

FCC CFR47 PART 22 SUBPART H FCC CFR47 PART 24 SUBPART E FCC CFR47 PART 27 SUBPART M

WWAN

CERTIFICATION TEST REPORT

FOR

GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac and ANT+

MODEL NUMBER: SM-A505F/DS, SM-A505F

FCC ID: A3LSMA505F

REPORT NUMBER: 4788805451-E1V2

ISSUE DATE: FEB 08, 2019

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

> TEL: (031) 337-9902 FAX: (031) 213-5433

TL-637

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	01/31/19	Initial issue	Junwhan Lee
V2	02/08/19	Updated to address TCB's question	Junwhan Lee

TABLE OF CONTENTS

1.	A	ATTESTATION OF TEST RESULTS	5
2.	Т	EST METHODOLOGY	6
3.	F	ACILITIES AND ACCREDITATION	6
4.	C	CALIBRATION AND UNCERTAINTY	7
4	1. 1.	. MEASURING INSTRUMENT CALIBRATION	7
4	1.2.	. SAMPLE CALCULATION	7
4	1. 3.	. MEASUREMENT UNCERTAINTY	7
5.	Е	QUIPMENT UNDER TEST	8
	5.1.	DESCRIPTION OF EUT	8
	5.2.	. MAXIMUM OUTPUT POWER	8
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS1	0
	5.4.	. WORST-CASE ORIENTATION1	0
	5.5.	DESCRIPTION OF TEST SETUP1	2
6.	Т	EST AND MEASUREMENT EQUIPMENT1	4
7. :	SU	MMARY TABLE1	5
8.	PE.	AK TO AVERAGE RATIO1	6
ð	3.1.	. CONDUCTED PEAK TO AVERAGE RESULT1	7
9.	L	.IMITS AND CONDUCTED RESULTS2	1
(. OCCUPIED BANDWIDTH2	
		.1.1. OCCUPIED BANDWIDTH RESULTS2	
(. BAND EDGE EMISSIONS3 D.2.1. BAND EDGE RESULT3	
		D.2.2. EMISSION MASK RESULT	
(9.3.	OUT OF BAND EMISSIONS4	<u>.</u> 6
		.3.1. OUT OF BAND EMISSIONS RESULT4	
(9.4. 9	. FREQUENCY STABILITY5 0.4.1. FREQUENCY STABILITY RESULTS5	3 4
10.		RADIATED TEST RESULTS5	7
		1. RADIATED POWER (ERP & EIRP)5	
	1	0.1.1. ERP/EIRP Results5	8
	-	0.1.2. ERP/EIRP DATA6	
		2. FIELD STRENGTH OF SPURIOUS RADIATION7 0.2.1. SPURIOUS RADIATION PLOTS7	
	ı	Page 3 of 90	J
		I AUG J UI JU	

UL Korea, Ltd. Suwon Laboratory

FORM ID: FCC_22/24/27

11. Appendix A: SETUP PHOTOS81

Appendix B: Cellular receiver Part 15B test results

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SAMSUNG ELECTRONICS CO., LTD.

EUT DESCRIPTION: GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac and ANT+

MODEL NUMBER: SM-A505F/DS, SM-A505F

SERIAL NUMBER: R38KB0HB44X, ce107c48830b7e2b (CONDUCTED)

R38KB0HB2HX, R38KB0HB8AF, R38M108FNGZ (RADIATED);

DATE TESTED: DEC 20, 2018 - JAN 31, 2019;

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 22H, 24E and 27M Pass

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea. Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released For

pask

UL Korea, Ltd. By:

Tested By:

SungGil Park Suwon Lab Engineer UL Korea, Ltd.

Junwhan Lee Suwon Lab Engineer UL Korea, Ltd.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with following methods.

- 1. FCC CFR 47 Part 2.
- 2. FCC CFR 47 Part 22.
- 3. FCC CFR 47 Part 24.
- 4. FCC CFR 47 Part 27.
- 5. ANSI TIA-603-E, 2016
- 6. KDB 971168 D01 Power Meas License Digital Systems v03r01

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do,16675, Korea. Line conducted emissions are measured only at the 218 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

218 Maeyeong-ro					
☐ Chamber 1					
☐ Chamber 3					

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf.

DATE: FEB 08, 2019

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

EIRP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) - cable loss(between the SG and substitution antenna) + Substitution Antenna Factor

ERP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna)

(Path loss = Signal generator output – PSA reading with substitution antenna)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	2.32 dB
Radiated Disturbance, Below 1GHz	3.86 dB
Radiated Disturbance, Above 1 GHz	5.97 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: FEB 08, 2019

5. EQUIPMENT UNDER TEST

5.1. **DESCRIPTION OF EUT**

The EUT is a GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac and ANT+. This test report addresses the WWAN operational mode.

5.2. **MAXIMUM OUTPUT POWER**

The transmitter has a maximum average radiated ERP / EIRP output powers as follows:

GSM

FCC Part 22/24							
Band	Frequency Range	Modulation	Radiated				
	[MHz]		Avg [dBm]	Avg [mW]			
GSM850	824~849	GPRS	27.98	628.06			
GSIVIOSO	024~049	EGPRS	22.85	192.75			
GSM1900	00 1850~1910	GPRS	30.36	1086.43			
G3W1900		EGPRS	28.86	769.13			

WCDMA

FCC Part 22/24						
Band	Frequency Range	Modulation	Radiated			
	[MHz]		Avg [dBm]	Avg [mW]		
Band 5	824~849	REL99	18.33	68.08		
Dana 3	024~043	HSDPA	SDPA 18.16 65.4	65.46		
Rand 2	Band 2 1850~1910	REL99	23.85	242.66		
Dailu Z		HSDPA	23.50	223.87		

LTE Band 5

FCC Part 22							
Band	Frequency Range	BandWidth	Modulation	Radiated			
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]		
		10	QPSK	17.99	62.95		
		10	16QAM	17.04	50.58		
		5	QPSK	18.43	69.66		
Band 5	824 ~ 849		16QAM	16.98	49.89		
Danu 3	10 5 024 ~ 049	5anu 5 624 ~ 649	3	QPSK	18.10	64.57	
		3	16QAM	17.20	52.48		
		1.4	QPSK	18.08	64.27		
		1.4	16QAM	16.99	50.00		

LTE Band 41

FCC Part 27							
Band	Frequency Range	BandWidth	Modulation	Radiated			
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]		
	1 2496 - 2690	20	QPSK	24.33	271.02		
		20	16QAM	23.29	213.30		
		15	QPSK	24.11	257.63		
Band 41		15	16QAM	22.96	197.70		
Dallu 41		10	QPSK	24.08	255.86		
			16QAM	24.08	255.86		
		5	QPSK	23.77	238.23		
		3	16QAM	23.15	206.54		

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a internal antenna for the [List the bands supported] with a maximum peak gain as follow:

Frequency (MHz)	Peak Gain (dBi)
WCDMA Band 5 / LTE Band 5 / GSM850 824 ~ 849 MHz	-2.44
WCDMA Band 2 / GSM1900 1850 ~ 1910 MHz	-3.92
LTE Band 41 2496 ~ 2690 MHz	-2.67

5.4. WORST-CASE ORIENTATION

Following modes should be considered as worst-case scenario for all other measurements.

- GSM GPRS/EGPRS
- UMTS REL 99/HSDPA

For all LTE Bands, the worst-case scenario for all measurements is based on the average conducted output power measurement investigation. The out of band emissions and spurious radiation were only performed on bandwidth and RB offset(with RB size 1) with the highest power in QPSK.

Highest power setting for each bands								
LTE Band Frequency (MHz) Bandwidth (MHz) RB size RB offs								
	824.7		1	3				
5	836.5	1.4	1	0				
	848.3		1	0				
	2501.0		1	0				
41	2593.0	10	1	0				
	2685.0		1	49				

- ERP/EIRP

For GSM1900 / WCDMA B2 / LTE B41, the fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation.

For GSM850 / WCDMA B5 / LTE B5, the fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Z orientation was worst-case orientation.

- Radiated spurious emissions

For GSM850 / GSM1900 / WCDMA B5 / WCDMA B2, the spurious emissions was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation.

For LTE B41, the spurious emissions was investigated in three orthogonal orientations X, Y and Z it was determined that Y orientation was worst-case orientation.

For LTE B5, the spurious emissions was investigated in three orthogonal orientations X, Y and Z it was determined that Z orientation was worst-case orientation.

Note: All radiated spurious tests were performed connected with earphone and charger for evaluation of worst case mode. (For erp/eirp tests, the EUT didn't connected with earphone and charger)

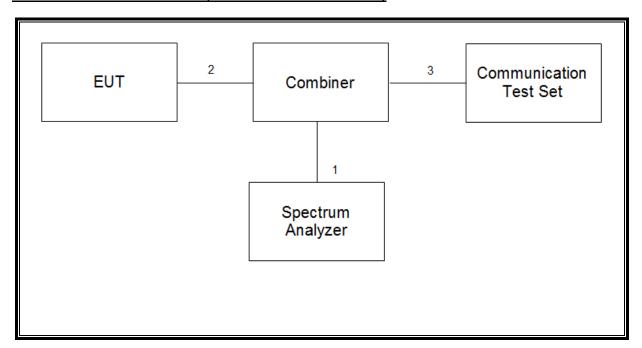
For check the Part15B receiver mode(Appendix B):

For GSM850 / WCDMA B5 / LTE B5, the emissions was investigated in three orthogonal orientations X, Y and Z it was determined that Z orientation was worst-case orientation.

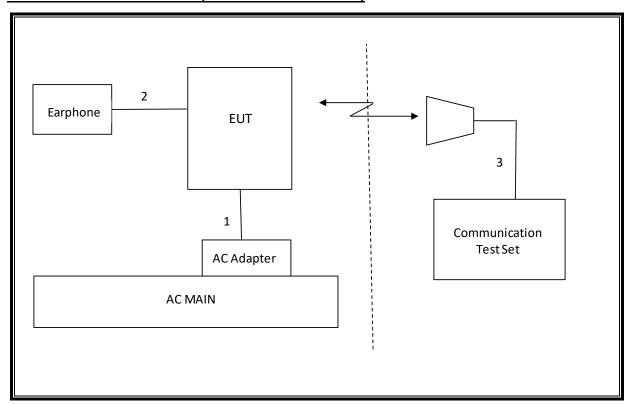
5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List								
Description Manufacturer Model Serial Number FCC II								
Charger	SAMSUNG	EP-TA200	R37KC3B01GORC3	N/A				
Data Cable	SAMSUNG	EP-D140AWE	N/A	N/A				
Earphone	SAMSUNG	EHS61ASFWE	N/A	N/A				


I/O CABLE

	I/O Cable List							
Cable Port # of identical Connector Cable Type Cable Remarks						Remarks		
No		ports	Туре		Length (m)			
1	DC Power	1	С Туре	Shielded	1.1m	N/A		
2	Audio	2	Mini-Jack	Unshielded	1.2m	N/A		


TEST SETUP

The EUT is continuously communicated to the call box during the tests.

SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model	S/N	Cal Due			
Antenna, Tuned Dipole 400~1000 MHz	ETS	3121D DB4	00164753	06-30-19			
Antenna, Horn, 40 GHz	ETS	3116C	00166155	12-04-19			
Preamplifier	ETS	3116C-PA	00168841	08-09-19			
Antenna, Horn, 40 GHz	ETS	3116C	00168645	12-04-19			
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	750	08-04-20			
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	845	08-04-20			
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	749	08-04-20			
Antenna, Horn, 18 GHz	ETS	3115	00167211	08-04-20			
Antenna, Horn, 18 GHz	ETS	3115	00161451	08-04-20			
Antenna, Horn, 18 GHz	ETS	3117	00168724	08-04-20			
Antenna, Horn, 18 GHz	ETS	3117	00205959	08-04-20			
Antenna, Horn, 18 GHz	ETS	3117	00168717	08-04-20			
Combiner	WEINSCHEL	1575	2152	08-08-19			
Communications Test Set	R&S	CMW500	115331	08-07-19			
DC Power Supply	Agilent / HP	E3640A	MY54226395	08-06-19			
Preamplifier, 1000 MHz	Sonoma	310N	341282	08-07-19			
Preamplifier, 1000 MHz	Sonoma	310N	370599	08-06-19			
Preamplifier, 1000 MHz	Sonoma	310N	351741	08-07-19			
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1876511	08-07-19			
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	2029169	08-07-19			
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1896138	08-07-19			
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54490312	08-06-19			
EMI Test Receive, 40 GHz	R&S	ESU40	100439	08-06-19			
EMI Test Receive, 40 GHz	R&S	ESU40	100457	08-06-19			
EMI Test Receive, 44 GHz	R&S	ESW40	101590	08-06-19			
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G005	08-08-19			
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G006	08-08-19			
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	010	08-08-19			
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	011	08-08-19			
High Pass Filter 4GHz	Micro-Tronics	HPM50118-02	G001	08-08-19			
High Pass Filter 4GHz	Micro-Tronics	HPM50118-02	G002	08-08-19			
Attenuator	PASTERNACK	PE7087-10	A009	08-08-19			
Attenuator	PASTERNACK	PE7087-10	A001	08-08-19			
Attenuator	PASTERNACK	PE7087-10	A008	08-08-19			
Attenuator	PASTERNACK	PE7087-10	2	08-07-19			
Attenuator	PASTERNACK	PE7395-10	A011	08-08-19			
Antenna, Loop, 9kHz-30MHz	R&S	HFH2-Z2	100418	10-26-19			
Temperature Chamber	ESPEC	SH-642	93001109	08-06-19			
UL Software							
Description	Manufacturer	Model	lodel Version				
Antenna port test software	UL	CLT		Ver 2.5			

Page 14 of 90

7. SUMMARY TABLE

FCC Part Section	Test Description		Test Condition	Test Result
2.1049	Occupied Band width (99%)	N/A		Pass
22.917(a) 24.238(a)	Band Edge / Conducted Spurious Emission -13dBm			Pass
27.53(m)	Conducted Spurious Emission	-25 dBm	Conducted	Pass
27.53(m)	Emission mask	Section 9.2.2		Pass
2.1046	Conducted output power N/A			See the RF exposure test report. (4788805451-S1 FCC Report SAR)
22.355 24.235 27.54	Frequency Stability	2.5PPM		Pass
22.913(a)(5)	Effective Radiated Power	38.5 dBm	Radiated	Pass
24.232(c) 27.50(h)(2)	Equivalent Isotropic Radiated Power	33dBm		Pass
22.917(a) 24.238(a)	Radiated Spurious Emission	-13dBm		Pass
27.53 (m)	radiated opariodo Emiloción			Pass

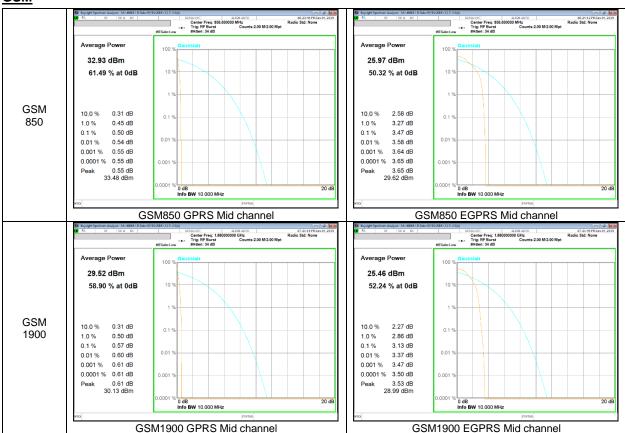
DATE: FEB 08, 2019

8. PEAK TO AVERAGE RATIO

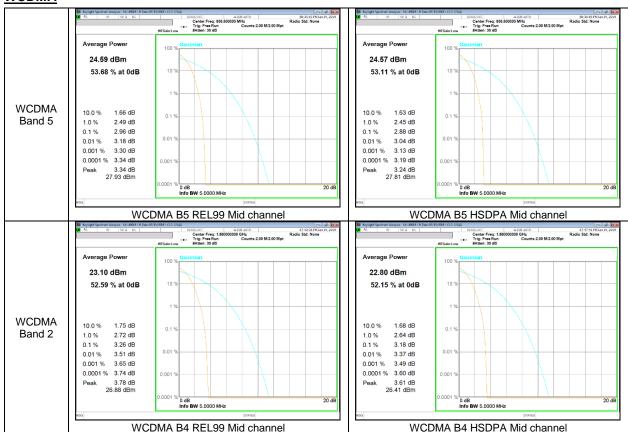
Test Procedure

Per KDB 971168 D01 Power Meas License Digital Systems v03r01;

The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The PAR were measured on the Spectrum Analyzer.

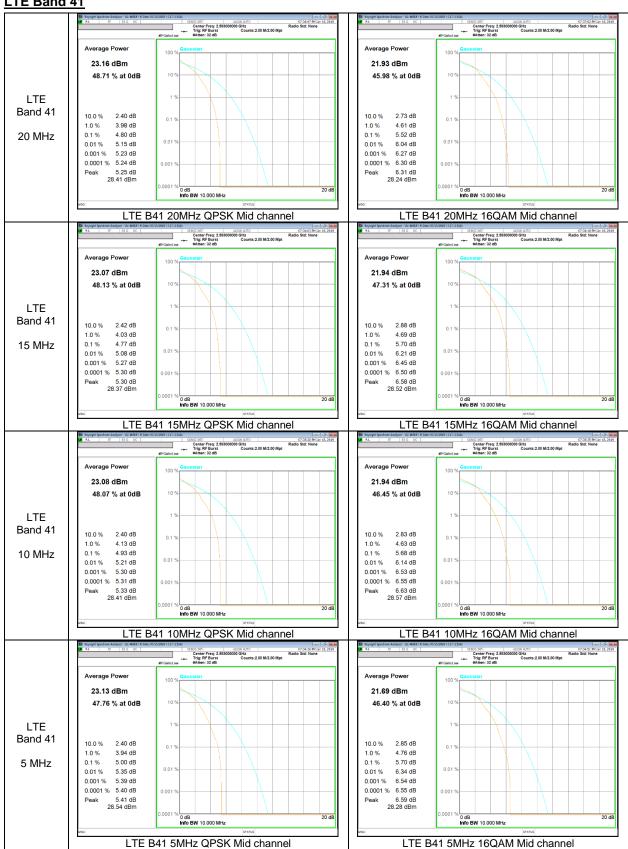

Test Spec

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.


RESULTS

CONDUCTED PEAK TO AVERAGE RESULT 8.1.


GSM


WCDMA

LTE Band 5

LTE Band 41

Page 20 of 90

9. LIMITS AND CONDUCTED RESULTS

9.1. OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049

LIMITS

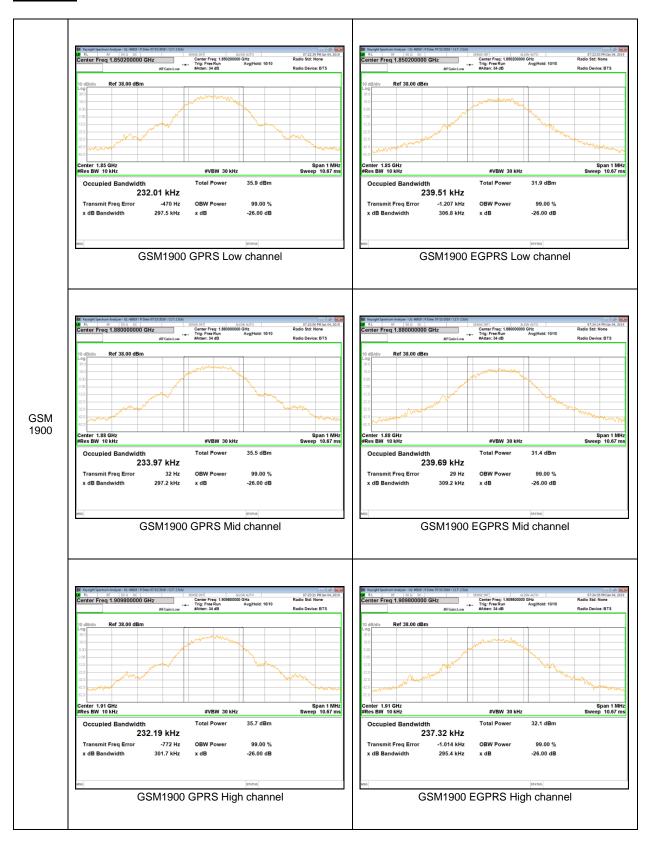
For reporting purposes only

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The -26dB bandwidth was also measured and recorded.

(KDB 971168 D01 Power Meas License Digital Systems v03r01)

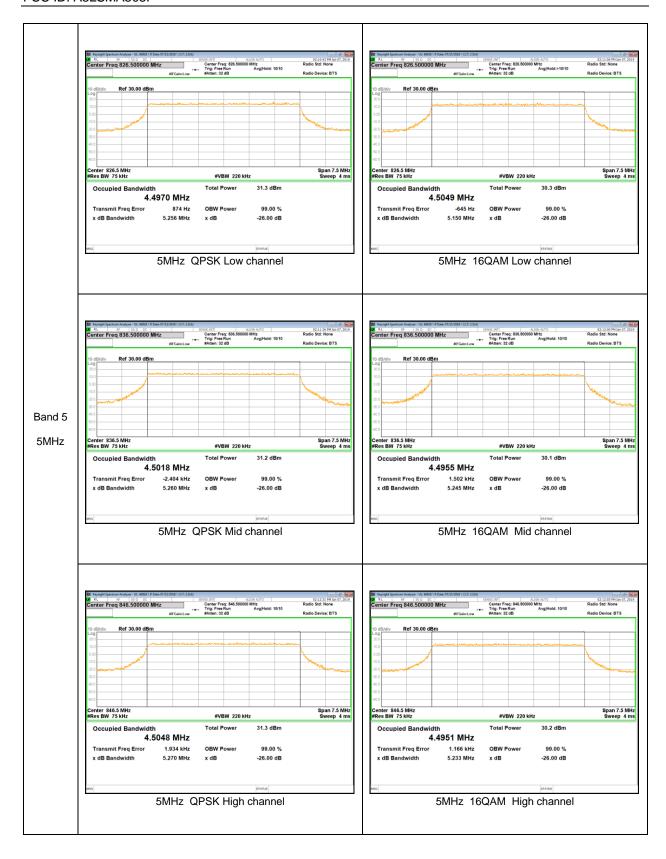
RESULTS


See the following pages.

DATE: FEB 08, 2019

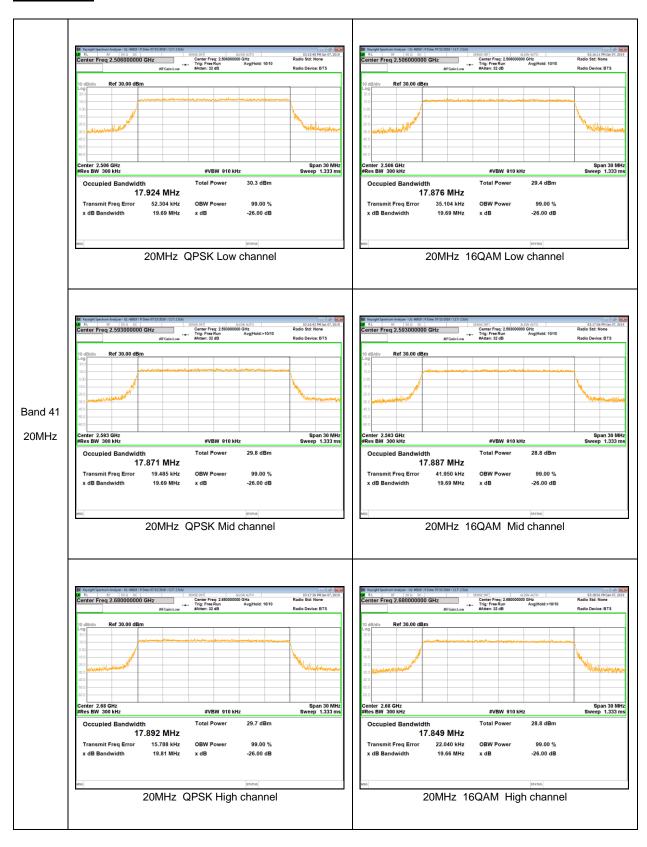
9.1.1. OCCUPIED BANDWIDTH RESULTS

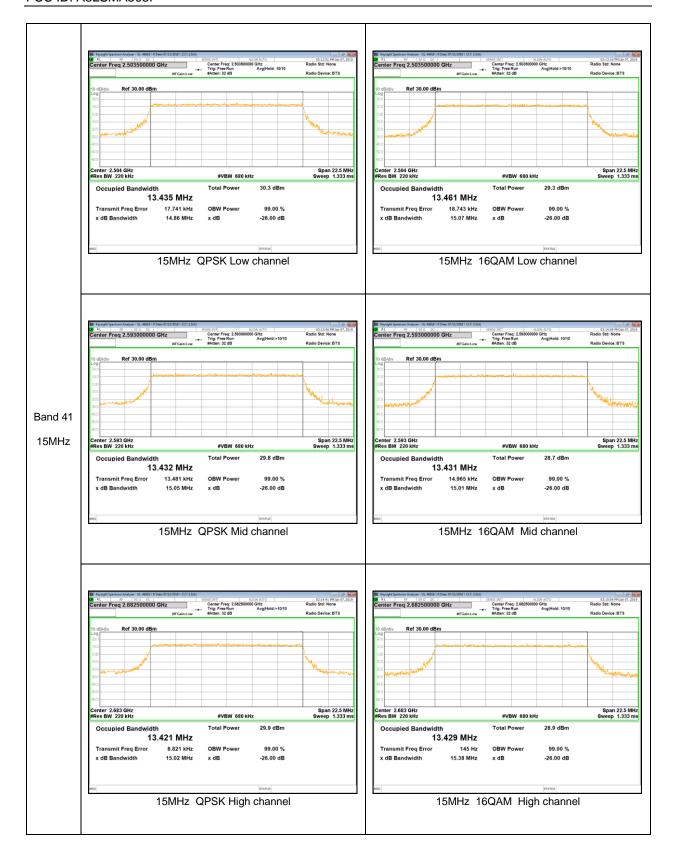
GSM 1900



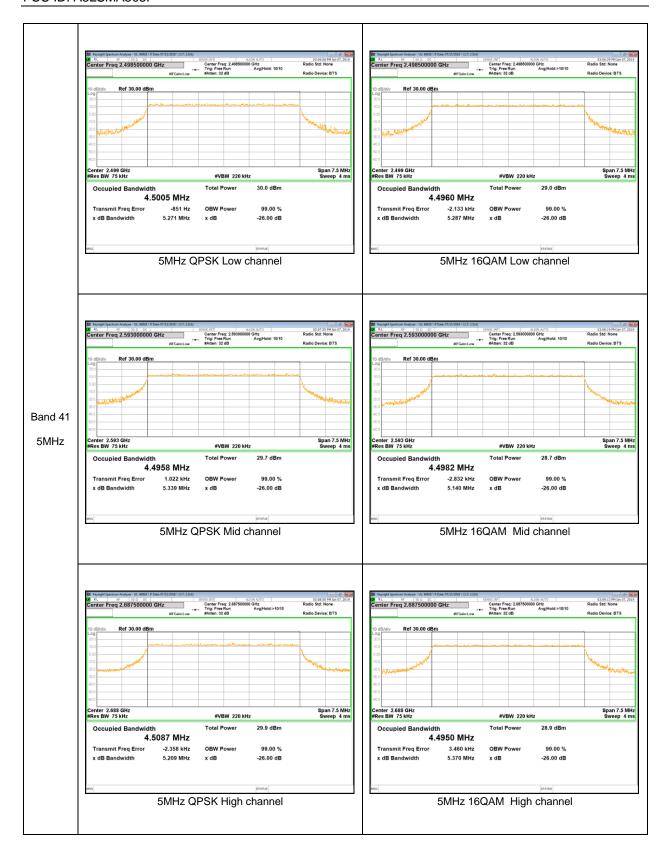
WCDMA Band 2

LTE Band 5









LTE Band 41

DATE: FEB 08, 2019

9.2. BAND EDGE EMISSIONS

RULE PART(S)

FCC: §22.359, §22.917, §24.238 and §27.53

LIMITS

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

27.53(m) (4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v03r01

The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

GSM

- a) Set the RBW = 1 ~ 5% of OBW(GSM850 8.2KHz, GSM1900 9.1KHz)
- b) Set VBW ≥ 3 × RBW;
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time = 1S;
- e) Detector = RMS;
- f) Ensure that the number of measurement points ≥ 2*Span/RBW;
- g) Trace mode = Average(100);
- h) Add duty cycle correction factor (9dB)

WCDMA/LTE

- a) Set the RBW = 1 ~ 1.5 % of OBW(Typically limited to a minimum RBW of 1% of the OBW)
- b) Set VBW ≥ 3 × RBW;
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time = Auto;
- e) Detector = RMS;
- f) Ensure that the number of measurement points ≥ 2*Span/RBW;
- g) Trace mode = Average (100);

NOTE1

LTE Band 41 - Duty cycle correction factor(2.25dB) already applied on the plot.

RESULTS

See the following pages.