

CERTIFICATION TEST REPORT

Report Number. : 13583138-E9V2

- Applicant : SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA
 - Model : SM-A526B/DS, SM-A526B
 - FCC ID : A3LSMA526B
- **EUT Description :** GSM/WCDMA/LTE/5G Phablet with BT/BLE,DTS/UNII a/b/g/n/ac and NFC
- Test Standard(s) : FCC CFR47 PART 27 SUBPART M

Date Of Issue:

February 01, 2021

Prepared by:

UL Korea, Ltd. 26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433

Revision History

Rev. Issue Date		Revisions	Revised By
V1	01/22/21	Initial issue	Sungeun Lee
V2	02/01/21	Updated to address TCB's question	Sungeun Lee

Page 2 of 45 UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	5
2.	ΤЕ	ST METHODOLOGY	6
3.	FA	CILITIES AND ACCREDITATION	6
4.	CA	LIBRATION AND UNCERTAINTY	7
4	l.1.	MEASURING INSTRUMENT CALIBRATION	
4	¹ .2.	SAMPLE CALCULATION	7
4	¹ .3.	MEASUREMENT UNCERTAINTY	7
4	l.4.	DECISION RULE	7
5.	EQ	UIPMENT UNDER TEST	8
5	5.1.	DESCRIPTION OF EUT	
5	5.2.	MAXIMUM OUTPUT POWER	8
5	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5	5.4.	WORST-CASE ORIENTATION	9
5	5.5.	DESCRIPTION OF TEST SETUP	9
6.	ΤЕ	ST AND MEASUREMENT EQUIPMENT1	1
7.5	SUM	MARY TABLE1	2
		K TO AVERAGE RATIO	
		CONDUCTED PEAK TO AVERAGE RESULT1	
_			
9.			
9		OCCUPIED BANDWIDTH	
9	0.2.	BAND EDGE EMISSIONS1	17
	9.2	2.1. EMISSION MASK RESULT1	8
9	0.3.	OUT OF BAND EMISSIONS 3.1. OUT OF BAND EMISSIONS RESULT	30
~		FREQUENCY STABILITY	
9	<i>.4.</i> 9.4	PREQUENCY STABILITY	52 52
g	9.5.	RADIATED POWER (EIRP)	33
	9.5	5.1. ERP/EIRP Results	34
0		FIELD STRENGTH OF SPURIOUS RADIATION	
9		6.1. SPURIOUS RADIATION PLOTS	
10.	Ap	pendix: LICENSED BAND SETUP PHOTOS (Conducted Test)4	1
	0.1.	· · · · · · · · · · · · · · · · · · ·	
1	0.2.	CONDUCTED RF MEASUREMENT SETUP (WWAN Stability)4	
		Page 3 of 45	

11. App	pendix: LICENSED BAND SETUP PHOTOS (Radiated Test)	42
11.1.	RADIATED RF MEASUREMENT SETUP (BELOW 1 GHz)	42
11.2.	RADIATED RF MEASUREMENT SETUP (ABOVE 1 GHz)	43
11.3.	RADIATED RF MEASUREMENT SET-UP (Axis)	44

Page 4 of 45

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	SAMSUNG ELECTRONICS CO., LTD.
EUT DESCRIPTION:	GSM/WCDMA/LTE/5G Phablet with BT/BLE,DTS/UNII a/b/g/n/ac and NFC
MODEL NUMBER:	SM-A526B/DS, SM-A526B
SERIAL NUMBER:	R3CNB0CBLDW (CONDUCTED) R3CNB0CBGTZ (RADIATED)
DATE TESTED:	JAN 19, 2021 – FEB 01, 2021;

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
FCC PART 27 M	Pass			

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

8/ Approved & Released For UL Korea, Ltd. By:

Junwhan Lee Suwon Lab Engineer UL Korea, Ltd.

Tested By:

Sungeun Lee Suwon Lab Engineer UL Korea, Ltd.

Page 5 of 45

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with following methods.

- 1. FCC CFR 47 Part 2.
- 2. FCC CFR 47 Part 27.
- 3. ANSI TIA-603-E, 2016
- 4. ANSI C63.26, 2015
- 5. KDB 971168 D01 Power Meas License Digital Systems v03r01
- 6. KDB 412172 D01 Determing ERP and EIRP v01r01

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do,16675, Korea. Line conducted emissions are measured only at the 218 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

218 Maeyeong-ro
🛛 Chamber 1
Chamber 2
Chamber 3

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at https://www.iasonline.org/wp-content/uploads/2017/05/TL-637-cert-New.pdf.

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 6 of 45

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

EIRP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna) + Substitution Antenna Factor (dBi)

 \overrightarrow{ERP} = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna)

(Path loss = Signal generator output – PSA reading with substitution antenna)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.01 dB
Radiated Disturbance, 30 MHz to 1 GHz	4.26 dB
Radiated Disturbance, 1 GHz to 18 GHz	5.90 dB
Radiated Disturbance, Above 18 GHz	5.49 dB

Uncertainty figures are valid to a confidence level of 95%.

4.4. DECISION RULE

Decision rule for statement(s) of conformity is based on Procedure 1, Clause 4.4.2 in IEC Guide 115:2007.

Page 7 of 45

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA/LTE/5G Phablet with BT/BLE,DTS/UNII a/b/g/n/ac and NFC. This test report addresses the WWAN operational mode.

This report covers the Samsung models SM-A526B/DS and SM-A526B. These models are identical in hardware except SM-A526B has single SIM tray. With some pre-scan, model SM-A526B/DS was set for final test.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum average radiated ERP / EIRP output powers as follows: Note : Conducted output power results were excerpted from RF exposure test report (13583138-S1 FCC Report SAR).

FCC Part 27									
Band	Frequency Range	BandWidth	Modulation	Conducted		Radiated			
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	Avg [dBm]	Avg [mW]		
			QPSK	24.6	291.0	20.83	121.06		
		20	16QAM	23.8	238.3	20.09	102.09		
			64QAM	22.7	187.9				
		15	QPSK	24.6	290.7	20.55	113.50		
	2496 ~ 2690		16QAM	23.7	233.2	20.11	102.57		
Band 41			64QAM	22.2	167.9				
Danu 41		2690	QPSK	24.8	300.9	22.05	160.32		
				10	16QAM	23.9	245.1	22.61	182.39
		5	64QAM	22.2	167.9				
			QPSK	24.7	297.7	20.68	116.95		
			16QAM	23.8	239.0	20.40	109.65		
			64QAM	22.6	182.4				

LTE Band 41

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a internal antenna for the [List the bands supported] with a maximum peak gain as follow:

Frequency (MHz)	Peak Gain (dBi)
LTE Band 41 2496 ~ 2690 MHz	-6.50

Page 8 of 45

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

5.4. WORST-CASE ORIENTATION

For all LTE Bands, the worst-case scenario for all measurements is based on the average conducted output power measurement investigation results. Output power measurements were measured on QPSK, 16QAM and 64QAM modulations. It was found that QPSK and 16QAM results were worst case. All testing was performed using QPSK and 16QAM modulations to represent the worst case. However, the out of band emissions and spurious radiation were only performed on bandwidth and RB offset(with RB size 1) with the highest conducted power in QPSK.

Highest power setting for each bands								
LTE Band	Frequency (MHz)	Bandwidth (MHz)	RB size	RB offset				
	2501.0		1	25				
41	2593.0	10	1	25				
	2685.0		1	25				

The fundamental and radiated spurious emission were investigated in three orthogonal orientations X, Y and Z, it was determined that below orientation was worst-case orientation for each band.

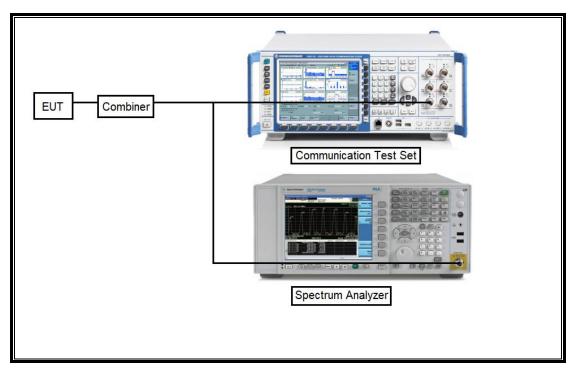
Band	ERP/EIRP			RSE		
	х	Y	Z	х	Y	Z
LTE B41	0	-	-	0	-	-

Note : For ERP/EIRP testing, the EUT didn't attached with travel adapter. But radiated spurious testing, the EUT attached with travel adapter for the worst case condition. The EUT is continuously communicated with the call box during the tests.

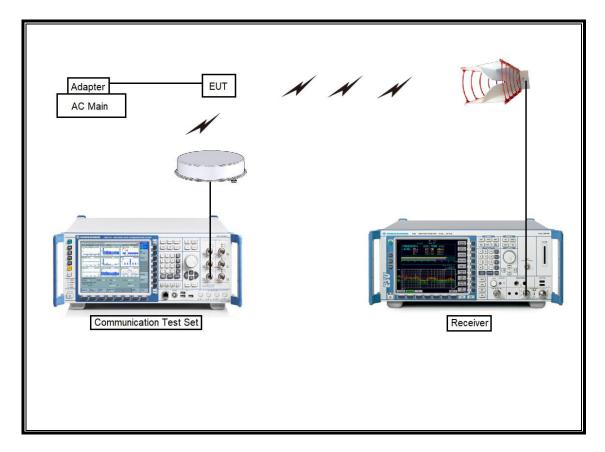
5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
Charger	SAMSUNG	EP-TA200	N/A	N/A			
Data Cable	SAMSUNG	EP-DR140AWE	N/A	N/A			


I/O CABLE

I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	DC Power	1	С Туре	Shielded	1.0m	N/A


TEST SETUP

The EUT is continuously communicated with the call box during the tests.

Page 9 of 45 UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

Page 10 of 45

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	Test Equ	ipment List	_	
Description	Manufacturer	Model	S/N	Cal Due
Antenna, Tuned Dipole 400~1000 MHz	ETS	3121D DB4	00164753	01-31-21
Directional Antenna	Cobham FPA3-0.8-6.0R/1329		110367-0003	N/A
Directional Antenna	Cobham	FPA3-0.8-6.0R/1329	80108-0004	N/A
Antenna, Horn, 40 GHz	ETS	3116C	00166155	08-04-22
Preamplifier	ETS	3116C-PA	00168841	08-06-21
Antenna, Horn, 40 GHz	ETS	3116C	00168645	10-02-21
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	750	08-19-22
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	845	08-13-22
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	749	08-13-22
Antenna, Horn, 18 GHz	ETS	3115	00167211	07-27-22
Antenna, Horn, 18 GHz	ETS	3115	00161451	08-15-22
Antenna, Horn, 18 GHz	ETS	3117	00168724	07-27-22
Antenna, Horn, 18 GHz	ETS	3117	00168717	08-15-22
Communications Test Set	R&S	CMW500	115331	08-03-21
DC Power Supply	Agilent / HP	E3640A	MY54226395	08-05-21
Preamplifier, 1000 MHz	Sonoma	310N	341282	08-03-21
Preamplifier, 1000 MHz	Sonoma	310N	370599	08-06-21
Preamplifier, 1000 MHz	Sonoma	310N	351741	08-03-21
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1876511	08-03-21
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	2029169	08-04-21
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1896138	08-03-21
Spectrum Analyzer	Keysight	N9030B	MY57143717	08-05-2
EMI Test Receive, 40 GHz	R&S	ESU40	100439	08-03-21
EMI Test Receive, 40 GHz	R&S	ESU40	100457	08-03-21
Direcitonal Antenna	Cobham	FPA3-0.8-6.0R/1329	80108-0004	N/A
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G0 05	08-05-2
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G0.06	08-05-2
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	010	08-05-2
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	011	08-05-21
High Pass Filter 4 GHz	Micro-Tronics	HPM50118-02	G001	08-05-21
High Pass Filter 4GHz	Micro-Tronics	HPM50118-02	G0 02	08-05-21
Attenuator	PASTERNACK	PE7087-10	A0 09	08-05-21
Attenuator	PASTERNACK	PE7087-10	A001	08-03-21
Attenuator	PASTERNACK	PE7087-10	A0.08	08-03-21
Attenuator	PASTERNACK	PE7004-10	2	08-04-21
Attenuator	PASTERNACK	PE7395-10	A0 11	08-05-2
Antenna, Loop, 9kHz-30MHz	R&S	HFH2-Z2	100418	10-02-21
Temperature Chamber	ESPEC	SH-642	93001109	08-04-2
Power Splitter	MINI-CIRCUITS	WA1534	UL001	02-05-2
Power Splitter	MINI-CIRCUITS	WA1534	UL002	02-05-2
•		oftware		
Description	Manufacturer	Model	Vers	on
Antenna port test software	UL	CLT	Ver 2	

Page 11 of 45 UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

7. SUMMARY TABLE

FCC Part Section	Test Description	Test Limit	Test Condition	Test Result
2.1049	Occupied Band width (99%)	N/A		Pass
27.53(m)	Conducted Spurious Emission	-25 dBm		Pass
27.53(m)	Emission mask	mission mask Section 9.2.2 Conducted		Pass
2.1046	Conducted output power	N/A		Pass
27.54	Frequency Stability	2.5PPM		Pass
27.50(h)(2)	Equivalent Isotropic Radiated Power	33dBm	Radiated	Pass
27.53 (m)	Radiated Spurious Emission -25d			Pass

Page 12 of 45

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

8. PEAK TO AVERAGE RATIO

Test Procedure

Per KDB 971168 D01 Power Meas License Digital Systems v03r01;

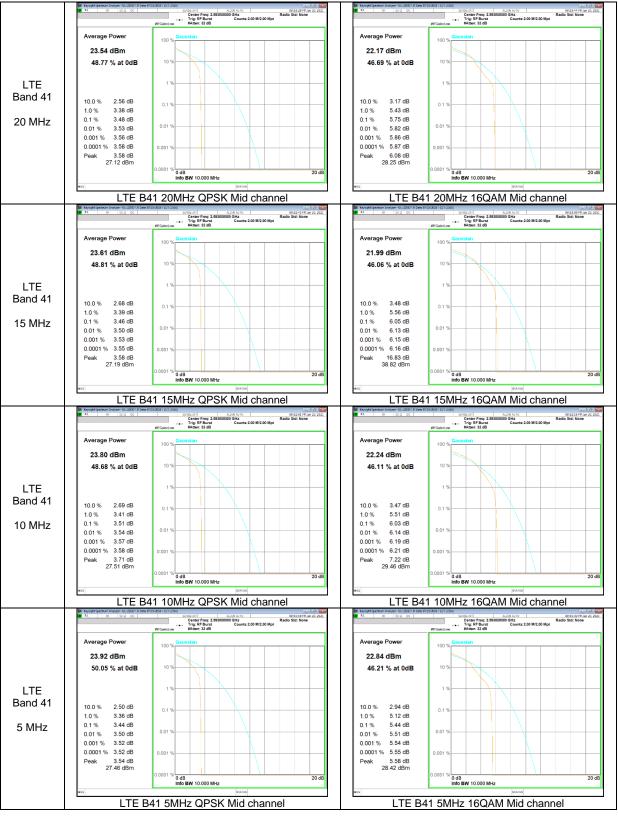
The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The PAR were measured on the Spectrum Analyzer.

Test Spec

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

Note

The modulations (QPSK, 16QAM, 64QAM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


RESULTS

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 13 of 45

8.1. CONDUCTED PEAK TO AVERAGE RESULT

LTE Band 41

Page 14 of 45

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

9. LIMITS AND CONDUCTED RESULTS

9.1. OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049

LIMITS

For reporting purposes only

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the middle channel in each band. The -26dB bandwidth was also measured and recorded.

(KDB 971168 D01 Power Meas License Digital Systems v03r01)

RESULTS

See the following pages.

- LTE Band 41

Band	BW	Modulation	Channel	f [MHz]	99% BW (MHz)	-26dB BW (MHz)
LTE B41	20M	QPSK	40620	2593.0	17.874	19.270
		16QAM			17.913	20.870
	15M	QPSK	40620	2593.0	13.428	16.510
		16QAM			13.424	15.330
	10M	QPSK	40620	2593.0	8.955	9.921
		16QAM			8.960	9.976
	5M	QPSK	40620	2593.0	4.504	5.194
		16QAM			4.493	4.922

Page 15 of 45

9.1.1. OCCUPIED BANDWIDTH RESULTS

08:57:50 PH Jan Radio Std: None 08:58:21 PR Ja Radio Std: None Center Freq 2.593000000 GHz Center Freq 2.593000000 GHz Center Freq: 2.59300000 GHz Center Freq: 2.59300000 GHz ... Trig: Free Run Avg[Hold:>10/1 #Atten: 32 dB Radio Device: BTS Radio Device: BTS Ref 30.00 dBn Ref 30.00 dBn MUMMUMU **Withdam** s municipal and all all has been Band 41 nter 2.593 GHz es BW 300 kHz 20MHz 2.593 GHz W 300 kHz Span 30 MH Sweep 1.333 m Span 30 MH eep 1.333 m #VBW 910 kH #VBW 910 kHz Occupied Bandwidth Total Power 30.5 dBm Occupied Bandwidth Total Power 29.5 dBm 17.874 MHz 17.913 MHz smit Freq Error 8.621 kHz 99.00 % nit Freq Error -14.825 kHz 99.00 % x dB Bandwidth 19.27 MHz x dB -26.00 dB x dB Bandwidth 20.87 MHz x dB -26.00 dB 20MHz QPSK Mid channel 20MHz 16QAM Mid channel 08:56:52 PR Jan Radio Std: None 08:57:15 FRJa Radio Std: None Center Freq 2.593000000 GHz Center Freq 2.593000000 GHz Center Freq: 2.55 Trig: Free Run 00 GHz Avg[H Center Freq: 2.55 Trig: Free Run Radio Device: BTS adio Device: BTS Ref 30.00 di Ref 30.00 dB Matuli Mille UNIXMITIS¹⁴⁴ Month Annal A. A. W. LAMA Band 41 Span 22.5 M weep 1.333 r nter 2.593 GHz es BW 220 kHz Span 22.5 MH weep 1.333 m enter 2.593 GHz Res BW 220 kHz 15MHz #VBW 680 kH #VBW 680 kHz 30.4 dBm 29.4 dBm Occupied Bandwidth Total Po Occupied Bandwidti Total Po 13.428 MHz 13.424 MHz Transmit Freq Error -16.603 kHz OBW Power 99.00 % Transmit Freq Error -1.524 kHz OBW Power 99.00 % 16.51 MHz x dB -26.00 dB 15.33 MHz x dB -26.00 dB dB Bandwidth v dB Bandwidth 15MHz QPSK Mid channel 15MHz 16QAM Mid channel Center Freq 2.593000000 GHz Radio Std: None Center Freq 2.593000000 GHz 08:55:99 PR Radio Std: None GHz Center Freq: 2 Trig: Free Run Center Freq: 2.0 Trig: Free Run Device: BTS dio Device: BT Ref 30.00 W. HIMINAM W. FRAMMAN " MARK AND Viter Withen Band 41 10MHz er 2.593 GHz BW 150 kHz Span 15 MH Sweep 1.333 m nter 2.593 GHz Span 15 MH eep 1.333 m #VBW 470 kHz #VBW 470 kHz 30.6 dBn 29.7 dBn Occupied Bandwidth Total Power Occupied Bandwidth Total Powe 8.9552 MHz 8.9600 MHz Transmit Freg Error 4.105 kHz OBW Power 99.00 % Transmit Freg Error -2.470 kHz OBW Power 99.00 % 9.921 MHz x dB -26.00 dB 9.976 MHz -26.00 dB dB Bandwidt x dB 10MHz QPSK Mid channel 10MHz 16QAM Mid channel 03:03:52 PR Jan Radio Std: None 03:04:05 PR Jar Radio Std: None Center Freq: 2.59 Trig: Free Run Radio Device: BTS adio Device: BTS Ref 30.00 (Ref 30.00 dBm Withinsteins Band 41 5MHz nter 2.593 GH: es BW 75 kHz Span 7.5 MH Sweep 4 m 2.593 GHz W 75 kHz Span 7.5 MH Sweep 4 m #VBW 240 kH #VBW 240 kH Occupied Bandwidth Total Power 31.1 dBm Occupied Bandwidth Total Power 29.2 dBm 4.5035 MHz 4.4927 MHz nsmit Freq Error -11.264 kH 99.00 % 2.672 kHz 99.00 % x dB Bandwidth 5.194 MHz x dB -26.00 dB x dB Bandwidth 4.922 MHz x dB -26.00 dB 5MHz QPSK Mid channel 5MHz 16QAM Mid channel

LTE Band 41

Page 16 of 45

UL Korea, Ltd. Suwon Laboratory FORM ID: FCC_22/24/27(04) 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

9.2. BAND EDGE EMISSIONS

RULE PART(S)

FCC: §27. 53

<u>LIMITS</u>

(m) (4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v03r01

The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

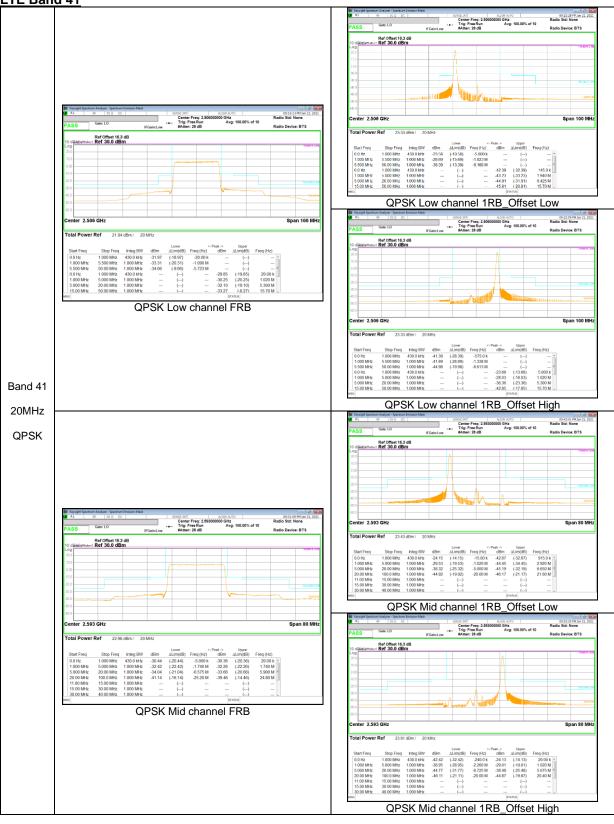
<u>LTE</u>

- a) Set the RBW = 1 ~ 1.5 % of OBW(Typically limited to a minimum RBW of 1% of the OBW)
- b) Set VBW \geq 3 × RBW;
- c) Set span \geq 1.5 times the OBW;
- d) Sweep time \geq Auto;
- e) Detector = RMS;
- f) Ensure that the number of measurement points $\geq 2^{Span/RBW}$;
- g) Trace mode = Average (100);

NOTE1

Note that the spurious emissions outside of the channel include narrowband signals. These signals are all below the -25dBm limits. Although the measurement bandwidth is less than the reference bandwidth of 1MHz no additional correction is applied as ANSI C63.26 section 4.2.3 only requires the correction to be applied when the OBW of the emission being measured is wider than the measurement bandwidth (Where the OBW of the signal under measurement is less than the RBW of the measuring instrument, no bandwidth correction or integration will be required.) Plots for low and high channels show the level of the emission measured with the reduced bandwidth and the level of the same emission measured using the integration method over the 1MHz reference bandwidth are very close, indicating the emissions are narrowband.

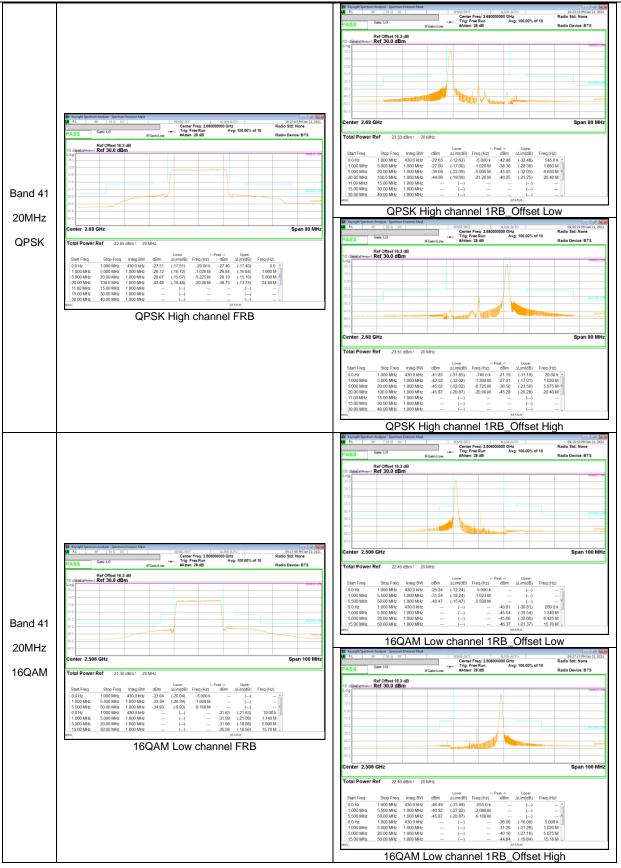
RESULTS


See the following pages.

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 17 of 45

9.2.1. EMISSION MASK RESULT

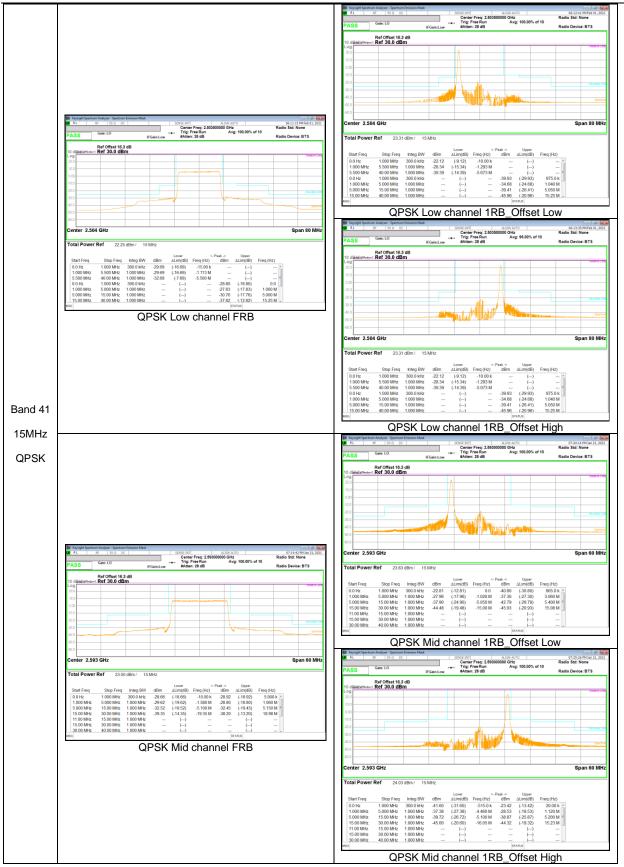


Page 18 of 45

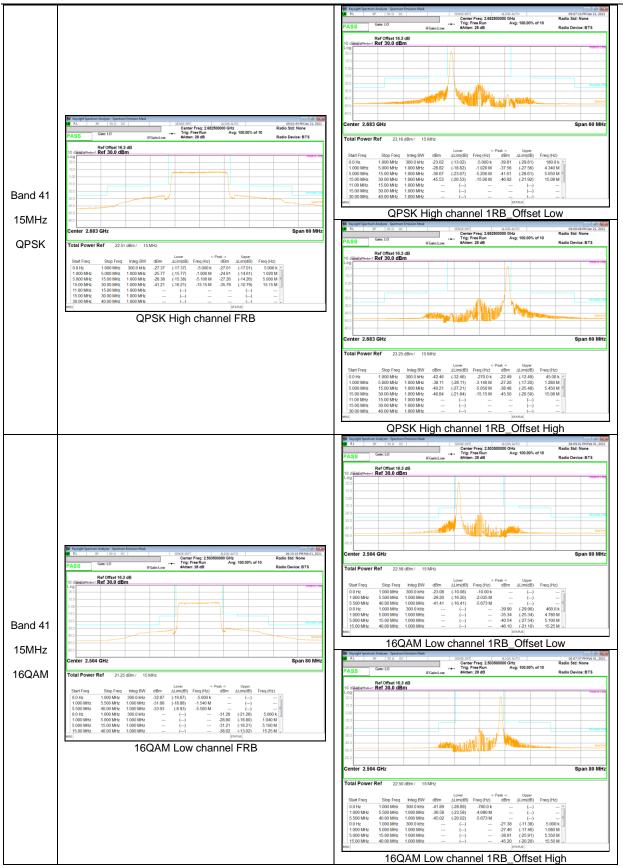
UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

DATE: FEB 01, 2021

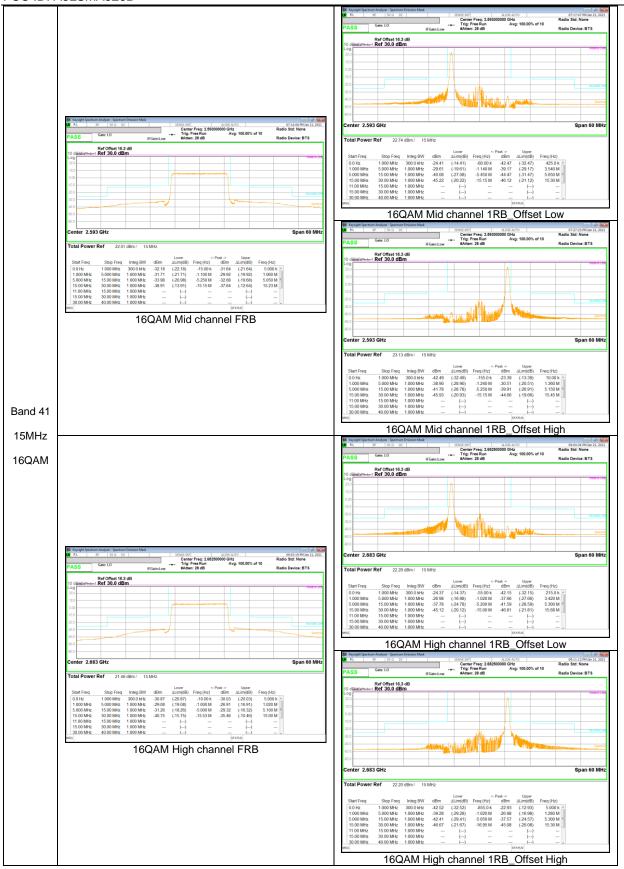
Page 19 of 45


UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

Page 20 of 45

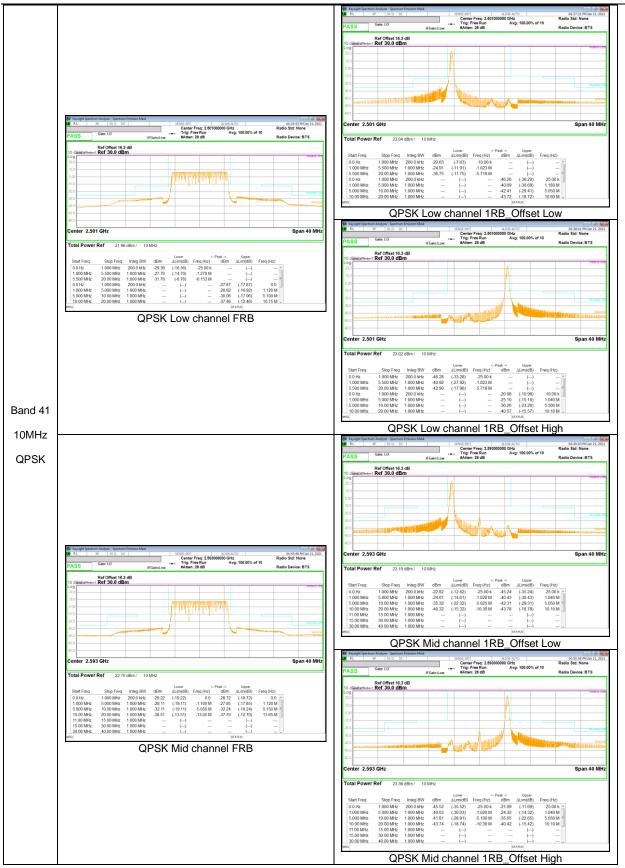

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

REPORT NO: 13583138-E9V2 FCC ID: A3LSMA526B

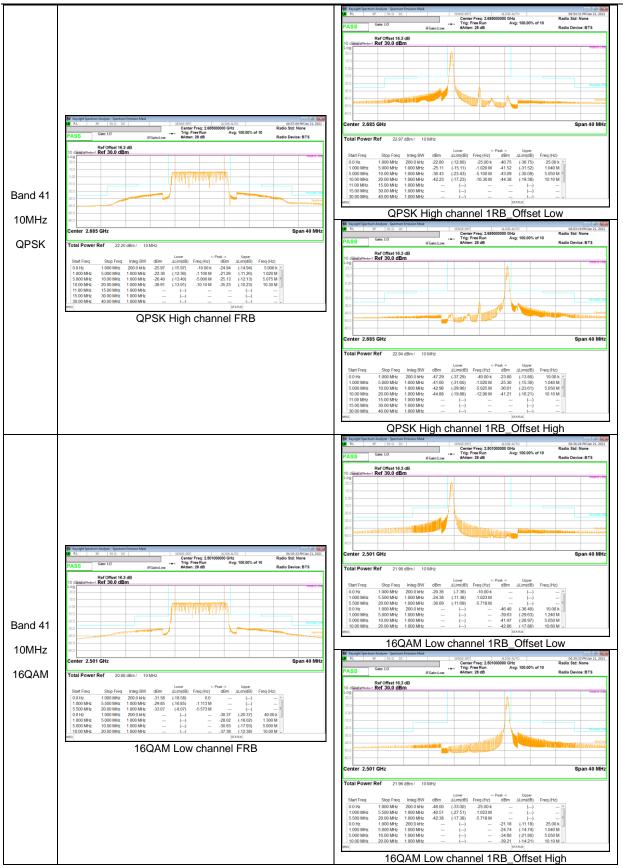

Page 21 of 45

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

Page 22 of 45

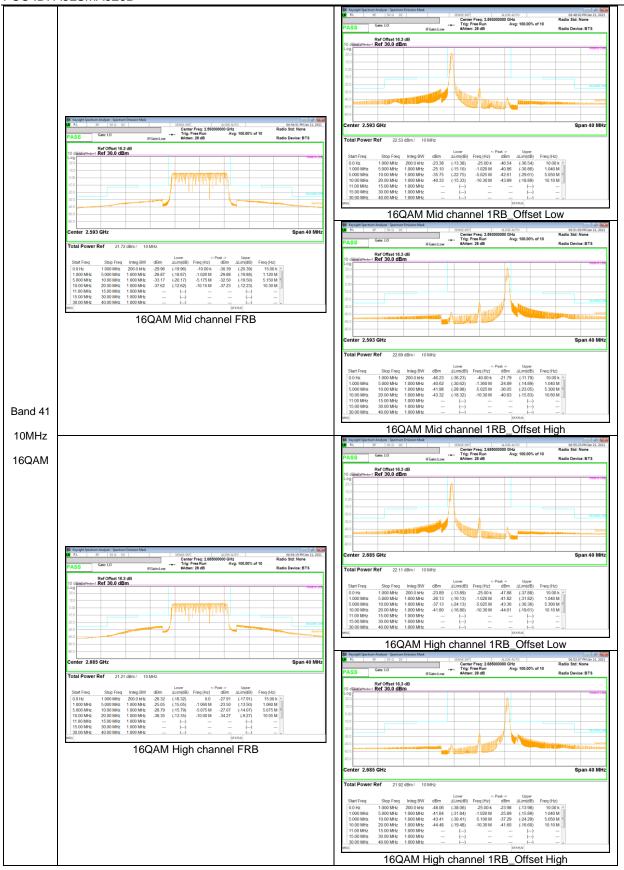

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

Page 23 of 45


UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

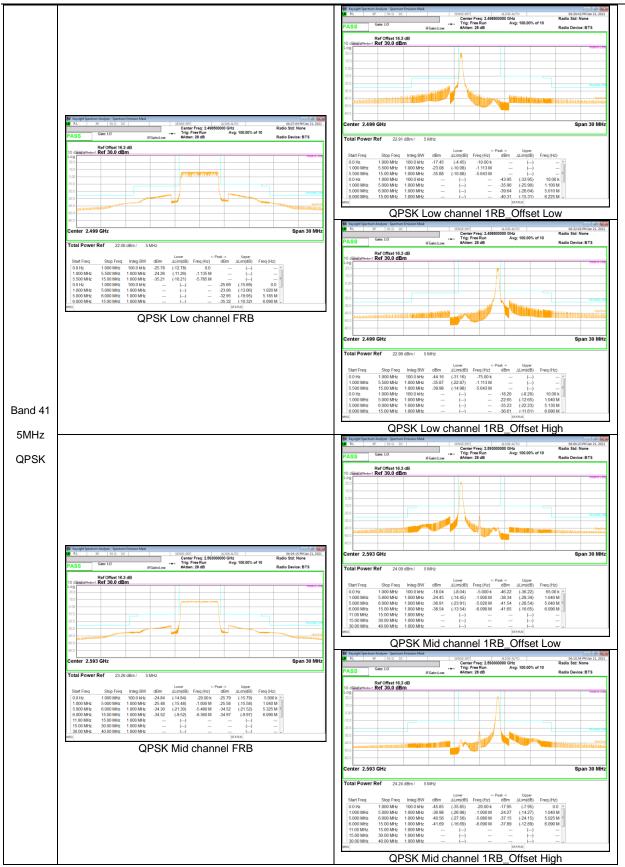
REPORT NO: 13583138-E9V2 FCC ID: A3LSMA526B

Page 24 of 45


UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

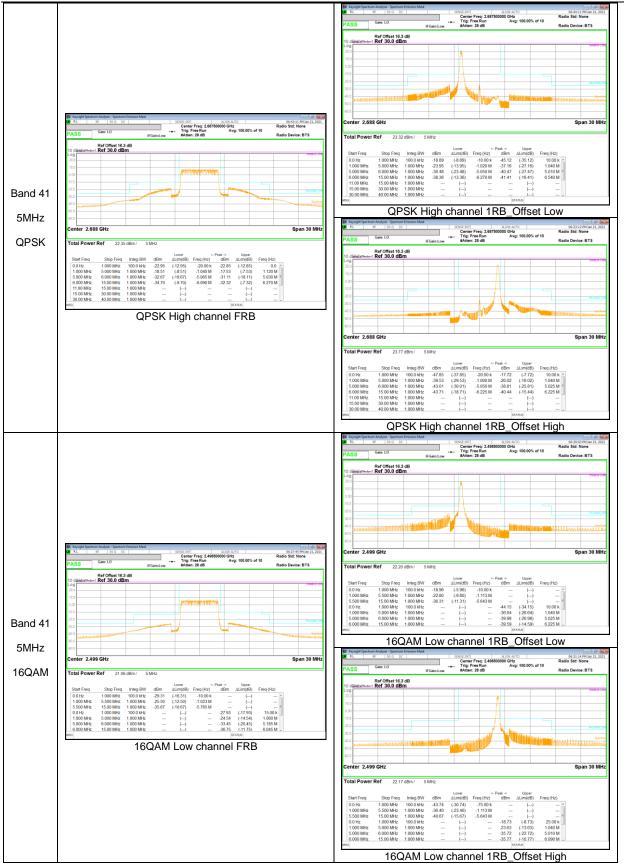
Page 25 of 45

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential


REPORT NO: 13583138-E9V2 FCC ID: A3LSMA526B

Page 26 of 45

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential


REPORT NO: 13583138-E9V2 FCC ID: A3LSMA526B

Page 27 of 45

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential

DATE: FEB 01, 2021

Page 28 of 45

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 UL Korea, Ltd. Confidential