

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing:

08/19/2021 – 08/31/2021 **Test Site/Location:**

PCTEST Lab, Columbia, MD, USA

Document Serial No.: 1M2108160095-06.A3L

FCC ID: A3LSMA528B

APPLICANT: SAMSUNG ELECTRONICS CO., LTD.

DUT Type: Portable Handset

Application Type: Class II Permissive Change

FCC Rule Part(s): CFR §2.1093
Model: SM-A528B/DS
Additional Models: SM-A528B

Permissive Change(s): See FCC Change Document

Date of Original Certification: 08/03/2021

Equipment	Band & Mode	Tx Frequency	SAR					
Class	Baild & Made	TXTTOQUOTO)	1g Head (W/kg)	1g Body-Worn (W/kg)	1g Hotspot (W/kg)	10g Phablet (W/kg)		
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.27	0.25	0.36	N/A		
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	< 0.1	< 0.1	0.29	1.10		
PCE	UMTS 850	826.40 - 846.60 MHz	0.36	0.39	0.46	N/A		
PCE	UMTS 1750	1712.4 - 1752.6 MHz	0.18	0.25	0.35	1.49		
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.17	0.21	0.50	1.90		
PCE	LTE Band 12	699.7 - 715.3 MHz	0.31	0.46	0.50	N/A		
PCE	LTE Band 17	706.5 - 713.5 MHz	N/A	N/A	N/A	N/A		
PCE	LTE Band 26 (Cell)	814.7 - 848.3 MHz	0.25	0.29	0.33	N/A		
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	N/A	N/A	N/A	N/A		
PCE	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.13	0.20	0.38	1.79		
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A	N/A	N/A		
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	0.17	0.19	0.41	1.94		
PCE	LTE Band 41	2498.5 - 2687.5 MHz	0.27	0.12	0.31	N/A		
PCE	NR Band n5 (Cell)	826.5 - 846.5 MHz	0.36	0.34	0.41	N/A		
PCE	PCE NR Band n66 (AWS) 1712.5 - 1777.5 MHz		0.24	0.27	0.40	1.81		
Simultaneous	SAR per KDB 690783 D01v01r0	3:	1.59	0.92	1.51	3.36		

Note: The test data above was evaluated for bands/modes affected by the permissive change. Please refer to RF Exposure Technical Report S/N 1M2106280072-01.A3L (Rev 1)for original compliance evaluation.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: A3LSMA528B	PCTEST* Poud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 4 70	
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 1 of 72	

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INF	ORMATION	13
3	INTROD	UCTION	15
4	DOSIME	TRIC ASSESSMENT	16
5	DEFINIT	ION OF REFERENCE POINTS	17
6	TEST CO	ONFIGURATION POSITIONS	18
7	RF EXP	OSURE LIMITS	22
8	FCC ME	ASUREMENT PROCEDURES	23
9	RF CON	DUCTED POWERS	27
10	SYSTEM	1 VERIFICATION	37
11	SAR DA	TA SUMMARY	40
12	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	53
13	SAR ME	ASUREMENT VARIABILITY	67
14	EQUIPM	ENT LIST	68
15	MEASUF	REMENT UNCERTAINTIES	69
16	CONCLU	JSION	70
17	REFERE	NCES	71
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX D:	SAR SYSTEM VALIDATION	
APPEN	IDIX E:	LTE AND NR LOWER BANDWIDTH RF CONDUCTED POWERS	
APPEN	IDIX F:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX G:	DUT ANTENNA DIAGRAM AND SAR TEST SETUP PHOTOGRAPHS	

FCC ID: A3LSMA528B	PCTEST* Poud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 2 of 72	
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 2 of 72	

1 DEVICE UNDER TEST

1.1 Device Overview

		1
Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 17	Voice/Data	706.5 - 713.5 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
NR Band n5 (Cell)	Data	826.5 - 846.5 MHz
NR Band n66 (AWS)	Data	1712.5 - 1777.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2472 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

1.2 Power Reduction for SAR

This device utilizes a power reduction mechanism for some wireless modes and bands for SAR compliance under portable hotspot conditions and under some conditions when the device is being used in close proximity to the user's hand. All hotspot SAR evaluations for this device were performed at the maximum allowed output power when hotspot is enabled. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device when being used in phablet use conditions. Detailed descriptions of the power reduction mechanism are included in the operational description.

This device used an independent fixed level power reduction mechanism for WLAN/BT during all voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEC/IEEE 62209-1528:2020. Detailed descriptions of the power reduction mechanism are included in the operational description.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

FCC ID: A3LSMA528B	PCTEST Provid to be part of @ element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 0 -f 70	
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 3 of 72	

PCTEST REV 21.4 09/11/20

1.3.1 **Maximum Output Power**

GSM/GPRS/EDGE 850												
Power Level		Voice (in dBm) Data - Burst Average GMSK (in dBm) Data - Burst Average 8-PSK (in dBm)					Bm)					
		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots		
Max	Max allowed power	33.0	33.0	32.5	30.5	28.0	26.5	26.0	24.0	23.0		
IVIdX	Nominal	32.0	32.0	31.5	29.5	27.0	25.5	25.0	23.0	22.0		
-			GSM/	GPRS/EDGE	1900							
Power Level		Voice (in dBm)	Data	Data - Burst Average GMSK (in dBm)				Data - Burst Average 8-PSK (in dBm)				
		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots		
Mari	Max allowed power	30.5	30.5	29.5	27.0	25.5	26.0	25.5	23.0	22.0		
Max	Nominal	29.5	29.5	28.5	26.0	24.5	25.0	24.5	22.0	21.0		
Hotspot Mode Active, Proximity Sensor	Max allowed power	28.5	28.5	27.5	25.0	23.5	25.5	23.5	22.0	20.0		
and/or Earjack Mode Active	Nominal	27.5	27.5	26.5	24.0	22.5	24.5	22.5	21.0	19.0		
			C D L E	/0=0.000	`							

Nominal 27.5 27.5		26.5 24.		4.0 22.5		24.5	22.5	21				
	UMT	S Band 5 (8	350 MHz	:)								
			Modu	ılate		rage Out dBm)	rage Output Power dBm)					
Power Level	el					3GPF WCDM Rel 99	1A		P HSDPA Rel 5	3GPP HSUPA Rel 6	3GPF DC-HSD Rel 8	PA
Max	Max allow	ed power	25.0		:	24.5	24.5	24.5				
IVIGA	Non	ninal	24.0			23.5	23.5	23.5				
	UMTS	8 Band 4 (1	750 MH	z)								
			Modu	ulate		rage Out dBm)	put Power					
Power Level			3GPF WCDM Rel 99	1A		P HSDPA Rel 5	3GPP HSUPA Rel 6	3GPF DC-HSD Rel 8	PA			
Max	Max allow	24.5		24.0		24.0	24.0					
IVIAX	Non	ninal	23.5			23.0	23.0	23.0				
Hotspot Mode Active, Proximity Sensor and/or	Max allow	ed power	23.5		:	23.0	23.0	23.0	ı			
Earjack Mode Active	Non	ninal	22.5		;	22.0	22.0	22.0				
	UMT	6 Band 2 (1	900 MH	z)								
			Modu	lated		rage Out ı dBm)	put Power					
Power Level			3GPF WCDM Rel 99	1A		P HSDPA Rel 5	3GPP HSUPA Rel 6	3GPF DC-HSD Rel 8	PA			
Max	Max allow	ed power	24.5] :	24.0	24.0	24.0				
IVIGA	Non	ninal	23.5			23.0	23.0	23.0				
Hotspot Mode Active, Proximity Sensor and/or	Max allow	ed power	23.5			23.0	23.0	23.0	ı			
Earjack Mode Active	Non	ninal	22.5			22.0	22.0	22.0				

FCC ID: A3LSMA528B	PCTEST* Provide to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dags 4 of 70	
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 4 of 72	

		Modulated Average O	utput Power (in dBm)	
			Hotspot Mode Active,	
Mode / Band		Max	Proximity Sensor	
		IVIUX	and/or Earjack Mode	
			Active	
LTE FDD Band 12	Max allowed power	25.5	25.5	
	Nominal	24.5	24.5	
LTE FDD Band 17	Max allowed power	25.5	25.5	
ETET BB Bana 17	Nominal	24.5	24.5	
LTE FDD Band 5	Max allowed power	24.0	24.0	
ETET DD Dana 3	Nominal	23.0	23.0	
LTE FDD Band 26	Max allowed power	24.0	24.0	
ETET DD Dana 20	Nominal	23.0	23.0	
LTE FDD Band 4	Max allowed power	24.5	23.5	
ETET DD Dana 4	Nominal	23.5	22.5	
LTE FDD Band 66	Max allowed power	24.5	23.5	
ETET DD Dana 00	Nominal	23.5	22.5	
LTE FDD Band 2	Max allowed power	24.0	23.0	
ETET DD Dana 2	Nominal	23.0	22.0	
LTE TDD Band 41 (PC3)	Max allowed power	24.5	24.5	
LIL IDD Balla 41 (I CS)	Nominal	23.5	23.5	
		Modulated Average O	utput Power (in dBm)	
			Hotspot Mode Active,	
Mode / Band		Max	Proximity Sensor	
		IVIAX	and/or Earjack Mode	
			Active	
NR FDD Band n5	Max allowed power	25.0	25.0	
INIVI DO BAHU IIS	Nominal	24.0	24.0	
NR FDD Band n66	Max allowed power	25.0	23.5	
NIN I DD Ballu 1100	Nominal	24.0	22.5	

FCC ID: A3LSMA528B	PCTEST Provide to be part of ® risensed	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 5 6 70	
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 5 of 72	

1.3.2 2.4 GHz Maximum Bluetooth and WLAN Output Power

			IEEE 802.11 (in dBm)									
Mode	Band		SISO									
		b			g			n		a	ax (SU)	
	mum / al Power	Max	Nom.	Ма	X	Nom	. M	Max		Ma	х	Nom.
2.4 GHz	2.45	19.5	18.5	.5 18.0		18.0 17.0		.0 19.0		16.	0	15.0
WIFI	GHz	ch. 12: 8.0 ch. 13: 2.0	7.0 1.0	ch. 12: ch. 13:		7.0 1.0	ch. 12 ch. 13		7.0 1.0	ch. 12: ch. 13:		7.0 1.0
		Mode / B	and				ſ	Лod	ulated (dB	d Avera	age	
Rlı	ietooth	(1 Mbps)		Maxi	mur	n	19.0					
Dic	ctootii	(± 1010p3)		Non	nina	ı	18.0					
	Rluetoo	th FDR		Maxi	mur	n	16.0					
	Bluetooth EDR			Nominal		15.0						
	Blueto	oth I E		Maxi	mui	n	7.0					
	Blueto	JUI LE		Non	nina	ı 🗍			6.0	0		

1.3.3 2.4 GHz Reduced Bluetooth and WLAN Output Power

The Below table is applicable in the following conditions:

RCV active

			IEEE 802.11 (in dBm)									
Mode	Band		SISO									
		b			g			n		a	k (SU	J)
	mum / al Power	Max	Nom.	Max		Nom.	Ma	x	Nom.	Ма	X	Nom.
2.4	2.45	17.0	16.0	17.0		16.0	17.	0	16.0	16.	0	15.0
GHz WIFI	GHz	ch. 12: 8.0 ch. 13: 2.0	7.0 1.0		8.0 2.0	7.0 1.0	ch. 12: ch. 13:		7.0 1.0	ch. 12: ch. 13:		7.0 1.0

FCC ID: A3LSMA528B	Post to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Done 6 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 6 of 72

Mode / Band	Modulated Average (dBm)	
Divista oth (1 Mbns)	Maximum	16.0
Bluetooth (1 Mbps)	Nominal	15.0

5 GHz Maximum WLAN Output Power 1.3.4

			IEEE 802.11 (in dBm)									
Mode	Band		SISO									
		а		n		ac		ax (SU)				
	/ Nominal wer	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.			
	5200 MHz	17.0 ch. 48: 14.0	16.0 13.0	17.0 ch. 48: 14.0	16.0 13.0	17.0 ch. 48: 14.0	16.0 13.0	15.0 ch. 48: 14.0	14.0 13.0			
5 GHz WIFI (20MHz	5300 MHz	17.0 ch. 64: 16.0	16.0 15.0	17.0 ch. 64: 16.0	16.0 15.0	17.0 ch. 64: 16.0	16.0 15.0	15.0	14.0			
`BW)	5500 MHz	17.0	16.0	17.0	16.0	17.0	16.0	15.0	14.0			
	5800 MHz	17.0	16.0	17.0	16.0	17.0	16.0	15.0	14.0			
	5200 MHz			14.0	13.0	14.0	13.0	14.0	13.0			
5 GHz WIFI (40MHz	5300 MHz			15.0 ch. 62: 13.0	14.0 12.0	15.0 ch. 62: 13.0	14.0 12.0	15.0 ch. 62: 13.0	14.0 12.0			
BW)	5500 MHz			15.0	14.0	15.0	14.0	15.0	14.0			
	5800 MHz			15.0	14.0	15.0	14.0	15.0	14.0			
	5200 MHz					13.0	12.0	13.0	12.0			
5 GHz WIFI	5300 MHz					13.0	12.0	13.0	12.0			
(80MHz BW)	5500 MHz					13.0	12.0	13.0	12.0			
,	5800 MHz					13.0	12.0	13.0	12.0			

FCC ID: A3LSMA528B	PCTEST* Proud to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 7 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 7 of 72

5 GHz Reduced WLAN Output Power 1.3.5

The Below table is applicable in the following conditions:

RCV active

				IEEE	802.1	1 (in dBm)								
Mode	Mode Band		SISO											
		a n			ac		ax (SU)	x (SU)						
	/ Nominal wer	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.					
	5200 MHz	14.0	13.0	14.0	13.0	14.0	13.0	14.0	13.0					
5 GHz WIFI	5300 MHz	14.0	13.0	14.0	13.0	14.0	13.0	14.0	13.0					
(20MHz BW)	5500 MHz	14.0	13.0	14.0	13.0	14.0	13.0	14.0	13.0					
,	5800 MHz	14.0	13.0	14.0	13.0	14.0	13.0	14.0	13.0					
	5200 MHz			14.0	13.0	14.0	13.0	14.0	13.0					
5 GHz WIFI	5300 MHz			14.0 ch. 62 13.0	13.0 12.0	14.0 ch. 62 13.0	13.0 12.0	14.0 ch. 62 13.0	13.0 12.0					
(40MHz BW)	5500 MHz			14.0	13.0	14.0	13.0	14.0	13.0					
	5800 MHz			14.0	13.0	13.0	13.0	14.0	13.0					
				ch. 159 13.0	12.0	ch. 159 13.0	12.0	ch.159 13.0	12.0					
5 011	5200 MHz					13.0	12.0	13.0	12.0					
5 GHz WIFI	5300 MHz					13.0	12.0	13.0	12.0					
(80MHz BW)	5500 MHz					13.0	12.0	13.0	12.0					
,	5800 MHz					13.0	12.0	13.0	12.0					

	FCC ID: A3LSMA528B	PCTEST* Provide to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dama 9 of 72
L	1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 8 of 72

1.4 DUT Antenna Locations

The overall dimensions of this device are $> 9 \times 5$ cm. A diagram showing the location of the device antennas can be found in Appendix G. Since the diagonal dimension of this device is > 160 mm and < 200 mm, it is considered a "phablet."

Table 1-1
Device Edges/Sides for SAR Testing

Device Lages/blace for CAR Testing								
Mode	Back	Front	Тор	Bottom	Right	Left		
GPRS 850	Yes	Yes	No	Yes	Yes	No		
GPRS 1900	Yes	Yes	No	Yes	No	Yes		
UMTS 850	Yes	Yes	No	Yes	Yes	No		
UMTS 1750	Yes	Yes	No	Yes	No	Yes		
UMTS 1900	Yes	Yes	No	Yes	No	Yes		
LTE Band 12	Yes	Yes	No	Yes	Yes	No		
LTE Band 26 (Cell)	Yes	Yes	No	Yes	Yes	No		
LTE Band 66 (AWS)	Yes	Yes	No	Yes	No	Yes		
LTE Band 2 (PCS)	Yes	Yes	No	Yes	No	Yes		
LTE Band 41	Yes	Yes	No	Yes	No	Yes		
NR Band n5 (Cell)	Yes	Yes	No	Yes	Yes	No		
NR Band 66 (AWS)	Yes	Yes	No	Yes	No	Yes		

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III and FCC KDB Publication 648474 D04v01r03. The distances between the transmit antennas and the edges of the device are included in the filing.

1.5 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix G.

FCC ID: A3LSMA528B	Proud to be post of the element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 0 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 9 of 72

1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-2
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Phablet	Notes
1	GSM voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered
2	GSM voice + 2.4 GHz WLAN	Yes	Yes	N/A	Yes	
3	GSM voice + 5 GHz WLAN	Yes	Yes	N/A	Yes	
4	GSM voice + 2.4 GHz Bluetooth + 5 GHz WLAN	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered
5	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
6	UMTS + 2.4 GHz WLAN	Yes	Yes	Yes	Yes	
7	UMTS + 5 GHz WLAN	Yes	Yes	Yes	Yes	
8	UMTS + 2.4 GHz Bluetooth + 5 GHz WLAN	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
9	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
10	LTE + 2.4 GHz WLAN	Yes	Yes	Yes	Yes	
11	LTE + 5 GHz WLAN	Yes	Yes	Yes	Yes	
12	LTE + 2.4 GHz Bluetooth + 5 GHz WLAN	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
13	LTE + NR	Yes	Yes	N/A	Yes	
14	LTE + NR + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
15	LTE + NR + 2.4 GHz WLAN	Yes	Yes	Yes	Yes	
16	LTE + NR + 5 GHz WLAN	Yes	Yes	Yes	Yes	
17	LTE + NR + 2.4 GHz Bluetooth + 5 GHz WLAN	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered
18	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	N/A	Yes^	Yes	^ Bluetooth Tethering is considered
19	GPRS/EDGE + 2.4 GHz WLAN	N/A	N/A	Yes	Yes	
20	GPRS/EDGE + 5 GHz WLAN	N/A	N/A	Yes	Yes	
21	GPRS/EDGE + 2.4 GHz Bluetooth + 5 GHz WLAN	N/A	N/A	Yes^	Yes	^ Bluetooth Tethering is considered

- 1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- LTE + 5G NR FR1 Scenarios are limited to EN-DC combinations with anchor bands as shown in the NR FR1 checklist
- 4. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 5. Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear or bodyworn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 6. 5 GHz Wireless Router is only supported for the U-NII-3 by S/W, therefore U-NII-1, U-NII-2A, and U-NII-2C were not evaluated for wireless router conditions.
- 7. This device supports VOLTE.
- 8. This device supports VOWIFI.
- 9. This device supports Bluetooth Tethering.

FCC ID: A3LSMA528B	Post to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 40 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 10 of 72

1.7 Miscellaneous SAR Test Considerations

(A) WIFI/BT

There were no changes made to the unlicensed transmitter operations within this device. Please see original compliance evaluation in RF Exposure Technical Report S/N 1M2106280072-01.A3L (Rev 1) for complete evaluation of these operating modes.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

LTE Downlink Carrier Aggregation was fully addressed in the original filing. Per FCC Guidance, no additional measurements were required since there were no changes to the downlink CA implementation for this C2PC.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information)

This device supports downlink 4x4 MIMO operations for some LTE Bands. Per May 2017 TCB Workshop Notes, SAR for 4x4 DL MIMO was not needed since the maximum average output power in 4x4 DL MIMO mode was not more than 0.25 dB higher than the maximum output power with 4x4 DL MIMO inactive. Additionally, SAR for 4x4 MIMO Downlink Carrier Aggregation was not needed since the maximum average output power in 4x4 MIMO Downlink Carrier Aggregation mode was not more than 0.25 dB higher than the maximum output power with 4x4 MIMO Downlink and downlink carrier aggregation inactive.

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

NR implementation supports NSA mode only. In EN-DC mode, NR operates with the LTE Bands shown in the NR FR1 checklist acting as anchor bands. Per FCC guidance, SAR tests for NR Bands and LTE Anchors Bands were performed separately due to limitations in SAR probe calibration factors.

NR Test Configurations were selected per the following guidelines per FCC guidance:

FCC ID: A3LSMA528B	PCTEST Proud to be port of ® element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 44 -£ 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 11 of 72

1 PCTEST REV 21.

- 1. MPR is permanently implemented per 3GPP standards. Conducted power and SAR test configurations were identified for RB configurations/modulations with MPR=0 dB as the most conservative SAR scenarios. 1 RB and 50% RB allocations with a low, mid and high offset within the "Inner RB allocation" range were selected to identify the configurations with the highest power.
- 2. The SAR test guidance outlined in section 5 of KDB 941225 D05 was generally adapted for the NR testing. DFT-S-OFDM QPSK was used as the lowest order modulation. Additional modulations were not required since conducted power was not > 0.5 dB higher than the lowest order modulation.
- 3. All available SCS settings for this device were evaluated. The NR checklist contains information about the SCS settings per band.

1.8 Guidance Applied

- IEC/IEEE 62209-1528:2020
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r03 (Phablet Procedures)
- FCC KDB Publication 616217 D04v01r02 (Proximity Sensor)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- May 2017 TCB Workshop Notes (LTE 4x4 Downlink MIMO)
- April 2018 TCB Workshop Notes (LTE Carrier Aggregation)

1.9 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

FCC ID: A3LSMA528B	POTEST Proud to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 12 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 12 of 72

	ı	TE Information					
Form Factor			Portable Handset				
Frequency Range of each LTE transmission band		LTE	Band 12 (699.7 - 715.3	MHz)			
requested range of each Ere a anomicolori band	LTE Band 17 (706.5 - 713.5 MHz)						
	LTE Band 26 (Cell) (814.7 - 848.3 MHz)						
	LTE Band 5 (Cell) (824.7 - 848.3 MHz)						
		LTE Band 66 (AWS) (1710.7 - 1779.3 MHz)					
		LTE Band	d 4 (AWS) (1710.7 - 17	54.3 MHz)			
		LTE Ban	d 2 (PCS) (1850.7 - 190	9.3 MHz)			
		LTE B	and 41 (2498.5 - 2687.5	5 MHz)			
Channel Bandwidths			12: 1.4 MHz, 3 MHz, 5 N				
		LT	E Band 17: 5 MHz, 10 N	1Hz			
): 1.4 MHz, 3 MHz, 5 MH				
			Cell): 1.4 MHz, 3 MHz, 5				
			4 MHz, 3 MHz, 5 MHz, 1				
			1 MHz, 3 MHz, 5 MHz, 1				
			MHz, 3 MHz, 5 MHz, 10		Z		
			1: 5 MHz, 10 MHz, 15 N				
Channel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid	Mid-High	High		
TE Band 12: 1.4 MHz		(23017)	707.5 (23095)		(23173)		
TE Band 12: 3 MHz		(23025)	707.5 (23095)		(23165)		
TE Band 12: 5 MHz		(23035)	707.5 (23095)		(23155)		
TE Band 12: 10 MHz		23060)	707.5 (23095)		23130)		
TE Band 17: 5 MHz		(23755)	710 (23790) 710 (23790)		(23825)		
TE Band 17: 10 MHz		709 (23780)			23800)		
TE Band 26 (Cell): 1.4 MHz	814.7	(26697)	831.5 (26865)		(27033)		
TE Band 26 (Cell): 3 MHz	815.5	(26705)	831.5 (26865)	847.5	(27025)		
TE Band 26 (Cell): 5 MHz	816.5	(26715)	831.5 (26865)	846.5	(27015)		
TE Band 26 (Cell): 10 MHz	819 (26740)	831.5 (26865)	844 (26990)		
TE Band 26 (Cell): 15 MHz	821.5	(26765)	831.5 (26865)	841.5	(26965)		
TE Band 5 (Cell): 1.4 MHz	824.7 (20407)		836.5 (20525)	848.3 (20643)			
TE Band 5 (Cell): 3 MHz	825.5 (20415)		836.5 (20525)	847.5 (20635)			
TE Band 5 (Cell): 5 MHz	826.5	826.5 (20425)		846.5 (20625)			
TE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)		
TE Band 66 (AWS): 1.4 MHz		(131979)	1745 (132322)	1779.3 (132665)			
TE Band 66 (AWS): 3 MHz		(131987)	1745 (132322)	1778.5 (132657)			
TE Band 66 (AWS): 5 MHz		(131997)	1745 (132322)	1777.5 (132647)			
TE Band 66 (AWS): 10 MHz		132022)	1745 (132322)	1775 (132622)			
TE Band 66 (AWS): 15 MHz		(132047)	1745 (132322)	1772.5 (132597)			
TE Band 66 (AWS): 20 MHz		132072)	1745 (132322)	1770 (132572)			
TE Band 4 (AWS): 1.4 MHz	1710.7	(19957)	1732.5 (20175)	1754.3 (20393)			
TE Band 4 (AWS): 3 MHz		(19965)	1732.5 (20175)		(20385)		
TE Band 4 (AWS): 5 MHz		(19975)	1732.5 (20175)	1752.5 (20375)			
TE Band 4 (AWS): 10 MHz		(20000)	1732.5 (20175)	1750 (20350)			
TE Band 4 (AWS): 15 MHz		(20025)	1732.5 (20175)		(20325)		
TE Band 4 (AWS): 20 MHz		(20050)	1732.5 (20175)		20300)		
TE Band 2 (PCS): 1.4 MHz		(18607)	1880 (18900)		(19193)		
TE Band 2 (PCS): 3 MHz		(18615)	1880 (18900)		(19185)		
TE Band 2 (PCS): 5 MHz		i (18625)	1880 (18900)		(19175)		
TE Band 2 (PCS): 10 MHz		(18650)	1880 (18900)		(19173)		
TE Band 2 (PCS): 15 MHz		(18675)	1880 (18900)		(19125)		
TE Band 2 (PCS): 20 MHz		(18700)	1880 (18900)		(19100)		
TE Band 41: 5 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)		
TE Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)		
TE Band 41: 15 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)		
TE Band 41: 20 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)		
E Category			L UE Cat 18, UL UE Car		()		
lodulations Supported in UL			QPSK, 16QAM, 64QAM				
TE MPR Permanently implemented per 3GPP TS	1		10 1111, UTO/11V	•			
6.101 section 6.2.3~6.2.5? (manufacturer attestation			YES				
be provided)							
-MPR (Additional MPR) disabled for SAR Testing?			YES				
TE Carrier Aggregation Possible Combinations	The te	chnical description incl	udes all the possible car	rier aggregation combi	nations		
TE Additional Information	features. All uplink co	mmunications are ident wing LTE Release 15 F	on 3GPP Release 15. It ical to the Release 8 Sp eatures are not supporte Cross-Carrier Schedulin	ecifications. Uplink cored: WIFI Offloading, Re	nmunications are dor elay, HetNet, Enhance		

FCC ID: A3LSMA528B	PCTEST Proud to be part of element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 12 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 13 of 72

NR Information							
Form Factor		Portable Handset					
Frequency Range of each NR transmission band		NR Band n5 (Cell) (826.5 - 846.5 MHz)					
		NR Band n66 (AWS) (1712.5 - 1777.5 MHz)					
Channel Bandwidths		R Band n5 (Cell): 5 MHz, 10MHz, 15MHz, 20 N					
	NR I	Band n66 (AWS): 5 MHz, 10 MHz, 15 MHz, 20) MHz				
Channel Numbers and Frequencies (MHz)							
NR Band n5 (Cell): 5 MHz	826.5 (165300)	836.5 (167300)	846.5 (169300)				
NR Band n5 (Cell): 10 MHz	829 (165800)	836.5 (167300)	844 (168800)				
NR Band n5 (Cell): 15 MHz	831.5 (166300)	836.5 (167300)	841.5 (168300)				
NR Band n5 (Cell): 20 MHz	834 (166800)	836.5 (167300)	839 (167800)				
NR Band n66 (AWS): 5 MHz	1712.5 (342500)	1745 (349000)	1777.5 (355500)				
NR Band n66 (AWS): 10 MHz	1715 (343000)	1745 (349000)	1775 (355000)				
NR Band n66 (AWS): 15 MHz	1717.5 (343500)	1745 (349000)	1772.5 (354500)				
NR Band n66 (AWS): 20 MHz	1720 (344000)	1745 (349000)	1770 (354000)				
SCS for NR Band n5/n66		15 kHz					
Modulations Supported in UL	DFT-s-	OFDM: π/2 BPSK, QPSK, 16QAM, 64QAM, 2 CP-OFDM: QPSK, 16QAM, 64QAM, 256QAM					
NR MPR Permanently implemented per 3GPP TS 38.101		YES					
A-MPR (Additional MPR) disabled for SAR Testing?		YES					
EN-DC Carrier Aggregation Possible Combinations	The technical desc	cription includes all the possible carrier aggreg	gation combinations				
LTE Anchor Bands for NR Band n5 (Cell)		LTE Band 66					
LTE Anchor Bands for NR Band n66 (AWS)		LTE Band 5					

FCC ID: A3LSMA528B	PCTEST* Poud to be part of seriesed	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 14 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 14 of 72

3

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 $\sigma \;$ = $\;$ conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LSMA528B	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 45 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 15 of 72

© 2021 PCTEST REV 21.4 M 09/11/2019

DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEC/IEEE 62209-1528:2020:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEC/IEEE 62209-1528:2020.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed was measured and used as a reference value.

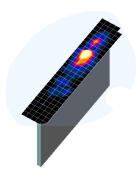


Figure 4-1 Sample SAR Area Scan

point

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEC/IEEE 62209-1528:2020. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan	Maximum Zoom Scan	Max	imum Zoom So Resolution (Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			$\Delta z_{zoom}(n)$	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22

^{*}Also compliant to IEC/IEEE 62209-1528:2020 Table 6

FCC ID: A3LSMA528B	PCTEST* Poud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 -f 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 16 of 72

© 2021 PCTEST

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

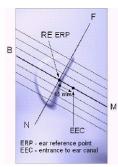


Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: A3LSMA528B	PCTEST Poud to be port of @ element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 47 - £ 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 17 of 72

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 **Positioning for Cheek**

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- The phone was then rotated around the vertical centerline until the phone (horizontal line) was 4. symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- The phone was then rotated around the horizontal line by 15 degrees.
- While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: A3LSMA528B	PCTEST* Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 10 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 18 of 72

Figure 6-2 Front, Side and Top View of Ear/15° Tilt
Position

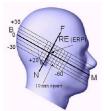


Figure 6-3
Side view w/ relevant markings

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEC/IEEE 62209-1528:2020, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

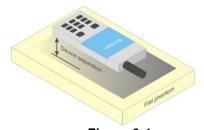


Figure 6-4 Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

FCC ID: A3LSMA528B	PCTEST* Provid to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 40 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 19 of 72

© 2021 PCTEST REV 21.4 09/11/20

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

6.8 Phablet Configurations

FCC ID: A3LSMA528B	PCTEST* Provid to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 20 of 72

1 PCTEST REV 21.

For smart phones with a display diagonal dimension > 150 mm or an overall diagonal dimension > 160 mm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10g SAR. The UMPC mini-tablet 1g SAR at 5 mm is not required. When hotspot mode applies, 10g SAR is required only for the surfaces and edges with hotspot mode 1g SAR > 1.2 W/kg.

6.9 Proximity Sensor Considerations

This device uses a power reduction mechanism to reduce output powers in certain use conditions when the device is used close the user's body.

When the device's antenna is within a certain distance of the user, the sensor activates and reduces the maximum allowed output power. However, the sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, additional evaluation is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a non-reduced output power level. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. Sensor triggering distance summary data is included in Appendix G from RF Exposure Technical Report S/N 1M2106280072-01.A3L (Rev 1)

The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antennas.

FCC ID: A3LSMA528B	POTEST* Provid to be part of ® element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 24 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 21 of 72

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS						
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT				
	General Population (W/kg) or (mW/g)	Occupational (W/kg) or (mW/g)				
Peak Spatial Average SAR _{Head}	1.6	8.0				
Whole Body SAR	0.08	0.4				
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20				

^{1.} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

FCC ID: A3LSMA528B	PCTEST* Poud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 22 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 22 of 72

© 2021 PCTEST REV 21.4

^{3.} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is \leq 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is \leq 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: A3LSMA528B	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 22 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 23 of 72

© 2021 PCTEST REV 21.4 M 09/11/2019

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

8.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.4.6 SAR Measurement Conditions for DC-HSDPA

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

FCC ID: A3LSMA528B	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 24 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 24 of 72

REV 21.4 09/11/20

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

8.5.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

8.5.6 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink

FCC ID: A3LSMA528B	PCTEST Proud to be port of @ element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dega 25 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 25 of 72
121 DCTEST				DEV/ 21.4 M

PCTEST REV 21.4 M 09/11/2019

carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

FCC ID: A3LSMA528B	PCTEST* Poud to be part of seriesed	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 26 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 26 of 72

RF CONDUCTED POWERS

GSM Conducted Powers 9.1

Table 9-1 **Maximum Conducted Power**

Maximum Conducted Power Maximum Burst-Averaged Output Power											
		Voice		GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	31.67	31.89	31.11	29.17	27.38	26.26	24.70	22.78	21.63	
GSM 850	190	31.87	32.09	31.44	29.31	27.53	26.28	24.68	22.85	21.70	
	251	31.92	32.08	31.47	29.29	27.50	26.20	24.65	22.86	21.74	
	512	29.76	29.85	28.54	26.00	24.37	25.52	24.28	22.05	21.28	
GSM 1900	661	29.45	29.50	28.56	26.05	24.54	25.33	24.15	21.91	21.58	
	810	29.42	29.45	28.62	26.14	24.46	25.45	24.23	22.04	21.27	
		Calcula	ited Maxim	num Frame	e-Average	d Output	Power				
		Voice	GPRS/EDGE Data EDGE Data (GMSK) (8-PSK)								
				(0//	ion)			(8-P	'SN)		
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm]	GPRS [dBm]	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm]	EDGE [dBm]	EDGE [dBm] 4 Tx Slot	
Band	Channel 128	[dBm] CS	[dBm]	GPRS [dBm]	GPRS [dBm]	[dBm]	[dBm]	EDGE [dBm]	EDGE [dBm]	[dBm]	
Band GSM 850		[dBm] CS (1 Slot)	[dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	[dBm] 4 Tx Slot	[dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	[dBm] 4 Tx Slot	
	128	[dBm] CS (1 Slot) 22.47	[dBm] 1 Tx Slot 22.69	GPRS [dBm] 2 Tx Slot 24.92	GPRS [dBm] 3 Tx Slot 24.74	[dBm] 4 Tx Slot 24.20	[dBm] 1 Tx Slot 17.06	EDGE [dBm] 2 Tx Slot 18.51	EDGE [dBm] 3 Tx Slot 18.35	[dBm] 4 Tx Slot 18.45	
	128 190	[dBm] CS (1 Slot) 22.47 22.67	[dBm] 1 Tx Slot 22.69 22.89	GPRS [dBm] 2 Tx Slot 24.92 25.25	GPRS [dBm] 3 Tx Slot 24.74 24.88	[dBm] 4 Tx Slot 24.20 24.35	[dBm] 1 Tx Slot 17.06 17.08	EDGE [dBm] 2 Tx Slot 18.51 18.49	EDGE [dBm] 3 Tx Slot 18.35 18.42	[dBm] 4 Tx Slot 18.45 18.52	
	128 190 251	[dBm] CS (1 Slot) 22.47 22.67 22.72	[dBm] 1 Tx Slot 22.69 22.89 22.88	GPRS [dBm] 2 Tx Slot 24.92 25.25 25.28	GPRS [dBm] 3 Tx Slot 24.74 24.88 24.86	[dBm] 4 Tx Slot 24.20 24.35 24.32	[dBm] 1 Tx Slot 17.06 17.08 17.00	EDGE [dBm] 2 Tx Slot 18.51 18.49 18.46	EDGE [dBm] 3 Tx Slot 18.35 18.42 18.43	[dBm] 4 Tx Slot 18.45 18.52 18.56	
GSM 850	128 190 251 512	[dBm] CS (1 Slot) 22.47 22.67 22.72 20.56	[dBm] 1 Tx Slot 22.69 22.89 22.88 20.65	GPRS [dBm] 2 Tx Slot 24.92 25.25 25.28 22.35	GPRS [dBm] 3 Tx Slot 24.74 24.88 24.86 21.57	[dBm] 4 Tx Slot 24.20 24.35 24.32 21.19	[dBm] 1 Tx Slot 17.06 17.08 17.00 16.32	EDGE [dBm] 2 Tx Slot 18.51 18.49 18.46 18.09	EDGE [dBm] 3 Tx Slot 18.35 18.42 18.43 17.62	[dBm] 4 Tx Slot 18.45 18.52 18.56 18.10	
GSM 850	128 190 251 512 661	[dBm] CS (1 Slot) 22.47 22.67 22.72 20.56 20.25	[dBm] 1 Tx Slot 22.69 22.89 22.88 20.65 20.30	GPRS [dBm] 2 Tx Slot 24.92 25.25 25.28 22.35 22.37	GPRS [dBm] 3 Tx Slot 24.74 24.88 24.86 21.57 21.62	[dBm] 4 Tx Slot 24.20 24.35 24.32 21.19 21.36	17.06 17.08 17.00 16.32 16.13	EDGE [dBm] 2 Tx Slot 18.51 18.49 18.46 18.09 17.96	EDGE [dBm] 3 Tx Slot 18.35 18.42 18.43 17.62 17.48	[dBm] 4 Tx Slot 18.45 18.52 18.56 18.10 18.40	
GSM 850	128 190 251 512 661	[dBm] CS (1 Slot) 22.47 22.67 22.72 20.56 20.25	[dBm] 1 Tx Slot 22.69 22.89 22.88 20.65 20.30	GPRS [dBm] 2 Tx Slot 24.92 25.25 25.28 22.35 22.37	GPRS [dBm] 3 Tx Slot 24.74 24.88 24.86 21.57 21.62	[dBm] 4 Tx Slot 24.20 24.35 24.32 21.19 21.36	17.06 17.08 17.00 16.32 16.13	EDGE [dBm] 2 Tx Slot 18.51 18.49 18.46 18.09 17.96	EDGE [dBm] 3 Tx Slot 18.35 18.42 18.43 17.62 17.48	[dBm] 4 Tx Slot 18.45 18.52 18.56 18.10 18.40	

FCC ID: A3LSMA528B	PCTEST* Provide to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 27 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 27 of 72

© 2021 PCTEST

Table 9-2
Reduced Hotspot/Proximity Sensor and/or Earjack Active

Maximum Burst-Averaged Output Power											
		Voice	GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	512	28.18	28.28	26.92	24.57	23.08	25.40	22.70	20.80	19.52	
GSM 1900	661	28.14	28.21	27.10	24.72	23.12	25.18	22.60	21.30	19.94	
	810	28.26	28.39	27.14	24.62	23.09	25.31	22.63	20.75	19.70	
	Calculated Maximum Frame-Averaged Output Power										
				GPRS/EL	OCE Data		EDGE Data (8-PSK)				
		Voice			ISK)						
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	(GA GPRS [dBm]	GPRS [dBm]	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	(8-P EDGE [dBm]	EDGE [dBm]	EDGE [dBm] 4 Tx Slot	
Band	Channel 512	GSM [dBm] CS	[dBm]	(GA GPRS [dBm]	GPRS [dBm]	[dBm]	[dBm]	(8-P EDGE [dBm]	EDGE [dBm]	[dBm]	
Band GSM 1900		GSM [dBm] CS (1 Slot)	[dBm] 1 Tx Slot	(GA GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	[dBm] 4 Tx Slot	[dBm] 1 Tx Slot	(8-P EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	[dBm] 4 Tx Slot	
	512	GSM [dBm] CS (1 Slot)	[dBm] 1 Tx Slot 19.08	(GA GPRS [dBm] 2 Tx Slot 20.73	GPRS [dBm] 3 Tx Slot	[dBm] 4 Tx Slot 19.90	[dBm] 1 Tx Slot 16.20	(8-P EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	[dBm] 4 Tx Slot 16.34	
	512 661	GSM [dBm] CS (1 Slot) 18.98	[dBm] 1 Tx Slot 19.08 19.01	(GA GPRS [dBm] 2 Tx Slot 20.73 20.91	GPRS [dBm] 3 Tx Slot 20.14 20.29	[dBm] 4 Tx Slot 19.90 19.94	[dBm] 1 Tx Slot 16.20 15.98	(8-P EDGE [dBm] 2 Tx Slot 16.51 16.41	EDGE [dBm] 3 Tx Slot 16.37 16.87	[dBm] 4 Tx Slot 16.34 16.76	

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8-PSK modulation do not have an impact on output power.

GSM Class: B
GPRS Multislot class: 33 (Max 4 Tx uplink slots)
EDGE Multislot class: 33 (Max 4 Tx uplink slots)

DTM Multislot Class: N/A

Figure 9-1
Power Measurement Setup

FCC ID: A3LSMA528B	PCTEST Provid to be part of Seriencerd	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 20 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 28 of 72
121 PCTEST				REV 21 / M

9.2 UMTS Conducted Powers

Table 9-3
Maximum Conducted Power

3GPP Release	se Mode	3GPP 34.121 Subtest	Cellu	lar Band [dBm]	AW	S Band [d	Bm]	PCS	Band [d	Bm]	3GPP MPR
Version		Subtest	4132	4183	4233	1312	1412	1513	9262	9400	9538	[ub]
99	WCDMA	12.2 kbps RMC	23.58	23.50	23.46	23.27	23.23	22.99	23.09	23.07	23.03	-
99	WCDIVIA	12.2 kbps AMR	23.53	23.54	23.57	23.27	23.27	23.05	23.09	23.11	23.06	-
6		Subtest 1	22.67	22.70	22.65	22.29	22.06	22.09	22.05	22.01	22.12	0
6	HSDPA	Subtest 2	22.69	22.71	22.67	22.31	22.06	22.11	22.05	22.00	22.04	0
6	HOUPA	Subtest 3	22.16	22.18	22.18	21.78	21.54	21.61	21.56	21.51	21.56	0.5
6		Subtest 4	22.17	22.20	22.17	21.81	21.56	21.58	21.56	21.51	21.56	0.5
6		Subtest 1	22.67	22.70	22.70	22.32	22.03	22.09	22.04	22.00	22.06	0
6		Subtest 2	20.73	20.72	20.71	20.36	20.04	20.08	20.06	20.01	20.05	2
6	HSUPA	Subtest 3	21.66	21.68	21.67	21.30	21.04	21.09	21.05	21.04	21.08	1
6		Subtest 4	20.68	20.71	20.69	20.30	20.06	20.10	20.06	20.01	20.05	2
6		Subtest 5	22.66	22.72	22.71	22.32	22.05	22.09	22.07	22.01	22.09	0
8		Subtest 1	22.64	22.69	22.71	22.32	22.08	22.13	22.08	22.02	22.12	0
8	DC-HSDPA	Subtest 2	22.66	22.72	22.70	22.32	22.06	22.11	22.07	22.01	22.07	0
8	DC-HSDPA	Subtest 3	22.18	22.21	22.21	21.83	21.55	21.62	21.58	21.51	21.58	0.5
8		Subtest 4	22.15	22.21	22.18	21.83	21.56	21.61	21.58	21.52	21.58	0.5

Table 9-4
Reduced Hotspot/Proximity Sensor and/or Earjack Active

3GPP Release	Mode	3GPP 34.121 Subtest	AW	S Band [d	Bm]	PCS	Band [di	Bm]	3GPP MPR
Version		Subtest	1312	1412	1513	9262	9400	9538	[ub]
99	WCDMA	12.2 kbps RMC	23.00	22.82	22.90	22.81	22.72	22.86	-
99	WCDIVIA	12.2 kbps AMR	23.00	22.78	22.81	22.79	22.71	22.75	-
6		Subtest 1	21.82	21.58	21.60	21.55	21.46	21.57	0
6	HSDPA	Subtest 2	21.77	21.54	21.60	21.55	21.46	21.51	0
6	TIODI A	Subtest 3	21.31	21.03	21.07	21.03	20.93	21.06	0.5
6		Subtest 4	21.29	21.02	21.07	21.04	20.95	21.03	0.5
6		Subtest 1	21.80	21.53	21.56	21.51	21.45	21.53	0
6		Subtest 2	19.79	19.51	19.55	19.52	19.46	19.51	2
6	HSUPA	Subtest 3	20.79	20.52	20.56	20.53	20.46	20.55	1
6		Subtest 4	20.00	20.03	20.08	20.02	19.95	20.03	2
6		Subtest 5	21.82	21.52	21.55	21.53	21.44	21.55	0
8		Subtest 1	21.80	21.52	21.57	21.54	21.48	21.56	0
8	DC-HSDPA	Subtest 2	21.82	21.54	21.58	21.58	21.46	21.50	0
8	DC-I BDFA	Subtest 3	21.33	21.03	21.08	21.06	20.94	21.02	0.5
8		Subtest 4	21.31	21.05	21.09	21.06	20.98	21.04	0.5

DC-HSDPA considerations

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance
- H-Set 12 (QPSK) was confirmed to be used during DC-HSDPA measurements
- The DUT supports UE category 24 for HSDPA

It is expected by the manufacturer that MPR for some HSPA subtests may be up to 2 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

Figure 9-2
Power Measurement Setup

FCC ID: A3LSMA528B	PCTEST Proud to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -f 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 29 of 72

9.3 LTE Conducted Powers

Note: Per FCC KDB Publication 941225 D05v02r05, LTE SAR for the lower bandwidths was not required for testing since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth and the reported LTE SAR for the highest bandwidth was less than 1.45W/kg. Lower bandwidth conducted powers for all LTE bands can be found in Appendix E.

9.3.1 LTE Band 12

Table 9-5
LTE Band 12 Maximum Conducted Power – 10 MHz Bandwidth

	LTE Band 12 10 MHz Bandwidth							
			Mid Channel					
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			Conducted Power [dBm]	0011 [05]				
	1	0	24.19		0			
	1	25	24.21	0	0			
	1	49	24.36		0			
QPSK	25	0	23.30		1			
	25	12	23.26	0-1	1			
	25	25	23.37	U- I	1			
	50	0	23.20		1			
	1	0	23.69		1			
	1	25	23.79	0-1	1			
	1	49	23.68		1			
16QAM	25	0	22.23		2			
	25	12	22.35	0-2	2			
	25	25	22.30	0-2	2			
	50	0	22.25		2			
	1	0	22.47		2			
	1	25	22.39	0-2	2			
	1	49	22.59		2			
64QAM	25	0	21.29		3			
	25	12	21.39	0-3	3			
	25	25	21.43	0-5	3			
	50	0	21.33		3			

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMA528B	PCTEST Poud to be part of serenced	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 20 -f 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 30 of 72

© 2021 PCTEST REV 21.4 M 09/11/2019

Table 9-6
LTE Band 26 (Cell) Maximum Conducted Power – 15 MHz Bandwidth

	LTE Band 26 (Cell) LTE Band 26 (Cell)								
			15 MHz Bandwidth Mid Channel						
Modulation	RB Size	RB Size	RB Size	RB Offset	26865 (831.5 MHz) Conducted Power	MPR Allowed per 3GPP [dB]	MPR [dB]		
			[dBm]						
	1	0	23.42		0				
	1	36	23.41	0	0				
	1	74	23.40		0				
QPSK	36	0	22.39		1				
	36	18	22.30	0-1	1				
	36	37	22.43	0-1	1				
	75	0	22.29		1				
	1	0	22.84		1				
	1	36	22.81	0-1	1				
	1	74	22.86		1				
16QAM	36	0	21.40		2				
	36	18	21.39	0-2	2				
	36	37	21.45	0-2	2				
	75	0	21.54		2				
	1	0	21.54		2				
	1	36	21.61	0-2	2				
	1	74	21.70		2				
64QAM	36	0	20.49		3				
	36	18	20.50	0-3	3				
	36	37	20.53] 0-3	3				
	75	0	20.56		3				

Note: LTE Band 26 (Cell) at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMA528B	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	MSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 -f 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 31 of 72

© 2021 PCTEST REV 21.4 M 09/11/2019

Table 9-7
LTE Band 66 (AWS) Maximum Conducted Power – 20 MHz Bandwidth

			- / - / - / - / - / - / - / - / - / - /	LTE Band 66 (AWS) 20 MHz Bandwidth		<u> Danawiatii</u>	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132072 (1720.0 MHz)	132322 (1745.0 MHz)	132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	23.23	22.97	23.13		0
	1	50	23.47	23.18	23.05	0	0
	1	99	23.17	23.06	23.00	1	0
QPSK	50	0	22.50	22.27	22.10		1
	50	25	22.52	22.35	22.17	0-1	1
	50	50	22.35	22.22	22.12		1
	100	0	22.45	22.29	22.10		1
	1	0	22.54	22.21	22.49		1
	1	50	22.69	22.56	22.43	0-1	1
	1	99	22.56	22.28	22.42		1
16QAM	50	0	21.50	21.32	21.09		2
	50	25	21.50	21.32	21.17	0-2	2
	50	50	21.33	21.20	21.15	0-2	2
	100	0	21.42	21.23	21.07		2
	1	0	21.45	21.08	21.26		2
	1	50	21.69	21.54	21.34	0-2	2
	1	99	21.37	21.25	21.27		2
64QAM	50	0	20.55	20.34	20.15		3
	50	25	20.48	20.41	20.20	0-3	3
	50	50	20.41	20.28	20.19	J 0-3	3
	100	0	20.48	20.29	20.11		3

Table 9-8

LTE Band 66 (AWS) Reduced Hotspot/Proximity Sensor and/or Earjack Active – 20 MHz Bandwidth

	,			LTE Band 66 (AWS) 20 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 132072 (1720.0 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	21.99	21.78	22.15		0
	1	50	22.22	22.04	22.02	0	0
	1	99	22.01	21.80	22.00		0
QPSK	50	0	22.29	22.03	22.07		0
	50	25	22.36	22.07	22.13	0-1	0
	50	50	22.28	22.07	22.01	0-1	0
	100	0	22.21	22.02	22.04		0
	1	0	22.31	22.27	22.51		0
	1	50	22.62	22.50	22.39	0-1	0
	1	99	22.41	22.35	22.39		0
16QAM	50	0	21.28	21.00	21.09		1
	50	25	21.36	21.03	21.12	0-2	1
	50	50	21.24	21.07	21.00	0-2	1
	100	0	21.29	21.02	21.09		1
	1	0	21.35	20.76	21.29		1
	1	50	21.64	21.05	21.13	0-2	1
	1	99	21.49	20.87	21.08		1
64QAM	50	0	20.42	20.10	20.18		2
	50	25	20.46	20.20	20.21	0-3	2
	50	50	20.35	20.08	20.08	0-3	2
	100	0	20.33	20.07	20.11		2

FCC ID: A3LSMA528B	Post to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 22 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 32 of 72

LTE Band 2 (PCS)

Table 9-9
LTE Band 2 (PCS) Maximum Conducted Power – 20 MHz Bandwidth

	LTE Band 2 (PCS)								
				20 MHz Bandwidth					
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			(Conducted Power [dBm]				
	1	0	22.99	22.86	22.86		0		
	1	50	22.92	22.82	22.92	0	0		
	1	99	22.88	22.91	22.92		0		
QPSK	50	0	21.92	21.82	21.83		1		
	50	25	22.09	21.96	21.98	0-1	1		
	50	50	22.11	21.90	21.95		1		
	100	0	21.99	21.95	21.95		1		
	1	0	22.33	22.23	22.15		1		
	1	50	22.32	22.17	22.26	0-1	1		
	1	99	22.37	22.21	22.21		1		
16QAM	50	0	20.94	20.88	20.90		2		
	50	25	21.10	20.97	21.06	0-2	2		
	50	50	21.01	20.97	20.99	0-2	2		
	100	0	21.04	20.91	21.01		2		
	1	0	21.29	21.14	21.10		2		
	1	50	21.07	21.09	21.13	0-2	2		
	1	99	21.29	21.09	21.17		2		
64QAM	50	0	19.90	19.85	19.97		3		
	50	25	20.14	20.02	20.13	0-3	3		
	50	50	20.05	20.00	20.03] 0-3	3		
	100	0	20.05	19.95	19.97	1	3		

Table 9-10

LTE Band 2 (PCS) Reduced Hotspot/Proximity Sensor and/or Earjack Active – 20 MHz Bandwidth

		, , , , , , , , , , , , , , , , , , , ,		LTE Band 2 (PCS)		TOUTE LO INITIZE	
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	21.76	21.67	21.60		0
	1	50	21.71	21.64	21.63	0 0-1	0
	1	99	21.70	21.64	21.69		0
QPSK	50	0	21.74	21.66	21.53		0
	50	25	21.84	21.76	21.80		0
	50	50	21.82	21.73	21.76		0
	100	0	21.73	21.71	21.69		0
	1	0	21.96	21.85	21.90		0
	1	50	22.00	21.92	21.98	0-1	0
	1	99	21.92	21.95	21.95		0
16QAM	50	0	20.71	20.62	20.57		1
	50	25	20.82	20.74	20.81	0-2	1
	50	50	20.80	20.69	20.75	0-2	1
	100	0	20.78	20.76	20.74		1
	1	0	20.99	20.91	20.85		1
	1	50	21.03	20.89	20.87	0-2	1
	1	99	20.95	20.84	20.86		1
64QAM	50	0	19.81	19.65	19.62	0-3	2
	50	25	19.88	19.77	19.84		2
	50	50	19.89	19.74	19.81		2
	100	0	19.82	19.72	19.76		2

FCC ID: A3LSMA528B	PCTEST Poud to be port of @ element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 -f 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 33 of 72

9.3.5 LTE Band 41

Table 9-11 LTE Band 41 Maximum Conducted Power - 20 MHz Bandwidth

			. Dana 41 IV		LTE Band 41 0 MHz Bandwidth	wer – zu ivin	<u> </u>	***	
			Low Channel	Low-Mid Channel Mid Channel	Mid-High Channel	High Channel			
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	22.71	23.10	22.83	22.98	22.73		0
	1	50	22.86	22.97	23.28	23.12	23.15	0	0
	1	99	23.00	22.96	23.02	22.68	23.10		0
QPSK	50	0	22.01	22.16	22.24	22.20	22.07		1
	50	25	22.09	22.12	22.36	22.34	22.34	0-1	1
	50	50	22.14	22.11	22.32	22.12	22.35		1
	100	0	22.01	22.06	22.22	22.26	22.27		1
	1	0	21.90	22.18	21.96	22.05	21.80	0-1	1
	1	50	22.03	22.07	22.36	22.27	22.37		1
	1	99	22.18	22.02	22.09	21.76	22.27		1
16QAM	50	0	21.00	21.20	21.34	21.23	21.14		2
	50	25	21.12	21.16	21.37	21.36	21.37	0-2	2
	50	50	21.17	21.14	21.34	21.19	21.43		2
	100	0	21.00	21.08	21.28	21.25	21.23		2
	1	0	20.50	20.87	20.60	20.65	20.53	0-2	2
	1	50	20.71	20.78	21.04	20.88	20.97		2
	1	99	20.83	20.68	20.71	20.50	20.88		2
64QAM	50	0	20.21	20.24	20.35	20.31	20.17	0-3	3
	50	25	20.14	20.19	20.43	20.45	20.44		3
	50	50	20.21	20.16	20.37	20.22	20.43		3
	100	0	20.04	20.08	20.26	20.35	20.32		3

FCC ID: A3LSMA528B	PCTEST* Proud to be part of ** element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dama 24 of 72	
1M2108160095-06.A3L 08/19/2021 – 08/31/2021		Portable Handset	Page 34 of 72	

9.4 NR Conducted Powers

Note: Per October 2020 TCB Workshop Guidance, NR FR1 SAR evaluations are being generally based on adapting the existing LTE SAR procedures (FCC KDB Publication 941225 D05v02r05). Therefore, NR SAR for the lower bandwidths was not required for testing based on the measured output power and the reported NR SAR for the highest bandwidth. Lower bandwidth conducted powers for all NR bands can be found in appendix E.

9.4.1 NR Band n5

Table 9-12
NR Band n5 Maximum Conducted Power – 20 MHz Bandwidth

NR Band n5 Maximum Conducted Power – 20 MHz Bandwidth NR Band n5 20 MHz Bandwidth								
		ZU IVINZ Dali	Channel					
Modulation	RB Size	RB Offset	167300 (836.5 MHz)	MPR Allowed per 3GPP	MPR [dB]			
			Conducted Power [dBm]	[dB]	,			
	1	1	23.57		0.0			
	1	53	23.63	0	0.0			
DFT-s-OFDM	1 50	104	23.58		0.0			
π/2 BPSK		0	23.72	0-0.5	0.5			
MZ BI SK	50	28	23.64	0	0.0			
	50	56	23.60	0-0.5	0.5			
	100	0	23.75		0.5			
	1	1	23.82		0.0			
	1	53	23.74	0	0.0			
DFT-s-OFDM	1	104	23.59		0.0			
QPSK	50	0	23.04	0-1	1.0			
Qi Oit	50	28	23.80	0	0.0			
	50	56	23.05	0-1	1.0			
	100	0	23.04	0-1	1.0			
DFT-s-OFDM 16QAM	1	1	23.01	0-1	1.0			
CP-OFDM QPSK	1	1	22.84	0-1.5	1.5			

Note: NR Band n5 (Cell) at 20 MHz bandwidth does not support non-overlapping channels. Per FCC Guidance, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: A3LSMA528B	PCTEST Proud to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 05 -f 70	
1M2108160095-06.A3L 08/19/2021 – 08/31/20		Portable Handset	Page 35 of 72	

© 2021 PCTEST REV 21.4 M 09/11/2019

NR Band n66

Table 9-13
NR Band n66 Maximum Conducted Power – 20 MHz Bandwidth

	NR Band n66 20 MHz Bandwidth								
Modulation	RB Size	RB Offset	344000 (1720 MHz)	349000 (1745 MHz)	354000 (1770 MHz)	MPR Allowed per 3GPP	MPR [dB]		
			Conducted Power [dBm]			[dB]			
	1	1	24.67	24.56	24.45	0	0.0		
	1	53	24.73	24.45	24.35		0.0		
DFT-s-OFDM	1	104	24.64	24.41	24.46		0.0		
π/2 BPSK	50	0	24.15	24.04	24.00	0-0.5	0.5		
WZ Br SK	50	28	24.66	24.52	24.42	0	0.0		
	50	56	24.15	24.01	23.94	0-0.5	0.5		
	100	0	24.17	23.99	23.94		0.5		
	1	1	24.54	24.44	24.36	0	0.0		
	1	53	24.68	24.41	24.31		0.0		
DFT-s-OFDM	1	104	24.71	24.45	24.44		0.0		
QPSK	50	0	23.69	23.56	23.44	0-1	1.0		
QFSK	50	28	24.61	24.51	24.44	0	0.0		
	50	56	23.67	23.51	23.41	0-1	1.0		
	100	0	23.68	23.62	23.43	U-1	1.0		
DFT-s-OFDM 16QAM	1	1	23.25	23.47	23.22	0-1	1.0		
CP-OFDM QPSK	1	1	23.03	23.15	22.94	0-1.5	1.5		

Table 9-14
NR Band n66 Reduced Hotspot/Proximity Sensor and/or Earjack Active – 20 MHz Bandwidth

NR Band n66 20 MHz Bandwidth							
			Channel				
Modulation	RB Size	RB Offset	344000 (1720 MHz)	349000 (1745 MHz)	354000 (1770 MHz)	MPR Allowed per 3GPP	MPR [dB]
			Conducted Power [dBm]			[dB]	
	1	1	22.79	22.65	22.62	0	0.0
	1	53	22.96	22.77	22.72		0.0
DET - OFDM	1	104	22.81	22.65	22.61		0.0
DFT-s-OFDM π/2 BPSK	50	0	22.92	22.77	22.76	0-0.5	0.0
WZ DI SK	50	28	22.98	22.78	22.78	0	0.0
	50	56	22.94	22.73	22.75	0-0.5	0.0
	100	0	22.95	22.79	22.74		0.0
	1	1	22.86	22.69	22.68	0	0.0
	1	53	22.99	22.78	22.76		0.0
DET - OFDIA	1	104	22.77	22.67	22.62] [0.0
DFT-s-OFDM QPSK	50	0	22.97	22.84	22.76	0-1	0.0
QF3N	50	28	22.99	22.85	22.79	0	0.0
	50	56	22.91	22.78	22.76	0-1	0.0
	100	0	22.94	22.82	22.76	0-1	0.0
DFT-s-OFDM 16QAM	1	1	22.84	22.64	22.69	0-1	0.0
CP-OFDM QPSK	1	1	22.85	22.65	22.65	0-1.5	0.0

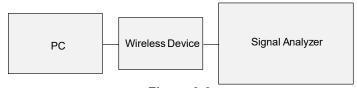


Figure 9-3
Power Measurement Setup

FCC ID: A3LSMA528B	PCTEST Poud to be part of @ element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 00 -f 70	
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 36 of 72	

10.1 Tissue Verification

Table 10-1 Measured Tissue Properties - Head

		1110	acaica i	issue Fio	iouu						
Calibrated for		Tissue Temp	Measured	Measured	Measured	TARGET	TARGET				
Tests	Tissue Type	During	Frequency	Conductivity,	Dielectric	Conductivity,	Dielectric	% dev σ	% dev ε		
Performed on:		Calibration (°C)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε				
			680	0.879	41.180	0.888	42.305	-1.01%	-2.66%		
			695	0.884	41.128	0.889	42.227	-0.56%	-2.60%		
			700	0.886	41.110	0.889	42.201	-0.34%	-2.59%		
			710	0.890	41.075	0.890	42.149	0.00%	-2.55%		
08/23/2021	750 Head	22.6	725	0.896	41.027	0.891	42.071	0.56%	-2.48%		
			750	0.905	40.950	0.894	41.942	1.23%	-2.37%		
			770	0.912	40.883	0.895	41.838	1.90%	-2.28%		
			785	0.917	40.834	0.896	41.760	2.34%	-2.22%		
			800	0.923	40.791	0.897	41.682	2.90%	-2.14%		
			815	0.929	40.757	0.898	41.594	3.45%	-2.01%		
08/23/2021	835 Head	22.6	820	0.931	40.747	0.899	41.578	3.56%	-2.00%		
00/20/2021	000 i icad	22.0	835	0.937	40.717	0.900	41.500	4.11%	-1.89%		
			850	0.943	40.673	0.916	41.500	2.95%	-1.99%		
			815	0.920	40.409	0.898	41.594	2.45%	-2.85%		
08/25/2021	835 Head	20.6	820	0.922	40.398	0.899	41.578	2.56%	-2.84%		
00/23/2021	000 i leau	20.0	835	0.928	40.371	0.900	41.500	3.11%	-2.72%		
			850	0.933	40.342	0.916	41.500	1.86%	-2.79%		
			1710	1.349	38.543	1.348	40.142	0.07%	-3.98%		
			1720	1.355	38.529	1.354	40.126	0.07%	-3.98%		
08/25/2021	1750 Head	20.6	1745	1.370	38.491	1.368	40.087	0.15%	-3.98%		
06/25/2021	1750 Head	20.6	1750	1.373	38.484	1.371	40.079	0.15%	-3.98%		
			1770	1.384	38.451	1.383	40.047	0.07%	-3.99%		
			1790	1.395	38.419	1.394	40.016	0.07%	-3.99%		
			1710	1.344	38.380	1.348	40.142	-0.30%	-4.39%		
			1720	1.350	38.361	1.354	40.126	-0.30%	-4.40%		
00/00/0004	4750 11 1	04.0	1745	1.363	38.320	1.368	40.087	-0.37%	-4.41%		
08/29/2021	1750 Head	21.2	21.2	21.2	1750	1.366	38.312	1.371	40.079	-0.36%	-4.41%
								1770	1.376	38.281	1.383
			1790	1.387	38.253	1.394	40.016	-0.50%	-4.41%		
			1850	1.386	38.986	1.400	40.000	-1.00%	-2.54%		
			1860	1.396	38.941	1.400	40.000	-0.29%	-2.65%		
			1880	1.417	38.852	1.400	40.000	1.21%	-2.87%		
08/24/2021	1900 Head	22.8	1900	1.437	38.773	1.400	40.000	2.64%	-3.07%		
			1905	1.442	38.752	1.400	40.000	3.00%	-3.12%		
			1910	1.447	38.731	1.400	40.000	3.36%	-3.17%		
			1850	1.426	38.834	1.400	40.000	1.86%	-2.91%		
			1860	1.433	38.816	1.400	40.000	2.36%	-2.96%		
			1880	1,446	38.786	1.400	40.000	3.29%	-3.04%		
08/31/2021	1900 Head	19.0	1900	1.459	38.754	1.400	40.000	4.21%	-3.12%		
			1905	1.462	38.745	1.400	40.000	4.43%	-3.14%		
			1910	1.465	38.734	1.400	40.000	4.64%	-3.17%		
			2500	1.886	37.602	1.855	39.136	1.67%	-3.92%		
			2510	1.894	37.588	1.866	39.123	1.50%	-3.92%		
			2535	1.914	37.549	1.893	39.092	1.11%	-3.95%		
			2550	1.926	37.528	1.909	39.073	0.89%	-3.95%		
08/19/2021	2450 Head	23.2	2560	1.934	37.513	1.920	39.060	0.73%	-3.96%		
30, 10,2021		20.2	2600	1.965	37.453	1.964	39.009	0.05%	-3.99%		
			2650	2.003	37.368	2.018	38.945	-0.74%	-4.05%		
			2680	2.025	37.320	2.051	38.907	-1.27%	-4.08%		
			2700	2.040	37.285	2.073	38.882	-1.59%	-4.11%		
L		J	2100	2.040	31.203	2.013	JU.00Z	-1.53/0	- T .11/0		

FCC ID: A3LSMA528B	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 07 - 170
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 37 of 72

Table 10-2 Measured Tissue Properties - Body

Calibrated for Tests Tessue Tyme Tessue Tyme Calibration (***) Calibration (IVIE	isureu i	issue Pro	perties -	Бойу											
Performed on:	Calibrated for		Tissue Temp	Measured	Measured	Measured	TARGET	TARGET										
08/23/2021 P50 Body P2.6 Body P50 Body		Tissue Type							% dev σ	% dev ε								
08/23/2021	Performed on:		Calibration (°C)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε										
08/23/2021 750 Body 21.8				680	0.945	53.885	0.958	55.804	-1.36%	-3.44%								
1710 0.956 53.807 0.960 55.687 -0.42% -3.28% -725 0.962 53.769 0.961 55.629 0.10% -3.24% -3.28% -750 0.971 53.775 0.064 55.531 0.73% -3.27% -770 0.978 53.684 0.965 55.453 0.73% -3.27% -785 0.984 55.620 0.966 55.936 1.35% -3.23% -786 0.989 53.582 0.967 55.336 2.28% -3.17% -785 0.984 55.620 0.966 55.936 2.28% -3.17% -785 0.984 53.620 0.966 55.936 2.28% -3.17% -785 0.984 53.620 0.967 55.336 2.28% -3.17% -785 0.984 53.537 0.967 -75.338 -7.29% -3.				695	0.950	53.846	0.959	55.745	-0.94%	-3.41%								
08/23/2021 750 Body 21.8 725 0.992 53.789 0.961 55.629 0.10% 3.34% 770 0.978 53.686 0.964 55.531 7.39% 3.29% 770 0.978 53.686 0.965 55.483 7.39% 3.29% 775 0.984 55.629 0.966 55.483 7.39% 3.29% 785 0.989 55.528 55.395 7.68% 3.30% 3.29% 785 0.989 55.528 55.271 4.75% 3.32% 3.29% 785 0.989 55.288 0.967 55.386 0.968 55.271 4.75% 3.33% 3.29% 785 0.989 55.288 0.970 55.200 2.78% 3.37% 3.29% 785 0.989 55.288 0.970 55.200 2.78% 3.29% 785 78				700	0.952	53.833	0.959	55.726	-0.73%	-3.40%								
750 0.971 53.715 0.984 55.531 0.73% 3.27% 770 0.978 53.664 0.9865 55.453 1.23% 3.23% 775 0.984 53.620 0.986 55.395 1.85% 3.23% 800 0.989 53.622 0.967 55.395 1.86% 3.20% 800 0.989 53.622 0.967 55.395 1.86% 3.20% 800 0.989 53.622 0.967 55.395 1.86% 3.20% 800 0.927 53.386 0.997 55.30% 2.23% 3.37% 3.33% 3.39% 850 0.927 53.386 0.999 55.258 4.33% 3.23% 850 0.957 55.200 2.278% 3.37% 3.35% 850 0.959 55.258 4.33% 3.23% 3.39% 850 0.959 55.258 4.33% 3.23% 3.39% 3.25% 850 0.959 53.119 0.988 55.154 2.24% 3.26% 3.26% 850 0.959 53.119 0.988 55.154 2.24% 3.26% 3.25% 3				710	0.956	53.807	0.960	55.687	-0.42%	-3.38%								
08/25/2021 1750 Body 22.6 1750 Body 22.3 1750 Body 23.6 1880 1.552 6.5 1.500 5.3.300 1.552 6.5 1.500 5.3.300 1.28% 3.405 6.5 1.500 5.3.300 1.28% 3.405 6.5 1.500 5.3.300 1.28% 3.405 6.5 1.500 5.3.300 1.28% 3.405 6.5 1.500 5.3.300 1.28% 3.405 6.5 1.500 5.3.300 3.405 6.5 1.500 5.3.300 3.405 6.5 1.500 6.5 1.5	08/23/2021	750 Body	21.8	725	0.962	53.769	0.961	55.629	0.10%	-3.34%								
08/25/2021 1750 Body 22.6					0.971	53.715	0.964	55.531	0.73%	-3.27%								
800 0.989 53.582 0.967 55.336 2.28% 3.37% 815 0.922 53.430 0.968 55.271 4.75% 3.33% 820 0.927 53.386 0.999 55.288 4.33% 3.39% 835 0.943 53.288 0.970 55.280 4.33% 3.39% 835 0.943 53.288 0.970 55.200 2.78% 3.52% 3.68% 3.68% 0.959 55.200 1.278% 3.69				770	0.978	53.664	0.965	55.453	1.35%	-3.23%								
Bif5																		
08/25/2021 835 Body 22.6 820 0.927 53.386 0.969 55.258 4.33% 3.33%					0.989	53.582	0.967	55.336	2.28%	-3.17%								
885 Body 826 836 0.943 83.258 0.970 55.200 -2.28% 3.52				815	0.922	53.430	0.968	55.271	-4.75%	-3.33%								
835 0.943 53.288 0.970 55.200 -2.78% 3.92% 3.95% 58.09 1.500 55.104 -2.96% 3.95% 3.95% 58.11 0.988 55.154 -2.94% 3.95% 3.95% 58.11 0.988 55.154 -2.94% 3.95% 3.95% 3.95% 59.1489 53.517 0.14% 3.80% 4.80% 59.1489 53.511 0.20% -3.85% 1720 1.465 51.607 1.463 53.537 0.14% 3.80% 4.80% 59.1489 53.511 0.20% -3.85% 1750 1.489 51.565 1.488 53.432 0.34% -3.51% 4.80% 59.1488 53.432 0.34% -3.51% 4.80% 59.1488 53.432 0.34% -3.51% 4.80% 59.1488 53.432 0.34% -3.51% 4.80% 59.1488 53.432 0.34% -3.51% 4.80% 59.1488 53.432 0.34% -3.51% 4.80% 59.1488 53.432 0.34% -3.51% 4.80% 59.1488 53.432 0.34% -3.51% 4.80% 59.1488 53.432 0.34% -3.51% 4.80% 59.1488 53.432 0.34% -3.51% 4.80% 59.1488 53.432 0.34% -3.51% 4.80% 59.1489 59.1488 53.432 0.34% -3.51% 4.80% 59.1489 59.	08/25/2021	835 Body	335 Body 22.6															
08/25/2021 1750 Body 22.2 1745 1.465 51.607 1.463 53.537 0.14% 3.80% 1720 1.472 51.595 1.469 53.511 0.20% -3.58% 1745 1.489 51.565 1.485 53.445 0.27% 3.52% 1755 1.489 51.565 1.485 53.445 0.27% 3.52% 1750 1.4803 51.565 1.485 53.445 0.27% 3.52% 3.51% 1750 1.4803 51.565 1.485 53.445 0.27% 3.52% 3.51% 1770 1.507 51.533 1.501 53.379 0.40% 3.46% 3.51% 1770 1.507 51.533 1.501 53.379 0.40% 3.46% 3.51% 1770 1.463 51.310 1.463 53.326 0.40% 3.46% 1720 1.470 51.300 1.469 53.511 0.07% 4.46% 1720 1.470 51.300 1.469 53.511 0.07% 4.46% 1750 1.480 51.267 1.488 53.432 0.13% 4.05% 1770 1.490 51.267 1.488 53.432 0.13% 4.05% 1770 1.504 51.207 1.488 53.432 0.13% 4.05% 1770 1.504 51.207 1.488 53.432 0.13% 4.05% 1850 1.554 52.230 1.520 53.300 0.20% 2.20% 2.95% 1860 1.555 52.190 1.520 53.300 0.20% 2.20% 2.91% 1860 1.558 52.190 1.520 53.300 0.20% 2.20% 1.900 1.551 52.118 1.520 53.300 0.20% 2.20% 1.900 1.552 52.055 1.550 53.300 4.00% 2.23% 1.900 1.552 52.055 1.550 53.300 4.00% 2.23% 1.900 1.552 52.055 1.550 53.300 0.39% 2.40% 2.39% 1.550 53.300 0.30 0.300 4.41% 2.23% 1.500 53.300 0.300 4.41% 2.23% 1.500 53.300 0.300 4.41% 2.23% 1.500 53.300 0.300 4.41% 2.23% 1.500 53.300 0.300 4.41% 2.23% 1.500 53.300 0.300 4.41% 2.23% 1.500 53.300 0.300 4.41% 2.23% 1.500 53.300 0.300 4.41% 2.23% 1.500 53.300 0.300 4.41% 2.23% 1.500 53.300 0.300 4.41% 2.23% 1.500 53.300 0.300 4.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.23% 1.500 53.300 1.500 53.300 1.41% 2.35% 1.500 53.300 1.500 53.300 1.500 53.300 1.500 53.300 1.500 53.300 1.500 53.300 1.500	00/20/202	ooo bouy	22.0	835	0.943	53.258	0.970	55.200	-2.78%	-3.52%								
08/25/2021 1750 Body 22.2 1745					0.959					-3.69%								
08/25/2021 1750 Body 1750				1710					0.14%	-3.60%								
08/23/2021 1750 Body 22.2 1750				1720	1.472	51.595	1.469	53.511	0.20%	-3.58%								
1750 1.507 51.559 1.488 53.432 0.34% 3.46% 1790 1.507 51.533 1.511 1.514 53.342 0.40% 3.46% 1790 1.520 51.511 1.514 53.326 0.40% 3.46% 1710 1.463 51.310 1.463 53.537 0.00% 4.76% 4.76% 1720 1.470 51.300 1.469 53.511 0.07% 4.78% 1.750 1.480 51.274 1.485 53.445 0.13% 4.06% 1770 1.504 51.274 1.485 53.445 0.13% 4.06% 1770 1.504 51.274 1.485 53.445 0.13% 4.06% 1770 1.504 51.274 1.485 53.445 0.13% 4.06% 1770 1.504 51.240 1.501 53.379 0.20% 4.07% 1790 1.517 51.212 1.514 53.326 0.20% 3.96% 1860 1.535 52.190 1.520 53.300 0.26% 2.27% 1860 1.535 52.190 1.520 53.300 0.29% 2.28% 1860 1.535 52.190 1.520 53.300 0.99% 2.28% 1905 1.587 52.043 1.520 53.300 4.06% 2.28% 1905 1.587 52.043 1.520 53.300 4.47% 2.36% 1910 1.582 52.055 1.520 53.300 4.47% 2.36% 1910 1.583 52.043 1.520 53.300 1.46% 2.36% 1910 1.583 52.043 1.520 53.300 1.46% 2.36% 1910 1.583 52.043 1.520 53.300 1.47% 2.36% 1910 1.583 52.043 1.520 53.300 1.47% 2.36% 1910 1.583 52.043 1.520 53.300 1.47% 2.36% 1910 1.583 52.043 1.520 53.300 1.47% 2.36% 1910 1.583 52.043 1.520 53.300 1.47% 2.36% 1910 1.583 52.043 1.520 53.300 1.47% 2.36% 1910 1.583 52.043 1.520 53.300 1.47% 2.36% 1910 1.583 52.043 1.520 53.300 1.47% 2.36% 1910 1.583 52.043 1.520 53.300 1.47% 2.36% 1910 1.583 52.043 1.520 53.300 1.47% 2.36% 1910 1.583 52.043 1.520 53.300 1.47% 2.36% 1910 1.583 52.043 1.520 53.300 1.47% 2.36% 1910 1.583 52.043 1.520 53.300 1.47% 2.36% 1910 1.583 51.264 1.520 53.300 1.47% 2.36% 1910 1.584 51.250 53.300 1.47% 2.36% 1910 1.588 51.264 1.520 53.300 1.47% 2.36% 1910 1.584 51.250 53.300 1.47% 2.36% 1910 1.584 51.250 53.300 1.47% 2.36% 1910 1.584 51.250 53.300 1.47% 2.36% 1910 1.584 51.250 53.300 1.47% 2.36% 1910 1.584 51.250 53.300 1.47% 2.36% 1910 1.584 51.250 53.300 1.47% 2.36% 1910 1.584 51.250 53.300 1.47% 2.36% 1910 1.584 51.250 53.300 1.47% 2.36% 1910 1.584 51.250 53.300 1.47% 2.36% 1910 1.584 51.250 53.300 1.47% 2.36% 1910 1.584 51.250 53.300 1.580 52.602 1.47% 3.86% 1905 54.868 1.993 52.602 1.46% 3.46% 1905 54.868 1.993 52.602 1.46% 3.46% 1905 54.868 1.993 52.602 1.46% 3.46% 190	08/25/2021	1750 Body	22.2	1745	1.489	51.565	1.485	53.445	0.27%	-3.52%								
1790 1.520 51.511 1.514 53.326 0.40% -3.40% 1.710 1.638 51.310 1.463 53.537 0.00% -4.16% 51.500 1.469 53.511 0.07% -4.13% -4.06% 1.520 1.470 51.300 1.469 53.511 0.07% -4.13% -4.06% 1.520 1.480 53.537 0.00% -4.16% 51.500 1.469 53.511 0.07% -4.13% -4.06% 1.500 1.469 53.511 0.07% -4.13% -4.06% 1.500 1.460 51.274 1.485 53.445 0.13% -4.06% 1.750 1.480 51.267 1.488 53.432 0.13% -4.06% 1.770 1.504 51.240 1.501 53.379 0.20% -4.01% 1.770 1.504 51.240 1.501 53.379 0.20% -4.01% 1.500 1.500 1.500 1.500 53.300 0.26% -3.96% 1.850 1.524 52.230 1.520 53.300 0.26% -3.96% 1.850 1.524 52.230 1.520 53.300 0.26% -2.01% 1.850 1.526 52.118 1.520 53.300 0.25% -2.01% 1.900 1.582 52.055 1.520 53.300 4.08% -2.34% 1.900 1.582 52.055 1.520 53.300 4.08% -2.34% 1.910 1.593 52.030 1.520 53.300 4.00% -3.47% 1.850 1.520 53.300 1.12% -3.54% 1.850 1.526 51.451 1.520 53.300 1.12% -3.54% 1.850 1.556 51.451 1.520 53.300 1.26% -3.68% 1.900 1.583 51.276 1.520 53.300 4.47% -3.82% 1.900 1.583 51.276 1.520 53.300 4.47% -3.82% 1.900 1.583 51.276 1.520 53.300 4.47% -3.82% 1.900 1.584 51.250 53.300 4.47% -3.82% 1.900 1.584 51.250 53.300 4.47% -3.82% 1.900 1.584 51.250 53.300 4.47% -3.82% 1.200 1.20	00/25/2021	1730 Body	22.2	1750	1.493	51.559	1.488	53.432	0.34%	-3.51%								
08/27/2021 1750 Body 22.3				1770	1.507	51.533	1.501	53.379	0.40%	-3.46%								
08/27/2021 1750 Body 22.3				1790	1.520	51.511	1.514	53.326	0.40%	-3.40%								
1750 Body 1750 Body 1750 Body 1750 Body 1750 1.487 51.274 1.485 53.445 0.13% -4.06%				1710	1.463	51.310	1.463	53.537	0.00%	-4.16%								
1750 Body 1750 Body 1750 1.490 51.267 1.488 53.432 0.13% -4.05%				1720	1.470	51.300	1.469	53.511	0.07%	-4.13%								
1750 1.490 51.240 1.501 53.379 0.20% -4.0% 1.770 1.504 51.240 1.501 53.379 0.20% -4.0% 1.770 1.504 51.240 1.501 53.379 0.20% -4.01% 1.770 1.504 51.240 1.501 53.379 0.20% -3.96% 1.770 1.517 51.212 1.514 53.326 0.20% -3.96% 1.880 1.524 52.230 1.520 53.300 0.26% -2.01% 1.880 1.535 52.190 1.520 53.300 0.26% -2.01% 1.880 1.558 52.118 1.520 53.300 0.99% -2.20% 1.900 1.582 52.035 1.520 53.300 4.08% -2.23% 1.900 1.582 52.035 1.520 53.300 4.08% -2.34% 1.901 1.583 52.030 1.520 53.300 4.08% -2.38% 1.901 1.593 52.030 1.520 53.300 4.08% -2.38% 1.880 1.526 51.451 1.520 53.300 4.08% -2.38% 1.880 1.526 51.451 1.520 53.300 1.20% -3.47% 1.880 1.526 51.451 1.520 53.300 1.20% -3.47% 1.880 1.526 51.451 1.520 53.300 4.41% -2.36% 1.900 1.583 51.276 1.520 53.300 4.41% -3.80% 1.900 1.583 51.276 1.520 53.300 4.47% -3.80% 1.900 1.583 51.276 1.520 53.300 4.47% -3.80% 1.900 1.588 51.284 1.520 53.300 4.47% -3.80% 1.900 1.588 51.284 1.520 53.300 4.47% -3.80% 1.900 1.588 51.284 1.520 53.300 4.47% -3.80% 1.900 1.588 51.284 1.520 53.300 4.47% -3.80% 1.900 1.588 51.284 1.520 53.300 4.47% -3.80% 1.900 1.594 51.250 1.520 53.300 4.47% -3.80% 1.900 1.584 51.250 1.520 53.300 4.47% -3.80% 1.900 1.584 51.250 1.520 53.300 4.47% -3.80% 1.500	09/27/2024	1750 Pody	22.2	1745	1.487	51.274	1.485	53.445	0.13%	-4.06%								
1790	00/2//2021	1750 Body	22.3	1750	1.490	51.267	1.488	53.432	0.13%	-4.05%								
8/23/2021 Page 1900 Body Page 1900 B				1770	1.504	51.240	1.501	53.379	0.20%	-4.01%								
88/23/2021 1900 Body 23.6 1880 1.535 52.190 1.520 53.300 0.99% 2.20% 2.22% 1900 1.582 52.055 1.520 53.300 4.08% 2.23% 1900 1.587 52.043 1.520 53.300 4.08% 2.23% 1900 1.587 52.043 1.520 53.300 4.08% 2.23% 1910 1.593 52.030 1.520 53.300 0.39% 2.38% 1850 1.526 51.451 1.520 53.300 0.39% 2.37% 1860 1.537 51.411 1.520 53.300 0.39% 2.37% 1880 1.580 1.580 51.411 1.520 53.300 1.72% 3.34% 3.34% 1.880 1.580 1.580 51.381 1.520 53.300 1.72% 3.34% 1.880 1.580 1.588 51.276 1.520 53.300 1.72% 3.36% 1.905 1.588 51.264 1.520 53.300 4.47% 3.80% 1.905 1.588 51.264 1.520 53.300 4.47% 3.80% 1.905 1.588 51.264 1.520 53.300 4.47% 3.80% 1.905 1.588 51.264 1.520 53.300 4.47% 3.80% 1.801 1.802 53.300 4.47% 3.80% 1.803 1.778 55.222 1.809 52.900 -1.77% 4.39% 2310 1.792 2320 1.806 55.191 1.826 52.873 -1.10% 4.39% 2480 2.022 54.568 1.993 52.662 1.46% 3.62% 2450 1.985 54.438 1.902 52.767 0.68% 4.01% 2450 1.985 54.438 1.902 52.767 0.68% 4.01% 2450 1.985 54.436 2.021 54.486 2.035 52.622 1.64% 3.55% 2560 2.125 54.404 2.071 52.592 1.64% 3.45% 2550 2.125 54.404 2.071 52.592 1.64% 3.33% 2560 2.187 54.410 2.163 52.509 1.111% 3.05% 2660 2.264 53.977 2.234 52.445 1.34% 2.29% 2680 2.301 53.862 2.277 52.407 1.05% 2.78%				1790	1.517	51.212	1.514	53.326	0.20%	-3.96%								
1900 Body					1850	1.524	52.230	1.520	53.300	0.26%	-2.01%							
1900 Body 1900 Body 1900 Body 1900 Body 1900 1,582 52,055 1,520 53,300 4,08% -2,34% 1905 1,587 52,043 1,520 53,300 4,41% -2,36% 1910 1,593 52,030 1,520 53,300 4,80% -2,34% 1860 1,537 51,451 1,520 53,300 0,39% -3,47% 1860 1,537 51,411 1,520 53,300 0,39% -3,47% 1860 1,537 51,411 1,520 53,300 2,63% -3,68% 1900 1,583 51,276 1,520 53,300 2,63% -3,68% 1900 1,583 51,276 1,520 53,300 4,47% -3,80% 1905 1,588 51,264 1,520 53,300 4,47% -3,82% 1910 1,594 51,250 1,520 53,300 4,47% -3,82% 1910 1,778 55,222 1,809 52,900 -1,71% 4,39% 2310 1,792 55,210 1,816 52,887 -1,32% 4,39% 2320 1,806 55,191 1,826 52,873 -1,10% 4,38% 2400 1,915 54,883 1,902 52,767 0,68% 4,01% 2450 1,985 54,738 1,995 52,700 1,79% 3,67% 2480 2,022 54,568 1,993 52,662 1,46% 3,62% 2500 2,051 54,483 2,021 52,636 1,48% 3,51% 2550 2,125 54,356 2,092 52,573 1,58% 3,39% 2560 2,187 54,110 2,163 52,509 1,11% 3,05% 2660 2,264 53,977 2,234 52,445 1,34% 2,92% 2680 2,301 53,862 2,277 52,407 1,05% 2,78%				1860	1.535	52.190	1.520	53.300	0.99%	-2.08%								
1900 1.582 52.055 1.520 53.300 4.08% -2.34% 1900 1.587 52.043 1.520 53.300 4.08% -2.34% 1910 1.593 52.030 1.520 53.300 4.80% -2.38% 1850 1.526 51.451 1.520 53.300 0.039% -3.47% 1860 1.537 51.411 1.520 53.300 1.12% -3.54% 1860 1.537 51.411 1.520 53.300 1.12% -3.54% 1900 1.583 51.276 1.520 53.300 2.63% -3.68% 1900 1.588 51.276 1.520 53.300 4.44% -3.80% 1900 1.588 51.264 1.520 53.300 4.44% -3.80% 1900 1.594 51.250 1.520 53.300 4.44% -3.80% 1910 1.594 51.250 1.520 53.300 4.47% -3.82% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.520 53.300 4.47% -3.85% 1910 1.594 51.250 1.500 52.000 1.77% 4.39% 1.595 55.210 1.816 52.887 -1.32% 4.39% 1.595 1.500	08/23/2021	1000 Body	23.6	23.6	23.6	1880	1.558	52.118	1.520	53.300	2.50%	-2.22%						
1910 1.593 52.030 1.520 53.300 4.80% -2.38% 1850 1.526 51.451 1.520 53.300 0.39% -3.47% 1860 1.537 51.411 1.520 53.300 1.12% -3.54% 1880 1.560 51.338 1.520 53.300 1.12% -3.68% 1990 1.583 51.276 1.520 53.300 4.14% -3.80% 1990 1.583 51.276 1.520 53.300 4.14% -3.80% 1990 1.588 51.264 1.520 53.300 4.47% -3.82% 1910 1.594 51.250 1.520 53.300 4.47% -3.82% 1910 1.594 51.250 1.520 53.300 4.87% -3.85% 1910 1.594 51.250 1.520 53.300 4.87% -3.88% 1910 1.778 55.222 1.809 52.900 -1.71% 4.39% 2320 1.806 55.191 1.826 52.887 -1.32% 4.39% 2320 1.806 55.191 1.826 52.873 -1.10% 4.38% 2440 1.915 54.883 1.902 52.767 0.68% 4.01% 2450 1.985 54.738 1.950 52.700 1.79% 3.87% 2480 2.022 54.568 1.993 52.662 1.46% 3.62% 2500 2.051 54.483 2.021 52.636 1.46% 3.51% 2500 2.051 54.483 2.021 52.636 1.46% 3.51% 2500 2.051 54.483 2.021 52.563 1.57% 3.48% 2550 2.125 54.566 2.035 52.623 1.57% 3.48% 2560 2.137 54.312 2.106 52.560 1.47% 3.33% 2600 2.187 54.312 2.106 52.560 1.47% 3.33% 2600 2.187 54.312 2.106 52.560 1.47% 3.33% 2600 2.187 54.310 2.163 52.509 1.11% 3.05% 2600 2.187 54.4110 2.163 52.509 1.11% 3.05% 2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2600 2.264 53.977 2.234 52.445 1.34% 2.92% 2600 2.264 53.977 2.234 52.445 1.34% 2.92% 2600 2.301 53.862 2.277 52.407 1.05% 2.78%	00/23/2021	1900 Body				23.6	23.0	23.0	23.0	23.6	23.6	23.6	1900	1.582	52.055	1.520	53.300	4.08%
08/25/2021 1900 Body 23.2 1850 1.526 51.451 1.520 53.300 0.39% -3.47% 1860 1.537 51.411 1.520 53.300 1.12% -3.54% 1880 1.560 51.338 1.520 53.300 2.63% -3.68% 1900 1.583 51.276 1.520 53.300 4.14% -3.80% 1905 1.588 51.264 1.520 53.300 4.47% -3.82% 1910 1.594 51.250 1.520 53.300 4.47% -3.82% 2300 1.778 55.222 1.809 52.900 -1.71% 4.39% 2310 1.792 55.210 1.816 52.887 -1.32% 4.39% 2320 1.806 55.191 1.826 52.873 -1.10% 4.38% 2450 1.985 54.738 1.950 52.700 1.79% 3.87% 2480 2.022 54.568 1.993 52.662 1.46% 3.62% 2500 2.051 54.483 2.021 52.636					1905	1.587	52.043	1.520	53.300	4.41%	-2.36%							
08/25/2021 1900 Body 23.2 1860				1910	1.593	52.030	1.520	53.300	4.80%	-2.38%								
08/25/2021 Page 1900 Body Page 1900				1850	1.526	51.451	1.520	53.300	0.39%	-3.47%								
1900 Body 1,583 51,276 1,520 53,300 4,14% -3,80% 1905 1,588 51,264 1,520 53,300 4,47% -3,82% 1910 1,594 51,250 1,520 53,300 4,87% -3,85% 2300 1,778 55,222 1,809 52,900 -1,71% 4,39% 2310 1,792 55,210 1,816 52,887 -1,32% 4,39% 2320 1,806 55,191 1,826 52,873 -1,10% 4,38% 2400 1,915 54,883 1,902 52,767 0,68% 4,01% 2450 1,985 54,738 1,950 52,700 1,79% 3,87% 2480 2,022 54,568 1,993 52,662 1,46% 3,62% 2500 2,051 54,483 2,021 52,636 1,48% 3,51% 2535 2,105 54,456 2,035 52,623 1,57% 3,48% 2550 2,125 54,356 2,092 52,573 1,58% 3,39% 2560 2,137 54,312 2,106 52,560 1,47% 3,33% 2600 2,187 54,110 2,163 52,509 1,11% 3,05% 2680 2,264 53,977 2,234 52,445 1,34% 2,92% 2680 2,301 53,862 2,277 52,407 1,05% 2,78%				1860	1.537	51.411	1.520	53.300	1.12%	-3.54%								
1900 1.583 51.276 1.520 53.300 4.14% -3.80% 1905 1.588 51.264 1.520 53.300 4.47% -3.80% 1910 1.594 51.250 1.520 53.300 4.87% -3.85% 2300 1.778 55.222 1.809 52.900 -1.71% 4.39% 2310 1.792 55.210 1.816 52.887 -1.32% 4.39% 2320 1.806 55.191 1.826 52.873 -1.10% 4.38% 2400 1.915 54.883 1.902 52.767 0.68% 4.01% 2450 1.985 54.738 1.950 52.700 1.79% 3.87% 2480 2.022 54.568 1.993 52.662 1.46% 3.62% 2500 2.051 54.483 2.021 52.636 1.46% 3.62% 2500 2.051 54.483 2.021 52.636 1.46% 3.51% 2535 2.105 54.404 2.071 52.592 1.64% 3.45% 2550 2.125 54.356 2.092 52.573 1.58% 3.39% 2560 2.137 54.312 2.106 52.560 1.47% 3.33% 2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2650 2.264 53.977 2.234 52.445 1.34% 2.92% 2680 2.301 53.862 2.277 52.407 1.05% 2.78%	08/25/2021	1000 Body	23.2	1880	1.560	51.338	1.520	53.300	2.63%	-3.68%								
1910 1.594 51.250 1.520 53.300 4.87% -3.85% 2300 1.778 55.222 1.809 52.900 -1.71% 4.39% 2310 1.792 55.210 1.816 52.887 -1.32% 4.39% 2320 1.806 55.191 1.826 52.873 -1.10% 4.38% 2400 1.915 54.883 1.902 52.767 0.68% 4.01% 2450 1.985 54.738 1.950 52.700 1.79% 3.87% 2480 2.022 54.568 1.993 52.662 1.46% 3.62% 2500 2.051 54.483 2.021 52.636 1.48% 3.51% 2500 2.051 54.483 2.021 52.636 1.48% 3.51% 2535 2.105 54.404 2.071 52.592 1.64% 3.45% 2550 2.125 54.356 2.092 52.573 1.55% 3.39% 2560 2.137 54.312 2.106 52.560 1.47% 3.33% 2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2650 2.264 53.977 2.234 52.445 1.34% 2.92% 2680 2.301 53.862 2.277 52.407 1.05% 2.78%	00/25/2021	1900 Body	25.2	1900	1.583	51.276	1.520	53.300	4.14%	-3.80%								
08/22/2021 2450 Body 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9				1905	1.588	51.264	1.520	53.300	4.47%	-3.82%								
08/22/2021 2450 Body 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9				1910	1.594	51.250	1.520	53.300	4.87%	-3.85%								
08/22/2021 2450 Body 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9				2300	1.778	55.222	1.809	52.900	-1.71%	4.39%								
08/22/2021 2450 Body 23.9 2450 Body 23.9 2450 Body 23.9 2450 2.022 54.883 1.902 52.767 0.68% 4.01% 2450 1.985 54.738 1.950 52.700 1.79% 3.87% 2480 2.022 54.568 1.993 52.662 1.46% 3.62% 2500 2.051 54.483 2.021 52.636 1.48% 3.51% 2510 2.067 54.456 2.035 52.623 1.57% 3.48% 2535 2.105 54.404 2.071 52.592 1.64% 3.45% 2550 2.125 54.356 2.092 52.573 1.58% 3.39% 2560 2.137 54.312 2.106 52.560 1.47% 3.33% 2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2650 2.264 53.977 2.234 52.445 1.34% 2.92% 2680 2.301 53.862 2.277 52.407 1.05% 2.78%				2310	1.792	55.210	1.816	52.887	-1.32%	4.39%								
08/22/2021 2450 Body 23.9 2450 Body 23.9 2450 Body 23.9 2510 2.067 54.456 2.035 52.662 1.46% 3.62% 2550 2.105 54.404 2.071 52.592 1.64% 3.45% 2550 2.125 54.356 2.092 52.573 1.58% 3.39% 2560 2.137 54.312 2.106 52.560 1.47% 3.33% 2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2650 2.264 53.977 2.234 52.445 1.34% 2.92% 2680 2.301 53.862 2.277 52.407 1.05% 2.78%				2320	1.806	55.191	1.826	52.873	-1.10%	4.38%								
08/22/2021 2450 Body 23.9 23.9 2510 2.051 54.483 2.021 52.636 1.48% 3.51% 2500 2.051 54.486 2.035 52.636 1.48% 3.51% 2535 2.105 54.404 2.071 52.592 1.64% 3.45% 2550 2.125 54.356 2.092 52.573 1.58% 3.39% 2560 2.137 54.312 2.106 52.560 1.47% 3.33% 2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2650 2.264 53.977 2.234 52.445 1.34% 2.92% 2680 2.301 53.862 2.277 52.407 1.05% 2.78%				2400	1.915	54.883	1.902	52.767	0.68%	4.01%								
08/22/2021 2450 Body 23.9 2500 2.051 54.483 2.021 52.636 1.48% 3.51% 2510 2.067 54.456 2.035 52.623 1.57% 3.48% 2535 2.105 54.404 2.071 52.592 1.64% 3.45% 2550 2.125 54.356 2.092 52.573 1.58% 3.39% 2560 2.137 54.312 2.106 52.560 1.47% 3.33% 2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2650 2.264 53.977 2.234 52.445 1.34% 2.92% 2680 2.301 53.862 2.277 52.407 1.05% 2.78%				2450	1.985	54.738	1.950	52.700	1.79%	3.87%								
08/22/2021 2450 Body 23.9 2510 2.067 54.456 2.035 52.623 1.57% 3.48% 2535 2.105 54.404 2.071 52.592 1.64% 3.45% 2550 2.125 54.356 2.092 52.573 1.58% 3.39% 2560 2.137 54.312 2.106 52.560 1.47% 3.33% 2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2650 2.264 53.977 2.234 52.445 1.34% 2.92% 2680 2.301 53.862 2.277 52.407 1.05% 2.78%				2480	2.022	54.568	1.993	52.662	1.46%	3.62%								
2535 2.105 54.404 2.071 52.592 1.64% 3.45% 2550 2.125 54.356 2.092 52.573 1.58% 3.39% 2560 2.137 54.312 2.106 52.560 1.47% 3.33% 2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2650 2.264 53.977 2.234 52.445 1.34% 2.92% 2680 2.301 53.862 2.277 52.407 1.05% 2.78%				2500	2.051	54.483	2.021	52.636	1.48%	3.51%								
2550 2.125 54.356 2.092 52.573 1.58% 3.39% 2560 2.137 54.312 2.106 52.560 1.47% 3.33% 2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2650 2.264 53.977 2.234 52.445 1.34% 2.92% 2680 2.301 53.862 2.277 52.407 1.05% 2.78%	08/22/2021	2450 Body	23.9	2510	2.067	54.456	2.035	52.623	1.57%	3.48%								
2560 2.137 54.312 2.106 52.560 1.47% 3.33% 2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2650 2.264 53.977 2.234 52.445 1.34% 2.92% 2680 2.301 53.862 2.277 52.407 1.05% 2.78%				2535	2.105	54.404	2.071	52.592	1.64%	3.45%								
2600 2.187 54.110 2.163 52.509 1.11% 3.05% 2650 2.264 53.977 2.234 52.445 1.34% 2.92% 2680 2.301 53.862 2.277 52.407 1.05% 2.78%				2550	2.125	54.356	2.092	52.573	1.58%	3.39%								
2650 2.264 53.977 2.234 52.445 1.34% 2.92% 2680 2.301 53.862 2.277 52.407 1.05% 2.78%				2560	2.137	54.312	2.106	52.560	1.47%	3.33%								
2680 2.301 53.862 2.277 52.407 1.05% 2.78%				2600	2.187	54.110	2.163	52.509	1.11%	3.05%								
				2650	2.264	53.977	2.234	52.445	1.34%	2.92%								
2700 2.325 53.759 2.305 52.382 0.87% 2.63%				2680	2.301	53.862	2.277	52.407	1.05%	2.78%								
				2700	2.325	53.759	2.305	52.382	0.87%	2.63%								

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEC/IEEE 62209-1528:2020 G-5). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMA528B	Poud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 20 - 1 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 38 of 72

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix D.

Table 10-3 System Verification Results – 1g

	System Verification TARGET & MEASURED														
SAR System	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp. (C)	Liquid Temp. (C)	Input Power (W)	Source SN	Probe SN	Measured SAR1g (W/kg)	1W Target SAR1g (W/kg)	1W Normalized SAR 1g (W/kg)	Deviation1g (%)			
Α	750	HEAD	08/23/2021	22.9	22.6	0.2	1161	7406	1.66	8.03	8.300	3.36%			
Α	835	HEAD	08/23/2021	22.9	22.6	0.2	4d132	7406	1.97	9.66	9.850	1.97%			
Α	835	HEAD	08/25/2021	24.0	22.0	0.2	4d132	7406	1.87	9.66	9.350	-3.21%			
Α	1750	HEAD	08/25/2021	24.0	22.0	0.1	1150	7406	3.57	36.50	35.700	-2.19%			
Α	1750	HEAD	08/29/2021	23.5	21.2	0.1	1150	7406	3.74	36.50	37.400	2.47%			
В	1900	HEAD	08/24/2021	24.5	22.8	0.1	5d149	7660	4.17	39.30	41.700	6.11%			
Α	1900	HEAD	08/31/2021	24.3	20.9	0.1	5d080	7406	4.19	39.80	41.900	5.28%			
В	2600	HEAD	08/19/2021	24.5	23.2	0.1	1064	7660	5.73	58.10	57.300	-1.38%			
Е	750	BODY	08/23/2021	20.5	21.8	0.2	1161	7571	1.81	8.43	9.050	7.35%			
Н	835	BODY	08/25/2021	23.4	22.5	0.2	4d133	7409	2.00	9.75	10.000	2.56%			
Е	1750	BODY	08/25/2021	23.5	22.7	0.1	1150	7571	3.89	36.60	38.900	6.28%			
Е	1750	BODY	08/27/2021	23.7	23.0	0.1	1148	7571	3.91	36.30	39.100	7.71%			
Р	1900	BODY	08/23/2021	22.2	21.6	0.1	5d149	7410	4.16	39.40	41.600	5.58%			
Ĺ	2600	BODY	08/22/2021	22.7	23.3	0.1	1071	7539	5.25	54.30	52.500	-3.31%			

Table 10-4
System Verification Results – 10g

	System vernication Results - 10g													
	System Verification TARGET & MEASURED													
SAR System	ystem Frequency (MHz) Type Date Temp. Temp. Power SN Probe SN SAR10g (W/kg) SAR10g (W/kg) SAR10g (W/kg) (%)													
Е	1750	BODY	08/25/2021	23.5	22.7	0.1	1150	7571	2.070	19.40	20.700	6.70%		
E	1750	BODY	08/27/2021	23.7	23.0	0.1	1148	7571	2.080	19.30	20.800	7.77%		
Р	1900	BODY	08/25/2021	21.6	21.3	0.1	5d149	7410	2.170	20.70	21.700	4.83%		

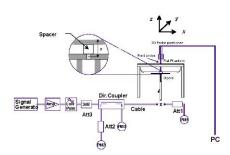


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

FCC ID: A3LSMA528B	PCTEST Proud to be port of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 20 -f 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 39 of 72

11 SAR DATA SUMMARY

11.1 Standalone Head SAR Data

Table 11-1 GSM 850 Head SAR

						1 000 1		<u> </u>						
					MEAS	UREME	NT RES	SULTS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.		5511165	Power [dBm]	Power [dBm]	Drift [dB]	0.40	Position	Number	July Gyolo	(W/kg)	Factor	(W/kg)	. 101 //
848.80	251	GSM 850	GSM	33.0	31.92	-0.16	Right	Cheek	83019	1:8.3	0.214	1.282	0.274	A1
848.80	251	GSM 850	GSM	33.0	31.92	0.00	Right	Tilt	83019	1:8.3	0.124	1.282	0.159	
848.80	251	GSM 850	GSM	33.0	31.92	0.06	Left	Cheek	83019	1:8.3	0.201	1.282	0.258	
848.80	251	GSM 850	GSM	33.0	31.92	-0.06	Left	Tilt	83019	1:8.3	0.106	1.282	0.136	
		ANSI / IEEE C	95.1 1992 - S	AFETY LIMIT						Head				
			Spatial Peak				1.6 W/kg (mW/g)							
	Uncontrolled Exposure/General Population									avera	ged over 1 gr	am		

Table 11-2 GSM 1900 Head SAR

					MEAS	UREME	NT RES	SULTS						
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	., ,	(W/kg)	Factor	(W/kg)	
1850.20	512	GSM 1900	GSM	30.5	29.76	0.03	Right	Cheek	82607	1:8.3	0.047	1.186	0.056	
1850.20	512	GSM 1900	GSM	30.5	29.76	0.03	Right	Tilt	82607	1:8.3	0.032	1.186	0.038	
1850.20	512	GSM 1900	GSM	30.5	29.76	0.01	Left	Cheek	82607	1:8.3	0.047	1.186	0.056	A2
1850.20	512	GSM 1900	0.05	Left	Tilt	82607	1:8.3	0.045	1.186	0.053				
		ANSI / IEEE C						Head						
			Spatial Peak							1.6	W/kg (mW/g)		
	Uncontrolled Exposure/General Population									avera	ged over 1 gr	am		

Table 11-3 UMTS 850 Head SAR

					MEAS	UREME	IENT RESULTS							
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	.,	(W/kg)	Factor	(W/kg)	
826.40	4132	UMTS 850	RMC	25.0	23.58	-0.09	Right	Cheek	83019	1:1	0.259	1.387	0.359	A3
826.40	4132	UMTS 850	RMC	25.0	23.58	-0.01	Right	Tilt	83019	1:1	0.123	1.387	0.171	
826.40	4132	UMTS 850	RMC	25.0	23.58	-0.04	Left	Cheek	83019	1:1	0.212	1.387	0.294	
826.40	4132	UMTS 850	RMC	25.0	23.58	0.02	Left	Tilt	83019	1:1	0.112	1.387	0.155	
		ANSI / IEEE C	C95.1 1992 - S						Head					
	Spatial Peak Uncontrolled Exposure/General Population										W/kg (mW/g	•		
		Uncontrolled E	xposure/Gen	erai Populati					avera	ged over 1 gr	am			

FCC ID: A3LSMA528B	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 40 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 40 of 72

Table 11-4 UMTS 1750 Head SAR

					O IVI I V	3 1/30	Heat	JAN						
					MEAS	UREME	NT RES	SULTS						
FREQUE	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.	mout	30.1100	Power [dBm]	Power [dBm]	Drift [dB]	0.00	Position	Number	July Gyolo	(W/kg)	Factor	(W/kg)	
1712.40	1312	UMTS 1750	RMC	24.5	23.27	-0.03	Right	Cheek	83019	1:1	0.110	1.327	0.146	
1712.40	1312	UMTS 1750	RMC	24.5	23.27	0.03	Right	Tilt	83019	1:1	0.103	1.327	0.137	
1712.40	1312	UMTS 1750	RMC	24.5	23.27	-0.11	Left	Cheek	83019	1:1	0.138	1.327	0.183	A4
1712.40	1312	UMTS 1750	RMC	24.5	23.27	0.04	Left	Tilt	83019	1:1	0.134	1.327	0.178	
		ANSI / IEEE C	C95.1 1992 - S	SAFETY LIMIT	Γ						Head			
			Spatial Peak							1.6	W/kg (mW/g	1)		
	Uncontrolled Exposure/General Population									avera	ged over 1 gr	am		

Table 11-5 UMTS 1900 Head SAR

					MEAS	UREME	NT RES	SULTS						
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	, ,	(W/kg)	Factor	(W/kg)	
1852.40	9262	UMTS 1900	RMC	24.5	23.09	-0.08	Right	Cheek	82672	1:1	0.115	1.384	0.159	
1852.40	9262	UMTS 1900	RMC	24.5	23.09	0.05	Right	Tilt	82672	1:1	0.080	1.384	0.111	
1852.40	9262	UMTS 1900	RMC	24.5	23.09	0.12	Left	Cheek	82672	1:1	0.126	1.384	0.174	A5
1852.40	9262	UMTS 1900	RMC	24.5	23.09	-0.04	Left	Tilt	82672	1:1	0.121	1.384	0.167	
		ANSI / IEEE C	095.1 1992 - S	SAFETY LIMIT							Head			
			Spatial Peak								W/kg (mW/g	•		
		Uncontrolled E	xposure/Gen	eral Populati	on					avera	ged over 1 gr	am		

Table 11-6 LTE Band 12 Head SAR

								MEASU	JREMEN	IT RESU	LTS								
	FREQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number		(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.5	24.36	-0.01	0	Right	Cheek	QPSK	1	49	83019	1:1	0.238	1.300	0.309	A7
707.50								1	Right	Cheek	QPSK	25	25	83019	1:1	0.185	1.297	0.240	
707.50 23095 Mid LTE Band 12 10 25.5 24.36 -0.01								0	Right	Tilt	QPSK	1	49	83019	1:1	0.111	1.300	0.144	
707.50	23095	Mid	LTE Band 12	10	24.5	23.37	0.01	1	Right	Tilt	QPSK	25	25	83019	1:1	0.094	1.297	0.122	
707.50	23095	Mid	LTE Band 12	10	25.5	24.36	-0.17	0	Left	Cheek	QPSK	1	49	83019	1:1	0.219	1.300	0.285	
707.50	23095	Mid	LTE Band 12	10	24.5	23.37	0.00	1	Left	Cheek	QPSK	25	25	83019	1:1	0.168	1.297	0.218	
707.50	23095	Mid	LTE Band 12	10	25.5	24.36	-0.01	0	Left	Tilt	QPSK	1	49	83019	1:1	0.123	1.300	0.160	
707.50	23095	Mid	LTE Band 12	1	Left	Tilt	QPSK	25	25	83019	1:1	0.093	1.297	0.121					
			ANSI / IEEE (,		Hea 1.6 W/kg averaged ov	(mW/g)			,					

FCC ID: A3LSMA528B	PCTEST* Provid to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 44 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 41 of 72

Table 11-7 LTE Band 26 (Cell) Head SAR

								<u> </u>	- (-	•, .	icua c	,, <u>.</u>							
								MEASU	REMEN	IT RESU	ILTS								
F	REQUEN	CY	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[]		Position				Number	, -,	(W/kg)	Factor	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.42	0.03	0	Right	Cheek	QPSK	1	0	83019	1:1	0.219	1.143	0.250	A7
831.50	 								Right	Cheek	QPSK	36	37	83019	1:1	0.182	1.140	0.207	
831.50	26865	Mid	LTE Band 26 (Cell)	0.15	0	Right	Tilt	QPSK	1	0	83019	1:1	0.117	1.143	0.134				
831.50							-0.03	1	Right	Tilt	QPSK	36	37	83019	1:1	0.086	1.140	0.098	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.42	-0.02	0	Left	Cheek	QPSK	1	0	83019	1:1	0.187	1.143	0.214	
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.0	22.43	0.00	1	Left	Cheek	QPSK	36	37	83019	1:1	0.149	1.140	0.170	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.42	-0.02	0	Left	Tilt	QPSK	1	0	83019	1:1	0.100	1.143	0.114	
831.50	26865	Mid	LTE Band 26 (Cell)	1	Left	Tilt	QPSK	36	37	83019	1:1	0.076	1.140	0.087					
			ANSI / IEEE C							Head									
				Spatial Pea		-41-u								W/kg (mW					
			Uncontrolled Ex	cposure/Ge	enerai Popula	ition							avera	iged over 1	gram				oxdot

Table 11-8 LTE Band 66 (AWS) Head SAR

							~.		77.11	 ,	cuu c								
							N	MEASUR	EMENT	RESUL	.TS								
FI	REQUENCY	′	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	c	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number		(W/kg)	Factor	(W/kg)	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.5	23.47	-0.07	0	Right	Cheek	QPSK	1	50	83019	1:1	0.093	1.268	0.118	
1720.00 132072 Low LTE Band 66 (AWS) 20 23.5 22.52 -0.06								1	Right	Cheek	QPSK	50	25	83019	1:1	0.074	1.253	0.093	
1720.00 132072 Low LTE Band 66 (AWS) 20 24.5 23.47 -0.09							-0.09	0	Right	Tilt	QPSK	1	50	83019	1:1	0.086	1.268	0.109	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.52	0.05	1	Right	Tilt	QPSK	50	25	83019	1:1	0.070	1.253	0.088	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.5	23.47	0.05	0	Left	Cheek	QPSK	1	50	83019	1:1	0.104	1.268	0.132	A8
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.52	-0.03	1	Left	Cheek	QPSK	50	25	83019	1:1	0.084	1.253	0.105	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.5	23.47	0.19	0	Left	Tilt	QPSK	1	50	83019	1:1	0.100	1.268	0.127	
1720.00	0.00 132072 Low LTE Band 66 (AWS) 20 23.5 22.52 -0.04							1	Left	Tilt	QPSK	50	25	83019	1:1	0.084	1.253	0.105	
				oatial Peak										Hea 1.6 W/kg	(mW/g)				
			Uncontrolled Exp	osure/Gen	eral Populati	ion							á	averaged ov	er 1 gram				

Table 11-9 LTF Band 2 (PCS) Head SAR

						L	. 🗀 🗅	anu .	2 (PC	<i>-</i> Э) п	eau 5	AR							
								MEASU	JREMEN	IT RESU	LTS								
F	REQUENCY	′	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR[dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	C	Ch.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number		(W/kg)		(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	22.99	0.18	0	Right	Cheek	QPSK	1	0	82672	1:1	0.134	1.262	0.169	A9
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	22.11	-0.15	1	Right	Cheek	QPSK	50	50	82672	1:1	0.112	1.227	0.137	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	22.99	0.15	0	Right	Tilt	QPSK	1	0	82672	1:1	0.084	1.262	0.106	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	22.11	-0.03	1	Right	Tilt	QPSK	50	50	82672	1:1	0.083	1.227	0.102	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	22.99	-0.17	0	Left	Cheek	QPSK	1	0	82672	1:1	0.122	1.262	0.154	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	22.11	0.00	1	Left	Cheek	QPSK	50	50	82672	1:1	0.106	1.227	0.130	
1860.00	1860.00 18700 Low LTE Band 2 (PCS) 20 24.0 22.99 -0.02									Tilt	QPSK	1	0	82672	1:1	0.125	1.262	0.158	
1860.00	18700	Low	LTE Band 2 (PCS)	1	Left	Tilt	QPSK	50	50	82672	1:1	0.102	1.227	0.125					
	•		ANSI / IEEE C	95.1 1992 -			•				Hea	d							
				Spatial Pea	k				1					1.6 W/kg	(mW/g)				
			Uncontrolled F	vnocuro/Gor	neral Populati	ion			I					average ov	pr 1 aram				

FCC ID: A3LSMA528B	Proud to be port of the element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 -f 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 42 of 72

Table 11-10 LTE Band 41 Head SAR

								MEASU	REMEN	T RESU	LTS								
FF	REQUENCY	(Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	, -,	(W/kg)	Factor	(W/kg)	
2593.00	40620	Mid	LTE Band 41	20	24.5	23.28	0.02	0	Right	Cheek	QPSK	1	50	82763	1:1.58	0.128	1.324	0.169	
2593.00	40620	Mid	LTE Band 41	20	23.5	22.36	-0.02	1	Right	Cheek	QPSK	50	25	82763	1:1.58	0.100	1.300	0.130	
2593.00 40620 Mid LTE Band 41 20 24.5 23.28 -0.02								0	Right	Tilt	QPSK	1	50	82763	1:1.58	0.073	1.324	0.097	
2593.00	40620	Mid	LTE Band 41	20	23.5	22.36	0.00	1	Right	Tilt	QPSK	50	25	82763	1:1.58	0.060	1.300	0.078	
2593.00	40620	Mid	LTE Band 41	20	24.5	23.28	0.07	0	Left	Cheek	QPSK	1	50	82763	1:1.58	0.207	1.324	0.274	A10
2593.00	40620	Mid	LTE Band 41	20	23.5	22.36	0.06	1	Left	Cheek	QPSK	50	25	82763	1:1.58	0.170	1.300	0.221	
2593.00	40620	Mid	LTE Band 41	20	24.5	23.28	0.10	0	Left	Tilt	QPSK	1	50	82763	1:1.58	0.085	1.324	0.113	
2593.00	40620 Mid LTE Band 41 20 23.5 22.36 -0.03								Left	Tilt	QPSK	50	25	82763	1:1.58	0.071	1.300	0.092	
			ANSI / IEEE C					•		Hea			-	•					
			Uncontrolled Ex	posure/Ge	neral Popula	tion								everaged o					

Table 11-11 NR Band n5 (Cell) Head SAR

							141	\ Da	iiu i	10 (O	ell) nea	u oait								
									MEAS	UREME	NT RESULTS									
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Waveform	Modulation	RB Size	RB Offset	Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position					Number	Cycle	(W/kg)	Factor	(W/kg)	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.82	0.03	0	Right	Cheek	DFT-S-OFDM	QPSK	1	1	83019	1:1	0.273	1.312	0.358	A11
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.80	0.02	0	Right	Cheek	DFT-S-OFDM	QPSK	50	28	83019	1:1	0.262	1.318	0.345	
836.50	167300	Mid	NR Band n5 (Cell)	20	23.5	22.84	-0.01	1.5	Right	Cheek	CP-OFDM	QPSK	1	1	83019	1:1	0.213	1.164	0.248	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.82	-0.15	0	Right	Tilt	DFT-S-OFDM	QPSK	1	1	83019	1:1	0.125	1.312	0.164	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.80	0.01	0	Right	Tilt	DFT-S-OFDM	QPSK	50	28	83019	1:1	0.115	1.318	0.152	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.82	-0.11	0	Left	Cheek	DFT-S-OFDM	QPSK	1	1	83019	1:1	0.223	1.312	0.293	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.80	0.00	0	Left	Cheek	DFT-S-OFDM	QPSK	50	28	83019	1:1	0.208	1.318	0.274	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.82	0.10	0	Left	Tilt	DFT-S-OFDM	QPSK	1	1	83019	1:1	0.123	1.312	0.161	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.80	0.00	0	Left	Tilt	DFT-S-OFDM	QPSK	50	28	83019	1:1	0.115	1.318	0.152	
			ANSI / IEEE C95.	1 1992 - SAF	FETY LIMIT									Head						
				tial Peak										W/kg (mW						
		U	ncontrolled Expo	sure/Genera	al Population								avera	ged over 1	gram					

Table 11-12 NR Band n66 (AWS) Head SAR

										7 (7		Jua OAI	<u> </u>							
									MEAS	UREME	NT RESULTS									
F	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Waveform	Modulation	RB Size	RB Offset	Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position					Number	Cycle	(W/kg)	Factor	(W/kg)	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.71	-0.02	0	Right	Cheek	DFT-S-OFDM	QPSK	1	104	83365	1:1	0.146	1.069	0.156	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.61	-0.07	0	Right	Cheek	DFT-S-OFDM	QPSK	50	28	83365	1:1	0.145	1.094	0.159	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.71	0.11	0	Right	Tilt	DFT-S-OFDM	QPSK	1	104	83365	1:1	0.144	1.069	0.154	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.61	-0.06	0	Right	Tilt	DFT-S-OFDM	QPSK	50	28	83365	1:1	0.134	1.094	0.147	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.71	-0.14	0	Left	Cheek	DFT-S-OFDM	QPSK	1	104	83365	1:1	0.208	1.069	0.222	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.61	-0.03	0	Left	Cheek	DFT-S-OFDM	QPSK	50	28	83365	1:1	0.217	1.094	0.237	A12
1745.00	349000	Mid	NR Band n66 (AWS)	20	23.5	23.15	-0.12	1.5	Left	Cheek	CP-OFDM	QPSK	1	1	83365	1:1	0.149	1.084	0.162	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.71	-0.11	0	Left	Tilt	DFT-S-OFDM	QPSK	1	104	83365	1:1	0.179	1.069	0.191	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.61	0.06	0	Left	Tilt	DFT-S-OFDM	QPSK	50	28	83365	1:1	0.165	1.094	0.181	
			ANSI / IEEE C9	5.1 1992 - S	AFETY LIMIT									Head						
			Sp Uncontrolled Exp	patial Peak	ral Bonulatio	nn.								6 W/kg (m raged over	-					
			Officontifolied Exp	osui el Gene	ii ai ropulatii	UII							ave	ageu over	i graiii					

FCC ID: A3LSMA528B	Proud to be port of the element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 42 -f 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 43 of 72

11.2 Standalone Body-Worn SAR Data

Table 11-16 GSM/UMTS Body-Worn SAR Data

					ME	ASURE	MENT F	RESUL [*]	ΓS						
FREQUE	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Device Serial	# of Time	Duty Cycle	Side	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Siots	, ,		(W/kg)	Factor	(W/kg)	
848.80	251	GSM 850	GSM	33.0	31.92	-0.01	15 mm	82425	1	1:8.3	back	0.191	1.282	0.245	A13
1850.20	512	GSM 1900	GSM	30.5	29.76	0.00	15 mm	82599	1	1:8.3	back	0.074	1.186	0.088	A15
826.40	4132	UMTS 850	RMC	25.0	23.58	0.02	15 mm	82425	N/A	1:1	back	0.279	1.387	0.387	A17
1712.40	1312	UMTS 1750	RMC	24.5	23.27	-0.07	15 mm	82763	N/A	1:1	back	0.186	1.327	0.247	A19
1852.40	9262	UMTS 1900	RMC	-0.07	15 mm	82599	N/A	1:1	back	0.151	1.384	0.209	A21		
		ANSI / IEEE C	C95.1 1992 - S	AFETY LIMIT							Е	Body			
			Spatial Peak								1.6 W/I	kg (mW/g)			
		Uncontrolled E	xposure/Gen	eral Populati	on						veraged	over 1 gram			

Table 11-17 LTE Body-Worn SAR Data

								Jour	****	JAIN	Dutt	4							
							N	IEASURI	EMENT F	RESULTS									
FF	REQUENCY	1	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number				.,			(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.5	24.36	0.01	0	82763	QPSK	1	49	15 mm	back	1:1	0.353	1.300	0.459	A23
707.50	23095	Mid	LTE Band 12	10	24.5	23.37	0.05	1	82763	QPSK	25	25	15 mm	back	1:1	0.268	1.297	0.348	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.42	-0.05	0	83274	QPSK	1	0	15 mm	back	1:1	0.253	1.143	0.289	A25
831.50	26865	Mid	LTE Band 26 (Cell)	0.01	1	83274	QPSK	36	37	15 mm	back	1:1	0.184	1.140	0.210				
1720.00							-0.03	0	82763	QPSK	1	50	15 mm	back	1:1	0.161	1.268	0.204	A27
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.52	-0.05	1	82763	QPSK	50	25	15 mm	back	1:1	0.127	1.253	0.159	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	22.99	0.00	0	83480	QPSK	1	0	15 mm	back	1:1	0.148	1.262	0.187	A29
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	22.11	0.03	1	83480	QPSK	50	50	15 mm	back	1:1	0.127	1.227	0.156	
2593.00	40620	Mid	LTE Band 41	20	24.5	23.28	-0.06	0	83324	QPSK	1	50	15 mm	back	1:1.58	0.087	1.324	0.115	A31
2593.00	40620	Mid	LTE Band 41	1	83324	QPSK	50	25	15 mm	back	1:1.58	0.069	1.300	0.090					
			ANSI / IEEE C9	5.1 1992 - S patial Peak		ř	•			•	•				dy (mW/g)		•	•	
			Uncontrolled Exp	osure/Gen	eral Populati	ion							av	eraged o	ver 1 gram	1			

Table 11-18 NR Body-Worn SAR Data

								NK BC	oay-v	vorn SA	IR Data	l								
								N	IEASURE	MENT RESUL	LTS									
F	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Serial	Waveform	Modulation	RB Size	RB Offset	Spacing	Side	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	1.		[MHz]	Power [dBm]	Power [dBm]		Number					.,		Cycle	(W/kg)	Factor	(W/kg)		
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.82	0.02	0	82425	DFT-S-OFDM	QPSK	1	1	15 mm	back	1:1	0.261	1.312	0.342	A33
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.80	-0.02	0	82425	DFT-S-OFDM	QPSK	50	28	15 mm	back	1:1	0.231	1.318	0.304	
836.50	167300	Mid	NR Band n5 (Cell)	20	23.5	22.84	-0.01	1.5	82425	CP-OFDM	QPSK	1	1	15 mm	back	1:1	0.203	1.164	0.236	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.71	-0.04	0	82763	DFT-S-OFDM	QPSK	1	104	15 mm	back	1:1	0.249	1.069	0.266	A35
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.61	0.00	0	82763	DFT-S-OFDM	QPSK	50	28	15 mm	back	1:1	0.234	1.094	0.256	
1745.00	349000	Mid	NR Band n66 (AWS)	20	23.5	23.15	0.03	1.5	82763	CP-OFDM	QPSK	1	1	15 mm	back	1:1	0.156	1.084	0.169	
			ANSI / IEEE C9 S	5.1 1992 - patial Peak		Т				•			1	Boo I.6 W/kg	•					_
			Uncontrolled Exp	nosure/Ger	neral Populat	ion			l				av	eraned ov	er 1 araı	m				

FCC ID: A3LSMA528B	PCTEST* Proud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 44 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 44 of 72

11.3 Standalone Hotspot SAR Data

Table 11-22 GPRS/UMTS Hotspot SAR Data

					GPK3/C			RESULT		.u					
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power	Spacing	Device Serial	# of Time	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]				Number				(W/kg)		(W/kg)	
836.60	190	GSM 850	GPRS	30.5	29.31	-0.01	10 mm	82425	3	1:2.76	back	0.277	1.315	0.364	A14
836.60	190	GSM 850	GPRS	30.5	29.31	-0.02	10 mm	82425	3	1:2.76	front	0.260	1.315	0.342	
836.60	190	GSM 850	GPRS	30.5	29.31	-0.06	10 mm	82425	3	1:2.76	bottom	0.101	1.315	0.133	
836.60	190	GSM 850	GPRS	30.5	29.31	-0.03	10 mm	82425	3	1:2.76	right	0.266	1.315	0.350	
1909.80	810	GSM 1900	GPRS	27.5	27.14	-0.03	10 mm	82599	2	1:4.15	back	0.201	1.086	0.218	
1909.80	810	GSM 1900	GPRS	27.5	27.14	0.02	10 mm	82599	2	1:4.15	front	0.170	1.086	0.185	
1909.80	810	GSM 1900	GPRS	27.5	27.14	0.06	10 mm	82599	2	1:4.15	bottom	0.264	1.086	0.287	A16
1909.80	810	GSM 1900	GPRS	27.5	27.14	-0.08	10 mm	82599	2	1:4.15	left	0.113	1.086	0.123	
826.40	4132	UMTS 850	RMC	25.0	23.58	-0.01	10 mm	82425	N/A	1:1	back	0.320	1.387	0.444	
826.40	4132	UMTS 850	RMC	25.0	23.58	0.01	10 mm	82425	N/A	1:1	front	0.287	1.387	0.398	
826.40	4132	UMTS 850	RMC	25.0	23.58	-0.02	10 mm	82425	N/A	1:1	bottom	0.100	1.387	0.139	
826.40	4132	UMTS 850	RMC	25.0	23.58	-0.01	10 mm	82425	N/A	1:1	right	0.334	1.387	0.463	A18
1712.40	1312	UMTS 1750	RMC	23.5	23.00	0.00	10 mm	82763	N/A	1:1	back	0.252	1.122	0.283	
1712.40	1312	UMTS 1750	RMC	23.5	23.00	-0.01	10 mm	82763	N/A	1:1	front	0.290	1.122	0.325	
1712.40	1312	UMTS 1750	RMC	23.5	23.00	0.03	10 mm	82763	N/A	1:1	bottom	0.310	1.122	0.348	A20
1712.40	1312	UMTS 1750	RMC	23.5	23.00	-0.02	10 mm	82763	N/A	1:1	left	0.186	1.122	0.209	
1907.60	9538	UMTS 1900	RMC	23.5	22.86	-0.01	10 mm	82599	N/A	1:1	back	0.311	1.159	0.360	
1907.60	9538	UMTS 1900	RMC	23.5	22.86	-0.01	10 mm	82599	N/A	1:1	front	0.262	1.159	0.304	
1907.60	9538	UMTS 1900	RMC	23.5	22.86	-0.09	10 mm	82599	N/A	1:1	bottom	0.433	1.159	0.502	A22
1907.60	9538	UMTS 1900	RMC	23.5	22.86	-0.02	10 mm	82599	N/A	1:1	left	0.199	1.159	0.231	
		ANSI / IEEE (AFETY LIMIT								dy			
			Spatial Peak									g (mW/g)			
		Uncontrolled E	xposure/Gen	eral Populati	on					a١	eraged o	ver 1 gram			

Table 11-23 LTE Band 12 Hotspot SAR Data

								iiu iz	поіз	pot 5	4K L	Jala							
								MEASUF	REMENT	RESULTS	6								
FI	REQUENCY	′	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.5	24.36	0.02	0	82763	QPSK	1	49	10 mm	back	1:1	0.385	1.300	0.501	A24
707.50	23095	Mid	LTE Band 12	10	24.5	23.37	0.02	1	82763	QPSK	25	25	10 mm	back	1:1	0.296	1.297	0.384	
707.50	23095	Mid	LTE Band 12	10	25.5	24.36	0.03	0	82763	QPSK	1	49	10 mm	front	1:1	0.329	1.300	0.428	
707.50	23095	Mid	LTE Band 12	10	24.5	23.37	0.01	1	82763	QPSK	25	25	10 mm	front	1:1	0.252	1.297	0.327	
707.50	23095	Mid	LTE Band 12	10	25.5	24.36	0.00	0	82763	QPSK	1	49	10 mm	bottom	1:1	0.071	1.300	0.092	
707.50	23095	Mid	LTE Band 12	10	24.5	23.37	-0.01	1	82763	QPSK	25	25	10 mm	bottom	1:1	0.053	1.297	0.069	
707.50	23095	Mid	LTE Band 12	10	25.5	24.36	0.01	0	82763	QPSK	1	49	10 mm	right	1:1	0.362	1.300	0.471	
707.50	23095	Mid	LTE Band 12	10	24.5	23.37	-0.02	1	82763	QPSK	25	25	10 mm	right	1:1	0.266	1.297	0.345	
			NSI / IEEE C95.1 Spati controlled Exposi	ial Peak									Body V/kg (mV ed over 1	•					
		Unc	ontrolled Exposi	ure/Genera	Population								averag	eu over 1	grain				

FCC ID: A3LSMA528B	Pout to be post of seisment	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 45 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 45 of 72

Table 11-24 LTE Band 26 (Cell) Hotspot SAR Data

								5 (55	,	topot	<u> </u>	· •							
							М	EASURE	MENT R	ESULTS									
FI	REQUENC	1	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	()	Number						, -,	(W/kg)	Factor	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.42	0.01	0	83274	QPSK	1	0	10 mm	back	1:1	0.288	1.143	0.329	A26
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.0	22.43	-0.01	1	83274	QPSK	36	37	10 mm	back	1:1	0.215	1.140	0.245	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.42	-0.01	-0.01 0 83274 QPSK 1 0 10 mm front 1:1 0.250 1.143 0.286											
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.0	22.43	0.04	0.04 1 83274 QPSK 36 37 10 mm front 1:1 0.187 1.140 0.213											
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.42	0.02	0	83274	QPSK	1	0	10 mm	bottom	1:1	0.075	1.143	0.086	
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.0	22.43	-0.03	1	83274	QPSK	36	37	10 mm	bottom	1:1	0.069	1.140	0.079	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.0	23.42	-0.02	0	83274	QPSK	1	0	10 mm	right	1:1	0.278	1.143	0.318	
831.50	26865	Mid	LTE Band 26 (Cell)	15	-0.03	1	83274	QPSK	36	37	10 mm	right	1:1	0.203	1.140	0.231			
			ANSI / IEEE C95.1 19	92 - SAFE	TY LIMIT				•					Body					
			Spatial	Peak									1.6 V	V/kg (mV	V/g)				
		U	ncontrolled Exposure	e/General F	opulation								averag	ed over 1	gram				

Table 11-25 LTE Band 66 (AWS) Hotspot SAR Data

						. I L Da		• (, , , , , , , , , , , , , , , , , , ,	• • • • • • • • • • • • • • • • • • • •	otopo			464						
							N	IEASUR	EMENT F	RESULTS									
FF	REQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.22	0.02	0	82763	QPSK	1	50	10 mm	back	1:1	0.210	1.343	0.282	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.36	-0.04	0	82763	QPSK	50	25	10 mm	back	1:1	0.215	1.300	0.280	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.22	0.01	0	82763	QPSK	1	50	10 mm	front	1:1	0.239	1.343	0.321	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.36	0.01										0.328		
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.22	0.01	0	82763	QPSK	1	50	10 mm	bottom	1:1	0.272	1.343	0.365	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.36	-0.03	0	82763	QPSK	50	25	10 mm	bottom	1:1	0.294	1.300	0.382	A28
1720.00	132072	Low	LTE Band 66 (AWS)	0.00	0	82763	QPSK	1	50	10 mm	left	1:1	0.152	1.343	0.204				
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	0.00	0	82763	QPSK	50	25	10 mm	left	1:1	0.153	1.300	0.199		
			ANSI / IEEE C95.1 1	992 - SAFE	TY LIMIT									Body					
			Spatia	l Peak									1.6 V	V/kg (mV	V/g)				
		Ur	ncontrolled Exposur	e/General I	Population								averag	ed over 1	gram				

Table 11-26 LTF Band 2 (PCS) Hotspot SAR Data

							Janu	<u> </u>	<i>7</i> 3) 110	oispo	נטא	NDa	ıa						
								MEASU	REMENT	RESULTS	5								
FI	REQUENCY	′	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RR Size	RR Offset	Snacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	С	h.	iiiouo	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	iiii it [ub]	Number	moduladon	IND GIEG	TLD GIIGGE	орионія	Oido	Duty Gyoto	(W/kg)	Factor	(W/kg)	1.012
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.76	0.02	0	83480	QPSK	1	0	10 mm	back	1:1	0.251	1.330	0.334	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.84	0.01	0	83480	QPSK	50	25	10 mm	back	1:1	0.258	1.306	0.337	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.76	-0.08	0	83480	QPSK	1	0	10 mm	front	1:1	0.211	1.330	0.281	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.84	0.05	0	83480	QPSK	50	25	10 mm	front	1:1	0.225	1.306	0.294	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.76	-0.11	0	83480	QPSK	1	0	10 mm	bottom	1:1	0.304	1.330	0.404	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.84	-0.06	0	83480	QPSK	50	25	10 mm	bottom	1:1	0.313	1.306	0.409	A30
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.76	-0.06	0	83480	QPSK	1	0	10 mm	left	1:1	0.167	1.330	0.222	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.84	-0.04	0	83480	QPSK	50	25	10 mm	left	1:1	0.185	1.306	0.242	
		Α	NSI / IEEE C95.1	1992 - SAF	ETY LIMIT									Body					
			Spati	ial Peak									1.6 V	V/kg (mV	V/g)				
		Une	controlled Exposu	ure/Genera	I Population			ĺ					averag	ed over 1	gram				

FCC ID: A3LSMA528B	PCTEST* Novid to be port of ® element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 46 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 46 of 72

Table 11-27 LTE Band 41 Hotspot SAR Data

										poro									
								MEASUF	REMENT	RESULTS	3								
FF	REQUENCY	′	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number						, -,	(W/kg)	Factor	(W/kg)	
2593.00	40620	Mid	LTE Band 41	20	24.5	23.28	-0.17	0	83324	QPSK	1	50	10 mm	back	1:1.58	0.205	1.324	0.271	
2593.00	40620	Mid	LTE Band 41	20	23.5	22.36	-0.02	1	83324	QPSK	50	25	10 mm	back	1:1.58	0.166	1.300	0.216	
2593.00	40620	Mid	LTE Band 41	20	24.5	23.28	-0.12	0	83324	QPSK	1	50	10 mm	front	1:1.58	0.235	1.324	0.311	A32
2593.00	40620	Mid	LTE Band 41	22.36	-0.16	1	83324	QPSK	50	25	10 mm	front	1:1.58	0.188	1.300	0.244			
2593.00	40620	Mid	LTE Band 41	20	24.5	23.28	-0.04	0	83324	QPSK	1	50	10 mm	bottom	1:1.58	0.180	1.324	0.238	
2593.00	40620	Mid	LTE Band 41	20	23.5	22.36	-0.16	1	83324	QPSK	50	25	10 mm	bottom	1:1.58	0.148	1.300	0.192	
2593.00	40620	Mid	LTE Band 41	20	24.5	23.28	-0.09	0	83324	QPSK	1	50	10 mm	left	1:1.58	0.203	1.324	0.269	
2593.00	40620	Mid	LTE Band 41	20	23.5	-0.09	1	83324	QPSK	50	25	10 mm	left	1:1.58	0.163	1.300	0.212		
			NSI / IEEE C95.1 Spati controlled Exposu	ial Peak										Body V/kg (mV ed over 1					

Table 11-28 NR Band n5 (Cell) Hotspot SAR Data

						1417	Dan	uiio	(Oci	<i>)</i> Hotsp	יסני טאו	יו טי	ata							
								M	EASURE	MENT RESUL	.TS									
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Serial	Waveform	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch	L.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number								(W/kg)	Factor	(W/kg)	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.82	-0.01	0	82425	DFT-S-OFDM	QPSK	1	1	10 mm	back	1:1	0.293	1.312	0.384	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.80	0.00	0	82425	DFT-S-OFDM	QPSK	50	28	10 mm	back	1:1	0.262	1.318	0.345	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.82	0.03	0	82425	DFT-S-OFDM	QPSK	1	1	10 mm	front	1:1	0.254	1.312	0.333	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.80	0.01	0	82425	DFT-S-OFDM	QPSK	50	28	10 mm	front	1:1	0.233	1.318	0.307	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.82	-0.02	0	82425	DFT-S-OFDM	QPSK	1	1	10 mm	bottom	1:1	0.099	1.312	0.130	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.80	-0.07	0	82425	DFT-S-OFDM	QPSK	50	28	10 mm	bottom	1:1	0.103	1.318	0.136	
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.82	-0.03	0	82425	DFT-S-OFDM	QPSK	1	1	10 mm	right	1:1	0.310	1.312	0.407	A34
836.50	167300	Mid	NR Band n5 (Cell)	20	25.0	23.80	0.00	0	82425	DFT-S-OFDM	QPSK	50	28	10 mm	right	1:1	0.272	1.318	0.358	
836.50	167300	Mid	NR Band n5 (Cell)	20	23.5	-0.07	1.5	82425	CP-OFDM	QPSK	1	1	10 mm	right	1:1	0.243	1.164	0.283		
			ANSI / IEEE C95.1 19	92 - SAFE	TY LIMIT									Body						
			Spatial	Peak				1					1.6 W	//kg (mW	(g)					
			Jncontrolled Exposure	e/General F	opulation			ĺ					average	ed over 1	gram					

Table 11-29 NR Band n66 (AWS) Hotspot SAR Data

	THE BUILD HOS (ATTO) HOS BOT OAK BUILD																			
								N	MEASURE	MENT RESUL	TS.									
FI	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Serial Number	Waveform	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Ch.			[mrt2]	Power [dBm]	rower (ubin)	Dint [db]		Number								(W/kg)	racioi	(W/kg)	
1720.00	344000	Low	NR Band n66 (AWS)	20	23.5	22.99	0.00	0	82763	DFT-S-OFDM	QPSK	1	53	10 mm	back	1:1	0.268	1.125	0.302	
1720.00	344000	Low	NR Band n66 (AWS)	20	23.5	22.99	0.04	0	82763	DFT-S-OFDM	QPSK	50	28	10 mm	back	1:1	0.254	1.125	0.286	
1720.00	344000	Low	NR Band n66 (AWS)	20	23.5	22.99	-0.04	0	82763	DFT-S-OFDM	QPSK	1	53	10 mm	front	1:1	0.341	1.125	0.384	
1720.00	344000	Low	NR Band n66 (AWS)	20	23.5	22.99	-0.02	0	82763	DFT-S-OFDM	QPSK	50	28	10 mm	front	1:1	0.322	1.125	0.362	
1720.00	344000	Low	NR Band n66 (AWS)	20	23.5	22.99	-0.02	0	82763	DFT-S-OFDM	QPSK	1	53	10 mm	bottom	1:1	0.355	1.125	0.399	A36
1720.00	344000	Low	NR Band n66 (AWS)	20	23.5	22.99	-0.02	0	82763	DFT-S-OFDM	QPSK	50	28	10 mm	bottom	1:1	0.342	1.125	0.385	
1720.00	344000	Low	NR Band n66 (AWS)	20	23.5	22.85	0.00	0	82763	CP-OFDM	QPSK	1	1	10 mm	bottom	1:1	0.338	1.161	0.392	
1720.00	344000	Low	NR Band n66 (AWS)	20	23.5	22.99	0.01	0	82763	DFT-S-OFDM	QPSK	1	53	10 mm	left	1:1	0.214	1.125	0.241	
1720.00	.00 344000 Low NR Band n66 (AWS) 20 23.5 22.99 -0.							0	82763	DFT-S-OFDM	QPSK	50	28	10 mm	left	1:1	0.202	1.125	0.227	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body												
	Spatial Peak												1.6 W/I	kg (mW/g)						
	Uncontrolled Exposure/General Population							averaged over 1 gram												

FCC ID: A3LSMA528B	PCTEST* Poud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Degre 47 of 70
 1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 47 of 72

11.4 Standalone Phablet SAR Data

Table 11-32 GPRS/UMTS Phablet SAR Data

	MEASUREMENT RESULTS														
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Device Serial	# of Time	Duty Cycle	Side	SAR (10g)	Scaling	Reported SAR (10g)	Plot#
MHz	Ch.	Wode	Service	Power [dBm]	Power [dBm]	Drift [dB]	Spacing	Number	Slots	Duty Cycle	Side	(W/kg)	Factor	(W/kg)	riot#
1909.80	810	GSM 1900	GPRS	29.5	28.62	-0.02	9 mm	83480	2	1:4.15	back	0.166	1.225	0.203	
1909.80	810	GSM 1900	GPRS	29.5	28.62	-0.04	5 mm	83480	2	1:4.15	front	0.311	1.225	0.381	
1909.80	810	GSM 1900	GPRS	29.5	28.62	-0.01	9 mm	83480	2	1:4.15	bottom	0.211	1.225	0.258	
1909.80	810	GSM 1900	GPRS	29.5	28.62	-0.12	0 mm	83480	2	1:4.15	left	0.894	1.225	1.095	A37
1909.80	810	GSM 1900	GPRS	27.5	27.14	0.01	0 mm	83480	2	1:4.15	back	0.775	1.086	0.842	
1909.80	810	GSM 1900	GPRS	27.5	27.14	0.01	0 mm	83480	2	1:4.15	front	0.791	1.086	0.859	
1909.80	810	GSM 1900	GPRS	27.5	27.14	-0.11	0 mm	83480	2	1:4.15	bottom	0.692	1.086	0.752	
1712.40	1312	UMTS 1750	RMC	24.5	23.27	-0.01	9 mm	82763	N/A	1:1	back	0.200	1.327	0.265	
1712.40	1312	UMTS 1750	RMC	24.5	23.27	0.00	5 mm	82763	N/A	1:1	front	0.429	1.327	0.569	
1712.40	1312	UMTS 1750	RMC	24.5	23.27	-0.01	9 mm	82763	N/A	1:1	bottom	0.227	1.327	0.301	
1712.40	1312	UMTS 1750	RMC	24.5	23.27	0.01	0 mm	82763	N/A	1:1	left	1.010	1.327	1.340	
1712.40	1312	UMTS 1750	RMC	23.5	23.00	0.01	0 mm	82763	N/A	1:1	back	1.330	1.122	1.492	A38
1712.40	1312	UMTS 1750	RMC	23.5	23.00	0.01	0 mm	82763	N/A	1:1	front	1.290	1.122	1.447	
1712.40	1312	UMTS 1750	RMC	23.5	23.00	0.10	0 mm	82763	N/A	1:1	bottom	1.000	1.122	1.122	
1852.40	9262	UMTS 1900	RMC	24.5	23.09	-0.02	9 mm	83480	N/A	1:1	back	0.218	1.384	0.302	
1852.40	9262	UMTS 1900	RMC	24.5	23.09	-0.02	5 mm	83480	N/A	1:1	front	0.416	1.384	0.576	
1852.40	9262	UMTS 1900	RMC	24.5	23.09	-0.03	9 mm	83480	N/A	1:1	bottom	0.288	1.384	0.399	
1852.40	9262	UMTS 1900	RMC	24.5	23.09	-0.02	0 mm	83480	N/A	1:1	left	1.060	1.384	1.467	
1907.60	9538	UMTS 1900	RMC	23.5	22.86	-0.02	0 mm	83480	N/A	1:1	back	1.270	1.159	1.472	
1852.40	9262	UMTS 1900	RMC	23.5	22.81	-0.01	0 mm	83480	N/A	1:1	front	1.620	1.172	1.899	A39
1880.00	9400	UMTS 1900	RMC	23.5	22.72	0.06	0 mm	83480	N/A	1:1	front	1.530	1.197	1.831	
1907.60	9538	UMTS 1900	RMC	23.5	22.86	0.05	0 mm	83480	N/A	1:1	front	1.480	1.159	1.715	
1907.60	9538	UMTS 1900	RMC	23.5	22.86	-0.01	0 mm	83480	N/A	1:1	bottom	1.320	1.159	1.530	
		ANSI / IEEE (Spatial Peak							a	4.0 W/I	nablet kg (mW/g) over 10 grams	3		

FCC ID: A3LSMA528B	PCTEST* Provid to be part of \$\mathbb{G}\$ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 40 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 48 of 72

Table 11-33 LTE Phablet SAR Data

									ENT RES	SULTS	utu								
FI	REQUENCY	,		Bandwidth	Maximum	Conducted	Power		Serial	Π	Ι					SAR (10g)	Scaling	Reported SAR	Plot#
MHz	С	h.	Mode	[MHz]	Allowed Power [dBm]	Power [dBm]	Drift [dB]	MPR [dB]	Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	(W/kg)	Factor	(10g) (W/kg)	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.5	23.47	-0.01	0	82763	QPSK	1	50	9 mm	back	1:1	0.186	1.268	0.236	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.52	-0.03	1	82763	QPSK	50	25	9 mm	back	1:1	0.141	1.253	0.177	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.5	23.47	-0.04	0	82763	QPSK	1	50	5 mm	front	1:1	0.378	1.268	0.479	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.52	-0.05	1	82763	QPSK	50	25	5 mm	front	1:1	0.304	1.253	0.381	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.5	23.47	0.03	0	82763	QPSK	1	50	9 mm	bottom	1:1	0.213	1.268	0.270	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.52	-0.01	1	82763	QPSK	50	25	9 mm	bottom	1:1	0.179	1.253	0.224	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.5	23.47	-0.07	0	82763	QPSK	1	50	0 mm	left	1:1	0.970	1.268	1.230	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.52	0.01	1	82763	QPSK	50	25	0 mm	left	1:1	0.810	1.253	1.015	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.22	0.03	0	82763	QPSK	1	50	0 mm	back	1:1	1.280	1.343	1.719	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.36	0.02	0	82763	QPSK	50	25	0 mm	back	1:1	1.330	1.300	1.729	A40
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.5	22.07	0.01	0	82763	QPSK	50	25	0 mm	back	1:1	1.290	1.390	1.793	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	22.13	0.00	0	82763	QPSK	50	25	0 mm	back	1:1	1.240	1.371	1.700	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.22	-0.09	0	82763	QPSK	1	50	0 mm	front	1:1	1.100	1.343	1.477	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.36	-0.07	0	82763	QPSK	50	25	0 mm	front	1:1	1.130	1.300	1.469	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.22	-0.04	0	82763	QPSK	1	50	0 mm	bottom	1:1	0.945	1.343	1.269	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.36	0.02	0	82763	QPSK	50	25	0 mm	bottom	1:1	1.050	1.300	1.365	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	22.99	-0.01	0	82599	QPSK	1	0	9 mm	back	1:1	0.201	1.262	0.254	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	22.11	0.00	1	82599	QPSK	50	50	9 mm	back	1:1	0.165	1.227	0.202	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	22.99	-0.03	0	82599	QPSK	1	0	5 mm	front	1:1	0.336	1.262	0.424	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	22.11	0.00	1	82599	QPSK	50	50	5 mm	front	1:1	0.280	1.227	0.344	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	22.99	-0.09	0	82599	QPSK	1	0	9 mm	bottom	1:1	0.272	1.262	0.343	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	22.11	-0.04	1	82599	QPSK	50	50	9 mm	bottom	1:1	0.220	1.227	0.270	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.0	22.99	0.06	0	82599	QPSK	1	0	0 mm	left	1:1	1.070	1.262	1.350	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	22.11	-0.01	1	82599	QPSK	50	50	0 mm	left	1:1	0.893	1.227	1.096	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.76	-0.03	0	82599	QPSK	1	0	0 mm	back	1:1	1.110	1.330	1.476	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.84	0.00	0	82599	QPSK	50	25	0 mm	back	1:1	1.140	1.306	1.489	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.76	-0.03	0	82599	QPSK	1	0	0 mm	front	1:1	1.430	1.330	1.902	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.84	-0.04	0	82599	QPSK	50	25	0 mm	front	1:1	1.470	1.306	1.920	A41
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.0	21.76	-0.03	0	82599	QPSK	50	25	0 mm	front	1:1	1.460	1.330	1.942	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.0	21.80	-0.03	0	82599	QPSK	50	25	0 mm	front	1:1	1.460	1.318	1.924	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.76	-0.08	0	82599	QPSK	1	0	0 mm	bottom	1:1	1.170	1.330	1.556	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.0	21.84	-0.01	0	82599	QPSK	50	25	0 mm	bottom	1:1	1.220	1.306	1.593	
		,	ANSI / IEEE C95.1 1 Spatia	992 - SAFE	TY LIMIT					·			Pha 4.0 W/kg					<u> </u>	
		Un	controlled Exposu		Population			averaged over 10 grams											

FCC ID: A3LSMA528B	PCTEST* Proud to be part of \$ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 40 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 49 of 72

Table 11-34 NR Band n66 (AWS) Phablet SAR Data

	NR Ballu 1100 (AWS) Fliablet SAR Bata																			
								N	IEASURE	MENT RESUL	LTS									
F	REQUENCY	′		Bandwidth	Maximum	Conducted	Power		Serial								SAR (10g)	Scaling	Reported SAR (10g)	
MHz	С	h.	Mode	[MHz]	Allowed Power [dBm]	Power [dBm]	Drift [dB]	MPR [dB]	Number	Waveform	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	(W/kg)	Factor	(W/kg)	Plot#
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.71	0.00	0	82763	DFT-S-OFDM	QPSK	1	104	9 mm	back	1:1	0.273	1.069	0.292	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.61	-0.10	0	82763	DFT-S-OFDM	QPSK	50	28	9 mm	back	1:1	0.272	1.094	0.298	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.71	0.09	0	82763	DFT-S-OFDM	QPSK	1	104	5 mm	front	1:1	0.619	1.069	0.662	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.61	-0.02	0	82763	DFT-S-OFDM	QPSK	50	28	5 mm	front	1:1	0.588	1.094	0.643	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.71	0.06	0	82763	DFT-S-OFDM	QPSK	1	104	9 mm	bottom	1:1	0.356	1.069	0.381	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.61	0.01	0	82763	DFT-S-OFDM	QPSK	50	28	9 mm	bottom	1:1	0.352	1.094	0.385	
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.71	0.04	0	82763	DFT-S-OFDM	QPSK	1	104	0 mm	left	1:1	1.500	1.069	1.604	
1745.00	349000	Mid	NR Band n66 (AWS)	20	25.0	24.45	0.03	0	82763	DFT-S-OFDM	QPSK	1	104	0 mm	left	1:1	1.380	1.135	1.566	
1770.00	354000	High	NR Band n66 (AWS)	20	25.0	24.44	0.00	0	82763	DFT-S-OFDM	QPSK	1	104	0 mm	left	1:1	1.590	1.138	1.809	A42
1720.00	344000	Low	NR Band n66 (AWS)	20	25.0	24.61	-0.02	0	82763	DFT-S-OFDM	QPSK	50	28	0 mm	left	1:1	1.390	1.094	1.521	
1745.00	349000	Mid	NR Band n66 (AWS)	20	23.5	23.15	0.00	1.5	82763	CP-OFDM	QPSK	1	1	0 mm	left	1:1	0.989	1.084	1.072	
1720.00	344000	Low	NR Band n66 (AWS)	20	23.5	22.99	0.01	0	82763	DFT-S-OFDM	QPSK	1	53	0 mm	back	1:1	1.460	1.125	1.643	
1745.00	349000	Mid	NR Band n66 (AWS)	20	23.5	22.78	-0.03	0	82763	DFT-S-OFDM	QPSK	1	53	0 mm	back	1:1	1.200	1.180	1.416	
1770.00	354000	High	NR Band n66 (AWS)	20	23.5	22.76	0.02	0	82763	DFT-S-OFDM	QPSK	1	53	0 mm	back	1:1	1.350	1.186	1.601	
1720.00	344000	Low	NR Band n66 (AWS)	20	23.5	22.99	-0.01	0	82763	DFT-S-OFDM	QPSK	50	28	0 mm	back	1:1	1.340	1.125	1.508	
1720.00	344000	Low	NR Band n66 (AWS)	20	23.5	22.99	-0.10	0	82763	DFT-S-OFDM	QPSK	1	53	0 mm	front	1:1	1.040	1.125	1.170	
1720.00	344000	Low	NR Band n66 (AWS)	20	23.5	22.99	0.00	0	82763	DFT-S-OFDM	QPSK	50	28	0 mm	front	1:1	0.988	1.125	1.112	
1720.00	344000	Low	NR Band n66 (AWS)	20	23.5	22.99	0.01	0	82763	DFT-S-OFDM	QPSK	1	53	0 mm	bottom	1:1	1.150	1.125	1.294	
1720.00	00 344000 Low NR Band n66 (AWS) 20 23.5 22.99 0.03						0.03	0 82763 DFT-S-OFDM QPSK 50 28 0 mm bottom 1:1 1.090 1.125 1.226												
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										a	4.0 W/I	nablet kg (mW/g) over 10 gran	ns				•		

FCC ID: A3LSMA528B	PCTEST* Proud to be part of ** element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 50 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 50 of 72

11.5 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEC/IEEE 62209-1528:2020, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 15 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information)
- 11. This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.3. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.
- 12. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 2. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). The highest output power channel was used for SAR testing.

UMTS Notes:

- UMTS mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). The highest output power channel was used for SAR testing.

FCC ID: A3LSMA528B	PCTEST* Poud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 51 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 51 of 72

LTE Notes:

- LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

NR Notes:

- 1. NR implementation supports NSA mode. In EN-DC mode, NR operates with the LTE Bands shown in the NR FR1 checklist acting as anchor bands. Per FCC guidance, SAR tests for NR Bands and LTE Anchors Bands were performed separately due to limitations in SAR probe calibration factors.
- 2. Due to test setup limitations, SAR testing for NR was performed using test mode software to establish the connection.
- 3. Simultaneous transmission analysis for EN-DC operations is included in Section 12. This device additionally supports some EN-DC conditions where additional LTE carriers are added on the downlink only. Per FCC guidance, all unique uplink combinations were assessed.
- 4. Per FCC Guidance, NR modulations and RB Sizes/Offsets were selected for testing such that configurations with the highest output power were evaluated for SAR tests.

FCC ID: A3LSMA528B	POTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 52 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 52 of 72

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

Note: Please see the original compliance evaluation in RF Exposure Technical Report S/N: 1M2106280072-01.A3L (Rev 1) for modes and bands not evaluated for this permissive change.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEC/IEEE 62209-1528:2020, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

LTE B26 SAR was used for EN-DC simultaneous analysis since the transmission frequency range of LTE B26 and B5 are overlapped and they share the same transmission path and signal characteristics.

For SAR summation, the highest reported SAR across all test distances was used as the most conservative evaluation for simultaneous transmission analysis for each device edge.

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for the applicable exposure conditions was used for simultaneous transmission analysis.

FCC ID: A3LS	MA528B	PCTEST* Provide to be part of the element	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/I	N:	Test Dates:	DUT Type:		Dogg 52 of 70
1M210816009	5-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 53 of 72

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-1 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Official Country of the Country of t											
Configuration	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)							
		1	2	1+2							
	GSM 850	0.274	0.464	0.738							
	GSM 1900	0.056	0.464	0.520							
	UMTS 850	0.359	0.464	0.823							
	UMTS 1750	0.183	0.464	0.647							
Head SAR	UMTS 1900	0.174	0.464	0.638							
Head SAIN	LTE Band 12	0.309	0.464	0.773							
	LTE Band 26 (Cell)	0.250	0.464	0.714							
	LTE Band 66 (AWS)	0.132	0.464	0.596							
	LTE Band 2 (PCS)	0.169	0.464	0.633							
	LTE Band 41	0.274	0.464	0.738							

Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n5 (Cell) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Head SAR	LTE Band 66 (AWS)	0.132	0.358	0.464	0.954
Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n66 (AWS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Head SAR	LTE Band 26 (Cell)	0.250	0.237	0.464	0.951

FCC ID: A3LSMA528B	PCTEST* Provid to be part of ® riseneed	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 54 - 6 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 54 of 72

Table 12-2 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

Configuration	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM 850	0.274	0.670	0.944
	GSM 1900	0.056	0.670	0.726
	UMTS 850	0.359	0.670	1.029
	UMTS 1750	0.183	0.670	0.853
Head SAR	UMTS 1900	0.174	0.670	0.844
I lead SAIN	LTE Band 12	0.309	0.670	0.979
	LTE Band 26 (Cell)	0.250	0.670	0.920
	LTE Band 66 (AWS)	0.132	0.670	0.802
	LTE Band 2 (PCS)	0.169	0.670	0.839
	LTE Band 41	0.274	0.670	0.944

Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n5 (Cell) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Head SAR	LTE Band 66 (AWS)	0.132	0.358	0.670	1.160
Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n66 (AWS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Head SAR	LTE Band 26 (Cell)	0.250	0.237	0.670	1.157

F	FCC ID: A3LSMA528B	PCTEST* Provide to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager
C	Oocument S/N:	Test Dates:	DUT Type:	Dags 55 of 70
1	M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 55 of 72

Table 12-3 Simultaneous Transmission Scenario with 2.4 GHz Bluetooth (Held to Ear)

	iola to Earl			
Configuration	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM 850	0.274	0.432	0.706
	GSM 1900	0.056	0.432	0.488
	UMTS 850	0.359	0.432	0.791
	UMTS 1750	0.183	0.432	0.615
Head SAR	UMTS 1900	0.174	0.432	0.606
ricau OAIX	LTE Band 12	0.309	0.432	0.741
	LTE Band 26 (Cell)	0.250	0.432	0.682
	LTE Band 66 (AWS)	0.132	0.432	0.564
	LTE Band 2 (PCS)	0.169	0.432	0.601
	LTE Band 41	0.274	0.432	0.706

Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n5 (Cell) SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Head SAR	LTE Band 66 (AWS)	0.132	0.358	0.432	0.922
Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n66 (AWS) SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Head SAR	LTE Band 26 (Cell)	0.250	0.237	0.432	0.919

FCC ID: A3LSMA528B	PCTEST* Provid to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 56 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 56 of 72

Table 12-4 Simultaneous Transmission Scenario with 2.4 GHz Bluetooth and 5GHz WLAN (Held to Ear)

Configuration	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	GSM 850	0.274	0.432	0.670	1.376
	GSM 1900	0.056	0.432	0.670	1.158
	UMTS 850	0.359	0.432	0.670	1.461
	UMTS 1750	0.183	0.432	0.670	1.285
Head SAR	UMTS 1900	0.174	0.432	0.670	1.276
I lead SAIN	LTE Band 12	0.309	0.432	0.670	1.411
	LTE Band 26 (Cell)	0.250	0.432	0.670	1.352
	LTE Band 66 (AWS)	0.132	0.432	0.670	1.234
	LTE Band 2 (PCS)	0.169	0.432	0.670	1.271
	LTE Band 41	0.274	0.432	0.670	1.376

Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n5 (Cell) SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	4	1+2+3+4
Head SAR	LTE Band 66 (AWS)	0.132	0.358	0.432	0.670	1.592
Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n66 (AWS) SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	4	1+2+3+4
Head SAR	LTE Band 26 (Cell)	0.250	0.237	0.432	0.670	1.589

FCC ID: A3LSMA528B	Post to be part of seriesed	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dega 57 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 57 of 72

12.4 **Body-Worn Simultaneous Transmission Analysis**

Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.5 cm)

Configuration	Mode Mode	2G/3G/4G SAR (W/kg)	2.4 GHz	,
		1	2	1+2
	GSM 850	0.245	0.110	0.355
	GSM 1900	0.088	0.110	0.198
	UMTS 850	0.387	0.110	0.497
	UMTS 1750	0.247	0.110	0.357
Body - Worn SAR	UMTS 1900	0.209	0.110	0.319
Body - Worll SAR	LTE Band 12	0.459	0.110	0.569
	LTE Band 26 (Cell)	0.289	0.110	0.399
	LTE Band 66 (AWS)	0.204	0.110	0.314
	LTE Band 2 (PCS)	0.187	0.110	0.297
	LTE Band 41	0.115	0.110	0.225

Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n5 (Cell) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Body - Worn	LTE Band 66 (AWS)	0.204	0.342	0.110	0.656
Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n66 (AWS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Body - Worn	LTE Band 26 (Cell)	0.289	0.266	0.110	0.665

FCC ID: A3LSMA528B	PCTEST Proud to be port of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 50 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 58 of 72

Table 12-6 Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.5 cm)

Ciniditatioodo Tranomicolori Gooriano With G Griz 1727 (17 (200			· (=00.)	at
Configuration	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM 850	0.245	0.264	0.509
	GSM 1900	0.088	0.264	0.352
	UMTS 850	0.387	0.264	0.651
	UMTS 1750	0.247	0.264	0.511
Pady Marn CAD	UMTS 1900	0.209	0.264	0.473
Body - Worn SAR	LTE Band 12	0.459	0.264	0.723
	LTE Band 26 (Cell)	0.289	0.264	0.553
	LTE Band 66 (AWS)	0.204	0.264	0.468
	LTE Band 2 (PCS)	0.187	0.264	0.451
	LTE Band 41	0.115	0.264	0.379

Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n5 (Cell) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Body - Worn	LTE Band 66 (AWS)	0.204	0.342	0.264	0.810
Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n66 (AWS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Body - Worn	LTE Band 26 (Cell)	0.289	0.266	0.264	0.819

FCC ID: A3LSMA528B	PCTEST* Provid to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 50 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 59 of 72

Table 12-7 Simultaneous Transmission Scenario with 2.4 GHz Bluetooth (Body-Worn at 1.5 cm)

Configuration	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM 850	0.245	0.103	0.348
	GSM 1900	0.088	0.103	0.191
	UMTS 850	0.387	0.103	0.490
	UMTS 1750	0.247	0.103	0.350
Pady Marn CAD	UMTS 1900	0.209	0.103	0.312
Body - Worn SAR	LTE Band 12	0.459	0.103	0.562
	LTE Band 26 (Cell)	0.289	0.103	0.392
	LTE Band 66 (AWS)	0.204	0.103	0.307
	LTE Band 2 (PCS)	0.187	0.103	0.290
	LTE Band 41	0.115	0.103	0.218

Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n5 (Cell) SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Body - Worn	LTE Band 66 (AWS)	0.204	0.342	0.103	0.649
Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n66 (AWS) SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Body - Worn	LTE Band 26 (Cell)	0.289	0.266	0.103	0.658

FCC ID: A3LSMA528B	PCTEST* Provid to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 60 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 60 of 72

Table 12-8 Simultaneous Transmission Scenario with 2.4 GHz Bluetooth and 5 GHz WLAN (Body-Worn at 1.5 cm)

Configuration	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	GSM 850	0.245	0.103	0.264	0.612
	GSM 1900	0.088	0.103	0.264	0.455
	UMTS 850	0.387	0.103	0.264	0.754
	UMTS 1750	0.247	0.103	0.264	0.614
Pody Morn CAD	UMTS 1900	0.209	0.103	0.264	0.576
Body - Worn SAR	LTE Band 12	0.459	0.103	0.264	0.826
	LTE Band 26 (Cell)	0.289	0.103	0.264	0.656
	LTE Band 66 (AWS)	0.204	0.103	0.264	0.571
	LTE Band 2 (PCS)	0.187	0.103	0.264	0.554
	LTE Band 41	0.115	0.103	0.264	0.482

Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n5 (Cell) SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	4	1+2+3+4
Body - Worn	LTE Band 66 (AWS)	0.204	0.342	0.103	0.264	0.913
Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n66 (AWS) SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	4	1+2+3+4
Body - Worn	LTE Band 26 (Cell)	0.289	0.266	0.103	0.264	0.922

FCC ID: A3LSMA528B	PCTEST Provid to be part of ® risensed	SAR EVALUATION REPORT	SAMSUNG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 -670
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset		Page 61 of 72

12.5 Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

Table 12-9
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

Configuration	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.364	0.284	0.648
	GPRS 1900	0.287	0.284	0.571
	UMTS 850	0.463	0.284	0.747
	UMTS 1750	0.348	0.284	0.632
Hotspot SAR	UMTS 1900	0.502	0.284	0.786
Hotspot SAR	LTE Band 12	0.501	0.284	0.785
	LTE Band 26 (Cell)	0.329	0.284	0.613
	LTE Band 66 (AWS)	0.382	0.284	0.666
	LTE Band 2 (PCS)	0.409	0.284	0.693
	LTE Band 41	0.311	0.284	0.595

Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n5 (Cell) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Hotspot SAR	LTE Band 66 (AWS)	0.382	0.407	0.284	1.073
Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n66 (AWS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Hotspot SAR	LTE Band 26 (Cell)	0.329	0.399	0.284	1.012

FCC ID: A3LSMA528B	PCTEST* Provid to be port of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 62 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 62 of 72

Table 12-10 Simultaneous Transmission Scenario with 5 GHz WLAN (Hotspot at 1.0 cm)

Configuration	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.364	0.724	1.088
	GPRS 1900	0.287	0.724	1.011
	UMTS 850	0.463	0.724	1.187
	UMTS 1750	0.348	0.724	1.072
Hotonot CAD	UMTS 1900	0.502	0.724	1.226
Hotspot SAR	LTE Band 12	0.501	0.724	1.225
	LTE Band 26 (Cell)	0.329	0.724	1.053
	LTE Band 66 (AWS)	0.382	0.724	1.106
	LTE Band 2 (PCS)	0.409	0.724	1.133
	LTE Band 41	0.311	0.724	1.035

Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n5 (Cell) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Hotspot SAR	LTE Band 66 (AWS)	0.382	0.407	0.724	1.513
Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n66 (AWS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Hotspot SAR	LTE Band 26 (Cell)	0.329	0.399	0.724	1.452

FCC ID: A3LSMA528B	PCTEST* Proud to be part of ** element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 02 -f 70	
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 63 of 72	

Table 12-11 Simultaneous Transmission Scenario with 2.4 GHz Bluetooth (Hotspot at 1.0 cm)

Configuration	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.364	0.248	0.612
	GPRS 1900	0.287	0.248	0.535
	UMTS 850	0.463	0.248	0.711
	UMTS 1750	0.348	0.248	0.596
Hotspot SAR	UMTS 1900	0.502	0.248	0.750
Hotspot SAR	LTE Band 12	0.501	0.248	0.749
	LTE Band 26 (Cell)	0.329	0.248	0.577
	LTE Band 66 (AWS)	0.382	0.248	0.630
	LTE Band 2 (PCS)	0.409	0.248	0.657
	LTE Band 41	0.311	0.248	0.559

Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n5 (Cell) SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Hotspot SAR	LTE Band 66 (AWS)	0.382	0.407	0.248	1.037
Configuration	LTE Anchor Band	4G SAR (W/kg)	NR Band n66 (AWS) SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
Hotspot SAR	LTE Band 26 (Cell)	0.329	0.399	0.248	0.976

FCC ID: A3LSMA528B	PCTEST* Proud to be part of ** element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 04 -6 70	
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 64 of 72	

Table 12-12 Simultaneous Transmission Scenario with 2.4 GHz Bluetooth and 5 GHz WLAN (Hotspot at 1.0 cm)

	Configuration		on					:/3G/4G R (W/kg)	2.4 GH Bluetod SAR (W	oth \	WL	5 GHz AN SAF W/kg)	R Σ S/	AR (W/ł	(g)			
									1	2			3	•	1+2+3			
					G	PRS 850	0	(0.364	0.248	3	(0.724		1.336			
						PRS 190		(0.287	0.248			0.724		1.259			
			F			MTS 850			0.463	0.248			0.724		1.435			
			-															
	Hotspot SAR		-	UMTS 1750		_	0.348 0.248		0.724		1.320							
			r L	UMTS 1900		(0.502	0.248		(0.724		1.474					
	1 1	Jispot O/1	'`	LTE Band 12		(0.501	0.248	3	(0.724		1.473					
					LTE B	and 26	(Cell)	(0.329	0.248	3	(0.724		1.301			
				LTE Band 66 (AWS) LTE Band 2 (PCS)		LTF Band 66 (AW	, ,	, ,		(0.382	0.248	3	(0.724		1.354	
			H			_	0.409	0.248			0.724		1.381					
			-															
					LTE	E Band 4	41	(0.311	0.248	3	(0.724		1.283			
Sin	nult Tx	Configuration	LTE Ba 66 (AW SAR (W	VS)	NR Band n5 (Cell) SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Ba 26 (Ca SAR (W	ell)	NR Band n66 (AWS) SAR (W/kg)	2.4 GHz Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)		
			1		2	3	4	1+2+3+4			1		2	3	4	1+2+3+4		
		Back	0.282	2	0.384	0.176	0.408	1.250		Back	0.329	9	0.302	0.176	0.408	1.215		
		Front	0.328	8	0.333	0.114	0.724*	1.499		Front	0.28	6	0.384	0.114	0.724*	1.508		
Bod	y SAR	Тор	-		-	0.248	0.724*	0.972	Body SAR	Тор	-		-	0.248	0.724*	0.972		
500	, ont	Bottom	0.382	2	0.136	-	-	0.518	Jour OAK	Bottom	0.086		0.399	-	-	0.485		
		Right	-		0.407	-	-	0.407	_	Right	0.318	8	-	-	-	0.318		
1		Left	0.204	4	-	0.030	0.724	0.958		Left	-		0.241	0.030	0.724	0.995		

Phablet Simultaneous Transmission Analysis

Per FCC KDB Publication 648474 D04 Handset SAR, Phablet SAR tests were not required if wireless router 1g SAR (scaled to the maximum output power, including tolerance) < 1.2 W/kg. Therefore, no further analysis beyond the tables included in this section was required to determine that possible simultaneous transmission scenarios would not exceed the SAR limit.

For SAR summation, the highest reported SAR across all test distances was used as the most conservative evaluation for simultaneous transmission analysis for each device edge.

FCC ID: A3LSMA528B	POTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dage CE of 70	
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 65 of 72	

09/11/2019

Table 12-13
Simultaneous Transmission Scenario with 5 GHz WLAN (Phablet)

Configuration	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 1900	1.095	1.414	2.509
	UMTS 1750	1.492	1.414	2.906
Dhablet SAD	UMTS 1900	1.899	1.414	3.313
Phablet SAR	LTE Band 66 (AWS)	1.793	1.414	3.207
	LTE Band 2 (PCS)	1.942	1.414	3.356
	NR Band n66 (AWS)	1.809	1.414	3.223

12.7 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEC/IEEE 62209-1528:2020.

FCC ID: A3LSMA528B	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 66 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 66 of 72

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg for 1g SAR and less than 2.0 W/kg for 10g SAR.

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEC/IEEE 62209-1528:2020 was not required.

FCC ID: A3LSMA528B	Post to be part of & element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 67 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 67 of 72

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	85033E	3.5mm Standard Calibration Kit	7/7/2021	Annual	7/7/2022	MY53402352
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	8753ES	S-Parameter Vector Network Analyzer	9/16/2020	Annual	9/16/2021	MY40000670
Agilent	8753ES	S-Parameter Vector Network Analyzer	12/15/2020	Annual	12/15/2021	MY40003841
Agilent	E4432B	ESG-D Series Signal Generator	2/24/2021	Annual	2/24/2022	US40053896
Agilent	E4438C	ESG Vector Signal Generator	9/18/2020	Annual	9/18/2021	MY45091346
Agilent	E4438C	ESG Vector Signal Generator	9/29/2020	Annual	9/29/2021	MY45093852
Agilent	E4440A	PSA Series Spectrum Analyzer	1/29/2021	Annual	1/29/2022	MY46186272 GB42361078
Agilent	E5515C E5515C	Wireless Communications Test Set Wireless Communications Test Set	12/15/2020 2/4/2021	Annual Annual	12/15/2021 2/4/2022	GB42361078 GB43193563
Agilent Agilent	N5182A	MXG Vector Signal Generator	9/25/2020	Annual	9/25/2021	US46240505
Agilent	N5182A	MXG Vector Signal Generator	12/1/2020	Annual	12/1/2021	MY47420837
Agilent	N9020A	MXA Signal Analyzer	12/21/2020	Annual	12/21/2021	MY50200571
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433972
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433974
Anritsu	MA24106A	USB Power Sensor	9/15/2020	Annual	9/15/2021	1244515
Anritsu	MA24106A	USB Power Sensor	9/15/2020	Annual	9/15/2021	1248508
Anritsu	MA24106A	USB Power Sensor	9/15/2020	Annual	9/15/2021	1349511
Anritsu	MA24106A	USB Power Sensor	9/15/2020	Annual	9/15/2021	1520505
Anritsu	MA24106A	USB Power Sensor	9/15/2020	Annual	9/15/2021	1827526
Anritsu	MA2411B	Pulse Power Sensor	9/22/2020	Annual	9/22/2021	1339008
Anritsu	MA2411B	Pulse Power Sensor	12/18/2020	Annual	12/18/2021	1126066
Anritsu	ML2495A	Power Meter	11/3/2020	Annual	11/3/2021	1039008
Anritsu	ML2495A	Power Meter	1/18/2021	Annual	1/18/2022	941001
Anritsu	MT8820C	Radio Communication Analyzer	9/17/2020	Annual	9/17/2021	6201300731
Anritsu	MT8821C	Radio Communication Analyzer	9/11/2020	Annual	9/11/2021	6201524637
Anritsu	MT8821C	Radio Communication Analyzer	2/1/2021	Annual	2/1/2022	6201664756
Anritsu	MT8862A	Wireless Connectivity Test Set	10/29/2020	Annual	10/29/2021	6261782395
Control Company	4040	Therm./ Clock/ Humidity Monitor	2/17/2020	Biennial	2/17/2022	200113269
Control Company	4040	Therm./ Clock/ Humidity Monitor	2/17/2020	Biennial	2/17/2022	200113274
Control Company	4352	Long Stem Thermometer	1/24/2020	Biennial	1/24/2022	200043634
Control Company	4352	Long Stem Thermometer	1/24/2020	Biennial	1/24/2022	200043644
HEWLETT PACKARD	8753E	Network Analyzer	12/10/2020	Annual	12/10/2021	US38161081
Insize	1108-150	Digital Caliper	1/17/2020	Biennial	1/17/2022	409193536
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	9/1/2020	Annual	9/1/2021	MY53401181
Keysight Technologies	N6705B	DC Power Analyzer	5/5/2021	Triennial	5/5/2024	MY53004059
Keysight Technologies	N9020A	MXA Signal Analyzer	2/24/2021	Annual	2/24/2022	MY48010233
Keysignt Technologies	U3401A	Digital Multimeter	5/14/2020	Biennial	5/14/2022	MY57201470
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini Circuits	PWR-4GHS	USB Power Sensor	5/24/2021	Annual	5/24/2022	12010120004
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	NC-100	Torque Wrench	12/1/2020	Annual	12/1/2021	N/A
Pasternack	NC-100	Torque Wrench	8/4/2020	Biennial	8/4/2022	N/A
Pasternack	NC-100	Torque Wrench (8in-lbs)	8/5/2020	Biennial	8/5/2022	47639-47
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	CMW500	Radio Communication tester	9/4/2020	Annual	9/4/2021	140144
Rohde & Schwarz	CMW500	Radio Communication Tester	9/8/2020	Annual	9/8/2021	116743
Rohde & Schwarz	CMW500	Radio Communication Tester	10/16/2020	Annual	10/16/2021	101699
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	9/29/2020	Annual	9/29/2021	101307
SPEAG		1750 MHz SAR Dipole	10/22/2018	Triennial	10/22/2021	1150
SPEAG	D1750V2		., ,		., , .	
	D1750V2	1750 MHz SAR Dipole	5/12/2020	Biennial	5/12/2022	1148
SPEAG	D1750V2 D1900V2	1750 MHz SAR Dipole 1900 MHz SAR Dipole	5/12/2020 10/23/2018	Biennial Triennial	5/12/2022 10/23/2021	1148 5d080
SPEAG SPEAG	D1750V2 D1900V2 D1900V2	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole	5/12/2020 10/23/2018 10/23/2018	Biennial Triennial Triennial	5/12/2022 10/23/2021 10/23/2021	1148 5d080 5d149
SPEAG SPEAG SPEAG	D1750V2 D1900V2 D1900V2 D2600V2	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole	5/12/2020 10/23/2018 10/23/2018 6/14/2019	Biennial Triennial Triennial Triennial	5/12/2022 10/23/2021 10/23/2021 6/14/2022	1148 5d080 5d149 1064
SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D1900V2 D2600V2 D2600V2	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole	5/12/2020 10/23/2018 10/23/2018 6/14/2019 11/12/2019	Biennial Triennial Triennial Triennial Biennial	5/12/2022 10/23/2021 10/23/2021 6/14/2022 11/12/2021	1148 5d080 5d149 1064 1071
SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D1900V2 D2600V2 D2600V2 D750V3	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole	5/12/2020 10/23/2018 10/23/2018 10/23/2018 6/14/2019 11/12/2019 10/19/2018	Biennial Triennial Triennial Triennial Biennial Triennial	5/12/2022 10/23/2021 10/23/2021 10/23/2021 6/14/2022 11/12/2021 10/19/2021	1148 5d080 5d149 1064 1071 1161
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D1900V2 D2600V2 D2600V2 D750V3 D835V2	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole 750 MHz SAR Dipole 835 MHz SAR Dipole	5/12/2020 10/23/2018 10/23/2018 6/14/2019 11/12/2019 10/19/2018 10/19/2018	Biennial Triennial Triennial Triennial Biennial Triennial Triennial	5/12/2022 10/23/2021 10/23/2021 6/14/2022 11/12/2021 10/19/2021 10/19/2021	1148 5d080 5d149 1064 1071 1161 4d133
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D1750V2 D1900V2 D1900V2 D2600V2 D2600V2 D2600V2 D750V3 D835V2 D835V2	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole	5/12/2020 10/23/2018 10/23/2018 10/23/2018 6/14/2019 11/12/2019 10/19/2018 1/21/2021	Biennial Triennial Triennial Triennial Biennial Triennial Triennial Annual	5/12/2022 10/23/2021 10/23/2021 6/14/2022 11/12/2021 10/19/2021 10/19/2021 1/21/2022	1148 5d080 5d149 1064 1071 1161 4d133 4d132
SPEAG	D1750V2 D1900V2 D1900V2 D2600V2 D2600V2 D750V3 D835V2 D835V2 DAE4	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole Bash Dipole Dasy Data Acquisition Electronics	5/12/2020 10/23/2018 10/23/2018 6/14/2019 11/12/2019 10/19/2018 10/19/2018 1/21/2021 3/10/2021	Biennial Triennial Triennial Triennial Biennial Triennial Triennial Annual Annual	5/12/2022 10/23/2021 10/23/2021 6/14/2022 11/12/2021 10/19/2021 10/19/2021 1/21/2022 3/10/2022	1148 5d080 5d149 1064 1071 1161 4d133 4d132 1415
SPEAG	D1750V2 D1900V2 D1900V2 D2600V2 D2600V2 D2600V2 D750V3 D835V2 D835V2 DAE4 DAE4	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole Bay Data Acquisition Electronics Dasy Data Acquisition Electronics	5/12/2020 10/23/2018 10/23/2018 6/14/2019 11/12/2019 10/19/2018 10/19/2018 1/21/2021 3/10/2021 6/21/2021	Biennial Triennial Triennial Triennial Biennial Triennial Triennial Triennial Annual Annual Annual	5/12/2022 10/23/2021 10/23/2021 6/14/2022 11/12/2021 10/19/2021 10/19/2021 1/21/2022 3/10/2022 6/21/2022	1148 5d080 5d149 1064 1071 1161 4d133 4d132 1415
SPEAG	D1750V2 D1900V2 D1900V2 D1900V2 D2600V2 D2600V2 D750V3 D835V2 D835V2 DAE4 DAE4 DAE4	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole 835 MHz SAR Dipole 935 MHz SAR Dipole 350 MHz SAR Dipole 935 MHz SAR Dipole 935 MHz SAR Dipole Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	5/12/2020 10/23/2018 10/23/2018 6/14/2019 11/12/2019 10/19/2018 10/19/2018 1/21/2021 3/10/2021 6/21/2021 7/13/2021	Biennial Triennial Triennial Triennial Biennial Triennial Triennial Annual Annual Annual Annual	5/12/2022 10/23/2021 10/23/2021 6/14/2022 11/12/2021 10/19/2021 10/19/2021 1/21/2022 3/10/2022 6/21/2022 7/13/2022	1148 5d080 5d149 1064 1071 1161 4d133 4d132 1415 1676 1583
SPEAG	D1750V2 D1900V2 D1900V2 D1900V2 D2600V2 D2600V2 D2600V2 D750V3 D835V2 DA64 DA64 DA64 DA64	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	5/12/2020 10/23/2018 10/23/2018 6/14/2019 11/12/2019 10/19/2018 10/19/2018 1/21/2021 3/10/2021 6/21/2021 7/13/2021	Biennial Triennial Triennial Triennial Biennial Triennial Triennial Triennial Annual Annual Annual Annual Annual	5/12/2022 10/23/2021 10/23/2021 6/14/2022 11/12/2021 10/19/2021 10/19/2021 1/21/2022 3/10/2022 6/21/2022 7/13/2022 6/22/2022	1148 5d080 5d149 1064 1071 1161 4d133 4d132 1415 1676 1583 1677
SPEAG	D1750V2 D1900V2 D1900V2 D2600V2 D2600V2 D2600V2 D750V3 D835V2 D835V2 D844 DAE4 DAE4 DAE4 DAE4 DAE4	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole Bay Data Acquisition Electronics Dasy Data Acquisition Electronics	5/12/2020 10/23/2018 10/23/2018 6/14/2019 11/12/2019 10/19/2018 10/19/2018 1/21/2021 6/21/2021 6/21/2021 6/22/2021 6/15/2021	Biennial Triennial Triennial Triennial Triennial Biennial Triennial Triennial Annual Annual Annual Annual Annual Annual Annual Annual	5/12/2022 10/23/2021 10/23/2021 6/14/2022 11/12/2021 10/19/2021 10/19/2021 1/21/2022 6/21/2022 6/22/2022 6/15/2022	1148 5d080 5d149 1064 1071 1161 4d133 4d132 1415 1676 1583 1677
SPEAG	D1750V2 D1900V2 D1900V2 D1900V2 D2600V2 D2600V2 D750V3 D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 935 MHz SAR Dipole 1836 MHz SAR Dipole 1836 MHz SAR Dipole 1837 MHz SAR Dipole 1837 MHz SAR Dipole 1837 MHz SAR Dipole 1838 MHz SAR Dipole 1838 MHz SAR Dipole 1839 MHz Acquisition Electronics 1849 Data Acquisition Electronics 1849 Data Acquisition Electronics 1840 Data Acquisition Electronics 1851 Data Acquisition Electronics 1852 Data Acquisition Electronics 1854 Data Acquisition Electronics 1856 Data Acquisition Electronics	5/12/2020 10/23/2018 10/23/2018 10/23/2018 6/14/2019 10/19/2018 10/19/2018 1/21/2021 3/10/2021 6/21/2021 7/13/2021 6/22/2021 12/7/2020	Biennial Triennial Triennial Triennial Biennial Triennial Triennial Triennial Annual	5/12/2022 10/23/2021 10/23/2021 6/14/2022 11/12/2021 10/19/2021 10/19/2021 1/21/2022 3/10/2022 6/21/2022 7/13/2022 6/22/2022 6/15/2022 12/7/2021	1148 \$d080 \$d149 1064 1071 1161 4d133 4d132 1415 1676 1583 1677 1334 1533
SPEAG	D1750V2 D1900V2 D1900V2 D1900V2 D2600V2 D2600V2 D2600V2 D750V3 D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole 835 MHz SAR Dipole 050 MHz	5/12/2020 10/23/2018 10/23/2018 10/23/2018 6/14/2019 11/12/2019 11/12/2019 10/19/2018 1/21/2021 3/10/2021 6/21/2021 7/13/2021 6/22/2021 6/21/2020 10/20/2020	Biennial Triennial Triennial Triennial Biennial Triennial Triennial Annual	5/12/2022 10/23/2021 10/23/2021 10/23/2021 6/34/2022 11/12/2021 10/19/2021 10/19/2021 1/21/2022 3/10/2022 6/21/2022 6/12/2022 6/15/2022 12/7/2021 10/20/2021	1148 5d080 5d349 1064 1071 1161 4d133 4d132 1415 1676 1583 1677 1334 1533 7539
SPEAG	D1750V2 D1900V2 D1900V2 D1900V2 D2600V2 D2600V2 D750V3 D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 836 MHz SAR Dipole Dasy Data Acquisition Electronics Dasy Anta Acquisition Electronics Dasy Anta Acquisition Electronics SAR Probe SAR Probe	5/12/2020 10/23/2018 10/23/2018 10/23/2018 10/23/2018 10/12/2019 11/12/2019 10/19/2018 10/19/2018 1/21/2021 7/13/2021 6/12/2021 6/12/2021 6/12/2021 10/20/2020 10/20/2020 12/11/2020	Biennial Triennial Triennial Triennial Biennial Triennial Triennial Triennial Annual	5/12/2022 10/23/2021 10/23/2021 10/23/2021 6/14/2022 11/12/2021 10/19/2021 10/19/2021 1/21/2022 6/21/2022 6/15/2022 12/7/2021 10/20/2021 10/20/2021 12/11/2021	1148 5d080 5d349 1064 1071 1161 4d133 4d132 1415 1676 1583 1677 1334 1533 7539
SPEAG	D1750V2 D1900V2 D1900V2 D1900V2 D2600V2 D2600V2 D750V3 D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 935 Mz SAR Dipole 100 Mz SAR Di	5/12/2020 10/23/2018 10/23/2018 6/14/2019 11/12/2019 10/19/2018 10/19/2018 1/21/2021 3/10/2021 6/21/2021 12/7/2020 12/7/2020 12/7/2020 12/7/2020 12/7/2020 12/7/2020 12/7/2020	Biennial Triennial Triennial Triennial Biennial Triennial Triennial Triennial Annual	5/12/2022 10/23/2021 10/23/2021 10/23/2021 6/14/2022 11/12/2021 10/19/2021 1/21/2022 3/10/2022 6/21/2022 6/21/2022 6/21/2022 12/7/2021 10/20/2021 12/11/2021 7/13/2022	1148 5d080 5d149 1064 1071 1161 4d133 4d132 1415 1676 1334 1533 7539 7571 7406
SPEAG	D1750V2 D1900V2 D1900V2 D1900V2 D2600V2 D2600V2 D2600V2 D750V3 D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole 835 MHz SAR Dipole 054 Data Acquisition Electronics 0549 Data Acquisition Electronics 0549 Data Acquisition Electronics 0549 Data Acquisition Electronics 055 Data Acquisition Electronics 056 ACQuisition Electronics 057 ACQUISITION ELECTRONICS 058 Probe SAR Probe SAR Probe SAR Probe	5/12/2020 10/23/2018 10/23/2018 10/23/2018 6/14/2019 11/12/2019 10/19/2018 10/19/2018 10/19/2018 13/10/2021 6/21/2021 7/13/2021 12/7/2020 10/20/2020 12/11/2020 7/20/2021 7/20/2021	Biennial Triennial Triennial Triennial Triennial Biennial Triennial Triennial Triennial Annual	5/12/2022 10/23/2021 10/23/2021 10/23/2021 10/12/2021 11/12/2021 10/19/2021 10/19/2021 10/19/2021 3/10/2022 6/21/2022 6/22/2022 6/25/2022 12/7/2021 12/11/2021 12/11/2021 7/20/2022 7/20/2022	1148 \$0080 \$54349 1064 1071 1161 4d133 4d132 1415 1676 1583 1677 1334 1533 7539 7571 7406
SPEAG	D1750V2 D1900V2 D1900V2 D1900V2 D2600V2 D2600V2 D750V3 D835V2 D835V2 D844 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole 1836 MHz SAR Dipole 1836 MHz SAR Dipole 1836 MHz SAR Dipole 1837 MHz SAR Dipole 1837 MHz SAR Dipole 1837 MHz SAR Dipole 1838 MHz SAR Probe	5/12/2020 10/23/2018 10/23/2018 6/14/2019 11/12/2019 10/19/2018 10/19/2018 1/21/2021 3/10/2021 6/21/2021 7/13/2021 6/22/2021 6/25/2021 10/20/2020 10/20/2020 12/11/2020 1/20/2021 6/28/2021 6/28/2021	Biennial Triennial Triennial Triennial Triennial Triennial Biennial Triennial Triennial Annual	5/12/2022 10/23/2021 10/23/2021 6/14/2022 11/12/2021 10/19/2021 10/19/2021 1/21/2022 3/10/2022 6/22/2022 6/25/2022 12/7/2021 10/20/2021 12/11/2021 12/11/2021 12/12/2022 6/28/2022 6/28/2022	1148 5d080 5d149 1064 1071 1161 4d133 4d132 1415 1676 1583 1677 1334 1533 7539 7571 7406 7410
SPEAG	D1750V2 D1900V2 D1900V2 D1900V2 D2600V2 D2600V2 D2600V2 D750V3 D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	1750 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 2600 MHz SAR Dipole 750 MHz SAR Dipole 835 MHz SAR Dipole 054 Data Acquisition Electronics 0549 Data Acquisition Electronics 0549 Data Acquisition Electronics 0549 Data Acquisition Electronics 055 Data Acquisition Electronics 056 ACQuisition Electronics 057 ACQUISITION ELECTRONICS 058 Probe SAR Probe SAR Probe SAR Probe	5/12/2020 10/23/2018 10/23/2018 10/23/2018 6/14/2019 11/12/2019 10/19/2018 10/19/2018 10/19/2018 13/10/2021 6/21/2021 7/13/2021 12/7/2020 10/20/2020 12/11/2020 7/20/2021 7/20/2021	Biennial Triennial Triennial Triennial Triennial Biennial Triennial Triennial Triennial Annual	5/12/2022 10/23/2021 10/23/2021 10/23/2021 10/12/2021 11/12/2021 10/19/2021 10/19/2021 10/19/2021 3/10/2022 6/21/2022 6/22/2022 6/25/2022 12/7/2021 12/11/2021 12/11/2021 7/20/2022 7/20/2022	1148 \$0080 \$54349 1064 1071 1161 4d133 4d132 1415 1676 1583 1677 1334 1533 7539 7571 7406

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. Each equipment item was used solely within its respective calibration period.

· ·	y within ito respective cambration	i poliou.		
	FCC ID: A3LSMA528B	@\PCTEST	SAR EVALUATION REPORT	Approved by:
	1 00 IB. AGEGINIAGZOB	Proud to be port of Selement	OAK EVALUATION KEI OKT	Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dago 69 of 72
	1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 68 of 72
\sim	4 DOTEOT			DEVIOR AM

© 2021 PCTEST

09/11/2019

15 MEASUREMENT UNCERTAINTIES

a	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
	IEEE	Tol.	Prob.	. , .	Ci	Ci	1gm	10gms	
Uncertainty Component	1528	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	Vi
, '	Sec.	(± /0)	Dist.	DIV.	'g'''	TO gills	(± %)	(± %)	v _i
Measurement System				ļ			(= /0/	(= 70)	
Probe Calibration	E.2.1	7	N	1	1	1	7.0	7.0	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	~
Hemishperical Isotropy	E.2.2	1.3	N	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E.2.3	2	R	1.732	1	1	1.2	1.2	∞
Linearity	E.2.4	0.3	Ν	1	1	1	0.3	0.3	∞
System Detection Limits	E.2.4	0.25	R	1.732	1	1	0.1	0.1	∞
Modulation Response	E.2.5	4.8	R	1.732	1	1	2.8	2.8	8
Readout Electronics	E.2.6	0.3	Ν	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	R	1.732	1	1	0.5	0.5	8
Integration Time	E.2.8	2.6	R	1.732	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E.6.1	3	R	1.732	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	3	R	1.732	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.732	1	1	0.5	0.5	8
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.732	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.732	1	1	2.3	2.3	8
Test Sample Related									
Test Sample Positioning	E.4.2	3.12	N	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	Ν	1	1	1	1.7	1. <i>7</i>	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.732	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.732	1	1	0.0	0.0	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	Ν	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	N	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	E.3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)			RSS	ı			12.2	12.0	191
Expanded Uncertainty k=2					24.4	24.0			
(95% CONFIDENCE LEVEL)									

FCC ID: A3LSMA528B	PCTEST* Proud to be part of \$ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 60 of 70
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 69 of 72

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMA528B	PCTEST* Poud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 70 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 70 of 72

© 2021 PCTEST REV 21.4 M 09/11/2019

REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1-124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.

thereof, please contact INFO@PCTEST.COM.

- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

	FCC ID: A3LSMA528B	PCTEST* Proud to be part of \$ element	SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dags 71 of 72	
	1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 71 of 72	
© 202	1 PCTEST			REV 21.4 M	

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 20pg
- [31] IEC/IEEE 62209-1528:2020, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz), Oct 2020

FCC ID: A3LSMA528B	PCTEST* Poud to be part of ® element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 72 of 72
1M2108160095-06.A3L	08/19/2021 - 08/31/2021	Portable Handset	Page 72 of 72