

TEST REPORT

Report Number.: 13171837-E10V1

Applicant	:	Samsung Electronics Co., Ltd. 129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16677, Korea
Model	:	SM-A515U, SM-A515U1, SM-A515W and SM-S515DL
FCC ID	:	A3LSMA515U
EUT Description	:	GSM/CDMA/WCDMA/LTE Phablet with BT/BLE,DTS/UNII a/b/g/n, NFC AND ANT+
Test Standard(s)	:	FCC CFR47 PART 27

Date Of Issue: FEBRUARY 19, 2020

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	2/19/2020	Initial Review	

Page 2 of 32

TABLE OF CONTENTS

1.	Α	ATTESTATION OF TEST RESULTS				
2.	т	EST METHODOLOGY	. 5			
3.	F	ACILITIES AND ACCREDITATION	. 5			
4.	С	ALIBRATION AND UNCERTAINTY	. 6			
4	1.1.	MEASURING INSTRUMENT CALIBRATION	. 6			
4	1.2.	SAMPLE CALCULATION	. 6			
4	1.3.	MEASUREMENT UNCERTAINTY	. 6			
5.	Е	QUIPMENT UNDER TEST	.7			
Ę	5.1.	DESCRIPTION OF EUT	. 7			
Ę	5.2.	MAXIMUM OUTPUT POWER	. 7			
Ę	5.3.	SOFTWARE AND FIRMWARE	. 9			
Ę	5.4.	MAXIMUM ANTENNA GAIN	. 9			
Ę	5.5.	WORST-CASE CONFIGURATION AND MODE	. 9			
Ę	5.6.	DESCRIPTION OF TEST SETUP	10			
6.	т	EST AND MEASUREMENT EQUIPMENT	12			
7.	R	F OUTPUT POWER VERIFICATION	13			
7.	R 7	F OUTPUT POWER VERIFICATION	13 14			
7. 8.	R 7 C	F OUTPUT POWER VERIFICATION	13 14 16			
7. 8.	R 7 C 3.1.	F OUTPUT POWER VERIFICATION	13 14 16 16			
7. 8.	R 7 C 3.1. 8	F OUTPUT POWER VERIFICATION	13 14 16 18			
7. 8. 8	R 7 C 3.1. 8 3.2.	F OUTPUT POWER VERIFICATION	13 14 16 18 19			
7. 8. {	R 7 C 3.1. 8 3.2. 8	F OUTPUT POWER VERIFICATION	13 14 16 18 19 20			
7. 8. { {	R 7 C 3.1. 8 3.2. 8 3.3.	FOUTPUT POWER VERIFICATION	13 14 16 18 19 20 24			
7. 8. { {	R 7 C 3.1. 8 3.2. 8 3.3. 8	F OUTPUT POWER VERIFICATION 1 .1.1. LTE BAND 41 (FCC) CONDUCTED TEST RESULTS 1 OCCUPIED BANDWIDTH 1 .1.1. LTE BAND 41 (FCC) BAND EDGE AND EMISSION MASK 1 .2.1. LTE BAND 41 (FCC) OUT OF BAND EMISSIONS 1 .3.1. LTE BAND 41 (FCC)	13 14 16 18 19 20 24 25			
7. 8. { { {	R 7 C 3.1. 8 3.2. 8 3.3. 8 3.4.	F OUTPUT POWER VERIFICATION. 1 .1.1. LTE BAND 41 (FCC) CONDUCTED TEST RESULTS 1 OCCUPIED BANDWIDTH. 1 .1.1. LTE BAND 41 (FCC) BAND EDGE AND EMISSION MASK. 1 .2.1. LTE BAND 41 (FCC) OUT OF BAND EMISSIONS 2 .3.1. LTE BAND 41 (FCC) .2.1. LTE BAND 41 (FCC) .3.1. LTE BAND 41 (FCC) .2.3.1. LTE BAND 41 (FCC) .3.1. LTE BAND 41 (FCC)	13 14 16 18 19 20 24 25 27			
7. 8. { { {	R 7 C 3.1. 8 3.2. 8 3.3. 8 3.4. 8	FOUTPUT POWER VERIFICATION 1 1.1. LTE BAND 41 (FCC) 1 CONDUCTED TEST RESULTS 1 OCCUPIED BANDWIDTH 1 1.1. LTE BAND 41 (FCC) 1 BAND EDGE AND EMISSION MASK 1 2.1. LTE BAND 41 (FCC) 1 OUT OF BAND EMISSIONS 1 3.1. LTE BAND 41 (FCC) 1 PEAK-TO-AVERAGE POWER RATIO 1 4.1. LTE BAND 41 (FCC) 1	13 14 16 18 19 20 24 25 27 27			
7. 8. { { { 9.	R 7 3.1. 8 3.2. 8 3.3. 8 3.4. 8 R	F OUTPUT POWER VERIFICATION. 1.1. .1.1. LTE BAND 41 (FCC) CONDUCTED TEST RESULTS. 1.1. OCCUPIED BANDWIDTH 1.1. .1.1. LTE BAND 41 (FCC) BAND EDGE AND EMISSION MASK. 1.1. .2.1. LTE BAND 41 (FCC) OUT OF BAND EMISSIONS 1.1. .3.1. LTE BAND 41 (FCC) .3.1. LTE BAND 41 (FCC) .2.4.1. LTE BAND 41 (FCC) .4.1. LTE BAND 41 (FCC)	 13 14 16 18 19 20 24 25 27 27 28 			
7. 8. { { { 9.	R 7 6 3.1. 8 3.2. 8 3.3. 8 3.4. 8 3.4. 8 7.1.	F OUTPUT POWER VERIFICATION 1 1.1. LTE BAND 41 (FCC) 1 CONDUCTED TEST RESULTS 1 OCCUPIED BANDWIDTH 1 1.1. LTE BAND 41 (FCC) 1 BAND EDGE AND EMISSION MASK 1 2.1. LTE BAND 41 (FCC) 1 OUT OF BAND EMISSIONS 1 3.1. LTE BAND 41 (FCC) 1 PEAK-TO-AVERAGE POWER RATIO 1 4.1. LTE BAND 41 (FCC) 1 ADIATED TEST RESULTS 1 FIELD STRENGTH OF SPURIOUS RADIATION, ABOVE 1GHz 1	 13 14 16 18 19 20 24 25 27 27 28 28 			
7. 8. { { 8. { 8. { 8. { 8. { 8. { 8. {	R 7 3.1. 8 3.2. 8 3.3. 8 3.4. 8 3.4. 8 9.1. 9	F OUTPUT POWER VERIFICATION. 1 1.1. LTE BAND 41 (FCC). 1 CONDUCTED TEST RESULTS. 1 OCCUPIED BANDWIDTH. 1 1.1. LTE BAND 41 (FCC). 1 BAND EDGE AND EMISSION MASK. 1 2.1. LTE BAND 41 (FCC). 1 OUT OF BAND EMISSIONS 1 3.1. LTE BAND 41 (FCC). 1 PEAK-TO-AVERAGE POWER RATIO 1 .4.1. LTE BAND 41 (FCC). 1 ADIATED TEST RESULTS 1 FIELD STRENGTH OF SPURIOUS RADIATION, ABOVE 1GHz 1 .1.1. LTE BAND 41 (FCC). 1	 13 14 16 18 19 20 24 25 27 27 28 29 			

1. ATTESTATION OF TEST RESULTS

	SAMSUNG ELECTRONICS CO. LTD
Applicant Name and Address	129 SAMSLING-RO, YEONGTONG-GU
Applicant Name and Address	
	SUVUN-SI, GTEUNGGI-DU, 10077, KUREA
Model	SM-A515U, SM-A515U1, SM-A515W AND SM-S515DL
FCC ID	A3LSMA515U
	GSM/CDMA/WCDMA/LTE Phablet with BT/BLE,DTS/UNII
Eet Description	a/b/g/n, NFC AND ANT+
Coriol Number	CONDUCTED: 353327110230406, 353327110209269
Serial Number	RADIATED: IMEI 353327110220894, 353327110231552, SN R38MC0AMTHP
Date Tested	JANUARY 28, 2020 to FEBRUARY 04, 2020
Applicable Standards	FCC CFR47 PART 27
Test Results	COMPLIES

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released By:	Reviewed By:	Prepared By:
Alloroui	Steventron	2810
Dan Coronia Operations Leader	Steven Tran Project Engineer	Rolly Alegre Test Engineer
UL Verification Services Inc.	UL Verification Services Inc.	UL Verification Services Inc.

Page 4 of 32

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the following:

- ANSI C63.26:2015
- FCC CFR 47 Part 2, Part 27
- FCC KDB 971168 D01 v03r01: Power Meas License Digital Systems
- FCC KDB 971168 D02 v02r01: Misc Rev Approv License Devices
- FCC KDB 412172 D01 v01r01. Determining ERP and EIRP

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Road
Chamber A	Chamber D	🛛 Chamber I
Chamber B	Chamber E	Chamber J
Chamber C	Chamber F	Chamber K
	Chamber G	Chamber L
	Chamber H	Chamber M

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code: 2324A.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

Page 5 of 32

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB + 10.1 dB + 0 dB = 46.6 dBuV

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 9KHz to 0.15 MHz	3.39 dB
Conducted Disturbance, 0.15 to 30 MHz	3.07 dB
Radiated Disturbance, 9KHz to 30 MHz	2.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.88 dB
Radiated Disturbance,1000 to 18000 MHz	4.24 dB
Radiated Disturbance, 18000 to 26000 MHz	4.37 dB
Radiated Disturbance,26000 to 40000 MHz	5.17 dB
Occupied Channel Bandwidth	±0.39 %
Temperature	±0.9 °C
Supply voltages	±0.45 %
Time	±0.02 %

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a GSM/CDMA/WCDMA/LTE Phablet with BT/BLE,DTS/UNII a/b/g/n/ac, NFC and ANT+. The model SM-A515U was used for final testing and is representative of the test results in this report.

5.2. MAXIMUM OUTPUT POWER

ERP/EIRP LIMIT

FCC: §2.1046 and §27.50

EIRP/ERP TEST PROCEDURE

ANSI C63.26:2015/ TIA-603-E Clause 2.2.17 KDB 971168 D01Section 5.6 KDB 412172 D01 Determining ERP and EIRP v01r01

ERP/EIRP = PMeas + GT – LC where: ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm); PMeas = measured transmitter extract power as POP is a PM as <math>= PPM

PMeas = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

For devices utilizing multiple antennas, KDB 662911 provides guidance for determining the effective array transmit antenna gain term to be used in the above equation.

The transmitter has a maximum average conducted and ERP / EIRP output powers as follows:

OUTPUT POWER FOR LTE BAND 41 (FCC)

Part 27			_					
EIRP Limit (V	V)	2.00						
Antenna Gair	n (dBi)	-1.70						
Bandwidth (MHz)	Modulation	Low Frequency (MHz)	Upper Frequency (MHz)	Conducted Average (dBm)	EIRP Average (dBm)	EIRP Average (W)	99% BW (kHz)	Emission Designator
5+20	QPSK	2/00 3	2680.0	22.8	21.10	0.129	23380	23M4G7W
5+20	16QAM	2499.5	2000.0	20.7	19.00	0.079	25086	25M1D7W
2015	QPSK	2506.0	2696 7	22.6	20.90	0.123	23357	23M4G7W
20+3	16QAM	2300.0	2000.7	20.8	19.10	0.081	23453	23M5D7W
10+20	QPSK	2501.5	2680.0	22.6	20.90	0.123	27962	28M0G7W
10+20	16QAM		2000.0	20.9	19.20	0.083	28732	28M7D7W
20,10	QPSK	2506.0	2694 5	22.6	20.90	0.123	28016	28M0G7W
20+10	16QAM	2500.0	2004.5	20.9	19.20	0.083	28306	28M3D7W
15,15	QPSK	0500 F	2692 5	22.6	20.90	0.123	28590	28M6G7W
15+15	16QAM	2505.5	2002.5	21.0	19.30	0.085	28479	28M5D7W
15,20	QPSK	2502.0	2690.0	22.7	21.00	0.126	32736	32M7G7W
15+20	16QAM	2003.0	2000.0	20.9	19.20	0.083	32637	32M6D7W
20,15	QPSK	2506.0	2692.2	22.8	21.10	0.129	32602	32M6G7W
20+15	16QAM	2506.0	2002.2	21.0	19.30	0.085	32637	32M6D7W
20.00	QPSK	2500.0	2000.0	22.8	21.14	0.130	37426	37M4G7W
20+20	16QAM	2006.0	2080.0	20.9	19.20	0.083	37377	37M4D7W

Page 8 of 32

5.3. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was A515U.001.

5.4. MAXIMUM ANTENNA GAIN

Please see table below:

LTE Bands	Antenna Gain (dBi)
LTE Band 41, 2496 – 2690 MHz (FCC)	-1.7

5.5. WORST-CASE CONFIGURATION AND MODE

The EUT support LTE dual carrier of: Band 41.

The worst-case scenario for all measurements is based on the average conducted output power measurement investigation results. Output power measurements were measured on QPSK, 16QAM, and 64QAM modulations. All testing was performed using QPSK, and 16QAM modulations to represent the worst case. Out of band emissions and spurious radiation were only performed on bandwidth and RB offset(with RB size 1) with the highest power for both QPSK and 16QAM.

Highest Power for Each Band								
LTE Band	Compent Carrier	Bandwidth (MHz)	RB Size	RB Offset				
A1 ECC (Unlink CA)	PCC	20	1	99				
41 FCC (Uplink CA)	SCC	20	1	0				

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, & Z, and it was determined that Y-Axis for 2500MHz with AC/DC Adapter and headset was worst-case orientation.

All radios that can be transmitted simultaneously have been evaluated for radiated for all possible combinations of transmission and found to be in compliance.

Radiated spurious emissions were investigated below 30MHz, 30MHz-1GHz, and above 1GHz. There were no emissions found below 30MHz and 30MHz-1GHz.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT TEST EQUIPMENT							
D	escription	Manufacturer	Model	Serial Number		FCC ID/ DoC	
A	C Adapter	Samsung	EP-TA200	R37KBKLF1W1DK3		N/A	
l	Earphone	Samsung	N/A	N/A	A	N/A	
		I/O	CABLES (RF CONDUCTED TES	T)			
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type Cable Length (m)		Remarks	
1	RF Out	1	Spectrum Analyzer	Shielded	None	N/A	
2	Antenna Port	1	EUT	Shielded	0.1m	N/A	
3	RF In/Out	1	Communication Test Set	Shielded	1m	N/A	
		I/0	O CABLES (RF RADIATED TEST)				
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type Cable Length (m		Remarks	
1	USB	1	AC Adapter	Shielded	1	No	
2	Earphone	1	USB	Un-shielded	1	No	
3	RF In/out	1	Communication Test Set	Un-shielded	2	No	

Page 10 of 32

CONDUCTED SETUP

RADIATED SETUP

Page 11 of 32

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufact	urer	M	lodel	ID	Num	Cal Due	Last Cal
Highpass Filter, 4GHz	Micro-Tror	nics	HPI	V13351	Τ´	240	05/22/2020	06/22/2019
Antenna, Horn 1-18GHz	ETS-Lindg	ren		3117	Т	862	06/05/2020	06/05/2019
Ant., Horn 18 - 26.5 GHz	ARA		MWH	H-1826/B	Т	448	03/26/2020	03/26/2019
Antenna, Horn 1-18GHz	ETS-Lindg	ren	:	3117	Т	344	05/07/2020	05/07/2019
Hybrid Antenna	SunAR rf m	otion		JB3	Т	899	08/23/2020	08/23/2019
RF Amplifier	MITEQ		AFS42-001	01800-25-S-42	17	1460	08/24/2020	08/24/2019
RF Amplifier	AMPLICA	۹L	AMP	1G18-35	Τ́	571	05/28/2020	05/28/2019
Pre-Amp 1-26.5 GHz	Agilent		8	449B	Т	404	03/23/2020	03/23/2019
RF Amplifier 9KHz – 1GHz	SONOMA IN	ISTR		310	PREC	180175	05/29/2020	05/29/2019
RF Amplifier 9KHz – 1GHz	SONOMA IN	ISTR		310	PREC	180174	06/01/2020	06/01/2019
Directional Coupler	Mini-Circu	uits	ZUDO	C10-183+	PREC	181619	07/21/2020	08/21/2019
Wideband Communication Test Set, Call Box	R&S		CN	/W500	Т	375	02/18/2020	02/18/2019
Wideband Communication Test Set, Call Box	R&S		CN	/W500	Т	948	02/18/2020	02/18/2019
Wideband Communication Test Set, Call Box	R&S		CN	/W500	T959		02/16/2020	02/16/2019
Spectrum Analyzer	Agilent (Keys Technolog	sight) jies	E4440A		Т	200	01/28/2020	01/28/2019
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent		N	9030A	Т	917	01/24/2020	01/24/2019
Spectrum Analyzer, PSA, 3Hz to 44GHz	Keysigh	Keysight E4446A T		146	01/28/2020	01/28/2019		
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent		N	9030A	T	450	01/23/2020	01/23/2019
EMI TEST RECEIVER	Rohde & Sch	nwarz	E	SW44	PREC	179376	02/14/2020	02/14/2019
EMI TEST RECEIVER	Rohde & Sch	nwarz	E	SW44	PREC	179367	05/16/2020	05/16/2019
Spectrum Analyzer	Agilent (Key Technolog	sight) jies	E	4440A	Т	200	01/24/2021	01/24/2020
DC power supply, 8 V @ 3 A or 15 V @ 2 A	Agilent / H	ΗP	E	3610A	None		CNR	CNR
DC power supply 15V	Sorense	n	X	T15-4	T465		CNR	CNR
Power Meter	Keysigh	t	N	1911A	Τ´	268	01/31/2020	01/31/2019
Power Sensor	Keysigh	t	N'	1921A	Τ´	226	02/06/2020	02/06/2019
Power Meter	Keysigh	t	N1921A		T229		01/31/2020	01/31/2019
Power Sensor	Keysigh	t	N1921A		T1228		03/01/2020	03/01/2019
		UL A	UTOMATION	SOFTWARE				
CLT Software			UL	UL RF		Ve	er 7.6, November	11, 2017
Power Measurement Soft	tware		UL	UL RF			Ver 2.7, 201	9
Radiated test softwar	e		UL	UL RF			Ver 9.5 June 15,	2019

NOTES:

*Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Page 12 of 32

7. RF OUTPUT POWER VERIFICATION

RULE PART(S)

FCC: §2.1046, §27.50

<u>RESULT</u>

EUT includes different power levels for head use configuration and body use configuration and the below tables contain the highest of all configurations average conducted output powers as follows:

Page 13 of 32

7.1.1. LTE BAND 41 (FCC)

 Test Engineer ID:
 19480
 Test Date:
 1/28/2020

OUTPUT POWER FOR LTE BAND 41 (5.0MHz + 20.0MHz)

	PCC	SCC1	PCC	PCC	SCC1	SCC1	Conducted Average (dBm)		
Bandwidth	Frequency	Frequency	RB	RB	RB	RB			
	(MHz)	(MHz)	Size	Offset	Size	Offset	QPSK	16QAM	64QAM
5MHz /	2499.3	2511.0	1	24	1	0	22.7	20.7	19.5
			25	0	100	0	20.6	19.7	17.1
	2583.8	2595.5	1	24	1	0	22.8	20.7	18.7
20MHz			25	0	100	0	20.6	19.7	17.6
	2668.3	2680.0	1	24	1	0	22.6	20.7	18.7
			25	0	100	0	20.7	19.7	17.4

OUTPUT POWER FOR LTE BAND 41 (20.0MHz + 5.0MHz)

	PCC	SCC1	PCC	PCC	SCC1	SCC1	Conduo	tod Averag	o (dPm)	
Bandwidth	Frequency	Frequency	RB	RB	RB	RB	Conduc	Conducted Average (dBin)		
	(MHz)	(MHz)	Size	Offset	Size	Offset	QPSK	16QAM	64QAM	
		2517.7	1	99	1	0	22.6	20.8	19.1	
	2506.0		1	0	1	24	13.5	13.5	13.7	
			100	0	25	0	20.8	19.9	19.8	
201417 /	2590.5	2602.2	1	99	1	0	22.5	20.8	19.2	
			1	0	1	24	13.8	13.8	13.5	
SIVIFIZ			100	0	25	0	20.7	19.7	19.6	
			1	99	1	0	22.5	20.7	19.4	
	2675.0	2686.7	1	0	1	24	14.1	13.8	13.5	
			100	0	25	0	20.6	19.6	19.6	

OUTPUT POWER FOR LTE BAND 41 (10.0MHz + 20.0MHz)

	PCC	SCC1	PCC	PCC	SCC1	SCC1	Conducted Average (dBm)		
Bandwidth	Frequency	Frequency	RB	RB	RB	RB			
	(MHz)	(MHz)	Size	Offset	Size	Offset	QPSK	16QAM	64QAM
	2501.5	2515.9	1	49	1	0	22.6	20.8	19.1
			50	0	100	0	20.8	19.8	19.5
10MHz /	2583.6	2598.0	1	49	1	0	22.6	20.9	19.1
20MHz			50	0	100	0	20.8	19.8	19.5
	2665.6	2680.0	1	49	1	0	22.5	20.8	18.9
	2005.0		50	0	100	0	20.6	19.6	19.2

OUTPUT POWER FOR LTE BAND 41 (20.0MHz + 10.0MHz)

	PCC	SCC1	PCC	PCC	SCC1	SCC1	Conduo	Conducted Average (dBm)		
Bandwidth	Frequency	Frequency	RB	RB	RB	RB	Conducted Average (dBIII)			
	(MHz)	(MHz)	Size	Offset	Size	Offset	QPSK	16QAM	64QAM	
	2506.0	2520.4	1	99	1	0	22.6	20.9	18.8	
			100	0	50	0	20.9	19.9	19.5	
20MHz /	2588.1	2602.5	1	99	1	0	22.6	20.6	18.8	
10MHz			100	0	50	0	20.8	19.8	19.4	
	2670.1	2684.5	1	99	1	0	22.5	20.8	19.0	
			100	0	50	0	20.6	19.7	19.2	

Page 14 of 32

OUTPUT POWER FOR LTE BAND 41 (15.0MHz + 15.0MHz)

	PCC	SCC1	PCC	PCC	SCC1	SCC1	Conducted Average (dBm)			
Bandwidth	Frequency	Frequency	RB	RB	RB	RB	Conducted Average (dBh			
	(MHz)	(MHz)	Size	Offset	Size	Offset	QPSK	64QAM		
15MHz / 15MHz	2503.5	2518.5	1	74	1	0	22.6	20.7	19.1	
			75	0	75	0	20.8	19.8	19.5	
	2585.5	2600.5	1	74	1	0	22.4	21.0	19.0	
			75	0	75	0	20.7	19.7	19.5	
	2667.5	2682.5	1	74	1	0	22.3	20.7	18.9	
	2007.5		75	0	75	0	20.6	19.5	19.2	

OUTPUT POWER FOR LTE BAND 41 (15.0MHz + 20.0MHz)

	PCC	SCC1	PCC	PCC	SCC1	SCC1	Conduo	tod Avorag	o (dPm)
Bandwidth	Frequency	Frequency	RB RB R		RB	RB	Conducted Average (dBill)		
	(MHz)	(MHz)	Size	Offset	Size	Offset	QPSK	16QAM	64QAM
15MHz / 20MHz	2503.8	2520.9	1	74	1	0	22.6	20.7	18.8
			75	0	100	0	20.7	19.7	20.3
	2583.3	2600.4	1	74	1	0	22.7	20.9	18.9
			75	0	100	0	20.8	19.7	20.0
	2662.0	2680.0	1	74	1	0	22.3	20.7	18.9
	2002.9		75	0	100	0	20.5	19.5	19.6

OUTPUT POWER FOR LTE BAND 41 (20.0MHz + 15.0MHz)

	PCC	SCC1	PCC	PCC	SCC1	SCC1	Conducted Average (dBm)				
Bandwidth	Frequency	Frequency	RB	RB	RB	RB	Conduc	leu Averag			
	(MHz)	(MHz)	Size	Offset	Size	Offset	QPSK	16QAM	64QAM		
20MHz /	2506.0	2523.1	1	99	1	0	22.8	21.0	18.6		
			100	0	75	0	20.8	20.0	20.0		
	2585.6	2602.7	1	99	1	0	22.6	20.9	19.0		
15MHz			100	0	75	0	20.8	19.9	19.9		
	2665 A	2682.2	1	99	1	0	22.5	20.7	18.6		
	2005.1		100	0	75	0	20.6	19.6	19.3		

OUTPUT POWER FOR LTE BAND 41 (20.0MHz + 20.0MHz)

	PCC	SCC1	PCC	PCC	SCC1	SCC1	Candua	Conducted Average (dE	
Bandwidth	Frequency	Frequency	RB	RB	RB	RB	Conducted Average (dBm		
	(MHz)	(MHz)	Size	Offset	Size	Offset	QPSK	16QAM	64QAM
		2525.8	1	99	1	0	22.8	20.9	18.6
	2506.0		1	0	1	99	13.7	13.6	13.6
			100	0	100	0	20.8	20.0	20.0
20144-7/	2583.1	2602.9	1	99	1	0	22.5	20.7	19.1
20101112/			1	0	1	99	14.1	13.9	13.3
			100	0	100	0	20.8	19.9	20.0
			1	99	1	0	22.4	20.6	18.6
	2660.2	2680.0	1	0	1	99	14.2	13.9	13.3
			100	0	100	0	20.6	19.6	19.6

8. CONDUCTED TEST RESULTS

8.1. OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049

LIMITS

For reporting purposes only

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the middle channel in each band. The 99% and -26dB bandwidths was also measured and recorded.

<u>RESULTS</u>

There is no limit required and power is the same for low, middle and high channel; therefore, only middle channel was tested. Worst-case plots (QPSK/16QAM modes and highest bandwidth) are reported only.

Page 16 of 32

LTE BAND 41 (FCC)

Band	Mode	RB Allocation/RB Offset	f (MHz)	99% BW (MHz)	- 26dB BW (MHz)
	5MHz + 20MHz BAND QPSK	25/0 + 100/0		23.380	26.50
	5MHz + 20MHz BAND 16QAM	25/0 + 100/0		25.086	39.00
	20MHz + 5MHz BAND QPSK	100/0 + 25/0		23.357	26.49
	20MHz + 5MHz BAND 16QAM	100/0 + 25/0		23.453	28.50
	10MHz + 20MHz BAND QPSK	50/0 + 100/0		27.962	31.28
-	10MHz + 20MHz BAND 16QAM	50/0 + 100/0	2593	28.732	44.00
	20MHz + 10MHz BAND QPSK	100/0 + 50/0		28.016	30.78
LTE BAND	20MHz + 10MHz BAND 16QAM	100/0 + 50/0		28.306	37.00
41 (FCC)	15MHz + 15MHz BAND QPSK	75/0 + 75/0		28.590	32.33
	15MHz + 15MHz BAND 16QAM	75/0 + 75/0		28.479	31.39
	15MHz + 20MHz BAND QPSK	75/0 . 400/0		32.736	35.56
	15MHz + 20MHz BAND 16QAM	75/0 + 100/0		32.637	35.33
	20MHz + 15MHz BAND QPSK	100/0 + 75/0		32.602	35.28
-	20MHz + 15MHz BAND 16QAM	100/0 + 75/0		32.637	35.61
	20MHz + 20MHz BAND QPSK	100/0 + 100/0		37.426	39.85
	20MHz + 20MHz BAND 16QAM	100/0 + 100/0		37.377	40.11

Page 17 of 32

8.1.1. LTE BAND 41 (FCC)

Page 18 of 32

8.2. BAND EDGE AND EMISSION MASK

LIMITS

FCC: §27.53(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees.

TEST PROCEDURE

The transmitter output was connected to a R&S CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

For each band edge measurement:

- Set the spectrum analyzer span to include the block edge frequency.
- Set a marker to point the corresponding band edge frequency in each test case.
- Set display line at -13 dBm
- Set resolution bandwidth to at least 1% of emission bandwidth.

TEST PROCEDURE FOR FCC PART 27

(m)(6) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed; for mobile digital stations, in the 1 megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed, except when the 1 megahertz band is 2495-2496 MHz, in which case a resolution bandwidth of at least one percent may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 megahertz or 1 percent of emission bandwidth, as specified; or 1 megahertz or 2 percent for mobile digital stations, except in the band 2495-2496 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. With respect to television operations, measurements must be made of the separate visual and aural operating powers at sufficiently frequent intervals to ensure compliance with the rules.

RESULTS

Page 19 of 32

8.2.1. LTE BAND 41 (FCC)

Page 20 of 32

Page 21 of 32

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 22 of 32

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 23 of 32

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

8.3. OUT OF BAND EMISSIONS

LIMITS

FCC: §27.53 (m)

The minimum permissible attenuation level of any spurious emissions is 55 + 10 log (P) dB where transmitting power (P) in Watts.

TEST PROCEDURE

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.

For each out of band emissions measurement:

- Set display line at -25 dBm
- Set RBW & VBW to 100 kHz for the measurement below 1 GHz, and 1 MHz for the measurement above 1 GHz. (NOTE: Worst case set RBW/VBW to 1MHz/3MHz)

Page 24 of 32

8.3.1. LTE BAND 41 (FCC)

Page 25 of 32

Page 26 of 32

8.4. **PEAK-TO-AVERAGE POWER RATIO**

LIMIT

In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

RESULT

Test was performed on full resource block (FRB) for each bandwidth was used to measure as the worst case. The results from all CCDF measurements are passed with 13dB peak-to-average ratio criteria.

Test Engine	er ID:	39	005	Те	st Date:		2/4/202	20		
Pond	Band	width	PCC)	SCC1		Modulation	Conducted I	Power (dBm)	Peak-to-Average
Danu	(M	Hz)	f (MH	z)	f (MHz))	Modulation	Peak	Average	Power Ratio (dB)
	5MI	Hz /	2502	0	2505 F		QPSK	31.09	21.50	7.36
	201	/Hz	2003	.0	2090.0		16QAM	30.61	20.50	7.88
	10M	Hz /	2502	6	2509.0		QPSK	30.77	21.36	7.18
	20N	1Hz	2003	.0	2090.0		16QAM	30.48	20.46	7.79
	15M	Hz /	2595	5	2600 5		QPSK	30.86	21.35	7.28
	15N	1Hz	2000	.5	2000.5		16QAM	30.35	20.38	7.74
Band 41	15M	Hz /	/ 2583.3		2600.4		QPSK	30.76	21.35	7.18
	20N	1Hz			2000.4		16QAM	30.31	20.36	7.72
(FCC)	20M	Hz /	2500	Б	2602.2		QPSK	31.21	21.8	7.18
	5M	Hz	2090	.5	2602.2		16QAM	30.41	20.86	7.32
	20M	Hz /	2599	1	2602 5		QPSK	31.39	21.86	7.30
	10N	1Hz	2000	. 1	2002.5		16QAM	30.98	20.9	7.85
	20M	Hz /	2595	6	2602.7		QPSK	31.08	21.82	7.03
	15N	1Hz	2000	.0	2002.7		16QAM	30.74	20.91	7.60
20MH		Hz /	2502	1	2602.0		QPSK	31.40	21.92	7.25
20MHz 2363.1 2602.9							16QAM	30.90	20.92	7.75
Duty Cycle 0	Correct	ion Fa	ctor (dB)	=	2.23					
Peak-to-Ave	Peak-to-Average Power Ratio= Peak Reading - Average Reading - Duty Cycle Correction Factor									

LTE BAND 41 (FCC) 8.4.1.

Page 27 of 32

9. RADIATED TEST RESULTS

9.1. FIELD STRENGTH OF SPURIOUS RADIATION, ABOVE 1GHz

LIMIT

FCC: §27.53 (m)

At least $55 + 10 \log (P) dB$ on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section.

TEST PROCEDURE

KDB 971168 D01/D02 v02r01

<u>RESULTS</u>

No spurious emissions were detected above system noise floor from 18-26GHz.

Page 28 of 32

9.1.1. LTE BAND 41 (FCC)

QPSK LTE BAND 41 (20.0MHZ + 20.0MHZ BANDWIDTH)

Company:	Samsung
Project #:	13171837
Date:	1/28/20
Test Engineer:	19480
Configuration:	EUT + Support Equipment
Mode	LTE 41 QPSK 20 MHz + 20 MHz
Chamber #:	Chamber I

Marker	Frequency (GHz)	Meter Reading	Det	AF T862 (dB/m)	Amp/Cbl (dB)	Amp/Cbl (dB)	Corrected Reading	WWAN Harmonics Limit	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	,	(dBm)					(dBm)		. ,	(. ,	
						2506 + 2525.8	MHz					
1	5.02953	-75.62	Pk	34.3	-27	12.3	-56.02	-25	-31.02	0-360	149	Н
2	7.53225	-77.03	Pk	35.6	-23.9	11.5	-53.83	-25	-28.83	0-360	149	Н
3	10.06366	-77.27	Pk	37.1	-20.9	11.9	-49.17	-25	-24.17	0-360	149	Н
4	5.02369	-77.24	Pk	34.2	-27	12.6	-57.44	-25	-32.44	0-360	149	V
5	7.53703	-77.9	Pk	35.5	-23.9	11.7	-54.6	-25	-29.6	0-360	149	V
6	10.05994	-73.66	Pk	37.1	-21	11.9	-45.66	-25	-20.66	0-360	149	V
						2583.1 + 2602.9	MHz					
1	5.18519	-76.12	Pk	34.4	-27	11.9	-56.82	-25	-31.82	0-360	149	Н
2	7.78034	-77	Pk	35.6	-23.7	12.1	-53	-25	-28	0-360	149	Н
3	10.36806	-75.81	Pk	37.4	-20.1	12.3	-46.21	-25	-21.21	0-360	149	Н
4	5.19156	-76.85	Pk	34.4	-27	12.3	-57.15	-25	-32.15	0-360	149	V
5	7.77822	-77.05	Pk	35.7	-23.7	12.1	-52.95	-25	-27.95	0-360	149	V
6	10.36806	-75.27	Pk	37.4	-20.1	12.2	-45.77	-25	-20.77	0-360	149	V
						2660.2 + 2680 I	MHz					
1	5.34031	-75.56	Pk	34.6	-26.7	11.7	-55.96	-25	-30.96	0-360	149	Н
2	8.00719	-73.34	Pk	35.7	-23.4	11.8	-49.24	-25	-24.24	0-360	149	Н
3	10.67672	-68.68	Pk	37.9	-20.2	11.6	-39.38	-25	-14.38	0-360	149	Н
4	5.34031	-76.16	Pk	34.6	-26.7	12	-56.26	-25	-31.26	0-360	149	V
5	8.01144	-70.66	Pk	35.7	-23.4	11.9	-46.46	-25	-21.46	0-360	149	V
6	10.67619	-64.96	Pk	37.9	-20.2	11.7	-35.56	-25	-10.56	0-360	149	V

Page 29 of 32

16QAM LTE BAND 41 (20.0MHZ + 20.0MHZ BANDWIDTH)

Company:	Samsung
Project #:	13171837
Date:	1/28/20
Test Engineer:	19480
Configuration:	EUT + Support Equipment
Mode	LTE 41 16QAM 20 MHz + 20 MHz
Chamber #:	Chamber I

Marker	Frequency	Meter	Det	AF T862 (dB/m)	Amp/Cbl (dB)	Amp/Cbl (dB)	Corrected	WWAN Harmonics	Margin	Azimuth	Height	Polarity			
	(GHz)	Reading					Reading	Limit	(dB)	(Degs)	(cm)				
		(dBm)					(dBm)								
	2506 + 2525.8 MHz														
1	5.03006	-76.36	Pk	34.3	-26.9	12.3	-56.66	-25	-31.66	0-360	149	Н			
2	7.5535	-78.27	Pk	35.6	-23.8	12	-54.47	-25	-29.47	0-360	149	Н			
3	10.04931	-78.54	Pk	37.1	-21.1	11.8	-50.74	-25	-25.74	0-360	149	Н			
4	5.02847	-75.64	Pk	34.3	-27	12.5	-55.84	-25	-30.84	0-360	149	V			
5	7.54181	-78.09	Pk	35.5	-23.8	11.9	-54.49	-25	-29.49	0-360	149	V			
6	10.06366	-77.82	Pk	37.1	-20.9	11.9	-49.72	-25	-24.72	0-360	149	V			
						2583.1 + 2602.9	MHz								
1	5.18041	-75.75	Pk	34.4	-27	11.7	-56.65	-25	-31.65	0-360	149	Н			
2	7.77822	-77.23	Pk	35.7	-23.7	12.1	-53.13	-25	-28.13	0-360	149	Н			
3	10.36806	-72.72	Pk	37.4	-20.1	12.3	-43.12	-25	-18.12	0-360	149	Н			
4	5.18359	-76.58	Pk	34.4	-27	12.1	-57.08	-25	-32.08	0-360	149	V			
5	7.77344	-76.8	Pk	35.8	-23.8	12	-52.8	-25	-27.8	0-360	149	V			
6	10.36753	-75.46	Pk	37.4	-20	12.2	-45.86	-25	-20.86	0-360	149	V			
	2660.2 + 2680 MHz														
1	5.33978	-76.6	Pk	34.6	-26.7	11.7	-57	-25	-32	0-360	149	Н			
2	8.00719	-75.05	Pk	35.7	-23.4	11.8	-50.95	-25	-25.95	0-360	149	Н			
3	10.67619	-72.36	Pk	37.9	-20.2	11.6	-43.06	-25	-18.06	0-360	149	Н			
4	5.34084	-77.16	Pk	34.6	-26.7	11.9	-57.36	-25	-32.36	0-360	149	V			
5	8.00719	-71.72	Pk	35.7	-23.4	11.9	-47.52	-25	-22.52	0-360	149	V			
6	10.67619	-72.51	Pk	37.9	-20.2	11.7	-43.11	-25	-18.11	0-360	149	V			

Page 30 of 32