

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT GSM / GPRS / EDGE / WCDMA

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 9/26-10/26/2017 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1709250255-02.A3L

FCC ID:

A3LSMA530N

APPLICANT:

Samsung Electronics Co., Ltd.

Application Type: Model: EUT Type: FCC Classification: FCC Rule Part(s): Test Procedure(s): Certification SM-A530N Portable Handset PCS Licensed Transmitter Held to Ear (PCE) 22 & 24 ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 1 of 59
© 2017 DCTEST Engineering La	2017 PCTEST Engineering Laboratory Inc.			

TABLE OF CONTENTS

1.0	INTR	ODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRO	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	EMI Suppression Device(s)/Modifications	5
3.0	DESC	RIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	Cellular - Base Frequency Blocks	6
	3.3	Cellular - Mobile Frequency Blocks	6
	3.4	PCS - Base Frequency Blocks	6
	3.5	PCS - Mobile Frequency Blocks	7
	3.6	Radiated Measurements	
4.0	MEAS		8
5.0	TEST	EQUIPMENT CALIBRATION DATA	9
6.0	SAMF	PLE CALCULATIONS	.10
7.0	TEST	RESULTS	.11
	7.1	Summary	. 11
	7.2	Occupied Bandwidth	. 12
	7.3	Spurious and Harmonic Emissions at Antenna Terminal	. 15
	7.4	Band Edge Emissions at Antenna Terminal	.31
	7.5	Peak-Average Ratio	. 37
	7.6	Radiated Power (ERP/EIRP)	.40
	7.7	Radiated Spurious Emissions Measurements	
	7.8	Frequency Stability / Temperature Variation	. 52
8.0	CON	CLUSION	.59

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 2 of 59
© 2017 PCTEST Engineering La	017 PCTEST Engineering Laboratory Inc			

MEASUREMENT REPORT GSM / GPRS / EDGE / WCDMA

			ERP		EIRP			
Mode	FCC Rule Part	Tx Frequency (MHz)	Max. Power (W)	Max. Power (dBm)	Max. Power (W)	Max. Power (dBm)	Emission Designator	
WCDMA850	22H	826.4 - 846.6	0.057	17.59	0.094	19.74	4M16F9W	
GPRS1900	24E	1850.2 - 1909.8			0.863	29.36	248KGXW	
EDGE1900	24E	1850.2 - 1909.8			0.243	23.85	246KG7W	
WCDMA1900	24E	1852.4 - 1907.6			0.236	23.72	4M15F9W	

EUT Overview

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 3 of 59
© 2017 PCTEST Engineering La	2017 DOTEST Engineering Laboratory Inc.			

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (22831) test laboratory with the site description on file with ISED.

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 4 of 59
© 2017 PCTEST Engineering La	017 DCTEST Engineering Laboratory Inc			

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMA530N**. The test data contained in this report pertains only to the emissions due to the EUT's 2G/3G licensed transmitters.

Test Device Serial No.: 18736, 18801, 18785

2.2 Device Capabilities

This device contains the following capabilities:

1900 GSM/GPRS/EDGE, 850/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC, ANT+

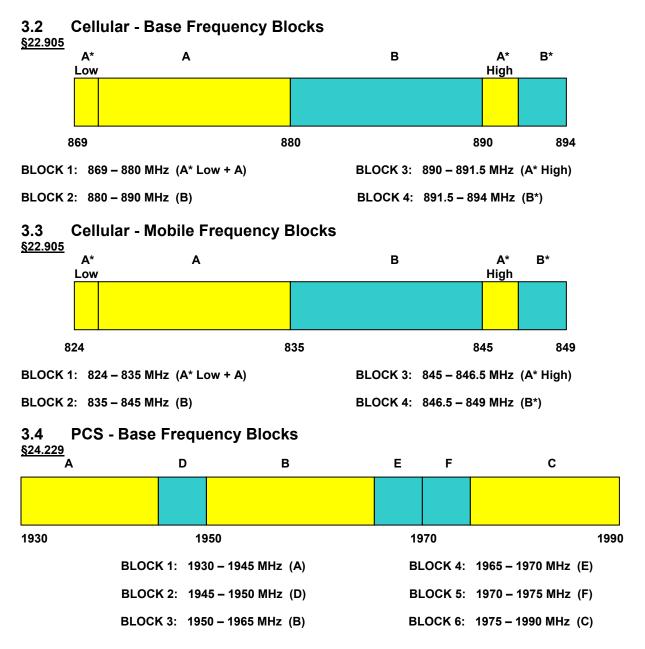
2.3 Test Configuration

The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v03. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 5 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset	Page 5 of 59	
© 2017 DOTEST Engineering La	017 DOTEST Engineering Laboratory Inc.			



3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-E-2016) and "Measurement Guidance for Certification of Licensed Digital Transmitters" (KDB 971168 D01 v03) were used in the measurement of the EUT.

```
Deviation from Measurement Procedure......None
```


FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 6 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 6 of 59	
© 2017 PCTEST Engineering La	017 PCTEST Engineering Laboratory, Inc.				

3.5 PCS - Mobile Frequency Blocks <u>§24.229</u> D F в Е С Δ 1850 1870 1890 1910 BLOCK 1: 1850 - 1865 MHz (A) BLOCK 4: 1885 - 1890 MHz (E) BLOCK 2: 1865 - 1870 MHz (D) BLOCK 5: 1890 - 1895 MHz (F) BLOCK 3: 1870 - 1885 MHz (B) BLOCK 6: 1895 - 1910 MHz (C)

3.6 Radiated Measurements

§2.1053 §22.913(a.2) §22.917(a) §24.232(c) §24.238(a)

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high Styrodur Plastic Test Table is placed on top of the turntable. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

Per the guidance of ANSI/TIA-603-E-2016, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

 $P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi]$

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g [dBm]}$ – cable loss [dB].

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI/TIA-603-E-2016.

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 7 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset	Page 7 of 59	

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 8 of 59
© 2017 PCTEST Engineering La	017 PCTEST Engineering Laboratory Inc			

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	LTx1	Licensed Transmitter Cable Set	1/6/2017	Annual	1/6/2018	LTx1
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	6/21/2017	Annual	6/21/2018	RE1
Agilent	N9030A	PXA Signal Analyzer (44GHz)	3/27/2017	Annual	3/27/2018	MY52350166
COM-Power	AL-130R	Active Loop Antenna	6/5/2017	Annual	6/5/2018	121085
Com-Power	PAM-103	Pre-Amplifier (1-1000MHz)	6/21/2017	Annual	6/21/2018	441119
Emco	3115	Horn Antenna (1-18GHz)	3/10/2016	Biennial	3/10/2018	9704-5182
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/23/2016	Biennial	8/23/2018	135427
Espec	ESX-2CA	Environmental Chamber	4/11/2017	Annual	4/11/2018	17620
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	12/1/2016	Biennial	12/1/2018	125518
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	4/26/2016	Biennial	4/26/2018	128337
Mini Circuits	PWR-SEN-4GHS	USB Power Sensor	3/24/2017	Annual	3/24/2018	11401010036
Mini Circuits	TVA-11-422	RF Power Amp	N/A			QA1317001
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator		N/A		11208010032
Rohde & Schwarz	CMU200	Base Station Simulator	4/11/2017	Annual	4/11/2018	836371/0079
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	4/19/2017	Annual	4/19/2018	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/31/2017	Annual	7/31/2018	100348
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102135
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102134
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102133
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Rx	3/30/2016	Biennial	3/30/2018	9105-2404
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Tx	3/30/2016	Biennial	3/30/2018	9105-2403
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	3/2/2016	Biennial	3/2/2018	N/A
Sunol	DRH-118	Horn Antenna (1-18GHz)	8/11/2017	Biennial	8/11/2019	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	3/14/2016	Biennial	3/14/2018	A051107

Table 5-1. Test Equipment

Notes:

Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 9 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017				

6.0 SAMPLE CALCULATIONS

GPRS Emission Designator

Emission Designator = 250KGXW

GPRS BW = 250 kHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 250KG7W

EDGE BW = 250 kHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M16F9W

WCDMA BW = 4.16 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data)

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 10 of 59
© 2017 PCTEST Engineering La	horatory Inc	•		V 7 0/22/2017

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMA530N
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	<u>GSM / GPRS / EDGE / WCDMA</u>

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	RSS-Gen (4.6.1) RSS-133(2.3) RSS-139(2.3)	Occupied Bandwidth	N/A		PASS	Section 7.2
2.1051 22.917(a) 24.238(a)	RSS-132(5.5) RSS-133(6.5) RSS-139(6.6)	Conducted Band Edge / Spurious Emissions	> 43 + log ₁₀ (P[Watts]) at Band Edge and for all out-of-band emissions		PASS	Sections 7.3, 7.4
24.232(d)	RSS-132(5.4) RSS-133(6.4) RSS-139(6.5)	Peak-Average Ratio	< 13 dB	CONDUCTED	PASS	Section 7.5
2.1046	RSS-132(5.4) RSS-133(4.1) RSS-139(4.1)	Transmitter Conducted Output Power	N/A		PASS	RF Exposure Report
2.1055 22.355 24.235	RSS-132(5.3) RSS-133(6.3) RSS-139(6.4)	Frequency Stability	< 2.5 ppm (Part 22) Emission must remain in band (Part 24)		PASS	Section 7.8
22.913(a.2)	RSS-132(5.4)	Effective Radiated Power	< 7 Watts max. ERP		PASS	Section 7.6
24.232(c)	RSS-133(6.4)	Equivalent Isotropic Radiated Power	< 2 Watts max. EIRP	RADIATED	PASS	Section 7.6
2.1053 22.917(a) 24.238(a)	RSS-132(5.5) RSS-133(6.5) RSS-139(6.6)	Radiated Spurious Emissions	> 43 + log ₁₀ (P[Watts]) for all out-of-band emissions		PASS	Section 7.7

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "2G/3G Automation," Version 3.9.

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	ortable Handset		Page 11 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017				

7.2 Occupied Bandwidth §2.1049 RSS-Gen (4.6.1) RSS-133(2.3) RSS-139(2.3)

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v03 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within

1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

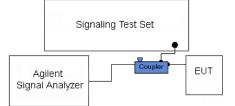


Figure 7-1. Test Instrument & Measurement Setup

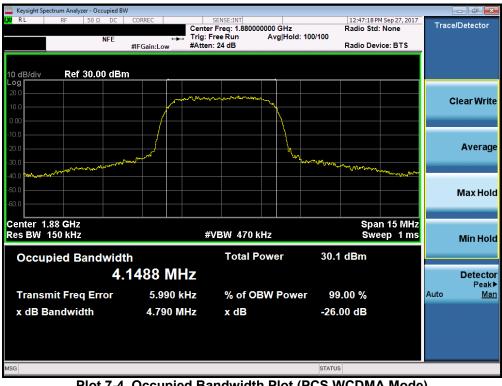
Test Notes

None.

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 12 of 59
© 2017 PCTEST Engineering La	V 7 9/22/2017			

Keysight Spectrum Analyzer - Occupied BW					- 6
X RL RF 50Ω DC	CORREC Cente	SENSE:INT	12:56:40 P Radio Std	M Sep 27, 2017 : None	Trace/Detector
NFE	Trig: I	Free Run Avg Hold: n: 36 dB	100/100 Radio Dev	rice: BTS	
15 dB/div Ref 30.00 dBm					
15.0	and when the second second	Marine Marin			Clear Write
15.0 30.0			- Marine Ma	www	
45.0					Average
60.0 75.0 90.0					
-105					Max Hol
Center 1.88 GHz Res BW 6.2 kHz	#	VBW 18 kHz		n 625 kHz 15.6 ms	Min Hol
Occupied Bandwidt	'n	Total Power	35.5 dBm		
24	47.90 kHz				Detecto Peak
Transmit Freq Error	989 Hz	% of OBW Powe	er 99.00 %	1	Auto <u>Ma</u>
x dB Bandwidth	311.6 kHz	x dB	-26.00 dB		
SG			STATUS		

Plot 7-1. Occupied Bandwidth Plot (PCS GPRS Mode)


Plot 7-2. Occupied Bandwidth Plot (EDGE1900 Mode)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	ortable Handset		Page 13 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017				

Plot 7-3. Occupied Bandwidth Plot (Cellular WCDMA Mode)

Plot 7-4. Occupied Bandwidth Plot (PCS WCDMA Mode)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 14 of 59
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset	landset	
© 2017 PCTEST Engineering La	V 7 9/22/2017			

7.3 Spurious and Harmonic Emissions at Antenna Terminal §2.1051 §22.917(a) §24.238(a) RSS-132(5.5) RSS-133(6.5) RSS-139(6.6)

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03 – Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz for Cell, 20GHz for AWS, 20GHz for PCS (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

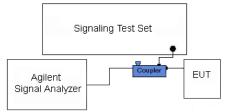
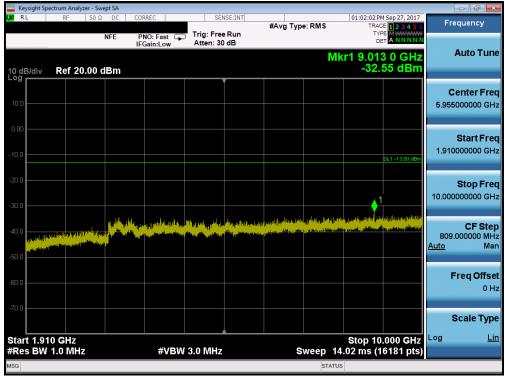


Figure 7-2. Test Instrument & Measurement Setup

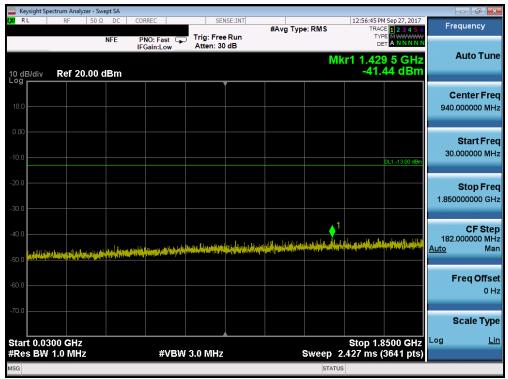
Test Notes


Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 1MHz, and 100 kHz or greater for Part 22 and RSS-132 measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 15 of 59
© 2017 PCTEST Engineering La	V 7 9/22/2017			

	t Spectrum Analy										-	
XU RL	RF	50 Ω NF		RREC			#Avg Typ	e: RMS	TRAC	M Sep 27, 2017 CE 1 2 3 4 5 6 DE M WWWW	Freq	uency
10 dB/di Log r	v Ref 20	0.00 dB	IF	Gain:Low	Atten: 30			M	cr1 1.58	8 0 GHz 40 dBm	A	uto Tun
10.0												nter Fre
-10.0										DL1 -13.00 dBm		tart Fre
-20.0												top Fre
40.0	n in the state of th			and the state of the	ele esta de la sectione	l - setat a da ilda - se postat operativasjo (p	(lengerstelengerstelengerstelengerstelengerstelengerstelengerstelengerstelengerstelengerstelengerstelengerstele	a distriction distriction	1 راییدریتیزیانداریندار	n an that the state of the stat	181.50 <u>Auto</u>	CF Ste 00000 M⊢ Ma
60.0											Fr	e qOffs o 0 ⊦
-70.0											Sc	ale Typ
	.0300 GHz W 1.0 MHz			#VBV	V 3.0 MHz			Sweep 2	Stop 1.8 2.420 ms (8450 GHz 3631 pts)	Log	Li
ISG								STATUS	5			

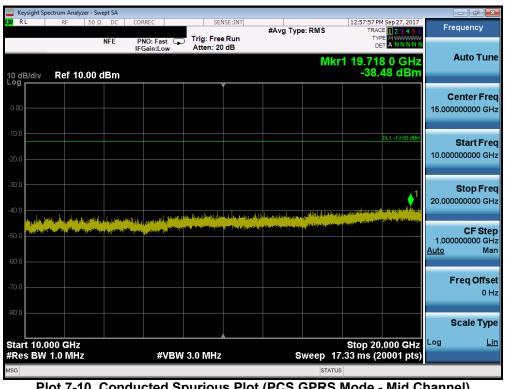
Plot 7-5. Conducted Spurious Plot (PCS GPRS Mode - Low Channel)


Plot 7-6. Conducted Spurious Plot (PCS GPRS Mode - Low Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 16 of 59
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset	Fage 10 01 59
© 2017 DOTEST Engineering La	V 7 0/00/0017		

	pectrum Analyzer -							- ē 🐱
LXU RL	RF 5	0Ω DC NFE	CORREC PNO: Fast	Trig: Free Run Atten: 20 dB	#Avg Ty	pe:RMS	01:02:34 PM Sep 27, 2017 TRACE 1 2 3 4 5 6 TYPE M WWWW DET A N N N N N	Frequency
10 dB/div Log	Ref 10.0	0 dBm	IFGain:Low	Atten: 20 ub		Mkı	1 19.004 0 GHz -38.52 dBm	Auto Tun
0.00								Center Fre 15.000000000 GH
-10.0							DL1 -13.00 dBm	Start Fre 10.000000000 GH
-30.0	statum lata seltas status a	لىش بىرى البار	en e	inistinii pertesentemetat	լիզբժենցի ^ն ուրենցություն	an yeran (na dalay		Stop Fre 20.000000000 GH
-50.0 10.00				e, thể phốt giảo thời giao cen thuốc tra	ett jujutis er for det haverlikete			CF Ste 1.00000000 GH <u>Auto</u> Ma
70.0								Freq Offs 0 F
	000 GHz						Stop 20.000 GHz	Scale Typ
#Res BW	/ 1.0 MHz		#VBV	v 3.0 MHz		Sweep 17	.33 ms (20001 pts)	

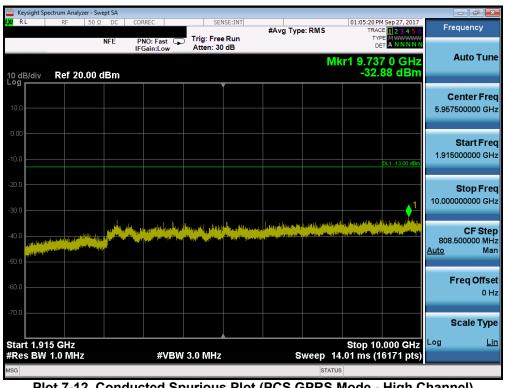
Plot 7-7. Conducted Spurious Plot (PCS GPRS Mode - Low Channel)


Plot 7-8. Conducted Spurious Plot (PCS GPRS Mode - Mid Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 17 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset	Page 17 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017			

🔤 Keysight S	pectrum Analyz	er - Swept SA							
XI RL	RF	50 Ω DC	CORREC	SENSE:I	#Avg Typ	e: RMS	TRAC	M Sep 27, 2017 CE 1 2 3 4 5 6 PE M WWWWWW T A N N N N N	Frequency
10 dB/div Log	Ref 20	.00 dBm	IFGain:Low	Atten: 30 dB		Μ	lkr1 9.16		Auto Tune
10.0									Center Fre 5.955000000 GH
10.00								DL1 -13.00 dBm	Start Fre 1.910000000 GH
-20.0								1	Stop Fre 10.000000000 GH
40.0 50.0	the second second second				Andrea (Angelan) Andrea (Angelan) Angelan (Angelan) Angelan (Angelan)			i nen hijkoning. I verdika bis Primovi kristika kinis	CF Ste 809.000000 MH <u>Auto</u> Ma
50.0									Freq Offs 0 H
-70.0									Scale Typ
Start 1.9 ∲Res BW	10 GHz / 1.0 MHz		#VBW	/ 3.0 MHz	s	weep 1	Stop 10 4.02 ms (1	.000 GHZ	
ISG						STAT	US		

Plot 7-9. Conducted Spurious Plot (PCS GPRS Mode - Mid Channel)


Plot 7-10. Conducted Spurious Plot (PCS GPRS Mode - Mid Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 19 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset	Page 18 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017			

Keysight Spect											×
LXU RL	RF	50 Ω DC	CORREC	SEN	ISE:INT	#Avg Typ	e: RMS		M Sep 27, 2017 DE 1 2 3 4 5 6	Frequency	
		NFE	PNO: Fast 🕞	Trig: Free Atten: 30		• ,,		TY	PE MWWWWW ET A N N N N N		
							М	kr1 1.49	6 5 GHz	Auto Tu	Ine
10 dB/div Log	Ref 20.	00 dBm						-41.	33 dBm		
					ĺ					Center Fr	rea
10.0										940.000000 N	ЛНz
0.00										Start Fr	rea
-10.0										30.000000 N	
10.0									DL1 -13.00 dBm		
-20.0										Stop Fr	rea
										1.850000000	
-30.0											
								1		CF St	tep
-40.0			. I	ويطونهم يعارفون وا	ولولهم وبالرليق	للأطويع وللو ويتعاديا		a still a series of the series	بأعدارها والم	182.00000 N	
-50.0 	dit, salisitasi Alta di salisi		plates a management of the	w. A. J. and the shift of	Lange Landung	and the second	alist sector (Make of the four dates of a	dian chancel	<u>Auto</u> N	Man
										Erog Off	o et
-60.0										Freq Off) Hz
-70.0										Scale Ty	me
										-	
Start 0.030			-40 (B14)				0	Stop 1.	8500 GHz		Lin
#Res BW 1	.0 WIFIZ		#VBW	3.0 MHz					(3641 pts)		
MSG							STATU	15			

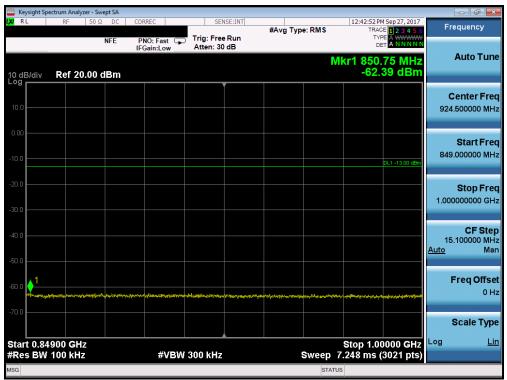
Plot 7-11. Conducted Spurious Plot (PCS GPRS Mode - High Channel)

Plot 7-12. Conducted Spurious Plot (PCS GPRS Mode - High Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 19 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017				

	ectrum Analyzer	- Swept SA					
XI RL	RF 5	i0Ω DC	CORREC	SENSE:IN	#Avg Type: RM	01:05:52 PM Sep 27, 2017 S TRACE 1 2 3 4 5 6 TYPE M WAANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Frequency
10 dB/div	Ref 10.0	NFE 0 dBm	PNO: Fast G	Atten: 20 dB		түре Милини Det ANNNNN Mkr1 19.441 0 GHz -38.29 dBm	Auto Tune
							Center Free 15.000000000 GH
20.0						DL1 -13.00 dBm	Start Fre 10.000000000 GH
40.0	ار بالع من ا	i. (İndərə Dağı, ile ələkə ələ		1.001 yels de state state state (1.001)	ne se statistica de la constitución	1 1, Mark 1 Million and the state of the state of the	Stop Fre 20.000000000 GH
50.0 							CF Ste 1.00000000 G⊢ <u>Auto</u> Ma
70.0							Freq Offse 0 ⊦
Start 10.0	000 GHz 1.0 MHz		#\/B\/	/ 3.0 MHz		Stop 20.000 GHz 2 17.33 ms (20001 pts)	Scale Typ
SG DVV	1.0 WHZ		#VDV	r 3.0 Winz		5 17.35 ms (2000 1 pts) status	

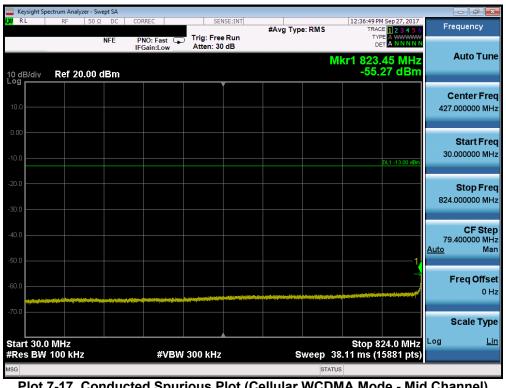
Plot 7-13. Conducted Spurious Plot (PCS GPRS Mode - High Channel)


FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 20 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017				

Cellular WCDMA Mode

	ectrum Analyzer - Swept SA					
RL .	RF 50 Ω DC	CORREC PNO: Fast	SENSE:INT Trig: Free Run Atten: 30 dB	#Avg Type: RMS	12:42:47 PM Sep 27, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency
10 dB/div	Ref 20.00 dBm	IFGam:Low	Atten: 00 dB	N	lkr1 822.95 MHz -30.94 dBm	Auto Tune
10.0						Center Fred 426.500000 MHz
-10.0					DL1 -13.00 dBm	Start Free 30.000000 MH:
-20.0					1, 	Stop Free 823.000000 MH:
-40.0						CF Stej 79.30000 MH <u>Auto</u> Ma
60.0	frontietyteleisen syndre soorde val gebeelde e			n fa blenne i porte titul kay in principle onter selected en inter		Freq Offse 0 H
-70.0						Scale Type
Start 30.0 #Res BW		#VBW	300 kHz	Sweep 3	Stop 823.0 MHz 8.06 ms (15861 pts)	Log <u>Lir</u>
MSG				STATU	JS	

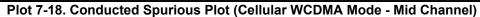
Plot 7-14. Conducted Spurious Plot (Cellular WCDMA Mode - Low Channel)


Plot 7-15. Conducted Spurious Plot (Cellular WCDMA Mode - Low Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:		Daga 21 of 50				
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 21 of 59				
© 0047 DOTEOT Ex sis series al s								

		zer - Swept SA							
LXI RL	RF	50 Ω DC	CORREC	SENSE		vg Type: RMS		M Sep 27, 2017 DE 1 2 3 4 5 6	Frequency
		NFE	PNO: Fast 🖵	Trig: Free R #Atten: 28 c	un		TY		
10 dB/div Log	Ref 10	.00 dBm					/kr1 9.73 -43.	7 0 GHz 49 dBm	Auto Tune
0.00									Center Freq 5.500000000 GHz
-10.0								DL1 -13.00 dBm	Start Freq 1.000000000 GHz
-30.0								1	Stop Freq 10.000000000 GHz
-50.0				~~~	~~~~				CF Step 900.000000 MHz <u>Auto</u> Man
-70.0									Freq Offset 0 Hz
Start 1.00							Stop 10		Scale Type
#Res BW	1.0 MHz	4	#VBW	3.0 MHz			15.60 ms (1	8001 pts)	
MSG						STA	TUS		

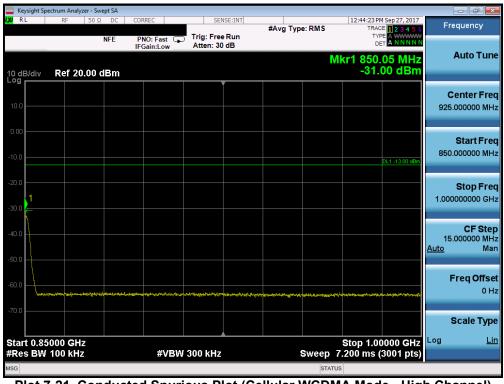
Plot 7-16. Conducted Spurious Plot (Cellular WCDMA Mode - Low Channel)



Plot 7-17. Conducted Spurious Plot (Cellular WCDMA Mode - Mid Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 22 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017				

	ectrum Analyzer - Swe								
LXU RL	RF 50 Ω	ORREC	Trig: Free		#Avg Typ	e: RMS	TRAC	E 1 2 3 4 5 6 E A WWWW T A NNNN	Frequency
10 dB/div Log	Ref 20.00 d	FGain:Low	Atten: 30	dB		N	lkr1 849.		Auto Tune
10.0									Center Free 924.500000 MH
-10.0								DL1 -13.00 dBm	Start Free 849.000000 MH
-20.0									Stop Free 1.000000000 GH
-40.0									CF Step 15.100000 MH <u>Auto</u> Mar
-60.0	unt succession managers managers from	 fere v fer en vefer en	an a kantan karatan t	Nahard-ghras(p-gayarf) ^{an} dad	147 440 - 440 Ticl, Terr 17-14 (140		ana ay Lorenge di Salar Bergio Salar.	errant fact dan yeşi	Freq Offse 0 H
Start 0.84	900 GHz						Stop 1.00	0000 GHz	Scale Type
#Res BW		#VBW	300 kHz				7.248 ms (3021 pts)	
MSG						STATU	JS		


Plot 7-19. Conducted Spurious Plot (Cellular WCDMA Mode - Mid Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 23 of 59	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset			
© 2017 PCTEST Engineering La	V 7 9/22/2017				

	ectrum Analyze							
L <mark>XI</mark> RL	RF	50 Ω DC	CORREC	SENSE	#Avg 1	Type: RMS	12:44:17 PM Sep 27, 2017 TRACE 1 2 3 4 5 6 TYPE A	Frequency
		NFE	PNO: Fast IFGain:Low	Atten: 30 d		N	Ikr1 821.20 MHz	Auto Tune
10 dB/div Log	Ref 20.	00 dBm					-61.22 dBm	
10.0								Center Freq 427.000000 MHz
-10.0							DL1 -13.00 dBm	Start Freq 30.000000 MHz
-20.0								Stop Freq 824.000000 MHz
-40.0								CF Step 79.400000 MHz <u>Auto</u> Man
-60.0		Hermonia and a set of the set of				stary (11) on one too y constitute of the	And the state of t	Freq Offset 0 Hz
-70.0								Scale Type
Start 30.0 #Res BW			#VBV	/ 300 kHz		Sweep 3	Stop 824.0 MHz 8.11 ms (15881 pts)	Log <u>Lin</u>
MSG						STATU	JS	

Plot 7-20. Conducted Spurious Plot (Cellular WCDMA Mode - High Channel)

Plot 7-21. Conducted Spurious Plot (Cellular WCDMA Mode - High Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dara 04 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 24 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017				

		er - Swept SA							
I,XI RL	RF	50 Ω DC	CORREC	SE	NSE:INT	#Avg Type:		53 PM Sep 27, 2017 TRACE 1 2 3 4 5 6	Frequency
		NFE	PNO: Fast (IFGain:Low	Trig: Fre #Atten: 2		0 ,1		TYPE A WWWWW DET A N N N N N	
10 dB/div Log	Ref 10	.00 dBm					Mkr1 9. -4	747 5 GHz I3.13 dBm	Auto Tune
0.00									Center Freq 5.50000000 GHz
-10.0								DL1 -13.00 dBm	Start Freq 1.000000000 GHz
-30.0								1	Stop Freq 10.00000000 GHz
-50.0					~~				CF Step 900.000000 MHz <u>Auto</u> Man
-70.0									Freq Offset 0 Hz
-80.0									Scale Type
Start 1.00 #Res BW			#VB	W 3.0 MHz		Sw	Stop eep 15.60 ms	10.000 GHZ	Log <u>Lin</u>
MSG							STATUS		

Plot 7-22. Conducted Spurious Plot (Cellular WCDMA Mode - High Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 25 of 59
© 2017 PCTEST Engineering La	V 7 9/22/2017			

	oectrum Analyzer - Swept S					
X/RL	RF 50 Ω D		Trig: Free Run Atten: 30 dB	#Avg Type: RMS	12:48:59 PM Sep 27, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency
10 dB/div	Ref 20.00 dBi	IFGain:Low	Atten: 30 dB	М	kr1 1.845 0 GHz -34.09 dBm	Auto Tun
10.0						Center Fre 937.500000 MH
-10.0					DL1 -13.00 dBm	Start Fre 30.000000 MH
30.0					1	Stop Fre 1.845000000 GH
-40.0						CF Ste 181.50000 MH <u>Auto</u> Ma
60.0 		(nellerserierserierserierserierserierserierserierserierserierserierserierserierserierserierserierserierseriers	ang (149-149-147-14-14-14-14-14-14-14-14-14-14-14-14-14-	9444 9444		Freq Offse 0 ⊦
-70.0						Scale Typ
Start 0.03 #Res BW	300 GHZ 1.0 MHz	#VBV	V 3.0 MHz	Sweep	Stop 1.8450 GHz 2.420 ms (3631 pts)	
ISG				STATU	JS	

Plot 7-23. Conducted Spurious Plot (PCS WCDMA Mode - Low Channel)

Plot 7-24. Conducted Spurious Plot (PCS WCDMA Mode - Low Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 26 of 59
© 0047 DOTEOT En alia a alia a la	hanatan. In a			1/70/00/047

	ectrum Analyz						
LXU RL	RF	50Ω DC NFE	CORREC	SENSE:INT	#Avg Type: RMS	12:49:55 PM Sep 27, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency
10 dB/div	Ref 10	.00 dBm	IFGain:Low	Atten: 20 dB	M	kr1 19.457 5 GHz -46.48 dBm	Auto Tune
0.00							Center Freq 15.000000000 GHz
-10.0						DL1 -13.00 dBm	Start Fred 10.000000000 GHz
-30.0						1_	Stop Free 20.000000000 GH:
-50.0	~~~	~					CF Step 1.00000000 GH <u>Auto</u> Mar
-70.0							Freq Offse 0 H
-80.0 Start 10.0 #Res BW			#\/B\\(3.0 MHz	Sween	Stop 20.000 GHz 17.33 ms (20001 pts)	Scale Type
MSG	1.0 10112		#0000	5.0 10112			

Plot 7-25. Conducted Spurious Plot (PCS WCDMA Mode - Low Channel)

Plot 7-26. Conducted Spurious Plot (PCS WCDMA Mode - Mid Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 07 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 27 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017				

	ectrum Analyz											
LXU RL	RF	50 Ω DC	CORREC		Trig: Free		#Avg Typ	e: RMS	TR	PM Sep 27, 2017 ACE 1 2 3 4 5 6 YPE A WWWWW DET A NNNNN	Fre	quency
10 dB/div Log	Ref 20.	.00 dBm	IFGain:L		Atten: 30	dB		Μ	kr1 9.7	77 5 GHz .23 dBm		Auto Tune
10.0												e nter Freq 000000 GHz
-10.0										DL1 -13.00 dBm		Start Freq 000000 GHz
-20.0												Stop Freq 000000 GHz
-40.0		_^^	\sim		~~	~~~~					809.0 <u>Auto</u>	CF Step 2000000 MHz Man
-60.0											F	r eq Offsel 0 Hz
-70.0 Start 1.91	0 GHz								Stop 1	0.000 GHz	S Log	cale Type Lin
#Res BW			#	VBW 3	.0 MHz		S		4.02 ms ((16181 pts)		
MSG								STATU	15			

Plot 7-27. Conducted Spurious Plot (PCS WCDMA Mode - Mid Channel)

Plot 7-28. Conducted Spurious Plot (PCS WCDMA Mode - Mid Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 00 af 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 28 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017				

	ectrum Analyzer - S										
LXI RL	RF 50	ΩDC	CORREC		ISE:INT	#Avg Type	e: RMS	TRAC	M Sep 27, 2017 E 1 2 3 4 5 6	Fre	equency
		NFE	PNO: Fast IFGain:Low	Trig: Free Atten: 30							
10 dB/div Log	Ref 20.00	dBm					Mł	(r1 1.83 -50.	4 0 GHz 16 dBm		Auto Tune
10.0											enter Freq 000000 MHz
-10.0									DL1 -13.00 dBm	30.	Start Freq 000000 MHz
-20.0										1.850	Stop Freq
-40.0									1	182. <u>Auto</u>	CF Step 000000 MHz Man
-60.0	NATURAL CONTRACTOR	and the second secon		n nga gan nga pangan dan da	gi		galantar (Urgana and Ang			F	F req Offset 0 Hz
-70.0										:	Scale Type
Start 0.03 #Res BW			#VBW	3.0 MHz			Sweep 2	Stop 1.8 2.427 ms (3500 GHz 3641 pts)	Log	Lin
MSG							STATUS				

Plot 7-29. Conducted Spurious Plot (PCS WCDMA Mode - High Channel)

Plot 7-30. Conducted Spurious Plot (PCS WCDMA Mode - High Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 50
1M1709250255-02.A3L 9/26-10/26/2017		Portable Handset	Page 29 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017			

	ectrum Analyz									J X
X/RL	RF	50 Ω DC	CORREC PNO: Fast	Trig: Fre		#Avg Type: F		TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNN	Frequent	су
I0 dB/div	Ref 10	.00 dBm	IFGain:Low	Atten: 2	O dB		Mkr1 19	.579 0 GHz -46.58 dBm	Auto	Tun
0.00									Center 15.00000000	
20.0								DL1 -13.00 dBm	Start 10.00000000	
40.0								1	Stop 20.00000000	
50.0 50.0	~~~		******						CF 1.00000000 <u>Auto</u>	F Ste 00 G⊢ Ma
70.0									Freq C	Offso 0⊦
80.0							Sto	p 20.000 GHz	Scale	Typ Li
Res BW	1.0 MHz		#V	BW 3.0 MHz		Swe	status	ns (20001 pts)		

Plot 7-31. Conducted Spurious Plot (PCS WCDMA Mode - High Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 50
1M1709250255-02.A3L 9/26-10/26/2017		Portable Handset	Page 30 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017			

7.4 Band Edge Emissions at Antenna Terminal §2.1051 §22.917(a) §24.238(a)RSS-132(5.5) RSS-133(6.5) RSS-139(6.6)

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

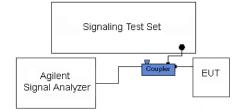
KDB 971168 D01 v03 - Section 6.0

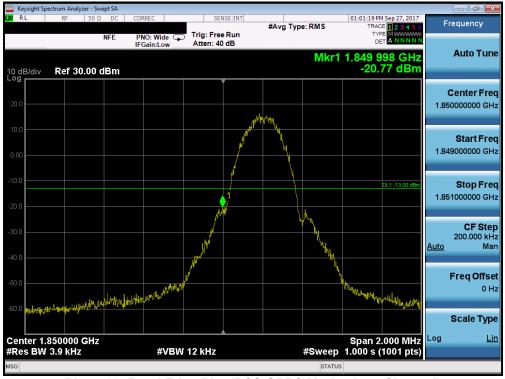
Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW <u>></u> 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

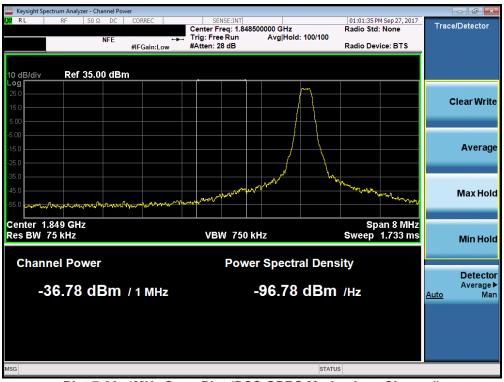
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



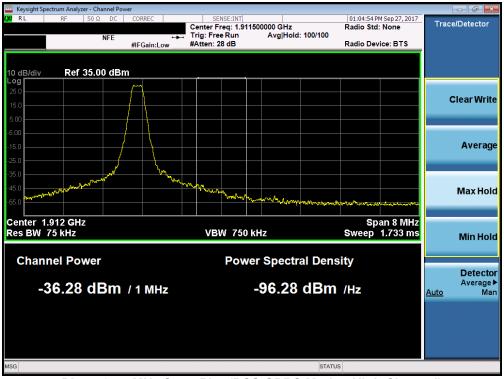

Figure 7-3. Test Instrument & Measurement Setup

Test Notes


Per 22.917(b) 24.238(b) and RSS-132(5.5) RSS-133(6.5) RSS-139(6.5) in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 21 of 50
1M1709250255-02.A3L 9/26-10/26/2017		Portable Handset	Page 31 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017			


Plot 7-32. Band Edge Plot (PCS GPRS Mode - Low Channel)


Plot 7-33. 4MHz Span Plot (PCS GPRS Mode - Low Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 50	
1M1709250255-02.A3L 9/26-10/26/2017		Portable Handset		Page 32 of 59	
© 2017 DCTEST Engineering Lo	V 7 0/00/017				

Plot 7-35. 4MHz Span Plot (PCS GPRS Mode - High Channel)


FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 50
1M1709250255-02.A3L 9/26-10/26/2017		Portable Handset	Page 33 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017			

Cellular WCDMA Mode

Plot 7-36. Band Edge Plot (Cellular WCDMA Mode - Low Channel)

Plot 7-37. Band Edge Plot (Cellular WCDMA Mode - High Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 50	
1M1709250255-02.A3L 9/26-10/26/2017		Portable Handset	Page 34 of 59	
© 2017 DCTEST Engineering La	V 7 0/22/2017			

Plot 7-38. Band Edge Plot (PCS WCDMA Mode - Low Channel)

Plot 7-39. 4MHz Span Plot (PCS WCDMA Mode - Low Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 50	
1M1709250255-02.A3L 9/26-10/26/2017		Portable Handset	Page 35 of 59	
© 2017 DCTEST Engineering La	V 7 0/22/2017			

🔤 Keysight Spectrum An						
LXI RL RF	50 Ω DC	CORREC PNO: Wide	SENSE:INT Trig: Free Run Atten: 40 dB	#Avg Type: RMS	12:50:14 PM Sep 27, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency
10 dB/div Ref	30.00 dBm	IFGam:Low	Atten. 40 db	Mkr	1 1.910 000 GHz -18.57 dBm	Auto Tune
20.0						Center Free 1.910000000 GH
0.00		www.				Start Free 1.902500000 GH
-20.0			1		DL1 -13.00 dBm	Stop Fre 1.917500000 GH
40.0	~~		- M	~~~~~~		CF Ste 1.500000 M⊢ <u>Auto</u> Ma
50.0					North Marine	Freq Offse 0 H
-60.0 Center 1.91000		4) /P144			Span 15.00 MHz	Scale Typ
Res BW 100 k	12	#VBW	300 kHz	Sweep	1.000 ms (1001 pts)	

Plot 7-40. Band Edge Plot (PCS WCDMA Mode - High Channel)

Plot 7-41. 4MHz Span Plot (PCS WCDMA Mode - High Channel)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset	Page 36 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017			

7.5 Peak-Average Ratio §24.232(d) RSS-132(5.4) RSS-133(6.4) RSS-139(6.5)

Test Overview

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

Test Procedure Used

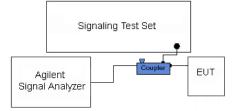
KDB 971168 D01 v03 - Section 5.7.1

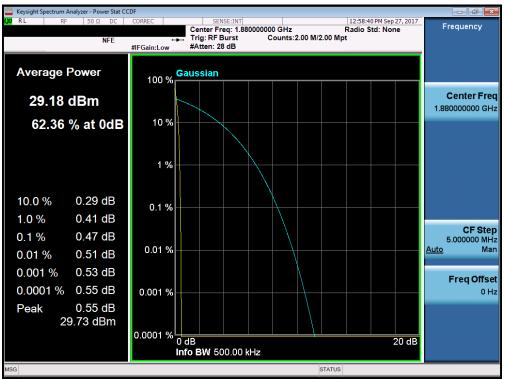
Test Settings

- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

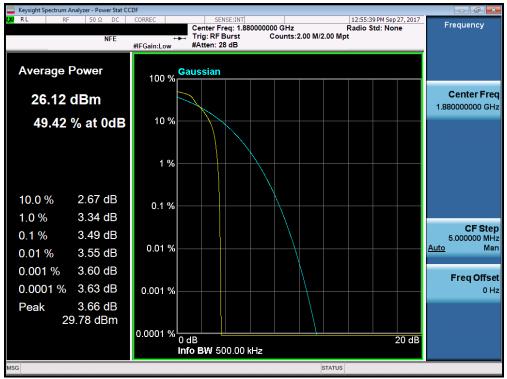
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

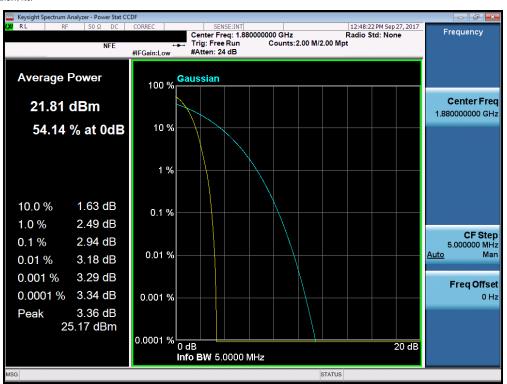



Figure 7-4. Test Instrument & Measurement Setup

Test Notes


None

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 37 of 59	
© 2017 PCTEST Engineering La	boratory. Inc.	·		V 7 9/22/2017	



FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 50
1M1709250255-02.A3L	2.A3L 9/26-10/26/2017 Portable Handset			Page 38 of 59
© 2017 PCTEST Engineering La	\/ 7 0/22/2017			

Plot 7-44. Peak-Average Ratio Plot (PCS WCDMA Mode)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 50
1M1709250255-02.A3L	9/26-10/26/2017	0/26-10/26/2017 Portable Handset		Page 39 of 59
© 2017 DOTEST Engineering La	V 7 0/22/2017			

7.6 Radiated Power (ERP/EIRP) §22.913(a)(2) 24.232(c) RSS-132(5.4) RSS-133(6.4) RSS-139(6.5)

Test Overview

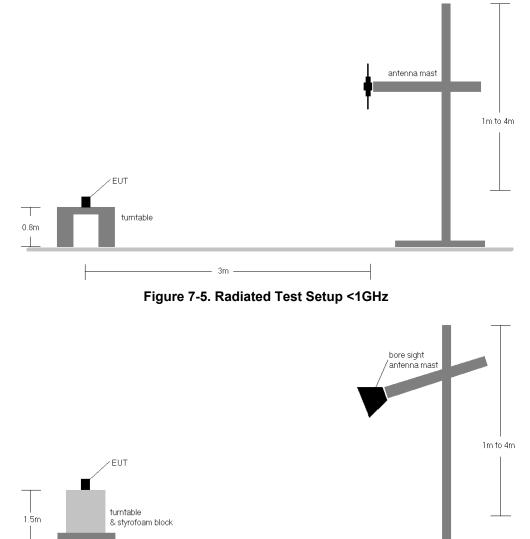
Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally and horizontally polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v03 - Section 5.2.1

ANSI/TIA-603-E-2016 - Section 2.2.17

Test Settings


- Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation. For signals with burst transmission, the signal analyzer's "time domain power" measurement capability is used
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 40 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 40 of 59	
© 2017 PCTEST Engineering La	horatory Inc			V 7 9/22/2017	

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

3m -

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 41 of 59
© 2017 PCTEST Engineering La	boratory Inc			V 7 9/22/2017

- 1) This device employs GSM, GPRS, and EDGE capabilities. The EUT was tested under all configurations and the highest power is reported in GPRS mode while transmitting with one slot active.
- 2) This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, and HSUPA capabilities. For WCDMA and HSUPA transmission, all configurations were investigated and the worst case UMTS emissions were found in RMC WCDMA mode at 12.2kbps with HSDPA inactive and TPC bits all set to "1."
- 3) This unit was tested with its standard battery.
- 4) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case setup is reported in the tables below.

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 42 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017				

Frequency [MHz]	Mode	Ant. Pol. [H/V]	Height	Turntable Azimuth [degree]	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
826.40	WCDMA850	н	150	287	17.44	1.50	16.79	0.048	38.45	-21.66	18.94	0.078	40.61	-21.67
836.60	WCDMA850	Н	150	288	17.96	1.50	17.31	0.054	38.45	-21.14	19.46	0.088	40.61	-21.15
846.60	WCDMA850	н	150	293	18.24	1.50	17.59	0.057	38.45	-20.86	19.74	0.094	40.61	-20.87
846.60	WCDMA850	V	150	350	17.51	1.50	16.86	0.049	38.45	-21.59	19.01	0.080	40.61	-21.60

Table 7-2. ERP/EIRP (Cellular WCDMA)

Frequency [MHz]	Mode	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
1850.20	GPRS1900	V	150	37	23.20	4.79	27.98	0.629	33.01	-5.03
1880.00	GPRS1900	V	150	41	23.26	4.84	28.10	0.646	33.01	-4.91
1909.80	GPRS1900	V	150	42	24.50	4.86	29.36	0.863	33.01	-3.65
1909.80	GPRS1900	Н	150	352	23.67	4.68	28.36	0.685	33.01	-4.66
1909.80	EDGE1900	V	150	41	18.99	4.86	23.85	0.243	33.01	-9.16

Table 7-3. EIRP (PCS GPRS)

Frequency [MHz]	Mode	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
1852.40	WCDMA1900	Н	150	351	18.66	4.81	23.47	0.222	33.01	-9.54
1880.00	WCDMA1900	Н	150	349	17.39	4.74	22.13	0.163	33.01	-10.88
1907.60	WCDMA1900	н	150	350	19.04	4.68	23.72	0.236	33.01	-9.29
1907.60	WCDMA1900	V	150	269	16.54	4.86	21.40	0.138	33.01	-11.61

Table 7-4. EIRP (PCS WCDMA)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 50
1M1709250255-02.A3L	2.A3L 9/26-10/26/2017 Portable Handset			Page 43 of 59
© 2017 PCTEST Engineering La	V 7 9/22/2017			

7.7 Radiated Spurious Emissions Measurements §2.1053 §22.917(a) 24.238(a) RSS-132(5.5) RSS-133(5.5) RSS-139(6.6)

Test Overview

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as peak measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v03 – Section 5.8

ANSI/TIA-603-E-2016 - Section 2.2.12

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 44 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017				

EUT turntable & styrofoam block

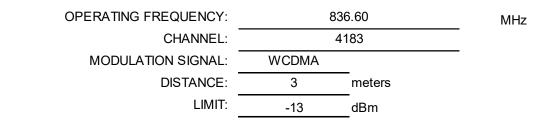
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-7. Test Instrument & Measurement Setup

Test Notes

- 1) This device employs GSM, GPRS, and EDGE capabilities. The EUT was tested under all configurations and the highest power is reported in GPRS mode while transmitting with one slot active.
- 2) This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, and HSUPA capabilities. For WCDMA and HSUPA transmission, all configurations were investigated and the worst case UMTS emissions were found in RMC WCDMA mode at 12.2kbps with HSDPA inactive and TPC bits all set to "1."
- 3) This unit was tested with its standard battery.
- 4) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case setup is reported in the tables below.
- 5) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 6) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 45 of 59
© 2017 PCTEST Engineering La	horatory Inc	•		V/70/22/2017

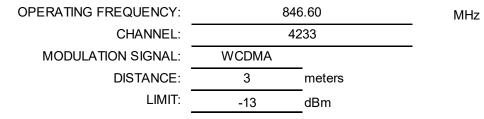


Cellular WCDMA Mode

OPERATING FREQUENCY:	82	26.40	MHz
CHANNEL:	4	132	
MODULATION SIGNAL:	WCDMA		_
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Height	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1652.80	Н	131	207	-53.63	8.85	-44.79	-31.8
2479.20	Н	117	110	-72.23	9.69	-62.54	-49.5
3305.60	Н	-	-	-69.50	9.53	-59.97	-47.0

Table 7-5. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4132)



Freque [MH:	-	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1673.	.20	Н	128	181	-51.72	8.85	-42.88	-29.9
2509.	.80	Н	256	158	-72.04	9.78	-62.27	-49.3
3346.	.40	Н	-	-	-69.77	9.67	-60.11	-47.1

Table 7-6. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4183)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 46 of 59
© 2017 PCTEST Engineering La	horatory Inc			V 7 9/22/2017

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1693.20	Н	110	220	-52.05	8.85	-43.20	-30.2
2539.80	Н	-	-	-73.03	9.75	-63.28	-50.3
3386.40	Н	-	-	-69.36	9.80	-59.57	-46.6

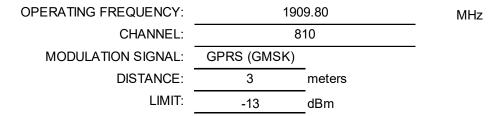
Table 7-7. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4233)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 47 of 59
© 2017 PCTEST Engineering La	horatory Inc			V 7 9/22/2017

OPERATING FREQUENCY:	185	60.20	MHz
CHANNEL:	5	12	
MODULATION SIGNAL:	GPRS (GMSK)		
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3700.40	Н	157	4	-62.87	9.53	-53.34	-40.3
5550.60	Н	113	361	-60.11	11.01	-49.10	-36.1
7400.80	Н	144	312	-47.53	10.94	-36.59	-23.6
9251.00	Н	117	7	-53.51	11.52	-41.99	-29.0
11101.20	Н	135	2	-55.71	12.81	-42.90	-29.9
12951.40	Н	-	-	-55.29	13.37	-41.91	-28.9

Table 7-8. Radiated Spurious Data (PCS GPRS Mode – Ch. 512)


MHz	30.00	188	OPERATING FREQUENCY:
-	61	6	CHANNEL:
-		GPRS (GMSK)	MODULATION SIGNAL:
	meters	3	DISTANCE:
	dBm	-13	LIMIT:

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3760.00	Н	191	339	-61.26	9.39	-51.88	-38.9
5640.00	Н	130	355	-61.67	11.22	-50.45	-37.4
7520.00	Н	140	297	-48.72	11.10	-37.62	-24.6
9400.00	Н	130	18	-54.80	11.54	-43.26	-30.3
11280.00	Н	129	1	-54.21	12.76	-41.44	-28.4
13160.00	Н	-	-	-53.72	13.05	-40.67	-27.7

Table 7-9. Radiated Spurious Data (PCS GPRS Mode – Ch. 661)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 48 of 59
© 2017 PCTEST Engineering La	horatory Inc			V 7 9/22/2017

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3819.60	Н	-	-	-66.52	9.32	-57.20	-44.2
5729.40	Н	-	-	-64.58	11.37	-53.21	-40.2
7639.20	Н	139	344	-48.68	11.33	-37.35	-24.3
9549.00	Н	134	10	-52.28	11.78	-40.50	-27.5
11458.80	Н	123	255	-55.22	12.69	-42.53	-29.5
13368.60	Н	-	-	-52.66	12.64	-40.02	-27.0

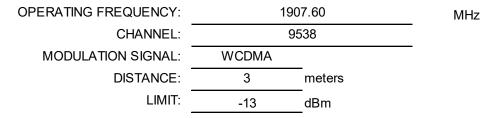
Table 7-10. Radiated Spurious Data (PCS GPRS Mode - Ch. 810)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 49 of 59
© 2017 PCTEST Engineering La	\/ 7 0/22/2017			

OPERATING FREQUENCY:	18	352.40	MHz
CHANNEL:	Ś		
MODULATION SIGNAL:	WCDMA		
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3704.80	Н	173	308	-64.72	9.72	-55.00	-42.0
5557.20	Н	150	37	-61.14	10.99	-50.16	-37.2
7409.60	Н	160	46	-55.19	10.79	-44.40	-31.4
9262.00	Н	123	348	-63.31	12.28	-51.03	-38.0
11114.40	Н	146	8	-62.02	12.95	-49.07	-36.1
12966.80	Н	-	-	-60.95	12.70	-48.25	-35.2

Table 7-11. Radiated Spurious Data (PCS WCDMA Mode – Ch. 9262)


MHz
N

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3760.00	Н	178	304	-66.26	9.50	-56.76	-43.8
5640.00	Н	146	328	-64.30	11.16	-53.14	-40.1
7520.00	Н	160	50	-58.51	11.03	-47.48	-34.5
9400.00	Н	-	-	-62.82	12.19	-50.63	-37.6
11280.00	Н	146	26	-62.70	13.15	-49.55	-36.5
13160.00	Н	-	-	-60.76	12.88	-47.88	-34.9

Table 7-12. Radiated Spurious Data (PCS WCDMA Mode – Ch. 9400)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 50 of 59
© 2017 PCTEST Engineering La	V 7 9/22/2017			

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3815.20	Н	154	300	-65.08	9.30	-55.78	-42.8
5722.80	Н	141	327	-60.46	11.33	-49.13	-36.1
7630.40	Н	169	358	-59.71	11.26	-48.45	-35.5
9538.00	Н	137	59	-62.70	12.23	-50.47	-37.5
11445.60	Н	-	-	-63.19	13.26	-49.93	-36.9

Table 7-13. Radiated Spurious Data (PCS WCDMA Mode – Ch. 9538)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 51 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 51 of 59	
© 2017 BOTEST Engineering Laboratory Inc.					

7.8 Frequency Stability / Temperature Variation §2.1055 §22.355 §24.235 RSS-132(5.3) RSS-133(6.3) RSS-139(6.4)

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, RSS-132 and RSS-133, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency. For Part 24 and RSS-139, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure Used

ANSI/TIA-603-E-2016

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:			
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 52 of 59	
© 2017 PCTEST Engineering La	V 7 9/22/2017				

OPERATING FREQUENCY:	836,600,000	Hz
CHANNEL:	4183	_
REFERENCE VOLTAGE:	3.85	VDC
DEVIATION LIMIT:	± 0.00025 % or 2.5 ppm	_

VOLTAGE (%)	POWER (VDC)	ТЕМР ([°] С)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.85	+ 20 (Ref)	836,599,919	-81	-0.0000097
100 %		- 30	836,600,070	70	0.0000084
100 %		- 20	836,600,093	93	0.0000111
100 %		- 10	836,599,990	-10	-0.0000012
100 %		0	836,599,809	-191	-0.0000228
100 %		+ 10	836,599,926	-74	-0.000088
100 %		+ 20	836,599,798	-202	-0.0000241
100 %		+ 30	836,600,071	71	0.0000085
100 %		+ 40	836,600,190	190	0.0000227
100 %		+ 50	836,599,945	-55	-0.0000066
BATT. ENDPOINT	3.45	+ 20	836,599,813	-187	-0.0000224

Table 7-14. Frequency Stability Data (Cellular WCDMA Mode – Ch. 4183)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 53 of 59
© 2017 PCTEST Engineering La	V 7 9/22/2017			

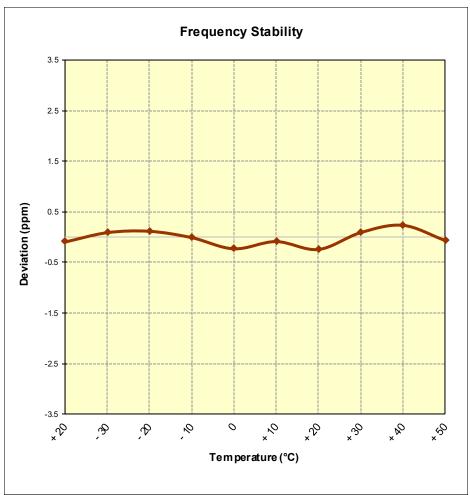


Figure 7-8. Frequency Stability Graph (Cellular WCDMA Mode – Ch. 4183)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 54 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 54 of 59
© 2017 PCTEST Engineering Laboratory Inc.				

OPERATING FREQUENCY:	1,880,000,000	Hz
CHANNEL:	661	_
REFERENCE VOLTAGE:	3.85	VDC
DEVIATION LIMIT:	± 0.00025 % or 2.5 ppm	_

VOLTAGE (%)	POWER (VDC)	ТЕМР ([°] С)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.85	+ 20 (Ref)	1,880,000,131	131	0.0000070
100 %		- 30	1,880,000,186	186	0.0000099
100 %		- 20	1,880,000,240	240	0.0000128
100 %		- 10	1,879,999,888	-112	-0.0000060
100 %		0	1,879,999,972	-28	-0.0000015
100 %		+ 10	1,880,000,115	115	0.0000061
100 %		+ 20	1,880,000,031	31	0.0000016
100 %		+ 30	1,879,999,953	-47	-0.0000025
100 %		+ 40	1,879,999,956	-44	-0.0000023
100 %		+ 50	1,880,000,044	44	0.0000023
BATT. ENDPOINT	3.45	+ 20	1,879,999,651	-349	-0.0000186

Table 7-15. Frequency Stability Data (PCS GPRS Mode – Ch. 661)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage FE of FO	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 55 of 59	
© 2017 PCTEST Engineering La	2017 PCTEST Engineering Laboratory Inc				

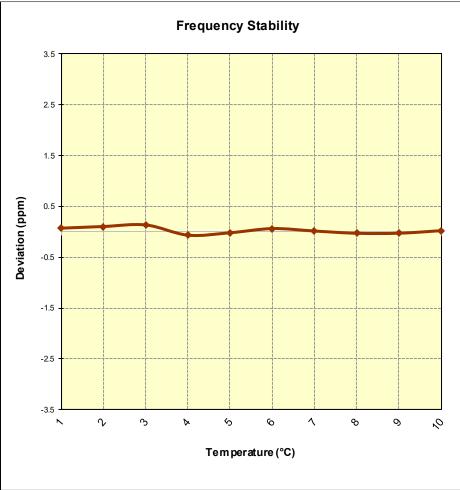


Figure 7-9. Frequency Stability Graph (PCS GPRS Mode – Ch. 661)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage EC of EQ
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 56 of 59
© 2017 PCTEST Engineering Laboratory. Inc. V 7 9/22				

OPERATING FREQUENCY:	1,880,000,000	Hz
CHANNEL:	9400	_
REFERENCE VOLTAGE:	3.85	VDC
DEVIATION LIMIT:	± 0.00025 % or 2.5 ppm	_

TEMP VOLTAGE POWER FREQUENCY Freq. Dev. Deviation (VDC) (Hz) (%) (°C) (Hz) (%) 0.000039 100 % 3.85 + 20 (Ref) 1,880,000,074 74 100 % - 30 1,879,999,725 -275 -0.0000146 100 % - 20 1,879,999,954 -46 -0.0000024 - 10 100 % 1,880,000,055 55 0.0000029 100 % 0 1,879,999,893 -107 -0.0000057 1,880,000,094 100 % + 10 94 0.0000050 100 % + 20 1,879,999,994 -6 -0.000003 100 % + 30 1,880,000,015 15 0.000008 100 % 1,880,000,196 0.0000104 + 40 196 100 % -0.0000247 + 50 1,879,999,536 -464 BATT. ENDPOINT 3.45 + 20 1,879,999,851 -149 -0.0000079

Table 7-16. Frequency Stability Data (PCS WCDMA Mode – Ch. 9400)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 57 of 50	
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 57 of 59	
© 2017 PCTEST Engineering La	0 2017 PCTEST Engineering Laboratory Inc.				

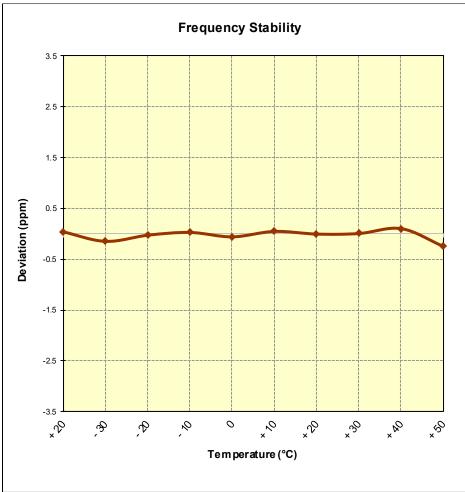


Figure 7-10. Frequency Stability Graph (PCS WCDMA Mode – Ch. 9400)

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 50 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 58 of 59
© 2017 PCTEST Engineering Laboratory, Inc. V 7 9/22/2017				

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMA530N** complies with all the requirements of Part 22 & 24 of the FCC Rules.

FCC ID: A3LSMA530N		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 50
1M1709250255-02.A3L	9/26-10/26/2017	Portable Handset		Page 59 of 59
© 2017 PCTEST Engineering Laboratory, Inc. V 7 9/22/2017				