50 S	Ω AC	PNO: Fast		Run	#Avg Type	RMS	TRAC	1 Jul 09, 2018 E <mark>1 2 3 4 5 6</mark> E A WWWW	Fr	equency
10 dB/div	Ref 20.00	dBm	IFGain:Low	Atten: 30			M	kr1 820.	20 MHz 06 dBm		Auto Tune
10.0											Center Fred 5.500000 MHz
-10.0									DL1 -13.00 dBm	30	Start Fred
-20.0										823	Stop Fred 3.000000 MH:
-40.0									1	79 <u>Auto</u>	CF Step 0.300000 MH Mar
-60.0							ter ter det i Mary a det patie	an terretion let a son be the		ļ	Freq Offse 0 H
-70.0											Scale Type
Start 30.0 #Res BW			#VBV	V 300 kHz		SI	weep 98	Stop 8: 33 ms (1	20.011112	Log	Lir
MSG							STATUS	;			

Plot 7-75. Conducted Spurious Plot (Band 5 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


Plot 7-76. Conducted Spurious Plot (Band 5 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 57 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 57 of 166
© 2018 PCTEST Engineering Lat	V 8 4 08/10/2018			

	pectrum Analyz												
L <mark>XI</mark> RL	RF	50 Ω	AC	CORREC		SEI	ISE:INT	#Avg Typ	e: RMS		PM Jul 09, 2018 CE 1 2 3 4 5 6	Fred	uency
	Ref 0.0			PNO: Fa IFGain:L	ast 😱 .ow	Trig: Free #Atten: 3			N	/kr1 8.67		A	uto Tune
10 dB/div Log											DL1 -13.00 dBm		nter Freq 00000 GHz
-20.0													Start Freq 00000 GHz
-40.0													Stop Freq 00000 GHz
-60.0												900.0 <u>Auto</u>	CF Step 00000 MHz Man
-80.0												Fr	e q Offset 0 Hz
-90.0										Otom 4/		So Log	ale Type
Start 1.0 #Res BV	UU GHZ V 1.0 MHz			#	≠vвw	3.0 MHz		s	weep	500 1 15.60 ms (0.000 GHz 18001 pts)	209	
MSG									STAT	TUS			

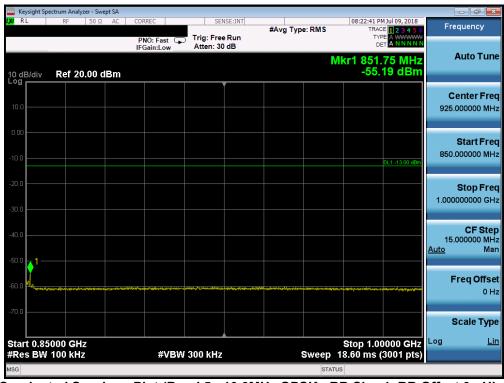
Plot 7-77. Conducted Spurious Plot (Band 5 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-78. Conducted Spurious Plot (Band 5 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 59 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 58 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

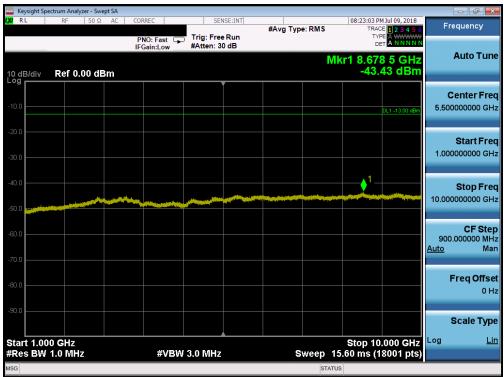
	ectrum Analyzer - Swep							
(XI RL	RF 50 Ω	AC CC	ORREC	SENSE:	Avg Typ	e: RMS	08:15:13 PM Jul 09, 2018 TRACE 1 2 3 4 5 6	Frequency
		F	PNO: Fast 🖵 Gain:Low	Trig: Free Ru Atten: 30 dB		Mk	TYPE A WWWW DET A NNNNN	Auto Tune
10 dB/div Log	Ref 20.00 di	Bm					-31.77 dBm	
10.0								Center Freq 924.500000 MHz
-10.0							DL1 -13.00 dBm	Start Freq 849.000000 MHz
-20.0								Stop Freq 1.000000000 GHz
-40.0								CF Step 15.100000 MHz <u>Auto</u> Mar
-50.0	reaction of the state of the grade of the grad	September: grad de maise	uniter and a state of the state	99 1 11111111	an a		water the second s	Freq Offset 0 Hz
-70.0								Scale Type
Start 0.84 #Res BW			#VBW	300 kHz		Sweep 18	top 1.00000 GHz .72 ms (3021 pts)	Log <u>Lin</u>
мsg 🗼 Poin	ts changed; all tra	aces clea	red			STATUS		

Plot 7-79. Conducted Spurious Plot (Band 5 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


Plot 7-80. Conducted Spurious Plot (Band 5 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daga 50 of 166		
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 59 of 166		
2018 PCTEST Engineering Laboratory, Inc. V 8.4 08/10/2018						

	ectrum Analyzer -										
LX/RL	RF 50	Ω AC	CORREC	SEN	ISE:INT	#Avg Typ	e: RMS		1 Jul 09, 2018 E 1 2 3 4 5 6	Fre	equency
			PNO: Fast IFGain:Low	Trig: Free Atten: 30		0 ,1		TYF DE			Auto Tune
10 dB/div Log	Ref 20.00	dBm					M	kr1 822. -40.	00 MHz 67 dBm		Autorune
										С	enter Freq
10.0										427	.000000 MHz
0.00											
10.0										30.	Start Freq 000000 MHz
-10.0									DL1 -13.00 dBm		
-20.0											Stop Freq
-30.0										824.	.000000 MHz
									1		CF Step
-40.0									`	79. <u>Auto</u>	400000 MHz Man
-50.0										Auto	ind i
-60.0										F	req Offset
		a see a set block of an in		and a second standard and	(Level a dis (Inc.) and with th		line for an an state of a second				0 Hz
-70.0										:	Scale Type
Start 30.0								Stop 9	24.0 MHz	Log	Lin
#Res BW			#VBW	300 kHz		s	weep 98	5.0p 8 8.46 ms (1	5881 pts)		200
MSG							STATU	s			


Plot 7-81. Conducted Spurious Plot (Band 5 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-82. Conducted Spurious Plot (Band 5 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	NG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 60 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 60 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

Plot 7-83. Conducted Spurious Plot (Band 5 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 61 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 61 01 100
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

C RL RF 5	0 Ω DC CORREC	SENSE:INT		03:32:51 PM Aug 23, 2018	
	NFE PNO: Fast G	Trig: Free Run #Atten: 46 dB	#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN	Frequency
0 dB/div Ref 20.0			М	kr1 1.701 5 GHz -31.53 dBm	Auto Tur
10.0					Center Fre 869.000000 MH
10.0				DL1 -13.00 dBm	Start Fre 30.000000 Mi
20.0				, <u>,</u>	Stop Fro 1.708000000 GI
10.0 	nagaden of general spectra of the second spectrum of the			,	CF Ste 167.800000 MI <u>Auto</u> M
50.0					Freq Offs 0
					Scale Typ
tart 0.0300 GHz Res BW 1.0 MHz	#VBV	V 3.0 MHz	Sweep	Stop 1.7080 GHz 2.239 ms (3359 pts)	

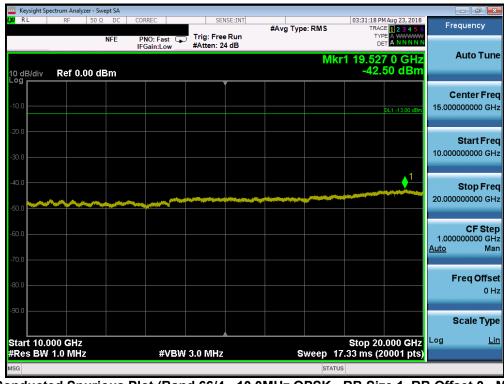
Plot 7-84. Conducted Spurious Plot (Band 66/4 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-85. Conducted Spurious Plot (Band 66/4 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 62 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 62 of 166
© 2018 PCTEST Engineering Lat	V 8 4 08/10/2018			

	ectrum Analyze							
LXI RL	RF	50 Ω DC	CORREC	SENSE:INT	#Avg Typ	e: RMS	03:34:24 PM Aug 23, 2018 TRACE 1 2 3 4 5 6	Frequency
		NFE	PNO: Fast IFGain:Low	Trig: Free Run #Atten: 26 dB			DET A WWWW	Auto Tune
10 dB/div Log	Ref 0.0	0 dBm				Mk	r1 19.196 0 GHz -40.87 dBm	Auto Tune
Ū				Ĭ				Center Freq
-10.0							DL1 -13.00 dBm	15.00000000 GHz
-20.0								
2010								Start Freq
-30.0								10.00000000 GHz
-40.0								
-40.0								Stop Freq 20.00000000 GHz
-50.0								20.000000000 GHZ
								CF Step
-60.0								1.000000000 GHz Auto Man
-70.0								
								Freq Offset
-80.0								0 Hz
-90.0								
								Scale Type
Start 10.0							Stop 20.000 GHz	Log <u>Lin</u>
#Res BW	1.0 MHz		#VBW	3.0 MHz	S	weep 1	7.33 ms (20001 pts)	
MSG						STATU	S	

Plot 7-86. Conducted Spurious Plot (Band 66/4 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


Plot 7-87. Conducted Spurious Plot (Band 66/4 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 62 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 63 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

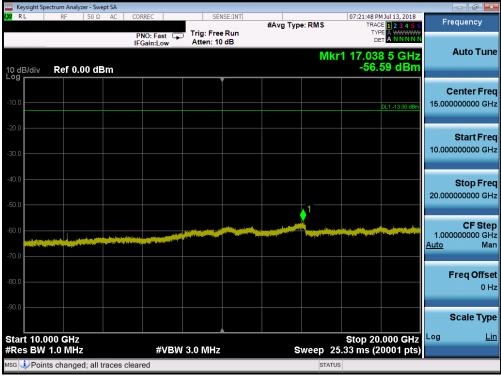
Plot 7-88. Conducted Spurious Plot (Band 66/4 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-89. Conducted Spurious Plot (Band 66/4 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 64 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 64 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

Band 2

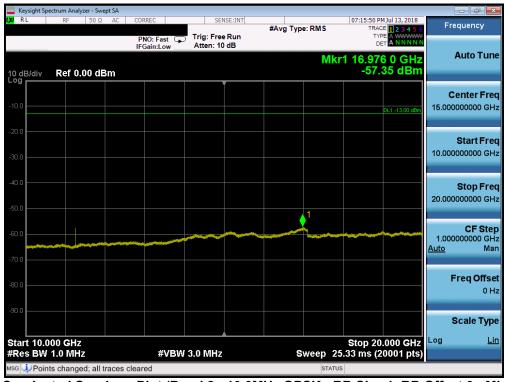
	ectrum Analyzer - Sv						
LXU RL	RF 50 Ω	2 AC	PNO: Fast	Trig: Free Run Atten: 30 dB	#Avg Type: RM	07:21:31 PM Jul 13, 2018 IS TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency
10 dB/div Log	Ref 20.00	dBm	IFGain:Low	Atten: 00 dB		Mkr1 1.842 0 GHz -40.90 dBm	Auto Tune
10.0							Center Freq 939.000000 MHz
-10.0						DL1 -13.00 dBm	Start Freq 30.000000 MHz
-20.0							Stop Freq 1.848000000 GHz
-40.0						1	CF Step 181.800000 MHz <u>Auto</u> Man
-60.0	galiter a second parameter						Freq Offset 0 Hz
-70.0							Scale Type
Start 0.03 #Res BW			#VBW	3.0 MHz	Swe	Stop 1.8480 GHz ep 2.425 ms (3639 pts)	Log <u>Lin</u>
MSG						STATUS	


Plot 7-90. Conducted Spurious Plot (Band 2 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-91. Conducted Spurious Plot (Band 2 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 65 of 166		
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 65 of 166		
© 2018 PCTEST Engineering Lab	2018 PCTEST Engineering Laboratory, Inc.					

Plot 7-92. Conducted Spurious Plot (Band 2 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


Plot 7-93. Conducted Spurious Plot (Band 2 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 66 of 166	
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 66 01 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

Keysight Spectrum Analyzer - S									
LX/ RL RF 50	Ω AC CC	RREC	SEN	SE:INT	#Avg Type	e: RMS		M Jul 13, 2018 E 1 2 3 4 5 6	Frequency
	IF	PNO: Fast 🖵 Gain:Low	Trig: Free Atten: 30			M	rr1 9.52	6 0 GHz 74 dBm	Auto Tune
10 dB/div Ref 20.00	dBm		Ĭ				-45.	74 abm	
10.0									Center Freq 5.955000000 GHz
-10.0								DL1 -13.00 dBm	Start Freq 1.910000000 GHz
-20.0									Stop Fred 10.000000000 GHz
-40.0					e e se			1	CF Step 809.000000 MHz <u>Auto</u> Mar
-60.0									Freq Offse 0 H;
-70.0									Scale Type
Start 1.910 GHz #Res BW 1.0 MHz		#VBW	3.0 MHz		S	weep 14	Stop 10 1.02 ms (1	.000 GHz 6181 pts)	Log <u>Lin</u>
мsg 🗼 Points changed; a	Il traces clea	red				STATUS	s		

Plot 7-94. Conducted Spurious Plot (Band 2 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-95. Conducted Spurious Plot (Band 2 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	MSUNG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daga 67 of 166		
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 67 of 166		
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018					

	pectrum Analyzer - Sw									_	
LXI RL	RF 50 Ω	AC (ORREC	SEN	SE:INT	#Avg Typ	e: RMS		MJul 13, 2018 E 1 2 3 4 5 6	Fre	equency
			PNO: Fast 🕞	Trig: Free Atten: 30			Mk	rri 1.84	3 5 GHz		Auto Tune
10 dB/div Log	Ref 20.00 (dBm						-47.	90 dBm		
10.0											enter Freq 000000 MHz
-10.0									DL1 -13.00 dBm	30.	Start Freq 000000 MHz
-20.0										1.850	Stop Freq 000000 GHz
-40.0							المالين لومر وحجوا اليومون	-	1	182. <u>Auto</u>	CF Step 000000 MHz Man
-60.0										F	F req Offset 0 Hz
-70.0											Scale Type
Start 0.03 #Res BW			#VBW	3.0 MHz			Sweep 2	Stop 1.3 .427 ms (3500 GHz 3641 pts)	Log	Lin
MSG							STATUS				


Plot 7-96. Conducted Spurious Plot (Band 2 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-97. Conducted Spurious Plot (Band 2 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 69 of 166		
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 68 of 166	
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018				

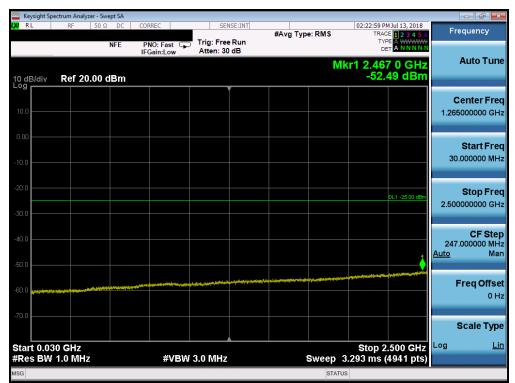
Plot 7-98. Conducted Spurious Plot (Band 2 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 69 of 166	
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	018 Portable Handset		
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

Band 7

Keysight Spectro	um Analyzer - Swept SA					
LXU RL	RF 50 Ω DC		SENSE:INT Trig: Free Run Atten: 30 dB	#Avg Type: RMS	02:25:50 PM Jul 13, 2018 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	Frequency
10 dB/div	Ref 20.00 dBm	IFGain:Low	Atten: 50 db	М	kr1 2.463 0 GHz -52.54 dBm	Auto Tune
10.0						Center Freq 1.252500000 GHz
-10.0						Start Freq 30.000000 MHz
-20.0					DL1 -25.00 dBm	Stop Freq 2.475000000 GHz
-40.0					<u>1</u>	CF Step 244.500000 MHz <u>Auto</u> Mar
-60.0	perior deservations and the best of the	and the second secon	1 	***************************************		Freq Offset 0 Hz
-70.0 Start 0.030					0100 2.470 0112	Scale Type
#Res BW 1.	0 MHz	#VBW 3	.0 MHz	Sweep Statu	3.260 ms (4891 pts)	

Plot 7-99. Conducted Spurious Plot (Band 7 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


Plot 7-100. Conducted Spurious Plot (Band 7 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 70 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

	ectrum Analyzer - Swep	ot SA									×
LXI RL	RF 50 Ω	DC COI	RREC	SEN	ISE:INT	#Avg Typ	e: RMS		MJul 13, 2018	Frequency	y
	N	IFE P IF	NO:Fast 🕞 Gain:Low	Trig: Free Atten: 10		0 ,1		TYF DE		Auto T	Tune
10 dB/div Log	Ref 0.00 dB	m					Mkr	1 26.31 -57.	0 5 GHz 93 dBm		une
										Center F	
-10.0										21.00000000	GHz
-20.0									DL1 -25.00 dBm	Start F	
-30.0										15.000000000	GHz
-40.0										Stop F	
-50.0									. 1	27.000000000	GHz
-60.0		1			and the second s					CF S 1.200000000	
-70.0			and the second		أليسفير وأأفري بالمرع						Man
-80.0										Freq Of	ffset
											0 Hz
-90.0										Scale T	Гуре
Start 15.0 #Res BW	000 GHz		#\/B\/	3.0 MHz			ween 20	Stop 27	.000 GHz 4001 pts)	Log	Lin
MSG			#VDVV	3.0 WHZ		3	status		400 r pts)		
											_

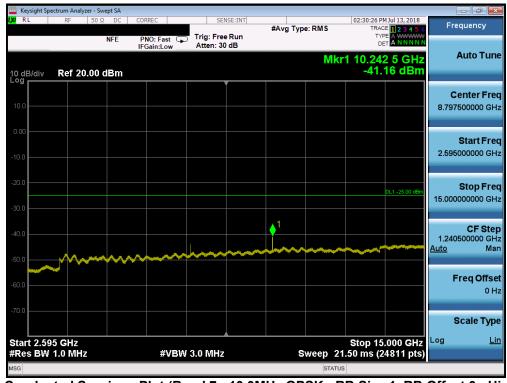
Plot 7-101. Conducted Spurious Plot (Band 7 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-102. Conducted Spurious Plot (Band 7 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 71 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 71 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

	ectrum Analyzer							
LXI RL	RF 5	0Ω DC	CORREC	SENS	E:INT #Avg Ty	pe: RMS	02:23:24 PM Jul 13, 2018 TRACE 1 2 3 4 5 6	Frequency
		NFE	PNO: Fast 📮 IFGain:Low	Trig: Free F Atten: 30 d	lun		14.354 5 GHz	Auto Tune
10 dB/div Log	Ref 20.0	0 dBm					-43.86 dBm	
10.0								Center Freq 8.785000000 GHz
-10.0								Start Freq 2.570000000 GHz
-20.0							DL1 -25.00 dBm	Stop Freq 15.000000000 GHz
-40.0						Repairing and the second second	1_	CF Step 1.243000000 GHz <u>Auto</u> Man
-50.0								Freq Offset 0 Hz
-70.0 Start 2.57	70 GHz						Stop 15.000 GHz	Scale Type
#Res BW			#VBW	3.0 MHz	ş	Sweep 21.	55 ms (24861 pts)	
MSG						STATUS		

Plot 7-103. Conducted Spurious Plot (Band 7 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


Plot 7-104. Conducted Spurious Plot (Band 7 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 72 of 166	
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 72 of 166
© 2018 PCTEST Engineering Lab	V 8.4 08/10/2018			

	ectrum Analyze										x
LXU RL	RF	50 Ω DC	CORREC	SEN	ISE:INT	#Avg Typ	e: RMS		1 Jul 13, 2018 E 1 2 3 4 5 6	Frequency	
		NFE	PNO: Fast G	Trig: Free Atten: 30		0 ,1		TYP		Auto Tu	ne
10 dB/div Log	Ref 20.	00 dBm						-52.4	43 dBm		
10.0										Center Fr 1.265000000 G	
0.00										1.26500000 G	Π2
										Start Fr 30.000000 M	
-10.0											
-20.0									DL1 -25.00 dBm	Stop Fr 2.500000000 G	
-30.0											
-40.0										CF Sto 247.000000 M Auto M	
-50.0							وخط فروجه مرور و م				
-60.0 -60.0	And the second		and a product of the state of the	and the second						Freq Offs 0	set Hz
-70.0										Scale Ty	ne
Start 0.03	0 GHz							Stop 2	.500 GHz		_in
#Res BW			#VBV	V 3.0 MHz			Sweep 🗧	3.293 ms (4	4941 pts)		
MSG							STATU	s			

Plot 7-105. Conducted Spurious Plot (Band 7 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-106. Conducted Spurious Plot (Band 7 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 72 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 73 of 166
© 2018 PCTEST Engineering Lab	ooratory, Inc.			V 8.4 08/10/2018

	ectrum Analyz										7 ×
IXI RL	RF	50Ω DC	CORREC		ISE:INT	#Avg Typ	e: RMS	TRAC	M Jul 13, 2018 E 1 2 3 4 5 6	Frequenc	су
		NFE	PNO: Fast G	Trig: Free Atten: 10				TYI Di			
10 dB/div Log	Ref 0.0	00 dBm					Mkr	1 26.77 -58.	3 5 GHz 31 dBm	Auto	Tune
-10.0										Center 21.00000000	
-20.0									DL1 -25.00 dBm	Start 15.00000000	t Freq 0 GHz
-40.0										Stop 27.00000000	Freq 0 GHz
-60.0							a parti de Propiet Planete		<u> </u>	CF 1.200000000 <u>Auto</u>	0 GHz Man
-80.0										Freq C	Offset 0 Hz
-90.0										Scale	
Start 15.0 #Res BW			#VBW	3.0 MHz		s	weep 20		.000 GHz 4001 pts)	-	Lin
MSG							STATUS				

Plot 7-107. Conducted Spurious Plot (Band 7 - 10.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 74 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 74 of 166
© 2018 PCTEST Engineering Lab	oratory, Inc.			V 8.4 08/10/2018

7.4 Band Edge Emissions at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

The minimum permissible attenuation level for Band 7 is as noted in the Test Notes on the following page.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW ≥ 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 75 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 75 of 166
© 2018 PCTEST Engineering La	boratory, Inc.	•		V 8.4 08/10/2018

<u>Test Notes</u>

Per 22.917(b) 24.238(a) 27.53(h) in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

Per 27.53(g) for operations in the 698-746 MHz band, in the 100 kHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least 30 kHz may be employed to demonstrate compliance with the out-of-band emissions limit.

Per 27.53(m) for operations in the BRS/EBS bands, the attenuation factor shall be not less than $40 + 10 \log (P) dB$ on all frequencies between the channel edge and 5 megahertz from the channel edge, $43 + 10 \log (P) dB$ on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth. In addition, the attenuation factor shall not be less that $43 + 10 \log (P) dB$ on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz.

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 76 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 76 of 166
© 2018 PCTEST Engineering Lab	oratory. Inc.			V 8.4 08/10/2018

Plot 7-108. Lower Band Edge Plot (Band 71 - 5.0MHz QPSK - Full RB Configuration)

Plot 7-109. Upper Band Edge Plot (Band 71 - 5.0MHz QPSK - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 77 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset		Page 77 of 166
© 2018 PCTEST Engineering Lab	oratory, Inc.			V 8.4 08/10/2018

RL	ectrum Analyz RF	50 Ω DC		EC	SEI	NSE:INT			05:30:19 PI	M Aug 23, 2018		
		NFE		:Wide 🕞		Run	#Avg Typ	e: RMS	TRAC	E 1 2 3 4 5 6 E A WWWW A NNNNN	F	requency
0 dB/div	Ref 25	.00 dBn		in:Low	Atten: 36	a B		Mk	r1 662.9	04 MHz 21 dBm		Auto Tun
15.0												Center Fre 3.000000 M⊦
5.00						M	al Array Contractor		and the second se	DL1 -13.00 dBm	65	Start Fre 9.000000 MH
25.0					Ales Ales and						66	Stop Fre 7.000000 MF
35.0 •••••••••	and the second	elas-lass smp	and a second	gallen an	and a second						<u>Auto</u>	CF Ste 800.000 kl Ma
55.0												Freq Offs 0 I
65.0												Scale Typ
Center 66 Res BW				#VBW	/ 300 kHz			Sweep 4	Span 8 1.000 ms (.000 MHz 1001 pts)	Log	L
SG								STATU	s			

Plot 7-110. Lower Band Edge Plot (Band 71 - 10.0MHz QPSK - Full RB Configuration)

Plot 7-111. Upper Band Edge Plot (Band 71 - 10.0MHz QPSK - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Decc. 79 of 166
1M1808210161.A3L	6/25 - 7/26, 8/17 - 8/28/2018	Portable Handset		Page 78 of 166
© 2018 PCTEST Engineering La	boratory, Inc.			V 8.4 08/10/2018

	ectrum Analyzer										
LXI RL	RF	50Ω DC	CORREC	SENSE:		#Avg Type	RMS	TRAC	MAug 23, 2018	Fr	equency
10 dB/div	Ref 25.0	NFE	PNO: Wide IFGain:Low	Trig: Free Ru Atten: 36 dB	n		Mkı	DE 1 662.8	92 MHz 25 dBm		Auto Tune
15.0											Center Fred
-5.00					ſ		~~~~~			657	Start Fred 000000 MH;
-15.0				1					DL1 -13.00 dBm	669	Stop Fred 0.000000 MH2
-35.0	monter									Auto	CF Stej .200000 MH Ma
-55.0											F req Offse 0 H
	63.000 MH	Iz						Span 1	2.00 MHz	Log	Scale Type Lir
#Res BW	150 kHz		#VBW	470 kHz		Ś		.000 ms (1001 pts)		
150							STATUS				

Plot 7-112. Lower Band Edge Plot (Band 71 - 15.0MHz QPSK - Full RB Configuration)

Plot 7-113. Upper Band Edge Plot (Band 71 - 15.0MHz QPSK - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 70 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset	Page 79 of 166
© 2018 PCTEST Engineering Lab	ooratory, Inc.		V 8.4 08/10/2018

	pectrum Analy											
X/RL	RF	50 Ω DC				NSE:INT	#Avg Ty	pe: RMS	TRA	PM Aug 23, 2018 ACE 1 2 3 4 5 6	Fr	equency
		NFE	PNO: IFGair	Wide 🕞	Trig: Free Atten: 36							
10 dB/div Log	Ref 2	5.00 dBn	n					M	kr1 662. -28	968 MHz .33 dBm		Auto Tun
15.0												Center Free
5.00												
-5.00									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	655	Start Fre
-15.0										DL1 -13.00 dBm		
						1					671	Stop Fre
-25.0				- and any my	and the second	and the second s						CF Ste
35.0		and the second	warman								1 <u>Auto</u>	.600000 MH Ma
45.0	man	Var de la compañía de										Freq Offs
55.0												0 H
65.0												Scale Typ
Center 6 #Res BW	63.000 N V 200 kH:	/IHz z		#VBW	620 kHz			Sweep	Span 1.000 ms	16.00 MHz (1001 pts)	Log	Li
ISG								STAT				

Plot 7-114. Lower Band Edge Plot (Band 71 - 20.0MHz QPSK - Full RB Configuration)

Plot 7-115. Upper Band Edge Plot (Band 71 - 20.0MHz QPSK - Full RB Configuration)

FCC ID: A3LSMA600T		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Baga 80 of 166
1M1808210161.A3L	6/25 – 7/26, 8/17 - 8/28/2018	Portable Handset	Page 80 of 166
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.4 08/10/2018