

MID CHANNEL HORIZONTAL

MID CHANNEL VERTICAL UL SUWON Lab Chamber 1 24 Jan 2019 21:54:10 110 Radiated Emissions 3-Meters Project Number:4768885451 Client:Samsung Config:EUT / Adopter / Earphone Mode:UNII_5.8_HARM_11n_HT28_5785 Tested oy:47989 100 90 80 Vertica 70 UNII Non-Restricted (dBuV/m) 60 (dBuU/m) Avg Limit (dBuV/m) 50 4R 30 20 Frequency (GHz) RBM/UBM Ref/Attn Det/Avg Mode Pts #Swps/Mode Position Range (GHz) RBM/UBM Ref/Attn Det/Avg Mode Range (GHz) Sweep

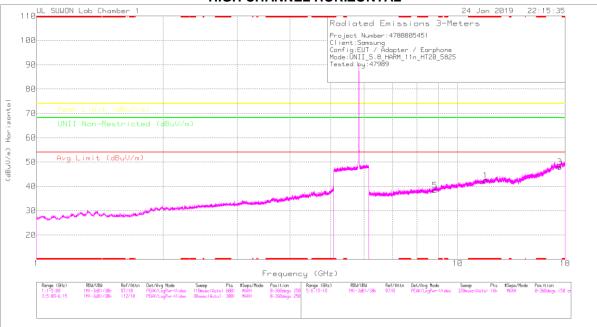
Note: Emission was scanned up to 40GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 208 of 261

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675 Korea TEL: (031) 337-9902,FAX: (031) 213-5433 UL Korea, Ltd. Confidential

This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

MID CHANNEL DATA


Trace Markers

Marker	Frequency	Meter	Det	3117_00168717	6GHz_HP[dB]	DC Corr (dB)	Corrected	Avg Limit (dBuV/m)	Margin	Peak Limit (dBuV/m)	Margin	UNII Non-Restricted	Margin	Azimuth	Height	Polarity
	(GHz)	Reading (dBuV)					Reading (dBuV/m)		(dB)		(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
1	* 11.57	26.21	PK	38.6	-22.5	0	42.31		-	74	-31.69			0-360	150	н
3	17.355	23.69	PK	41.2	-17.6	0	47.29	-	-		-	68.2	-20.91	0-360	250	Н
5	* 8.423	27.19	PK	36.3	-25.8	0	37.69	-	-	74	-36.31		•	0-360	250	Н
2	* 11.57	26.6	PK	38.6	-22.5	0	42.7	-	-	74	-31.3	-		0-360	150	v
4	17.355	23.83	PK	41.2	-17.6	0	47.43	-	-	-	-	68.2	-20.77	0-360	150	V
6	* 8.423	26.88	PK	36.3	-25.8	0	37.38	-	-	74	-36.62		•	0-360	150	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK – Peak Detector

Note: Only peak measurement was performed. Because peak measurement result of unwanted emission is less than average limit (54dBuV/m).

Page 209 of 261

HIGH CHANNEL HORIZONTAL

HIGH CHANNEL VERTICAL UL SUWON Lab Chamber 1 24 Jan 2019 22:15:35 110 Radiated Emissions 3-Meters Project Number:4768885451 Client:Samsung Config:EUT / Adopter / Earphone Mode:UNII_5.8_HARM_11n_HT28_5825 Tested by:47989 100 90 80 Vertica 70 UNII Non-Restricted (dBuV/m) 60 (dBuU/m) Avg Limit (dBuV/m) 50 4R 30 20 Frequency (GHz) RBM/UBM Ref/Attn Det/Avg Mode Pts #Swps/Mode Position Range (GHz) RBM/UBM Ref/Attn Det/Avg Mode Range (GHz) Sweep

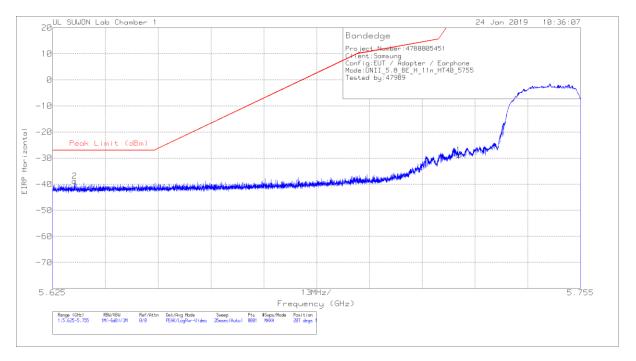
Note: Emission was scanned up to 40GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 210 of 261

HIGH CHANNEL DATA

Trace Markers

Marker	Frequency	Meter	Det	3117_00168717	6GHz_HP[dB]	DC Corr (dB)	Corrected	Avg Limit (dBuV/m)	Margin	Peak Limit (dBuV/m)	Margin	UNII Non-Restricted	Margin	Azimuth	Height	Polarity
	(GHz)	Reading					Reading		(dB)		(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)									
1	* 11.65	25.35	PK	38.7	-21.7	0	42.35	-	-	74	-31.65		-	0-360	250	н
3	17.475	23.24	PK	41.2	-16.5	0	47.94	-	-	-	-	68.2	-20.26	0-360	150	н
5	8.833	26.17	PK	36.5	-24.3	0	38.37	-	-	-	-	68.2	-29.83	0-360	150	н
2	* 11.65	25.53	PK	38.7	-21.7	0	42.53	-	-	74	-31.47		-	0-360	250	V
4	17.475	23.81	PK	41.2	-16.5	0	48.51	-	-	-	-	68.2	-19.69	0-360	250	V
6	8.832	26.86	PK	36.5	-24.4	0	38.96	-	-			68.2	-29.24	0-360	150	v


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

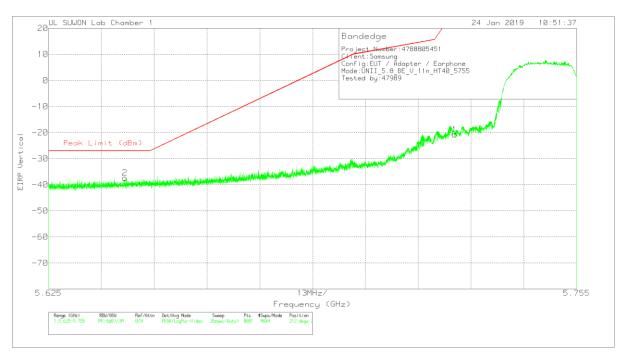
PK – Peak Detector

Note: Only peak measurement was performed. Because peak measurement result of unwanted emission is less than average limit (54dBuV/m).

Page 211 of 261

11.4.3.TX ABOVE 1GHz 802.11n HT40 MODE IN THE 5.8GHz BAND BANDEDGE (LOW CHANNEL)

HORIZONTAL PEAK PLOT


HORIZONTAL DATA

Trace Markers

	Marker	Frequency (GHz)	Meter Reading (dBm)	Det	3117_00168717	10dB[dB]	Conversion Factor (dB)	DC Corr (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1 3.723 -3-37 FK 3-3 -21.1 11.5 0 -20.67 20.7 -3.564 207 2 5.63 -64.11 Pk 34.7 -21.2 11.8 0 -38.81 -27 -11.81 207	1	5.725	-54.37	FK	34.8	-21.1	11.8	0	-28.87	26.97	-55.84	207	187 187	Н

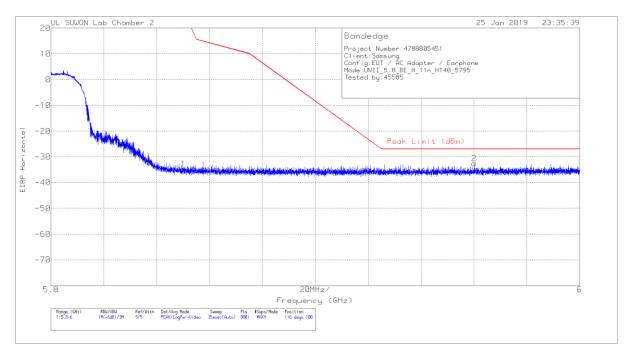
Pk - Peak detector

Page 212 of 261

VERTICAL PEAK PLOT

VERTICAL DATA

Trace Markers

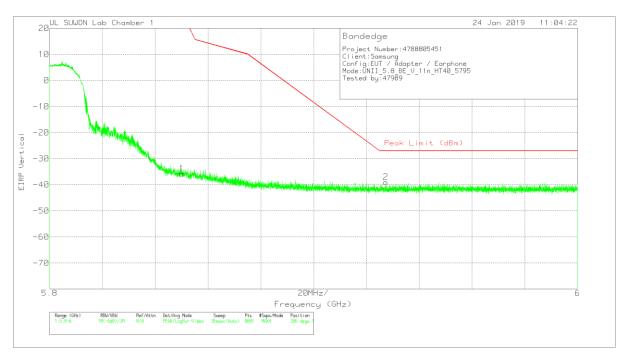

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	3117_00168717	10dB[dB]	Conversion Factor (dB)	DC Corr (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.725	-46.26	Pk	34.8	-21.1	11.8	0	-20.76	26.97	-47.73	212	214	V
2	5.644	-62.78	Pk	34.7	-21.1	11.8	0	-37.38	-27	-10.38	212	214	V

Pk - Peak detector

Page 213 of 261

BANDEDGE (HIGH CHANNEL)

HORIZONTAL PEAK PLOT


HORIZONTAL DATA

Trace Markers

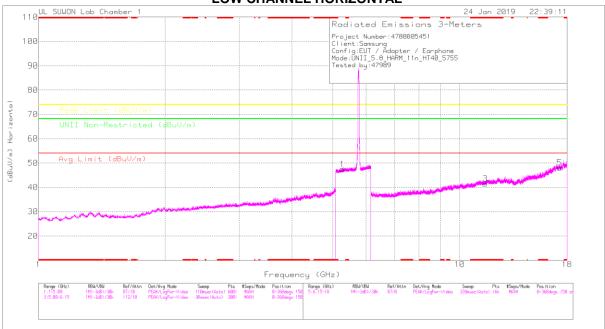
Marker	Frequency (GHz)	Meter Reading (dBm)	Det	170531_3117[00 168724]	Path_2_10dB	Conversion Factor (dB)	DC Corr (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.85	-65.46	Pk	34.5	-15.5	11.8	0	-34.66	26.94	-61.6	116	100	н
2	5.96	-63.6	Pk	34.6	-15.4	11.8	0	-32.6	-27	-5.6	116	100	Н

Pk - Peak detector

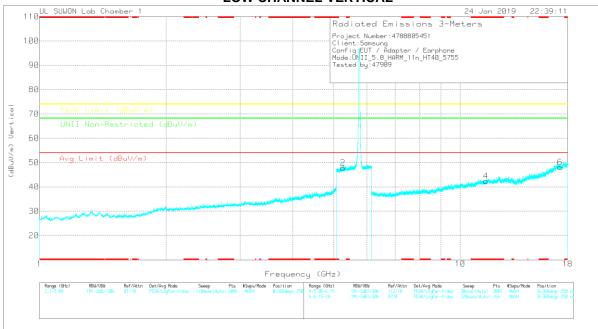
Page 214 of 261

VERTICAL PEAK PLOT

VERTICAL DATA


Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	3117_00168717	10dB[dB]	Conversion Factor (dB)	DC Corr (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.85	-61.54	Pk	35	-21	11.8	0	-35.74	26.94	-62.68	206	186	V
2	5.927	-65.1	Pk	35.1	-20.8	11.8	0	-39	-27	-12	206	186	V


Pk - Peak detector

Page 215 of 261

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL HORIZONTAL

LOW CHANNEL VERTICAL

Note: Emission was scanned up to 40GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 216 of 261

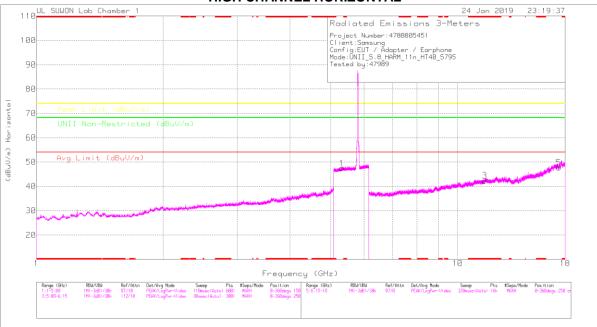
UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675 Korea TEL: (031) 337-9902,FAX: (031) 213-5433 UL Korea, Ltd. Confidential

This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

LOW CHANNEL DATA

Trace Markers

Marker	Frequency	Meter	Det	3117_00168717	10dB[dB]	DC Corr (dB)	Corrected	Avg Limit (dBuV/m)	Margin	Peak Limit (dBuV/m)	Margin	UNII Non-Restricted	Margin	Azimuth	Height	Polarity
	(GHz)	Reading					Reading		(dB)		(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)									
1	5.263	34.62	PK	34.6	-21.8	0	47.42	-		-		68.2	-20.78	0-360	250	н
2	5.265	34.99	PK	34.6	-21.8	0	47.79		-		-	68.2	-20.41	0-360	250	V
3	* 11.51	25.24	PK	38.5	-22.3	0	41.44		-	74	-32.56	-	-	0-360	250	н
5	17.265	23.34	PK	41.3	-16.5	0	48.14		-		-	68.2	-20.06	0-360	250	н
4	* 11.512	26.21	PK	38.5	-22.3	0	42.41	•	-	74	-31.59	-	•	0-360	250	V
6	17.265	23.25	PK	41.3	-16.5	0	48.05	-	-	-	-	68.2	-20.15	0-360	250	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK – Peak Detector

Radiated Emissions

Frequency (GHz)	Meter Reading (dBuV)	Det	3117_00168717	10dB[dB]	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	UNII Non-Restricted (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
5.263	45.46	PK-U	34.6	-21.8	0	58.26	-	-	-	-	68.2	-9.94	205	120	н
5.261	46.65	PK-U	34.6	-21.7	0	59.55	-	-	-	-	68.2	-8.65	229	133	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U - U-NII: Maximum Peak

Page 217 of 261

HIGH CHANNEL HORIZONTAL

HIGH CHANNEL VERTICAL 110 UL SUWON Lab Chamber 1 24 Jan 2019 23:19:37 Radiated Emissions 3-Meters Project Number:4788885451 Client:Samsung Canfig:EUT / Adapter / Earphone Mode:UNII.5.8 HARM_11n_HT48_5795 Tested by:47989 100 90 80 Vertica 70 UNII Non-Restricted (dBuV/m) 60 (dBuU/m) Avg Limit (dBuV/m) 2 50 4Й 30 20 Frequency (GHz) RBW/UBW Ref/Attn Det/Avg Mode Pts #Swps/Mode Position Range (GHz) Ref/Attn 112/10 87/8 Range (GHz) Sueep RBM/UBM Det/Avg Mode Pts

Note: Emission was scanned up to 40GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

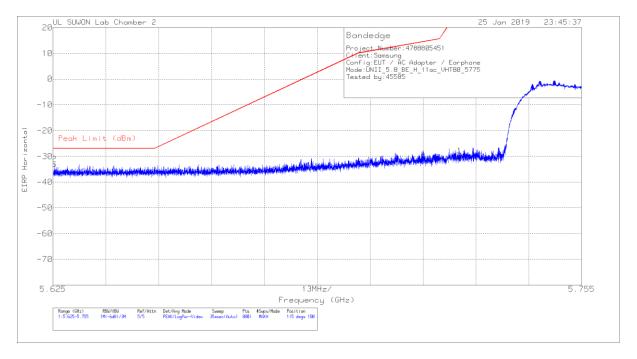
Page 218 of 261

HIGH CHANNEL DATA

Trace Markers

Marker	Frequency	Meter	Det	3117_00168717	10dB[dB]	DC Corr (dB)	Corrected	Avg Limit (dBuV/m)	Margin	Peak Limit (dBuV/m)	Margin	UNII Non-Restricted	Margin	Azimuth	Height	Polarity
	(GHz)	Reading					Reading		(dB)		(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)									
1	5.306	34.6	PK	34.6	-21.7	0	47.5	-	-	-		68.2	-20.7	0-360	250	н
2	5.302	36.28	PK	34.6	-21.7	0	49.18		-	-	-	68.2	-19.02	0-360	250	V
3	* 11.59	26.13	PK	38.6	-22.4	0	42.33		-	74	-31.67		-	0-360	250	Н
5	17.385	23.71	PK	41.2	-17.2	0	47.71		-	-	-	68.2	-20.49	0-360	150	Н
4	* 11.59	25.96	PK	38.6	-22.4	0	42.16	•	-	74	-31.84	-		0-360	250	V
6	17.385	23.75	PK	41.2	-17.2	0	47.75	-	-	-	-	68.2	-20.45	0-360	250	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK – Peak Detector


Radiated Emissions

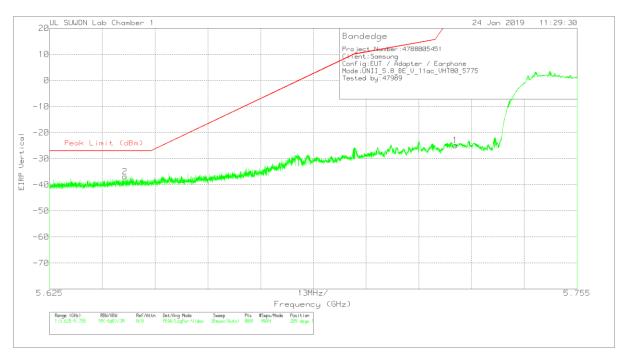
Frequency (GHz)	Meter Reading (dBuV)	Det	3117_00168717	10dB[dB]	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	UNII Non-Restricted (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
5.303	45.56	PK-U	34.6	-21.7	0	58.46	-	-	-	-	68.2	-9.74	204	100	н
5.302	47.79	PK-U	34.6	-21.7	0	60.69	-	-	-	-	68.2	-7.51	208	184	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U - U-NII: Maximum Peak

Page 219 of 261

11.4.1.TX ABOVE 1GHz 802.11ac VHT80 MODE IN THE 5.8GHz BAND LOWER BANDEDGE (MID CHANNEL)

HORIZONTAL PEAK PLOT


HORIZONTAL DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	170531_3117[00 168724]	Path_2_10dB	Conversion Factor (dB)	DC Corr (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.725	-60.62	Pk	34.5	-15.6	11.8	0	-29.92	26.97	-56.89	115	100	Н
2	5.625	-63.52	Pk	34.4	-15.7	11.8	0	-33.02	-27	-6.02	115	100	н

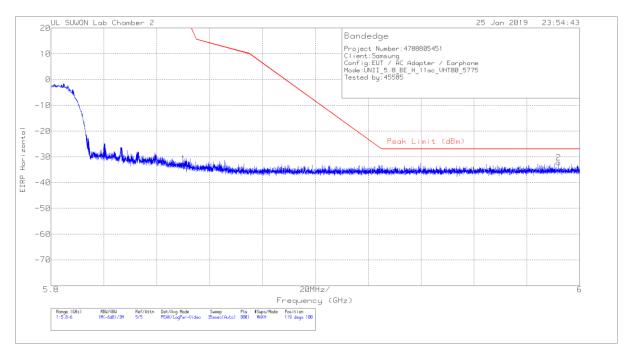
Pk - Peak detector

Page 220 of 261

VERTICAL PEAK PLOT

VERTICAL DATA

Trace Markers

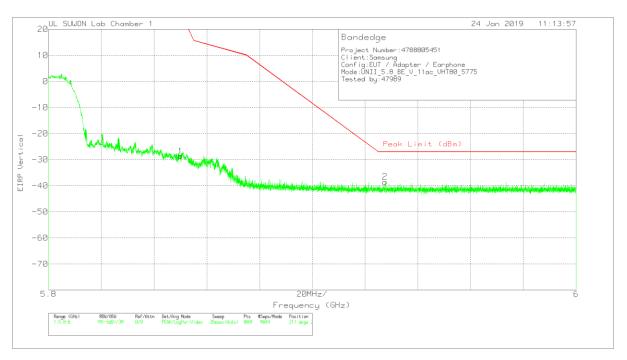

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	3117_00168717	10dB[dB]	Conversion Factor (dB)	DC Corr (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.725	-50.41	Pk	34.8	-21.1	11.8	0	-24.91	26.97	-51.88	209	179	V
2	5.644	-62.25	Pk	34.7	-21.1	11.8	0	-36.85	-27	-9.85	209	179	V

Pk - Peak detector

Page 221 of 261

UPPER BANDEDGE (MID CHANNEL)

HORIZONTAL PEAK PLOT


HORIZONTAL DATA

Trace Markers

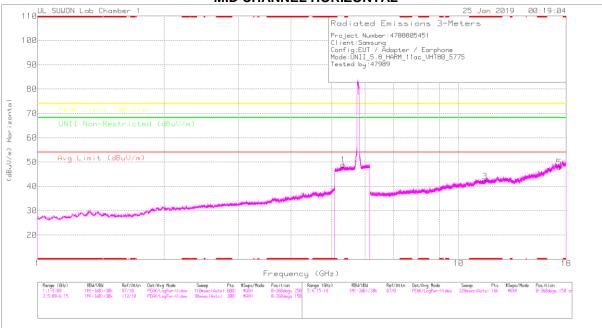
Marker	Frequency (GHz)	Meter Reading (dBm)	Det	170531_3117[00 168724]	Path_2_10dB	Conversion Factor (dB)	DC Corr (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.85	-63.47	Pk	34.5	-15.5	11.8	0	-32.67	26.94	-59.61	119	100	Н
2	5.992	-63.44	Pk	34.8	-15.4	11.8	0	-32.24	-27	-5.24	119	100	Н

Pk - Peak detector

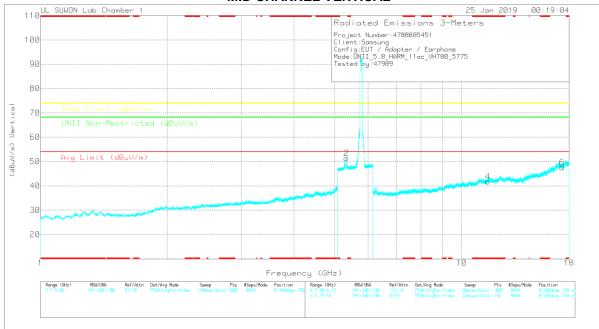
Page 222 of 261

VERTICAL PEAK PLOT

VERTICAL DATA


Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBm)	Det	3117_00168717	10dB[dB]	Conversion Factor (dB)	DC Corr (dB)	Corrected Reading EIRP	Peak Limit (dBm)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.85	-54.46	Pk	35	-21	11.8	0	-28.66	26.94	-55.6	211	208	v
2	5.928	-64.6	Pk	35.1	-20.8	11.8	0	-38.5	-27	-11.5	211	208	V


Pk - Peak detector

Page 223 of 261

HARMONICS AND SPURIOUS EMISSIONS

MID CHANNEL HORIZONTAL

MID CHANNEL VERTICAL

Note: Emission was scanned up to 40GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 224 of 261

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675 Korea TEL: (031) 337-9902,FAX: (031) 213-5433 UL Korea, Ltd. Confidential

This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

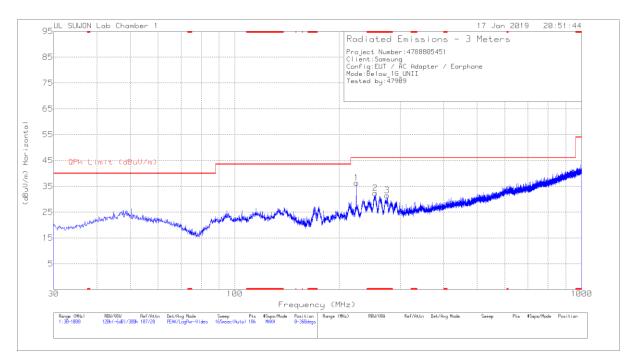
MID CHANNEL DATA

Trace Markers

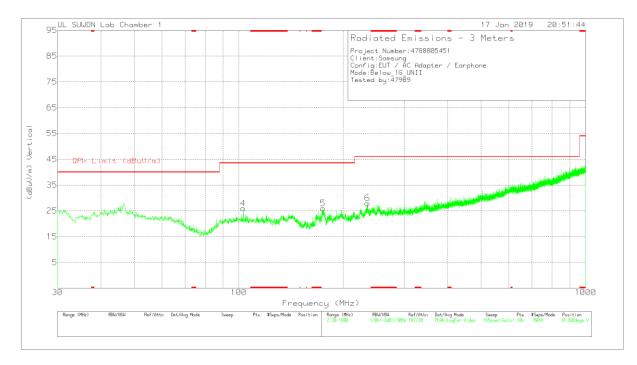
Marker	Frequency	Meter	Det	3117_00168717	10dB[dB]	DC Corr (dB)	Corrected	Avg Limit (dBuV/m)	Margin	Peak Limit (dBuV/m)	Margin	UNII Non-Restricted	Margin	Azimuth	Height	Polarity
	(GH2)	Reading					Reading		(dB)		(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)									
1	5.322	35.94	PK	34.6	-21.7	0	48.84	-	-	-		68.2	-19.36	0-360	150	н
2	5.326	38.47	PK	34.6	-21.7	0	51.37	-	-	-	-	68.2	-16.83	0-360	250	V
3	* 11.55	25.91	PK	38.6	-22.5	0	42.01	-	-	74	-31.99		-	0-360	150	Н
5	17.325	23.73	PK	41.2	-17.1	0	47.83	-	-	-	-	68.2	-20.37	0-360	150	Н
4	* 11.55	25.69	PK	38.6	-22.5	0	41.79	-		74	-32.21	-	•	0-360	150	V
6	17.325	23.48	PK	41.2	-17.1	0	47.58	-	-	-	-	68.2	-20.62	0-360	250	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK – Peak Detector

Radiated Emissions


Frequency (GHz)	Meter Reading (dBuV)	Det	3117_00168717	10dB[dB]	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	UNII Non-Restricted (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
5.323	47.43	PK-U	34.6	-21.7	0	60.33		-		-	68.2	-7.87	203	112	н
5.323	50.35	PK-U	34.6	-21.7	0	63.25		-		-	68.2	-4.95	209	202	v

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U - U-NII: Maximum Peak


Page 225 of 261

12. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 226 of 261

Below 1G Data

Trace Markers

Marker	Frequency	Meter	Det	VULB9163_750	Below_1G[dB]	Corrected	QPk Limit (dBuV/m)	Margin	Azimuth	Height	Polarity
	(MHz)	Reading				Reading		(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
1	224	46.83	Pk	17.8	-28.3	36.33	46.02	-9.69	0-360	100	Н
2	* 253.973	41.17	Pk	19.2	-28	32.37	46.02	-13.65	0-360	100	н
3	* 274.731	40.47	Pk	18.8	-27.8	31.47	46.02	-14.55	0-360	100	н
4	102.944	37.74	Pk	17.9	-29.7	25.94	43.52	-17.58	0-360	300	V
5	174.821	39.79	Pk	15	-28.8	25.99	43.52	-17.53	0-360	100	V
6	234.961	37.96	Pk	18.2	-28.2	27.96	46.02	-18.06	0-360	200	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

Page 227 of 261

13. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

FCC §15.207 (a)

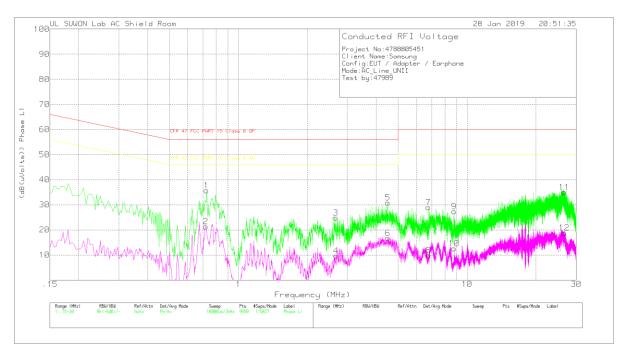
Frequency of Emission (MHz)	Conducted L	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.


Line conducted data is recorded for both NEUTRAL and HOT lines.

<u>RESULTS</u>

Page 228 of 261

6 WORST EMISSIONS

LINE 1 PLOT

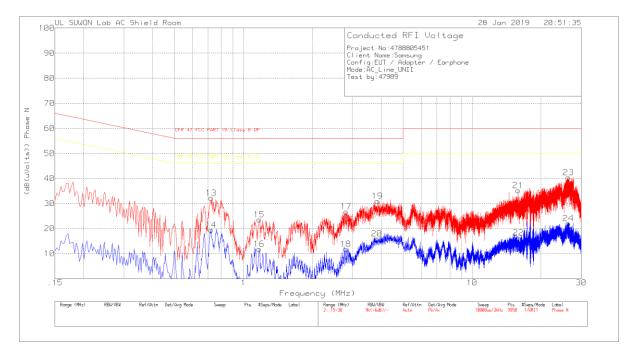
LINE 1 RESULTS

Trace Markers

Range 1: Phase L1 .15 - 30MHz

Marker	Frequency	Meter	Det	ENV216_10183	CABLELOSS(dB)	Corrected	CFR 47 FCC	Margin	CFR 47 FCC	Margir
	(MHz)	Reading		6_With ex-		Reading	PART 15 Class B	(dB)	PART 15 Class B	(dB)
		(dBuV)		cord_L1		(dB(uVolts))	QP		AV	
1	.726	25.6	Pk	9.9	.2	35.7	56	-20.3	-	-
2	.72	11.27	Av	9.9	.2	21.37	-	-	46	-24.63
3	2.661	14.59	Pk	10	.3	24.89	56	-31.11	-	-
4	2.67	61	Av	10	.3	9.69	-	-	46	-36.31
5	4.497	20.74	Pk	9.8	.3	30.84	56	-25.16	-	-
6	4.497	6.57	Av	9.8	.3	16.67	-	-	46	-29.33
7	6.777	18.76	Pk	9.9	.3	28.96	60	-31.04	-	-
8	6.783	39	Av	9.9	.3	9.81	-	-	50	-40.19
9	8.778	16.95	Pk	10	.4	27.35	60	-32.65	-	-
10	8.778	2.14	Av	10	.4	12.54	-	-	50	-37.46
11	26.565	23.95	Pk	10.7	.3	34.95	60	-25.05	-	-
12	26.574	7.78	Av	10.7	.3	18.78	-	-	50	-31.2

Pk - Peak detector


Av - Average detection

Page 229 of 261

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675 Korea TEL: (031) 337-9902,FAX: (031) 213-5433 UL Korea, Ltd. Confidential

This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

LINE 2 PLOT

LINE 2 RESULTS

Trace Markers

Range 2: Phase N .15 - 30MHz

Marker	Frequency	Meter	Det	ENV216 10183	CABLELOSS(dB)	Corrected	CFR 47 FCC	Margin	CFR 47 FCC	Margin
	(MHz)	Reading		6_With ex-		Reading	PART 15 Class B	(dB)	PART 15 Class B	(dB)
		(dBuV)		cord_N		(dB(uVolts))	QP		AV	
13	.723	22.11	Pk	9.9	.2	32.21	56	-23.79	-	-
14	.723	9.32	Av	9.9	.2	19.42	-	-	46	-26.58
15	1.173	13.49	Pk	9.8	.3	23.59	56	-32.41	-	-
16	1.173	1.76	Av	9.8	.3	11.86	-	-	46	-34.14
17	2.808	16.68	Pk	9.7	.3	26.68	56	-29.32	-	-
18	2.802	1.87	Av	9.7	.3	11.87	-	-	46	-34.13
19	3.852	20.91	Pk	9.8	.3	31.01	56	-24.99	-	-
20	3.837	5.85	Av	9.8	.3	15.95	-	-	46	-30.05
21	15.897	24.52	Pk	10.3	.4	35.22	60	-24.78	-	-
22	15.915	5.6	Av	10.3	.4	16.3	-	-	50	-33.7
23	26.364	29.29	Pk	10.8	.3	40.39	60	-19.61	-	-
24	26.361	11.02	Av	10.8	.3	22.12	-	-	50	-27.88

Pk - Peak detector

Av - Average detection

Page 230 of 261

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675 Korea TEL: (031) 337-9902,FAX: (031) 213-5433 UL Korea, Ltd. Confidential

This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

14. DYNAMIC FREQUENCY SELECTION

14.1. OVERVIEW

14.1.1. LIMITS

FCC

§15.407 (h), FCC KDB 905462 D02 "Compliance measurement procedures for unlicensednational information infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection" and KDB 905462 D03 "U-NII client devices without radar detection capability".

Page 231 of 261

Requirement	Operational Mode					
	Master	Client (without radar detection)	Client (with radar detection)			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Table 1: Applicability of DFS requirements prior to use of a channel

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational M	Operational Mode					
	Master	Client (without DFS)	Client (with DFS)				
DFS Detection Threshold	Yes	Not required	Yes				
Channel Closing Transmission Time	Yes	Yes	Yes				
Channel Move Time	Yes	Yes	Yes				
U-NII Detection Bandwidth	Yes	Not required	Yes				

Additional requirements for devices	Master Device or Client with	Client					
with multiple bandwidth modes	Radar DFS	(without DFS)					
U-NII Detection Bandwidth and	All BW modes must be tested	Not required					
Statistical Performance Check		-					
Channel Move Time and Channel	Test using widest BW mode	Test using the widest					
Closing Transmission Time	available	BW mode available					
		for the link					
All other tests	Any single BW mode	Not required					
Note: Frequencies selected for statist							
several frequencies within the radar detection bandwidth and frequencies near the edge of the							
radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in all 20							
MHz channel blocks and a null frequency between the bonded 20 MHz channel blocks.							

Page 232 of 261

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value					
	(see notes)					
E.I.R.P. ≥ 200 mill watt	-64 dBm					
E.I.R.P. < 200 mill watt and	-62 dBm					
power spectral density < 10 dBm/MHz						
E.I.R.P. < 200 mill watt that do not meet power spectral	-64 dBm					
density requirement						
Note 1: This is the level at the input of the receiver assuming a						
Note 2: Throughout these test procedures an additional 1 dB h						
of the test transmission waveforms to account for variations in						
will ensure that the test signal is at or above the detection three	shold level to trigger a DFS					
response.						
Note 3: E.I.R.P. is based on the highest antenna gain. For MIMO devices refer to KDB						
publication 662911 D01.						

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (See Note 1)
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period. (See Notes 1 and 2)
U-NII Detection Bandwidth	Minimum 100% of the U- NII 99% transmission power bandwidth. (See Note 3)

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Page 233 of 261

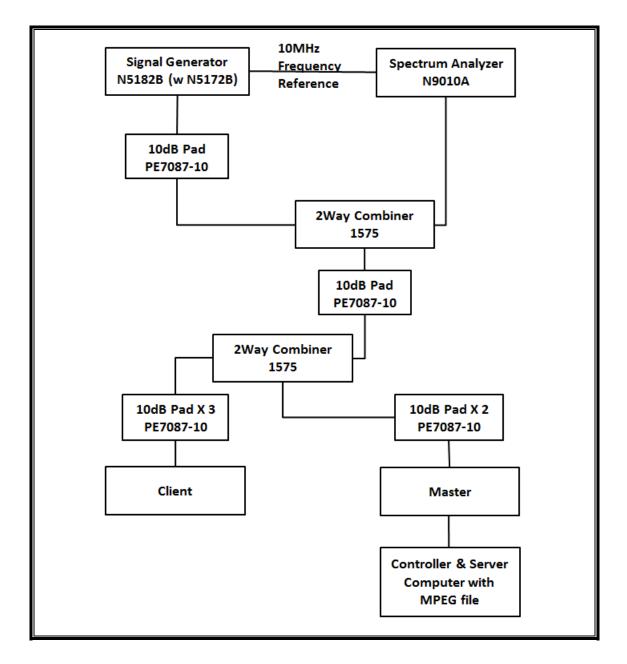
Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse	PRI	Pulses	Minimum	Minimum
Туре	Width	(usec)	1 0,000	Percentage	Trials
	(usec)	()		of Successful	
	(/			Detection	
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique		60%	30
		PRI values randomly			
		selected from the list	Roundup:		
		of 23 PRI values in	{(1/360) x (19 x 10 ⁶ PRI _{usec})}		
		table 5a			
		Test B: 15 unique			
		PRI values randomly			
		selected within the			
		range of 518-3066			
		usec. With a			
		minimum increment			
		of 1 usec, excluding			
		PRI values selected			
		in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
		Aggregate (Radar T		80%	120
		ulse Radar Type 0 shou Channel Closing Time to	Id be used for the Detection Bai	ndwidth test, Ch	annel
wove I	ine, and		515.		

Table 6 – Long Pulse Radar Test Signal

Radar Waveform Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

Table 7 – Frequency Hopping Radar Test Signal


Radar Waveform Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30

Page 234 of 261

UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675 Korea TEL: (031) 337-9902,FAX: (031) 213-5433 UL Korea, Ltd. Confidential

14.1.1. TEST AND MEASUREMENT SYSTEM

CONDUCTED METHOD SYSTEM BLOCK DIAGRAM

Page 235 of 261

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the Keysite Signal Studio for Pulse Building as N5172B. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 1, 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of KDB 905462 D02. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

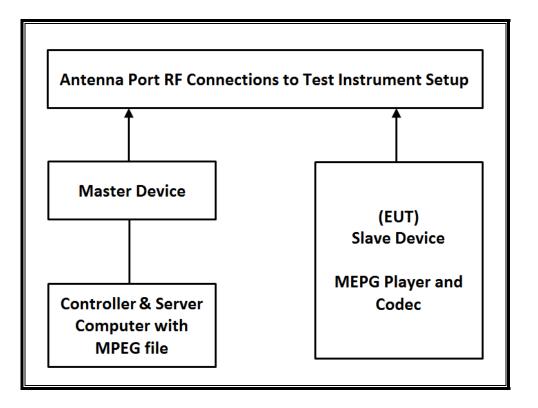
The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Page 236 of 261

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT


The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST				
Description Manufacturer Model S/N Cal Due				
Spectrum Analyzer, 7 GHz	Agilent / HP	N9010A	MY54200580	08-07-18
Vector Signal Generator, 6GHz	Agilent / HP	N5182B	MY53051241	08-07-18

Page 237 of 261

SETUP OF EUT

CONDUCTED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID		
Wireless Access Point	Cisco	AIR-CAP3702E-A-K9	FTX182276QX	LDK102087		
PC (Controller/Server)	HP	HP EliteDesk 800 G1 TWR	CZC4125J25	DoC		

Page 238 of 261

14.1.2. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

The EUT is a Slave Device without Radar Detection.

The highest power level within these bands is 10.01 dBm in the 5250-5350 MHz band and 13.15 dBm in the 5470-5725 MHz band.

The antenna gain assembly utilized with the EUT are -2.01 dBi in the 5250-5350 MHz band and -1.41 dBi in the 5470-5725 MHz band.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required conducted threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

The EUT uses one transmitter/receiver chain connected to an antenna to perform radiated tests.

WLAN traffic that meets or exceeds the minimum required loading was generated by transferring a data stream from the controller/server PC to the EUT using iPerf version 2.0.5 software package.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a/n architecture. Three nominal channel bandwidths are implemented: 20 MHz, 40 MHz.

The software installed in the access point is 12.4(25d)JA1.

UNIFORM CHANNEL SPREADING

This requirement is not applicable to Slave radio devices.

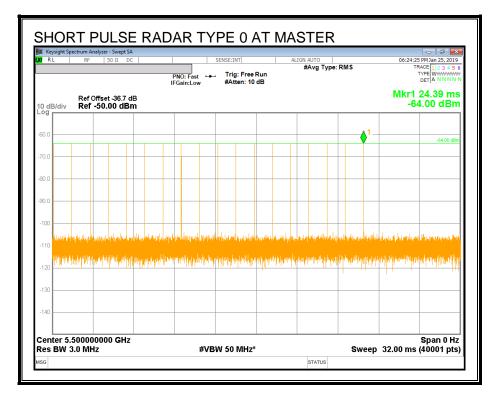
OVERVIEW OF MASTER DEVICE WITH RESPECT TO §15.407 (h) REQUIREMENTS

The Master Device is a Cisco Access Point, FCC ID: LDK102087. The minimum antenna gain for the Master Device is 6 dBi.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

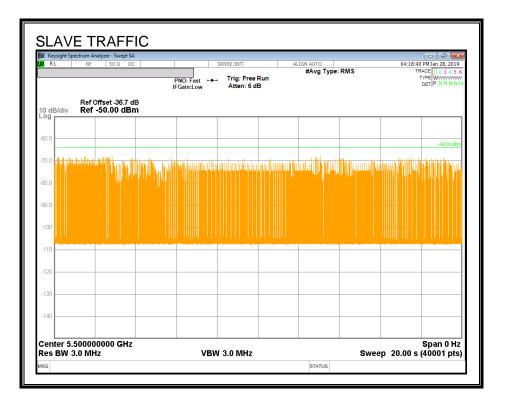
The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

Page 239 of 261


14.2. RESULTS FOR 20 MHz BANDWIDTH

14.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5500 MHz.


14.2.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

Page 240 of 261

TRAFFIC

Page 241 of 261

OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

14.2.3. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

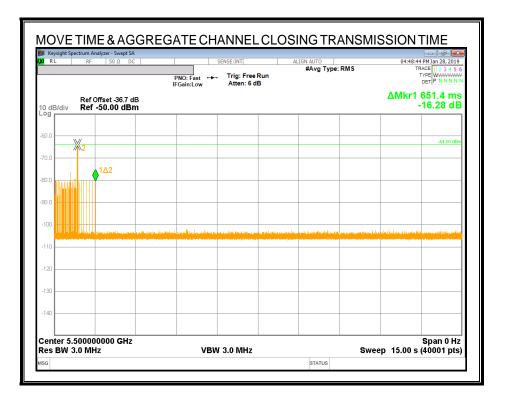
The aggregate channel closing transmission time is calculated as follows:

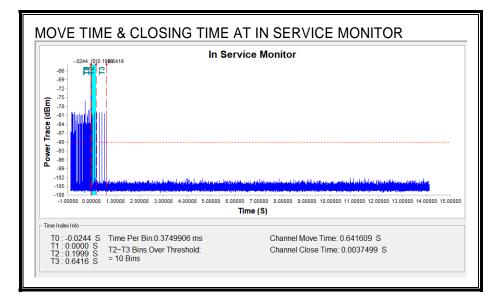
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

<u>RESULTS</u>

Channel Move Time	Limit
(sec)	(sec)
0.642	10

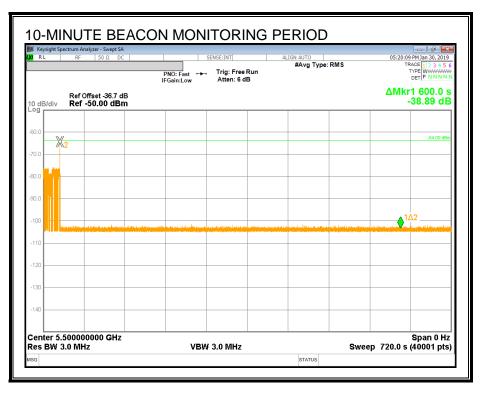

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
3.750	60


Page 242 of 261

MOVE TIME & CHANNEL CLOSING TIME

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.



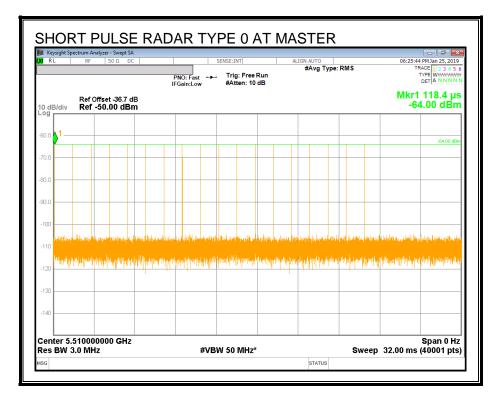
Page 243 of 261

NON-OCCUPANCY PERIOD

RESULTS

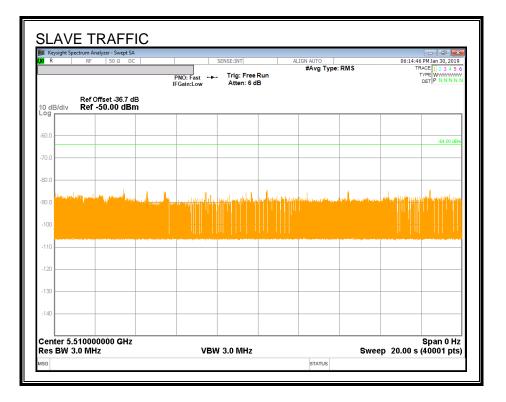
No EUT transmissions were observed on the test channel during the 10-minute observation time.

Page 244 of 261


14.3. RESULTS FOR 40 MHz BANDWIDTH

14.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5510 MHz.


14.3.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

Page 245 of 261

TRAFFIC

Page 246 of 261

14.3.3. OVERLAPPING CHANNEL TESTS

<u>RESULTS</u>

These tests are not applicable.

14.3.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

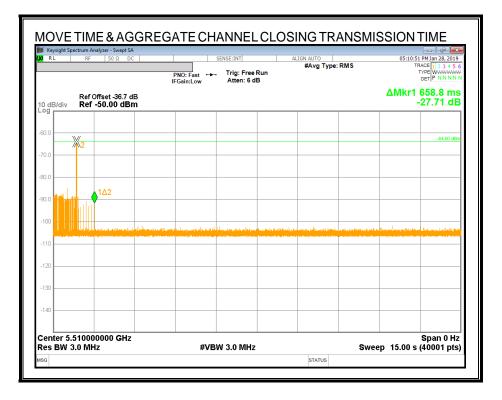
The aggregate channel closing transmission time is calculated as follows:

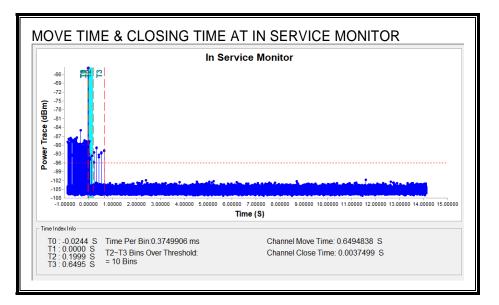
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.649	10

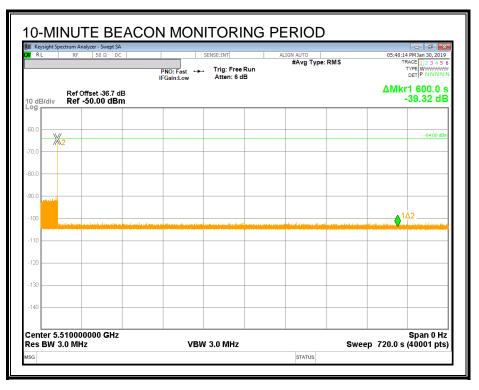

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
3.750	60


Page 247 of 261

MOVE TIME & CHANNEL CLOSING TIME

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.



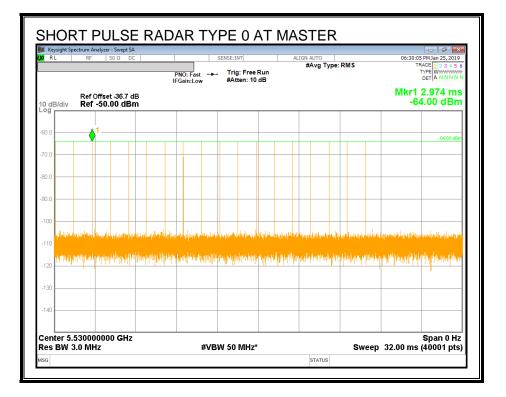
Page 248 of 261

NON-OCCUPANCY PERIOD

RESULTS

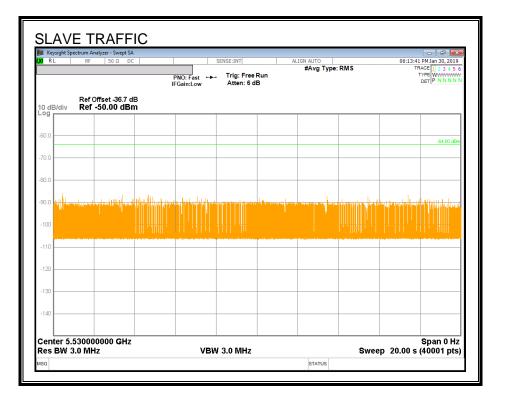
No EUT transmissions were observed on the test channel during the 10-minute observation time.

Page 249 of 261


14.4. RESULTS FOR 80 MHz BANDWIDTH

14.4.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5530 MHz.


14.4.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

Page 250 of 261

TRAFFIC

Page 251 of 261

14.4.3. OVERLAPPING CHANNEL TESTS

<u>RESULTS</u>

These tests are not applicable.

14.4.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

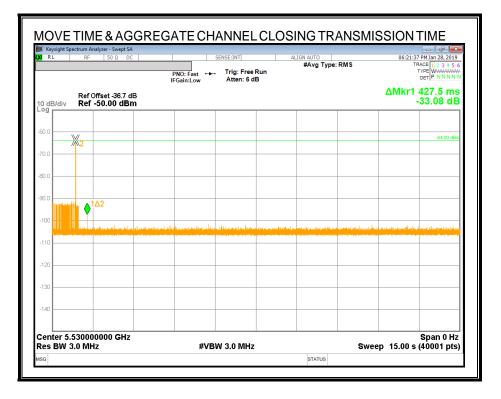
The aggregate channel closing transmission time is calculated as follows:

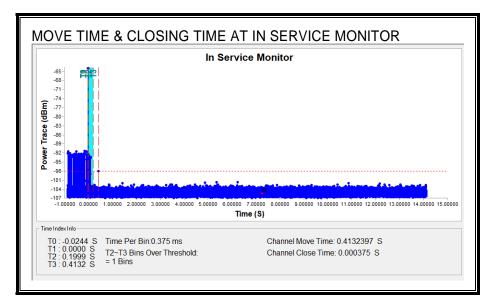
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.413	10


Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.375	60


Page 252 of 261

MOVE TIME & CHANNEL CLOSING TIME

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

Page 253 of 261

NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 10-minute observation time.

Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω DC	SENSE:INT	ALIGN AUTO	05:56:53 PM Jan 30, 2019
	PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 6 dB	#Avg Type: RMS	TRACE 1 2 3 4 5 TYPE WWWWWW DET P N N N N
Ref Offset -36.7 dB 0 dB/div Ref -50.00 dBm			∆Mkr1 600.0 s -38.68 dE
0.0			
X2			-64.00 dBn
0.0			
0.0			
0.0			
	tere documente i fondi deconsectore e decisi a filolo fi antica finitere e ado e antica de la filo teres	and a state of the	
110			
120			
130			
140			
140			
enter 5.530000000 GHz es BW 3.0 MHz	VBW 3.0 MHz		Span 0 Hz ep 720.0 s (40001 pts

Page 254 of 261