

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.381.1520 http://www.element.com

MEASUREMENT REPORT FCC ID: 15.247 802.11ax (OFDMA)

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 11/07-12/28/2023 Test Report Issue Date: 12/29/2023 Test Site/Location: Element lab., Columbia, MD, USA Test Report Serial No.: 1M2311010111-12.A3L

FCC ID:

APPLICANT:

A3LSMA356U

Samsung Electronics Co., Ltd.

Application Type:	Certification
Model:	SM-A356U
Additional Model(s):	SM-A356U1, SM-S356V
EUT Type:	Portable Handset
Frequency Range:	2412 – 2472MHz
Modulation Type:	OFDMA
FCC Classification:	Digital Transmission System (DTS)
FCC Rule Part(s):	Part 15 Subpart C (15.247)
Test Procedure(s):	ANSI C63.10-2013, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dama 4 a(70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 1 of 72
© 2022 ELEMENT	•		V11.1 08/28/2023

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	4
	1.1	Scope	4
	1.2	Element Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PROD	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	6
	2.4	Antenna Description	6
	2.5	Software and Firmware	6
	2.6	EMI Suppression Device(s)/Modifications	7
3.0	DESC	RIPTION OF TESTS	8
	3.1	Evaluation Procedure	8
	3.2	Radiated Emissions	8
	3.3	Environmental Conditions	8
4.0	ANTE	NNA REQUIREMENTS	9
5.0	MEAS	UREMENT UNCERTAINTY	10
6.0	TEST	EQUIPMENT CALIBRATION DATA	11
7.0	TEST	RESULTS	12
	7.1	Summary	.12
	7.2	6dB Bandwidth Measurement	.13
		7.2.1 MIMO 6 dB Bandwidth Measurements	. 15
	7.3	Output Power Measurement	21
	7.4	Power Spectral Density	24
		7.4.1 MIMO Power Spectral Density Measurements	.26
	7.5	Conducted Band Edge Emissions	33
		7.5.1 MIMO Conducted Band Edge Emissions	. 34
	7.6	Conducted Spurious Emissions	43
		7.6.1 MIMO Conducted Spurious Emissions	. 45
	7.7	Radiated Emission Measurements	57
		7.7.2 MIMO Radiated Spurious Emission Measurements	
		7.7.3 MIMO Radiated Restricted Band Edge Measurements	
8.0	CONC	CLUSION	72

FCC ID: A3LSMA356U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 2 of 72
© 2022 ELEMENT		•	V11.1 08/28/2023

MEASUREMENT REPORT

			Тх	МІМО			
Channel				Avg. Conducted		Peak Conducted	
Bandwidth [MHz]	IEEE Mode	Tones	Frequency [MHz]	Max. Power [mW]	Max. Power [dBm]	Max. Power [mW]	Max. Power [dBm]
	802.11ax/be OFDMA	26T	2412 - 2462	15.46	11.89	207.27	23.17
20	802.11ax/be OFDMA	52T	2412 - 2462	30.23	14.80	422.29	26.26
20	802.11ax/be OFDMA	106T	2412 - 2462	61.89	17.92	549.11	27.40
	802.11ax/be OFDMA	242T	2412 - 2462	93.99	19.73	595.89	27.75

EUT Overview

FCC ID: A3LSMA356U	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 2 of 72	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 3 of 72	
© 2022 ELEMENT V11.1 08/26				

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs).

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Degra 4 of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 4 of 72
© 2022 ELEMENT	·		V11.1 08/28/2023

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

2.0 **PRODUCT INFORMATION**

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMA356U**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

Test Device Serial No.: 0897M, 1078M

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR (FR1), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5GHz), Bluetooth (1x, EDR, LE), NFC

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	12	2467
6	2437	13	2472
7	2442		

Table 2-1.	Frequency	/ Channel C)perations

Notes:

 The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of ANSI C63.10-2013 and KDB 558074 D01 v05r02. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

		T		MIMO (1+2)			
Band	Bandwidth	Tone Type	Tone Size	Duty Cycle [%]	Pulse Width	Period	Radiated DCCF [dB]
	0.4011- 000411-	RU	26T	98.08	5.174	5.275	N/A
2.4GHz			52T	98.05	5.116	5.217	N/A
2.4GHz 20MHz	RU	106T	98.20	4.739	4.826	N/A	
			242T	97.20	4.029	4.145	0.12

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 5 of 72
© 2022 ELEMENT	·	·	V11.1 08/28/2023

2. The device employs MIMO technology. Below are the possible configurations.

WiEi Configurations		SISO		SDM		CDD	
WIFI CON	WiFi Configurations		ANT2	ANT1	ANT2	ANT1	ANT2
2.4GHz	11ax	✓	✓	\checkmark	✓	✓	✓

Table 2-3. Antenna Configuration

✓ = Support ; × = NOT Support
 SISO = Single Input Single Output
 SDM = Spatial Diversity Multiplexing – MIMO function
 CDD = Cyclic Delay Diversity - 2Tx Function

3. The device supports the following data rates (shown in Mbps):

MCS Index	Spatial		OFDMA (802.11ax)										
macx	Stream		26T			52T			106T			242T	
HE		0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs Gl	0.8µs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6µs GI	3.2µs GI
0	1	0.9	0.8	0.8	1.8	1.7	1.5	3.8	3.5	3.2	8.6	8.1	7.3
1	1	1.8	1.7	1.5	3.5	3.3	3	7.5	7.1	6.4	17.2	16.3	14.6
2	1	2.6	2.5	2.3	5.3	5	4.5	11.3	10.6	9.6	25.8	24.4	21.9
3	1	3.5	3.3	3	7.1	6.7	6	15	14.2	12.8	34.4	32.5	29.3
4	1	5.3	5	4.5	10.6	10	9	22.5	21.3	19.1	51.6	48.8	43.9
5	1	7.1	6.7	6	14.1	13.3	12	30	28.3	25.5	68.8	65	58.5
6	1	7.9	7.5	6.8	15.9	15	13.5	33.8	31.9	28.7	77.4	73.1	65.8
7	1	8.8	8.3	7.5	17.6	16.7	15	37.5	35.4	31.9	86	81.3	73.1
8	1	10.6	10	9	21.2	20	18	45	42.5	38.3	103.2	97.5	87.8
9	1	11.8	11.1	10	23.5	22.2	20	50	47.2	42.5	114.7	108.3	97.5
10	1	13.2	12.5	11.3	26.5	25	22.5	56.3	53.1	47.8	129	121.9	109.7
11	1	14.7	13.9	12.5	29.4	27.8	25	62.5	59	53.1	143.4	135.4	121.9
0	2	1.8	1.7	1.5	3.5	3.3	3	7.5	7.1	6.4	17.2	16.3	14.6
1	2	3.5	3.3	3	7.1	6.7	6	15	14.2	12.8	34.4	32.5	29.3
2	2	5.3	5	4.5	10.6	10	9	22.5	21.3	19.1	51.6	48.8	43.9
3	2	7.1	6.7	6	14.1	13.3	12	30	28.3	25.5	68.8	65	58.5
4	2	10.6	10	9	21.2	20	18	45	42.5	38.3	103.2	97.5	87.8
5	2	14.1	13.3	12	28.2	26.7	24	60	56.7	51	137.6	130	117
6	2	15.9	15	13.5	31.8	30	27	67.5	63.8	57.4	154.9	146.3	131.6
7	2	17.6	16.7	15	35.3	33.3	30	75	70.8	63.8	172.1	162.5	146.3
8	2	21.2	20	18	42.4	40	36	90	85	76.5	206.5	195	175.5
9	2	23.5	22.2	20	47.1	44.4	40	100	94.4	85	229.4	216.7	195
10	2	26.5	25	22.5	52.9	50	45	112.5	106.3	95.6	258.1	243.8	219.4
11	2	29.4	27.8	25	58.8	55.6	50	125	118.1	106.3	286.8	270.8	243.8

Table 2-4. Supported Data Rates

2.3 Test Configuration

ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing. See Sections 7.7 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

2.4 Antenna Description

The following antenna gains were used for the testing.

Frequency [GHz]	Antenna-1 Gain [dBi]	Antenna-2 Gain [dBi]	Directional Gain [dBi]	
2.4	-3.15	-3.16	-0.14	
Table 2-5. Antenna Peak Gain				

2.5 Software and Firmware

The test was conducted with software/firmware version A356USQU0AWJ2 installed on the EUT.

FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage C of 70	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 6 of 72	
© 2022 ELEMENT			V11.1 08/28/2023	

2.6 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 7 of 72	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 7 of 72	
© 2022 ELEMENT			V11.1 08/28/2023	

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

3.3 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 70	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 8 of 72	
© 2022 ELEMENT	<u>.</u>		V11.1 08/28/2023	

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connections to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

FCC ID: A3LSMA356U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 9 of 72
© 2022 ELEMENT		·	V11.1 08/28/2023

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 72	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 10 of 72	
© 2022 ELEMENT			V11.1 08/28/2023	

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	De scription	Cal Date	Cal Interval	Cal Due	Serial Number
-	AP2-001	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	AP2-001
-	ETS-001	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-001
-	ETS-002	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-002
-	MD 1M 18-40	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	MD1M18-40
-	WL40-1	Conducted Cable Set (40GHz)	1/12/2023	Annual	1/12/2024	WL40-1
-	WL25-1	Conducted Cable Set (25GHz)	1/12/2023	Annual	1/12/2024	WL25-1
Anritsu	MA24406A	Microwave Peak Power Sensor	9/7/2023	Annual	9/7/2024	11240
Emco	3115	Horn Antenna (1-18GHz)	8/8/2022	Biennial	8/8/2024	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	7/5/2022	Biennial	7/5/2024	9203-2178
Pastermack	MNLC-2	Line Conducted Emission Cable (NM)	1/11/2023	Annual	1/11/2024	NMLC-2
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	8/11/2022	Biennial	8/11/2024	114451
ETS Lindgren	3116C	1-18 GHz DRG Horn Antenna	2/27/2023	Biennial	2/27/2024	00218893
ETS Lindgren	3115	Double Ridged Guide Horn	4/12/2022	Biennial	4/12/2024	82333
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	4/13/2022	Biennial	4/13/2025	121034
Keysight Technologies	N9020A	MXA Signal Analyzer	3/15/2023	Annual	3/15/2024	MY54500644
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	3/15/2023	Annual	3/15/2024	MY52350166
Keysight Technologies	N9030A	PXA Signal Analyzer	1/31/2023	Annual	1/31/2024	MY55410501
Keysight Technologies	N9030B	PXA Signal Analyzer, Multi-touch	9/7/2023	Annual	9/7/2024	MY57141001
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	9/25/2023	Annual	9/25/2024	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	9/11/2023	Annual	9/11/2024	100348
Rohde & Schwarz	ESW44	EMI Test Receiver 2Hz to 44 GHz	3/1/2023	Annual	3/1/2024	101716
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	1/13/2023	Annual	1/13/2024	103200
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	2/21/2023	Biennial	2/21/2025	A051107
Sunol	JB6	LB6 Antenna	3/2/2023	Biennial	3/2/2025	A082816

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 70	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 11 of 72	
© 2022 ELEMENT	· · ·		V11.1 08/28/2023	

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMA356U
FCC Classification:	Digital Transmission System (DTS)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2(a)]	6dB Bandwidth	The minimum 6 dB bandwidth shall be at least 500 kHz.		PASS	Section 7.2
15.247(b)(3)	RSS-247 [5.4(b)]	Transmitter Output Power	shall not exceed 1 W		PASS	Section 7.3
N/A	RSS-247 [5.4(b)]	e.i.r.p	Shall not exceed 4 W	CONDUCTED	PASS	Section 7.3
15.247(e)	RSS-247 [5.2(b)]	Transmitter Power Spectral Density	shall not be greater than 8 dBm in any 3 kHz band		PASS	Section 7.4
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	≥ 20dBc		PASS	Sections 7.5, 7.6
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Section 7.7

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst-case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "WLAN Automation," Version 3.5.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 1.3.1.
- 802.11ax OFDMA testing was performed for all signal tone configurations as specified by the 802.11ax standard. Worst case results are determined and reported per the guidance provided at the October 2018 TCB Workshop.

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 12 of 72
1M2311010111-12.A3L	11/07-12/28/2023	28/2023 Portable Handset	
© 2022 ELEMENT			V11.1 08/28/2023

7.2 6dB Bandwidth Measurement

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst-case configuration results are reported in this section.

The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure Used

ANSI C63.10-2013 - Section 11.8.2 Option 2

Test Settings

- The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

- 1. Based on preliminary measurements, it was determined that, of all the tone configurations, the 26T configuration produced the worst case 6dB Bandwidth measurement. Only the worst-case data is included in this section.
- 2. The 6dB bandwidth for each channel was measured with the RU index showing the highest conducted power.

FCC ID: A3LSMA356U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 72
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 13 of 72
© 2022 ELEMENT	•		V11.1 08/28/2023

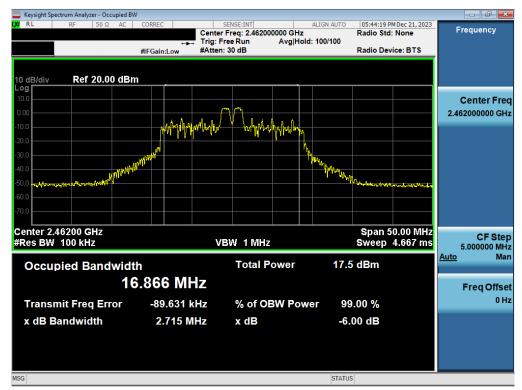
6dB Bandwidth Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	Measured Bandwidth ANT1 [MHz]	Measured Bandwidth ANT2 [MHz]	Minimum Bandwidth [MHz]
2412	1	ax	26T	MCS0	2.676	2.691	0.500
2437	6	ax	26T	MCS0	2.111	2.104	0.500
2462	11	ax	26T	MCS0	2.715	2.664	0.500
2412	1	ax	242T	MCS0	19.07	19.20	0.500
2437	6	ax	242T	MCS0	19.17	19.20	0.500
2462	11	ax	242T	MCS0	19.10	19.06	0.500

Table 7-2. Conducted 6dB Bandwidth Measurements MIMO

FCC ID: A3LSMA356U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 14 of 72
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 14 of 72
© 2022 ELEMENT		•	V11.1 08/28/2023

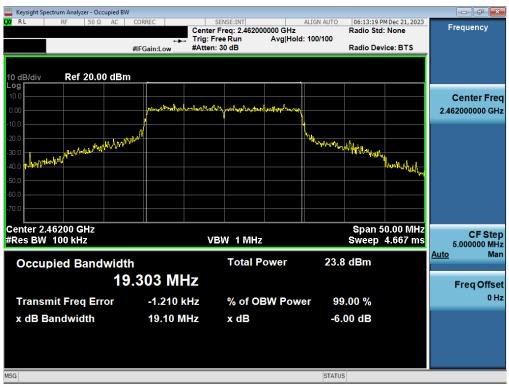
7.2.1 MIMO 6 dB Bandwidth Measurements


Plot 7-1. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA - 26 Tones - Ch. 1)

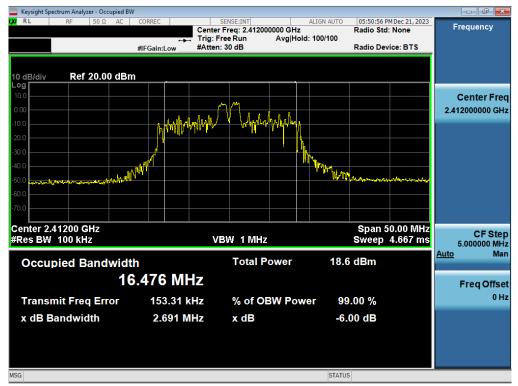
Plot 7-2. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 6)

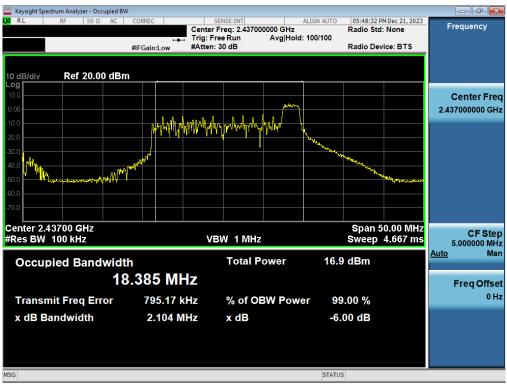
FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dama 45 of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 15 of 72
© 2022 ELEMENT			V11 1 08/28/2023

Plot 7-3. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA - 26 Tones - Ch. 11)


Plot 7-4. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 1)

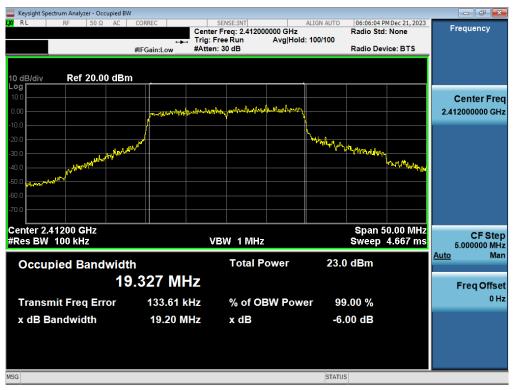
FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 16 of 72
© 2022 ELEMENT	· ·		V11.1 08/28/2023


Plot 7-5. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 6)

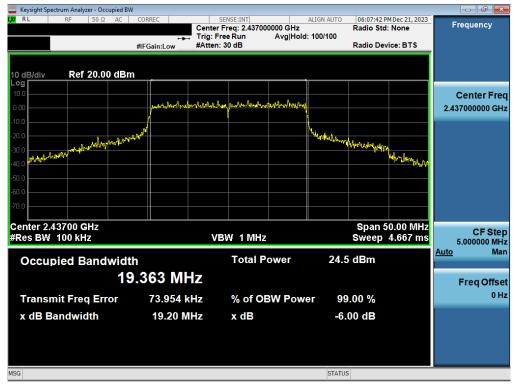

Plot 7-6. 6dB Bandwidth Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 11)

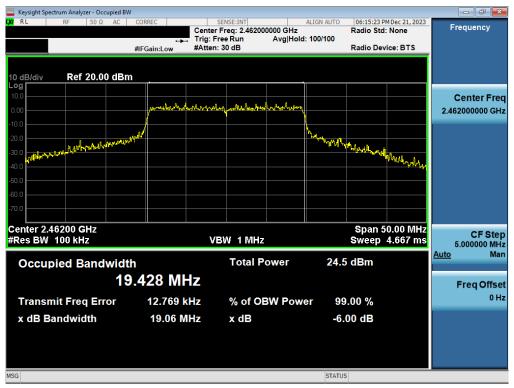
FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dege 17 of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 17 of 72
© 2022 ELEMENT			V11.1 08/28/2023


Plot 7-7. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 1)


Plot 7-8. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 6)

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Degr. 19 of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 18 of 72
2022 ELEMENT V11.1 08/28/2023			


Plot 7-9. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 11)


Plot 7-10. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 1)

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 19 of 72
© 2022 ELEMENT			V11.1 08/28/2023

Plot 7-11. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA - 242 Tones - Ch. 6)

Plot 7-12. 6dB Bandwidth Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 11)

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 72
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 20 of 72
2022 ELEMENT V11.1 08/28/2023			

7.3 Output Power Measurement

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt per 15.247 and RSS-247. The e.i.r.p. shall not exceed 4 W per RSS-247.

Test Procedure Used

ANSI C63.10-2013 – Section 11.9.1.3 PKPM1 Peak Power Method ANSI C63.10-2013 – Section 11.9.2.3.2 Method AVGPM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique

Test Settings

Method PKPM1 (Peak Power Measurement)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

Figure 7-2. Test Instrument & Measurement Setup for Power Meter Measurements

Test Notes

None.

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 01 of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 21 of 72
© 2022 ELEMENT			V11.1 08/28/2023

Freq [MHz] Channel		Tones	nannel Tones	RU Index			Conducted F				Conducted Power Limit	Avg Conducted Power Margin	Peak Conducted Power Margin	Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
ried [muss]	Channel	Tones	RO IIIdex	Anter	nna-1	Anter	nna-2	MI	мо				[dBi]	[dBm]	[dBm]	[dB]	
				AVG	PEAK	AVG	PEAK	AVG	PEAK	[dBm]	[dB]	[dB]					
			0	8.25	19.97	8.68	20.24	11.48	23.12	30.00	-18.52	-6.88	-0.14	11.34	36.02	-24.68	
2412	1	26T	4	8.80	20.44	8.96	19.85	11.89	23.17	30.00	-18.11	-6.83	-0.14	11.75	36.02	-24.27	
			8	8.19	19.54	8.65	19.47	11.44	22.52	30.00	-18.56	-7.48	-0.14	11.29	36.02	-24.73	
			0	8.61	19.94	8.14	19.02	11.39	22.51	30.00	-18.61	-7.49	-0.14	11.25	36.02	-24.77	
2437	6	26T	4	8.31	19.17	8.62	19.28	11.48	22.24	30.00	-18.52	-7.76	-0.14	11.33	36.02	-24.69	
			8	8.99	19.91	8.72	19.16	11.87	22.56	30.00	-18.13	-7.44	-0.14	11.72	36.02	-24.30	
			0	8.26	19.11	8.68	19.57	11.49	22.36	30.00	-18.51	-7.64	-0.14	11.34	36.02	-24.68	
2462	11	26T	4	8.58	19.41	8.87	20.01	11.74	22.73	30.00	-18.26	-7.27	-0.14	11.59	36.02	-24.43	
			8	7.69	18.71	8.85	19.88	11.32	22.34	30.00	-18.68	-7.66	-0.14	11.17	36.02	-24.85	
			0	5.97	17.01	5.26	18.63	8.64	20.91	30.00	-21.36	-9.09	-0.14	8.50	36.02	-27.52	
2467	12	26T	4	5.89	16.89	5.42	18.52	8.67	20.79	30.00	-21.33	-9.21	-0.14	8.53	36.02	-27.49	
			8	5.99	17.22	5.55	18.47	8.79	20.90	30.00	-21.21	-9.10	-0.14	8.64	36.02	-27.38	
			0	-8.78	7.69	-8.90	8.21	-5.83	10.97	30.00	-35.83	-19.03	-0.14	-5.97	36.02	-41.99	
2472	13	26T	4	-8.54	-7.58	-8.64	8.45	-5.58	8.56	30.00	-35.58	-21.44	-0.14	-5.72	36.02	-41.74	
			8	-8.65	-7.54	-8.75	7.55	-5.69	7.68	30.00	-35.69	-22.32	-0.14	-5.83	36.02	-41.85	

Table 7-3. Conducted Output Power Measurements MIMO (26 Tones)

Freq [MHz]	Channel	Tones	RU Index			Conducted F	Power [dBm]			Conducted Power Limit	Avg Conducted Power Margin	Peak Conducted Power Margin	Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
Freq [WHZ]	Channel	Tones	RU Index	Anter	nna-1	Antei	nna-2	MI	мо				[dBi]	[dBm]	[dBm]	[dB]
				AVG	PEAK	AVG	PEAK	AVG	PEAK	[dBm]	[dB]	[dB]				
			37	11.74	22.80	11.61	22.79	14.69	25.81	30.00	-15.31	-4.19	-0.14	14.54	36.02	-21.48
2412	1	52T	38	11.49	22.38	11.79	22.89	14.65	25.65	30.00	-15.35	-4.35	-0.14	14.51	36.02	-21.51
			40	11.43	22.87	11.97	22.55	14.72	25.72	30.00	-15.28	-4.28	-0.14	14.57	36.02	-21.45
			37	11.65	23.22	11.04	22.49	14.37	25.88	30.00	-15.63	-4.12	-0.14	14.22	36.02	-21.80
2437	6	52T	38	11.58	23.31	11.44	23.08	14.52	26.21	30.00	-15.48	-3.79	-0.14	14.38	36.02	-21.64
			40	11.99	23.20	11.59	22.86	14.80	26.04	30.00	-15.20	-3.96	-0.14	14.66	36.02	-21.36
			37	11.45	23.16	11.83	23.33	14.65	26.26	30.00	-15.35	-3.74	-0.14	14.51	36.02	-21.51
2462	11	52T	38	11.45	22.55	11.61	22.69	14.54	25.63	30.00	-15.46	-4.37	-0.14	14.40	36.02	-21.62
			40	10.61	21.47	11.81	22.69	14.26	25.13	30.00	-15.74	-4.87	-0.14	14.12	36.02	-21.90
			37	8.46	19.53	8.52	20.15	11.50	22.86	30.00	-18.50	-7.14	-0.14	11.36	36.02	-24.66
2467	12	52T	38	8.52	19.96	8.63	20.16	11.59	23.07	30.00	-18.41	-6.93	-0.14	11.44	36.02	-24.58
			40	8.37	19.47	8.44	20.07	11.42	22.79	30.00	-18.58	-7.21	-0.14	11.27	36.02	-24.75
			37	-7.01	6.58	-7.08	6.98	-4.03	9.79	30.00	-34.03	-20.21	-0.14	-4.18	36.02	-40.20
2472	13	52T	38	-6.98	6.88	-6.99	6.63	-3.97	9.77	30.00	-33.97	-20.23	-0.14	-4.12	36.02	-40.14
			40	-7.01	6.89	-7.12	6.99	-4.06	9.95	30.00	-34.06	-20.05	-0.14	-4.20	36.02	-40.22

Table 7-4. Conducted Output Power Measurements MIMO (52 Tones)

Freq (MHz)	Channel	Tones	RU Index			Conducted F	Power [dBm]			Conducted Power Limit	Avg Conducted Power Margin	Peak Conducted Power Margin	Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin						
Freq [WHZ]	Channel		RU Index	Anter	nna-1	Anter	nna-2	MI	мо				[dBi]	[dBm]	[dBm]	[dB]						
			AVG	PEAK	AVG	PEAK	AVG	PEAK	[dBm]	[dB]	[dB]											
2412	1	106T	53	14.99	24.49	14.82	24.28	17.92	27.40	30.00	-12.08	-2.60	-0.14	17.77	36.02	-18.25						
2412	'	1001	54	14.51	24.35	14.98	24.36	17.76	27.37	30.00	-12.24	-2.63	-0.14	17.62	36.02	-18.40						
2437	6	106T	53	14.24	24.42	14.18	24.09	17.22	27.27	30.00	-12.78	-2.73	-0.14	17.08	36.02	-18.94						
2437	0	1001	54	14.55	24.49	14.54	24.21	17.56	27.36	30.00	-12.44	-2.64	-0.14	17.41	36.02	-18.61						
2462	11	106T	53	14.17	24.31	14.51	24.13	17.35	27.23	30.00	-12.65	-2.77	-0.14	17.21	36.02	-18.81						
2402		1001	54	13.89	23.73	14.89	24.52	17.43	27.15	30.00	-12.57	-2.85	-0.14	17.28	36.02	-18.74						
2467	12	106T	53	10.22	20.21	10.32	20.36	13.28	23.30	30.00	-16.72	-6.70	-0.14	13.14	36.02	-22.88						
2407	12	1001	54	10.17	20.11	10.44	20.44	13.32	23.29	30.00	-16.68	-6.71	-0.14	13.17	36.02	-22.85						
2472	13	106T	53	1.79	12.96	1.82	13.47	4.82	16.23	30.00	-25.18	-13.77	-0.14	4.67	36.02	-31.35						
24/2 1.	13	1061	1061	1061	1061	3 106T	3 106T	106T	54	1.98	13.01	1.89	13.52	4.95	16.28	30.00	-25.05	-13.72	-0.14	4.80	36.02	-31.22
	Table 7-5 Conducted Output Power Measurements MIMO (106 Tones)																					

Table 7-5. Conducted Output Power Measurements MIMO (106 Tones)

Freq [MHz]	Channel	Tones	RU Index		Conducted Power [dBm]		Conducted Power Limit	Avg Conducted Power Margin	Peak Conducted Power Margin	Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin			
ried [winz]	Channel	Tones	Romuex	Anter	nna-1	Ante	nna-2	MI	мо				[dBi]	[dBm]	[dBm]	[dB]
				AVG	PEAK	AVG	PEAK	AVG	PEAK	[dBm]	[dB]	[dB]				
2412	1	242T	61	16.77	24.74	16.67	24.35	19.73	27.56	30.00	-10.27	-2.44	-0.14	19.59	36.02	-16.43
2437	6	242T	61	16.42	24.85	16.34	24.63	19.39	27.75	30.00	-10.61	-2.25	-0.14	19.25	36.02	-16.77
2462	11	242T	61	15.86	24.64	16.68	24.67	19.30	27.67	30.00	-10.70	-2.33	-0.14	19.15	36.02	-16.87
2467	12	242T	61	10.21	21.01	9.96	21.23	13.10	24.13	30.00	-16.90	-5.87	-0.14	12.95	36.02	-23.07
2472	13	242T	61	2.35	13.22	2.33	13.56	5.35	16.40	30.00	-24.65	-13.60	-0.14	5.21	36.02	-30.81

Table 7-6. Conducted Output Power Measurements MIMO (242 Tones)

FCC ID: A3LSMA356U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 72		
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 22 of 72		
© 2022 ELEMENT			V11.1 08/28/2023		

Note:

Per ANSI C63.10-2013 Section 14.2, the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 2412MHz the average conducted output power was measured to be 16.77dBm for Antenna 1 and 16.67dBm for Antenna 2.

Antenna 1 + Antenna 2 = MIMO

(16.77dBm + 16.67dBm) = (47.534mW + 46.452mW) = 93.986mW = 19.73dBm

FCC ID: A3LSMA356U		MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 72			
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 23 of 72			
© 2022 ELEMENT V11.1						

7.4 Power Spectral Density

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates, tones configurations, and RU indices were investigated and the worst-case configuration results are reported in this section.

The maximum permissible power spectral density shall not be greater than 8 dBm in any 3 kHz band.

Test Procedure Used

ANSI C63.10-2013 – Section 11.10.2 Method PKPSD ANSI C63.10-2013 – Section 14.3.1 Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 3kHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

- 1. Based on preliminary measurements, it was determined that, of all of the tone configurations, the 26T configuration produced the worst case power spectral density measurement for partial loaded case. Therefore, only the 26 Tone configuration and 242 Tone data is included in this section.
- 2. The power spectral density for each channel was measured with the RU index showing the highest conducted power.

FCC ID: A3LSMA356U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:			
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 24 of 72		
© 2022 ELEMENT			V11.1 08/28/2023		

Power Spectral Density Measurements

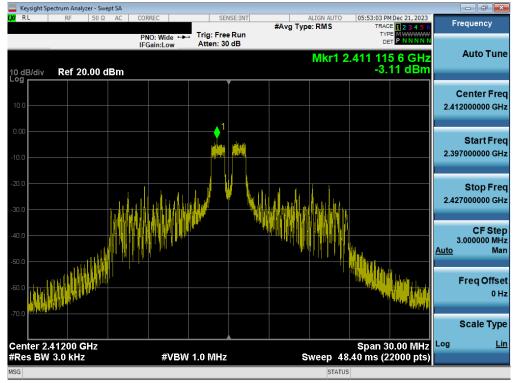
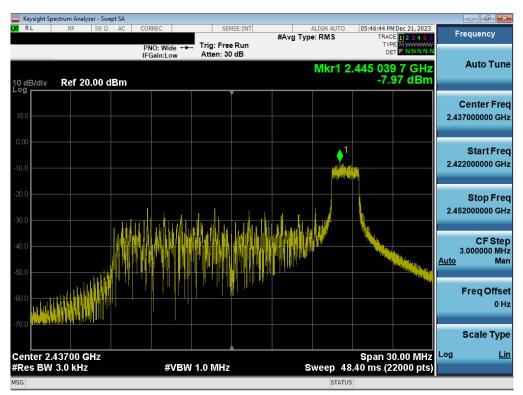
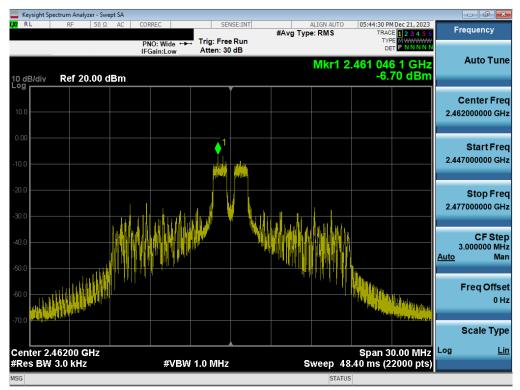
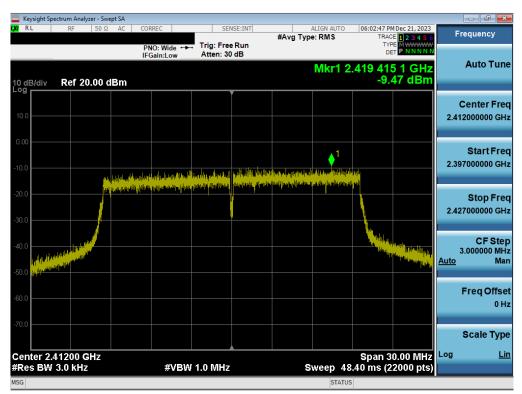

Frequency [MHz]	Channel No.	802.11 Mode	Tones	Data Rate [Mbps]	ANT 1 Power Spectral Density [dBm]	ANT 2 Power Spectral Density [dBm]	Summed MIMO Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	ax	26T	MCS0	-3.11	-7.60	-1.79	8.00	-9.79	Pass
2437	6	ax	26T	MCS0	-7.97	-9.37	-5.60	8.00	-13.60	Pass
2462	11	ax	26T	MCS0	-6.70	-7.84	-4.22	8.00	-12.22	Pass
2412	1	ax	242T	MCS0	-9.47	-10.05	-6.74	8.00	-14.74	Pass
2437	6	ax	242T	MCS0	-10.37	-8.60	-6.39	8.00	-14.39	Pass
2462	11	ax	242T	MCS0	-9.43	-8.77	-6.08	8.00	-14.08	Pass

Table 7-7. Conducted Power Spectral Density Measurements MIMO

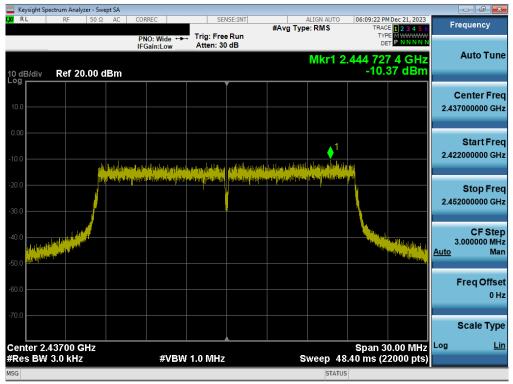

FCC ID: A3LSMA356U		Approved by: Technical Manager	
Test Report S/N:	eport S/N: Test Dates: EUT Type:		Dage 25 of 72
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 25 of 72
© 2022 ELEMENT			V11.1 08/28/2023

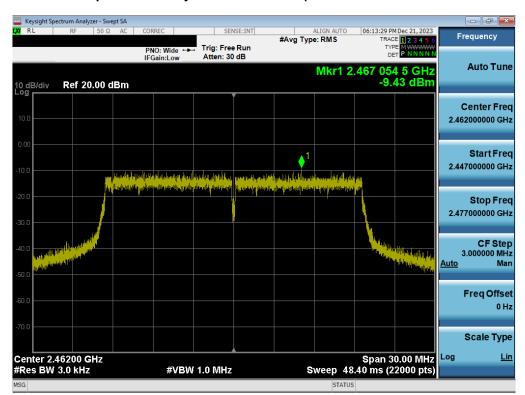
7.4.1 MIMO Power Spectral Density Measurements


Plot 7-13. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 1)

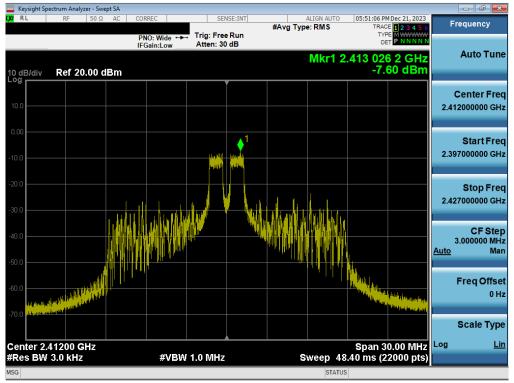

Plot 7-14. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 6)

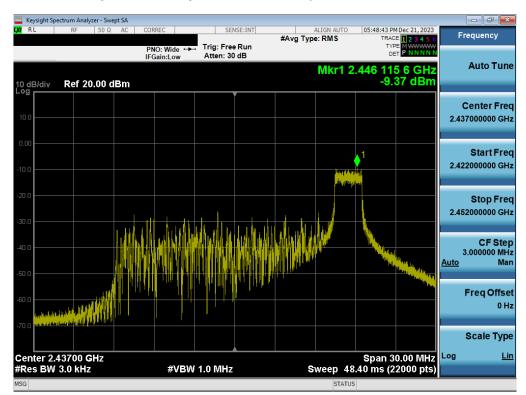
FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:		
1M2311010111-12.A3L	010111-12.A3L 11/07-12/28/2023 Portable Handse		Page 26 of 72	
© 2022 ELEMENT	•		V11 1 08/28/2023	


Plot 7-15. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 11)

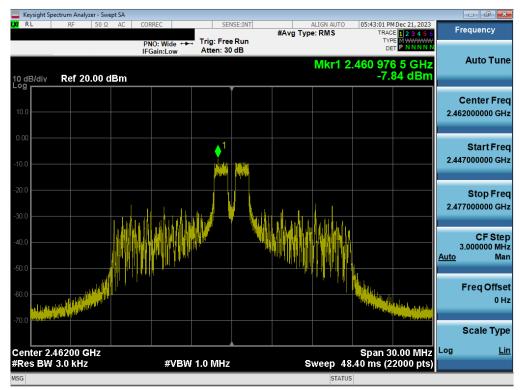

Plot 7-16. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 1)

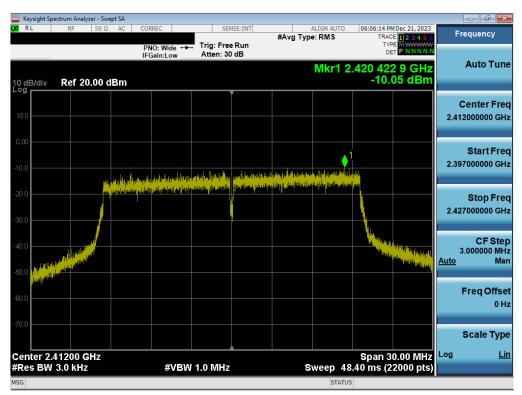
FCC ID: A3LSMA356U		MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:				
1M2311010111-12.A3L 11/07-12/28/2023		Portable Handset	Page 27 of 72			
© 2022 ELEMENT						


Plot 7-17. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 6)

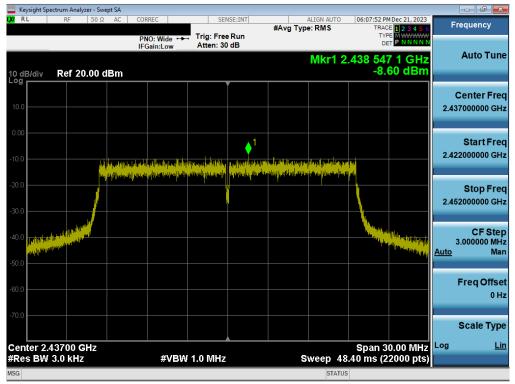

Plot 7-18. Power Spectral Density Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 11)

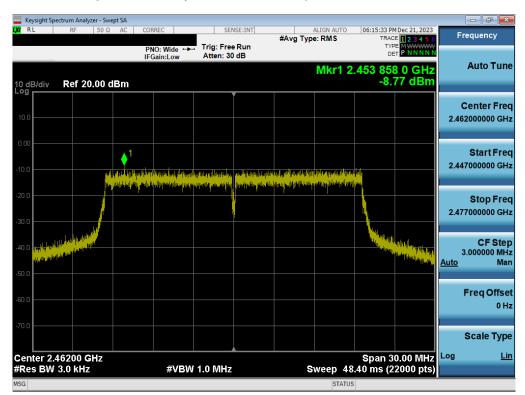
FCC ID: A3LSMA356U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Degre 20 of 72		
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 28 of 72		
© 2022 ELEMENT	·	·	V11.1 08/28/2023		


Plot 7-19. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 1)


Plot 7-20. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 6)

FCC ID: A3LSMA356U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 72
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 29 of 72
© 2022 ELEMENT			V11.1 08/28/2023


Plot 7-21. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 11)


Plot 7-22. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 1)

FCC ID: A3LSMA356U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 70		
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 30 of 72		
© 2022 ELEMENT	•		V11 1 08/28/2023		

Plot 7-23. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 6)

Plot 7-24. Power Spectral Density Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 11)

FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 72	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 31 of 72	
© 2022 ELEMENT	·	·	V11.1 08/28/2023	

Note:

Per ANSI C63.10-2013 Section 14.3.1, the power spectral density at Antenna 1 and Antenna 2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 2412MHz the average conducted power spectral density was measured to be -3.82 dBm for Antenna 1 and - 2.66 dBm for Antenna 2.

Antenna 1 + Antenna 2 = MIMO

(-3.82 dBm + -2.66 dBm) = (0.42 mW + 0.54 mW) = 0.96 mW = -0.19 dBm

FCC ID: A3LSMA356U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 72		
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 32 of 72		
© 2022 ELEMENT			V11.1 08/28/2023		

7.5 Conducted Band Edge Emissions

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates, tone configurations, and RU indices were investigated to determine the worst-case configuration. For the following out of band conducted emissions plots at the band edge, the EUT was set to a data rate of MCS0 in 802.11ax mode as this setting produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 7.4).

Test Procedure Used

ANSI C63.10-2013 - Section 11.11.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

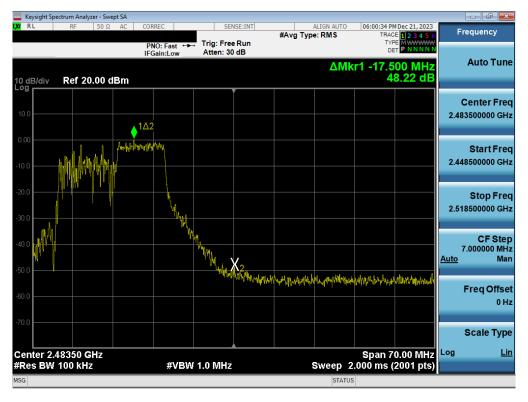
The EUT and measurement equipment were set up as shown in the diagram below.

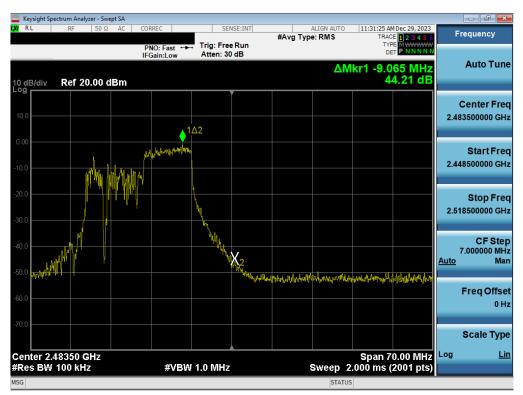
Figure 7-4. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 72	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 33 of 72	
© 2022 ELEMENT	·	· ·	V11.1 08/28/2023	


7.5.1 MIMO Conducted Band Edge Emissions


Plot 7-25. Band Edge Plot MIMO ANT1 (802.11ax OFDMA - 106 Tones - Ch. 1)

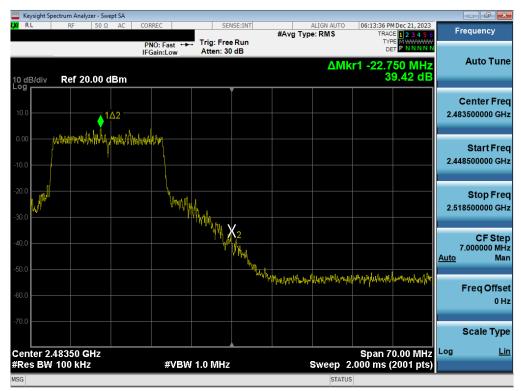
FCC ID: A3LSMA356U		Approved by: Technical Manager	
Test Report S/N:	Test Dates: EUT Type:		Dogo 24 of 72
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 34 of 72
© 2022 ELEMENT	•	·	V11.1 08/28/2023

Plot 7-26. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 106 Tones – Ch. 11)


Plot 7-27. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 106 Tones – Ch. 12)

FCC ID: A3LSMA356U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 72		
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 35 of 72		
© 2022 ELEMENT			V11.1 08/28/2023		

	ectrum Analyze	r - Swep	t SA										
RL	RF	50 Ω	AC C	ORREC			ENSE:INT	#Avg Ty	ALIGN AUTO	TRA	M Dec 29, 2023 CE 1 2 3 4 5 6		equency
0 dB/div	Ref 20.0	00 de		PNO: F FGain:	ast ↔→ Low	Trig: Fr Atten: 3			Δ	Mkr1 -7.3	815 MHz		Auto Tun
10.0													Center Fre 3500000 GF
0.00			(all		printing	1 <u>0</u> 2						2.44	Start Fre 8500000 GH
20.0				M"" (2.51	Stop Fre 8500000 Gł
40.0	- La Ath	n a start st					X2					7 <u>Auto</u>	CF Ste 2.000000 Mi Ma
50.0 474/144	HARAN HAPPY							had for the second	want Annathikan	Manaan pulinya dhe	uplathermonth help		Freq Offs 0 I
70.0	48350 GH									Snan	'0.00 MHz		Scale Typ
	48350 GF 100 kHz	2			#VBW	1.0 MH	z		Sweep	2.000 ms	(2001 pts)		-
SG									STAT				


Plot 7-28. Band Edge Plot MIMO ANT1 (802.11ax OFDMA - 106 Tones - Ch. 13)

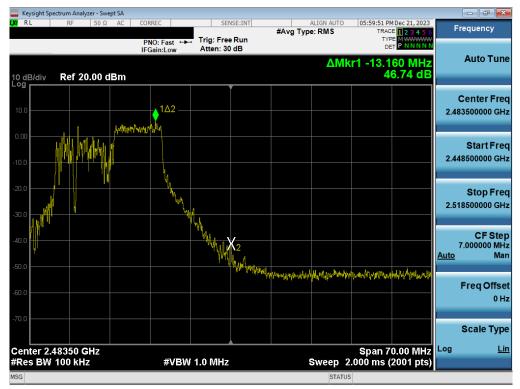

Plot 7-29. Band Edge Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 1)

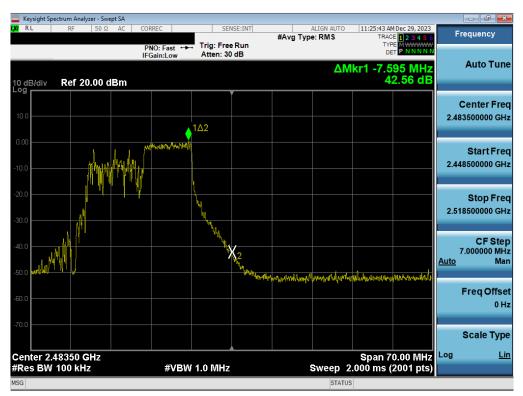
FCC ID: A3LSMA356U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 at 70		
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 36 of 72		
© 2022 ELEMENT			\/11 1 08/28/2023		

Plot 7-30. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 11)

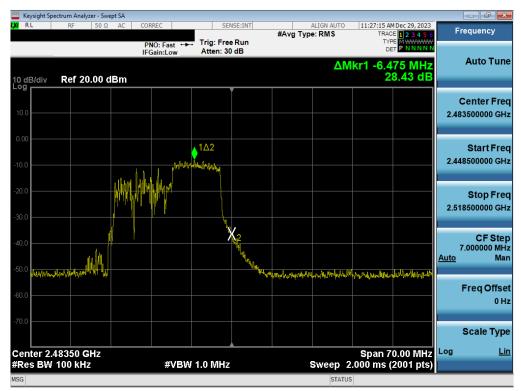

Plot 7-31. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 12)

FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 37 of 72	
1M2311010111-12.A3L	11/07-12/28/2023	7-12/28/2023 Portable Handset		
© 2022 ELEMENT			V11.1 08/28/2023	


Plot 7-32. Band Edge Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 13)

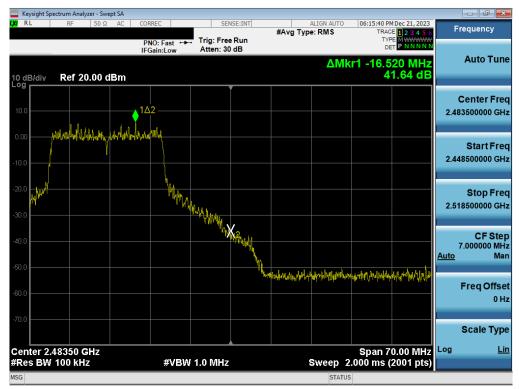

Plot 7-33. Band Edge Plot MIMO ANT2 (802.11ax OFDMA - 106 Tones - Ch. 1)

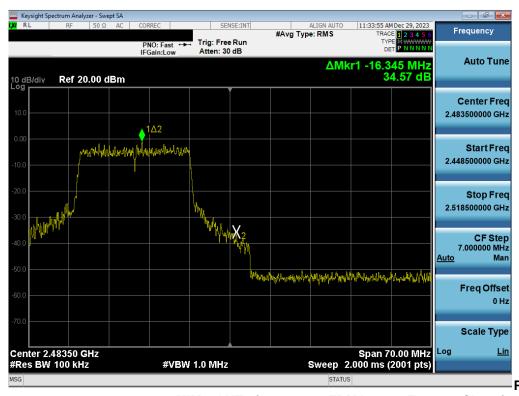
FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 29 of 70	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 38 of 72	
© 2022 ELEMENT	•		V11.1 08/28/2023	


Plot 7-34. Band Edge Plot MIMO ANT2 (802.11ax OFDMA – 106 Tones – Ch. 11)

Plot 7-35. Band Edge Plot MIMO ANT2 (802.11ax OFDMA – 106 Tones – Ch. 12)

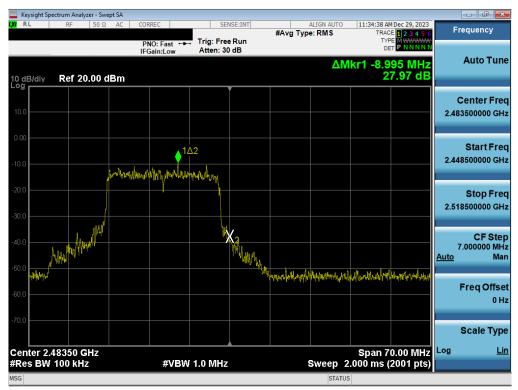
FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 70	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 39 of 72	
© 2022 ELEMENT	•		V11 1 08/28/2023	


Plot 7-36. Band Edge Plot MIMO ANT2 (802.11ax OFDMA – 106 Tones – Ch. 13)


Plot 7-37. Band Edge Plot MIMO ANT2 (802.11ax OFDMA - 242 Tones - Ch. 1)

FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 at 70	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 40 of 72	
© 2022 ELEMENT			\/11 1 08/28/2023	

Plot 7-38. Band Edge Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 11)



Plot 7-39. Band Edge Plot

MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 12)

FCC ID: A3LSMA356U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 72
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Fage 41 01 72
© 2022 ELEMENT			V11.1 08/28/2023

Plot 7-40. Band Edge Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 13)

FCC ID: A3LSMA356U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 40 of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 42 of 72
© 2022 ELEMENT	•		V11.1 08/28/2023

7.6 Conducted Spurious Emissions

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates, tone configurations, and RU indices were investigated to determine the worst-case configuration. For the following out of band conducted emissions plots, the EUT was set to a data rate of MCS0 in 802.11ax mode as this setting produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.11.3 of ANSI C63.10-2013.

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 ANSI C63.10-2013 – Section 14.3.3

Test Settings

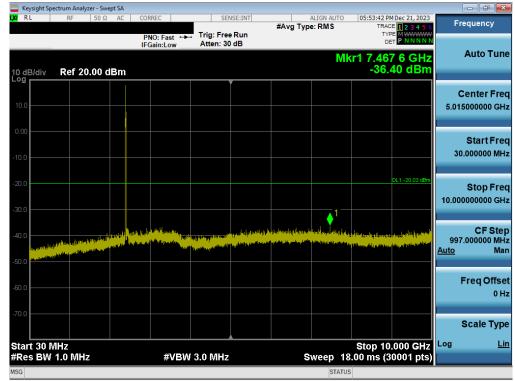
- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

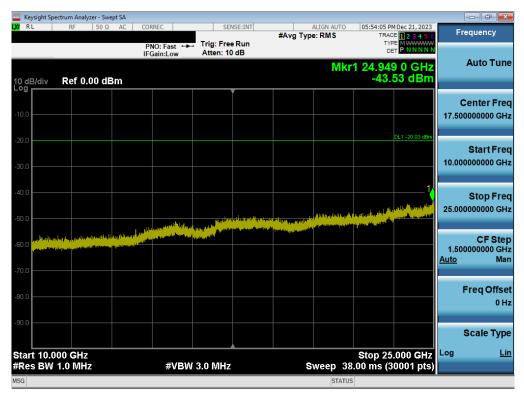
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 42 of 72
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 43 of 72
© 2022 ELEMENT	·	•	V11.1 08/28/2023


Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.
- 4. The conducted spurious emissions were measured to relative limits. Therefore, in accordance with ANSI C63.10-2013 Section 14.3.3, it was unnecessary to show compliance through the summation of test results of the individual outputs.


FCC ID: A3LSMA356U		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 44 of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 44 of 72
© 2022 ELEMENT			V11.1 08/28/2023

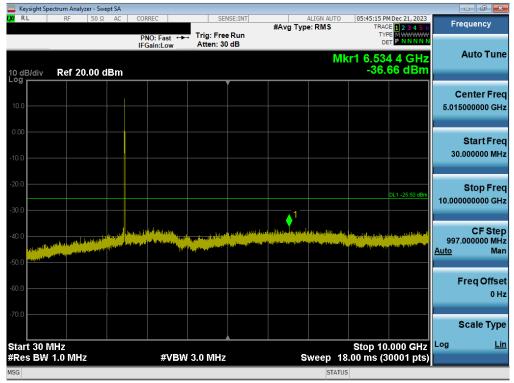
7.6.1 MIMO Conducted Spurious Emissions

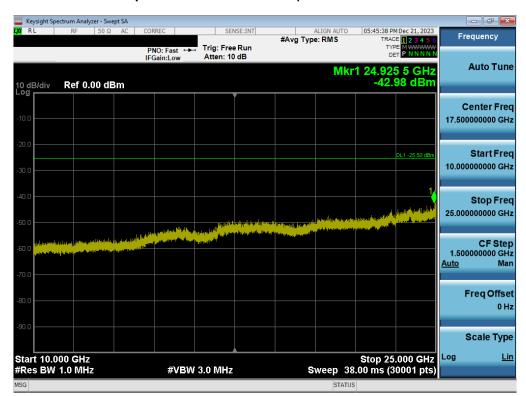
Plot 7-41. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA - 26 Tones - Ch. 1)


Plot 7-42. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA - 26 Tones - Ch. 1)

FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dama 45 of 70	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 45 of 72	
© 2022 ELEMENT	·	•	V11.1 08/28/2023	

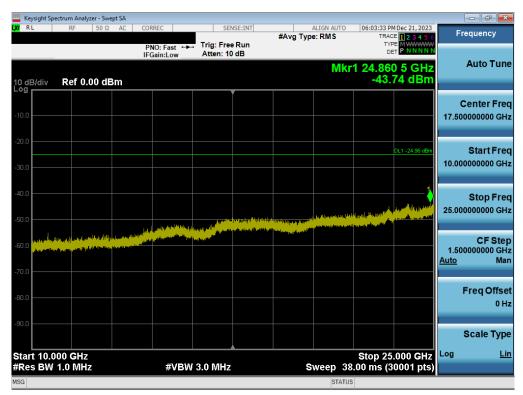
	pectrum Analyz											- 0 ×
X/RL	RF	50 Ω A		RREC			#Avg Typ	ALIGN AUTO	TRA	PM Dec 21, 2023 ACE 1 2 3 4 5 6 APE M WWWW	Fre	equency
10 dB/div	Ref 20	.00 dBr	IFO	NO: Fast ↔ Gain:Low	Atten: 30			N	، 1kr1 3.02	29 0 GHz .60 dBm		Auto Tune
10.0												enter Fre 5000000 GH
-10.0											30	Start Free .000000 MH
-20.0				1						DL1 -24.57 dBm	10.000	Stop Fre
-40.0		<mark>n al fa de la constitución de la constitu Constitución de la constitución de l</mark>				ngga ang ang ang ang ang ang ang ang ang	l ag se faal by gewend die Versele by die verke selfe			<mark>, a teala di da da da da ban</mark> dan Supergrafi da	997 <u>Auto</u>	CF Ste .000000 MH Ma
-60.0											F	Freq Offse 0 H
-70.0 Start 30				4) (D14)					Stop 1	0.000 GHz	Log	Scale Typ <u>Li</u>
FRes BW	/ 1.0 MHz			#VBW	3.0 MHz		S	weep sta	18.00 ms (30001 pts)		


Plot 7-43. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA - 26 Tones - Ch. 6)


Plot 7-44. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 26 Tones – Ch. 6)

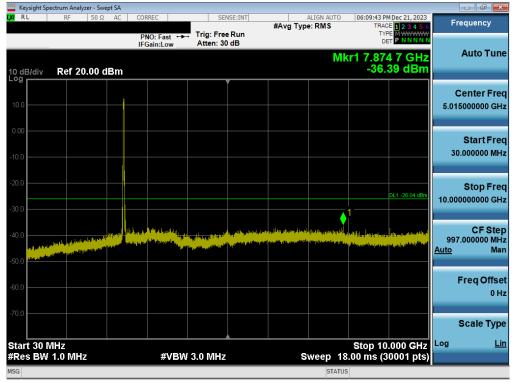
FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 at 70	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 46 of 72	
© 2022 ELEMENT			V11 1 08/28/2023	

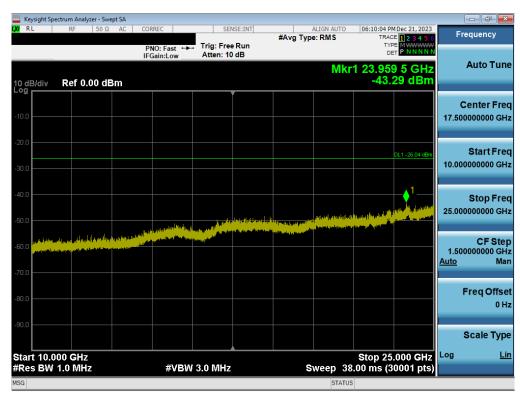
Plot 7-45. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA - 26 Tones - Ch. 11)


Plot 7-46. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA - 26 Tones - Ch. 11)

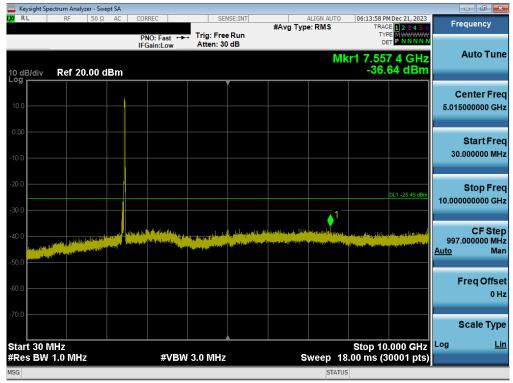
FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dega 47 of 70	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 47 of 72	
© 2022 ELEMENT	·	·	V11.1 08/28/2023	

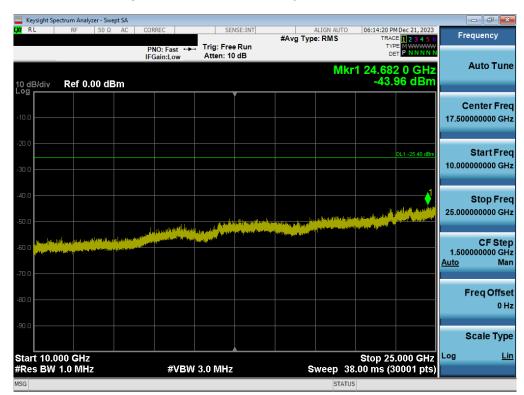
Keysight Spectrum Analyzer - Swept SA					
Χ/ R L RF 50 Ω AC	C CORREC PNO: Fast ↔	SENSE:INT	ALIGN AU #Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE MWWWW	Frequency
10 dB/div Ref 20.00 dBn	IFGain:Low	Atten: 30 dB		Mkr1 5.959 8 GHz -36.63 dBm	Auto Tune
10.0					Center Fred 5.015000000 GH
10.0					Start Free 30.000000 MH
30.0				DL1 -24.96 dBm	Stop Fre 10.000000000 GH
-40.0		the part of the second s	at Leef Contraction and the second	ns (A TH A <u>that y an an a that an an an an an an a</u> that an	CF Ste 997.000000 MH <u>Auto</u> Ma
60.0					Freq Offse 0 H
70.0				Stop 10.000 GHz	Scale Typ Log <u>Li</u>
#Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep	18.00 ms (30001 pts)	
ISG			ST	TATUS	


Plot 7-47. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 1)


Plot 7-48. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 1)

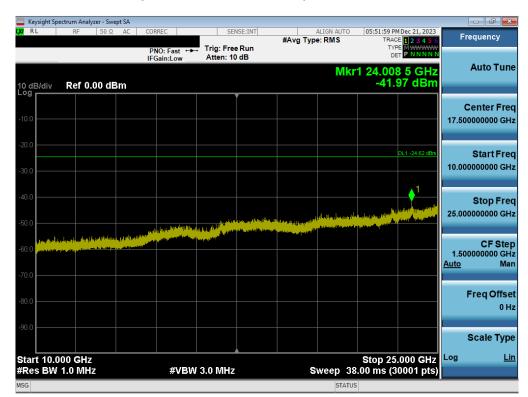
FCC ID: A3LSMA356U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 of 70		
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 48 of 72		
© 2022 ELEMENT	•	•	V11.1 08/28/2023		


Plot 7-49. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 6)


Plot 7-50. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA – 242 Tones – Ch. 6)

FCC ID: A3LSMA356U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 70		
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 49 of 72		
© 2022 ELEMENT			V11.1 08/28/2023		

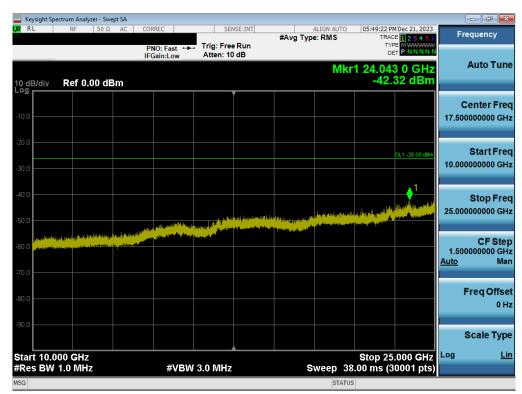
Plot 7-51. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 11)


Plot 7-52. Conducted Spurious Plot MIMO ANT1 (802.11ax OFDMA - 242 Tones - Ch. 11)

FCC ID: A3LSMA356U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage E0 of 70		
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 50 of 72		
© 2022 ELEMENT			V11.1 08/28/2023		

	t Spectrum Anal	· ·										
L <mark>XI</mark> RL	RF	50 Ω /	AC COF	RREC		ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRA	M Dec 21, 2023 CE 1 2 3 4 5 6	Fn	equency
				NO: Fast ↔ Gain:Low	 Trig: Free Atten: 30 				T) [
				Sameow				Ν	/lkr1 7.01	5 3 GHz		Auto Tune
10 dB/div	v Ref 2	0.00 dB	m						-35	.76 dBm		
Log)							enter Freg
10.0												5000000 GHz
0.00												Start Freq
											30	.000000 MHz
-10.0												
-20.0												04
										DL1 -24.62 dBm	10.000	Stop Freq 0000000 GHz
-30.0								1			10.000	00000000012
			damb in	h alah kayanta		aline a linker data	and the state of the	a had a star a	Malation al and a	المعاقبيات الرابي		CF Step
-40.0	Herper Heller Townster			And Automatica	lang lang gi ⁿ sa bi	أمالة كالأربية المترادية	Section and south	ويعتقر وملاقيات	and a state of the second s	an international data of		.000000 MHz
-50.0		and all all all all all all all all all al									<u>Auto</u>	Man
00.0												
-60.0												req Offset= 0 Hz
												0 H2
-70.0												Scale Type
Start 30				40 (PMA)					Stop 1	0.000 GHz	Log	Lin
	W 1.0 MH	IZ		#VBW	3.0 MHz		S	weep	18.00 ms (30001 pts)		
MSG								STA	105			

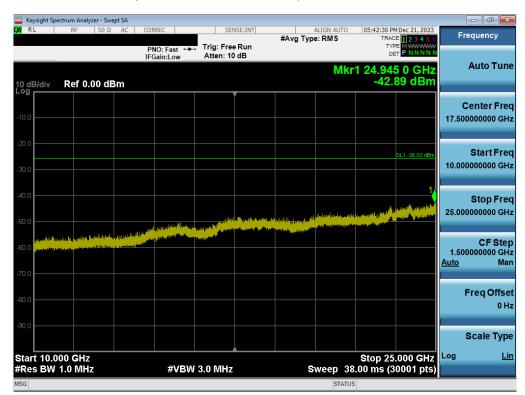
Plot 7-53. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 1)


Plot 7-54. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 1)

FCC ID: A3LSMA356U		MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 51 of 70	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 51 of 72	
© 2022 ELEMENT	•		V11.1 08/28/2023	

	ectrum Analyzer - Swe										- 0 ×
L <mark>XI</mark> RL	RF 50 Ω	AC CC	ORREC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS		M Dec 21, 2023	Fre	equency
			PNO: Fast 🔸	Trig: Free Atten: 30				TY			
10 dB/div Log	Ref 20.00 d	IBm					N	/kr1 3.05 -35.	6 6 GHz 47 dBm		Auto Tune
										С	enter Freq
10.0										5.015	000000 GHz
0.00											Start Freq
-10.0										30	.000000 MHz
-20.0									DL1 -26.05 dBm	10.000	Stop Freq
-30.0			1							10.000	000000 GH2
-40.0		wither business	A BARRISTON AND AND AND AND AND AND AND AND AND AN	a line a line	Participati (and a second	a the second	ay and a state of the second	the Alley of the state of the	MAXAMMAN MART		CF Step
and the second se		an prilledent former		الأنزا للفظري مأدمر وا	La contraction of the second	a kana din tukuta.		a statistic and a statistic statistic statistic statistics and a statistic statistic statistics and a statistic	(date of the second second	Auto	.000000 MHz Man
-50.0											
-60.0										F	req Offset ⁻ 0 Hz
-70.0											
										:	Scale Type
Start 30 M			40 (P)14					Stop 10		Log	<u>Lin</u>
#Res BW	1.0 MHZ		#VBW	/ 3.0 MHz		S	weep sta	18.00 ms (3	ooor pts)		
NBG							STA	105			

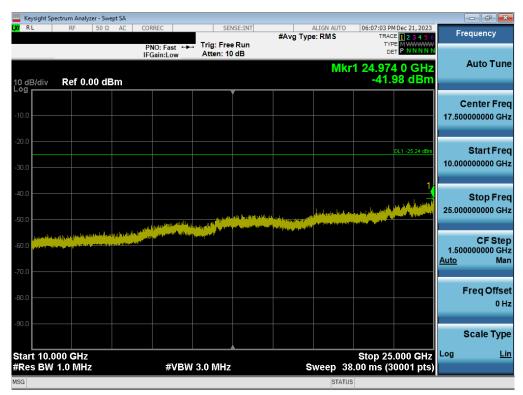
Plot 7-55. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 6)


Plot 7-56. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 26 Tones – Ch. 6)

FCC ID: A3LSMA356U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 50 of 70		
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 52 of 72		
© 2022 ELEMENT			V11.1 08/28/2023		

	ectrum Analyzer - Swe									- đ	x
L <mark>XI</mark> RL	RF 50 Ω	AC	CORREC	SEI	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS		M Dec 21, 2023	Frequency	y
			PNO: Fast ↔ IFGain:Low	Trig: Free Atten: 30		• //	N	TYF DE Akr1 3.17		Auto T	une
10 dB/div Log	Ref 20.00 c	lBm						-35.	28 dBm		
10.0										Center F 5.015000000	
-10.0										Start F 30.000000	
-20.0			1						DL1 -26.03 dBm	Stop F 10.000000000	
-40.0	and the second		Ipper - Phalappin	n - <mark>an de la constante de la cons</mark>			n United and provide a state of the state of	(144) and _{suppl} the spectrum of the spectrum	for flying produced and speed	CF S 997.000000 <u>Auto</u>	
-60.0										Freq Of	ffset 0 Hz
-70.0										Scale T	Гуре Lin
Start 30 N #Res BW			#VBV	/ 3.0 MHz		S	weep	Stop 10 18.00 ms (3	.000 GHz 0001 pts)	LUg	
MSG							STA				

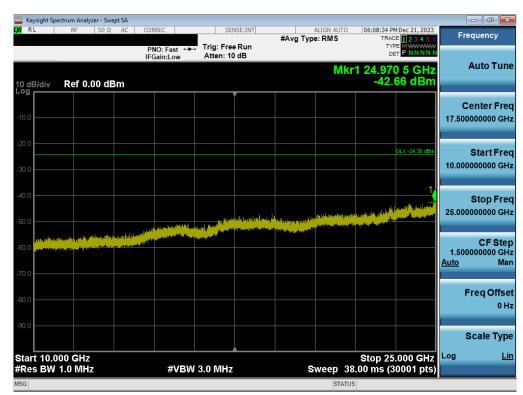
Plot 7-57. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 11)


Plot 7-58. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA - 26 Tones - Ch. 11)

FCC ID: A3LSMA356U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 72		
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 53 of 72		
© 2022 ELEMENT	•		V11.1 08/28/2023		

	ectrum Analy												
RL	RF	50 Ω	AC	CORREC PNO: Fas				#Avg 1	ALIGN AL Type: RMS		TYPE	23456	Frequency
0 dB/div	Ref 20	0.00 dE		IFGain:Lo		Atten: 30				Mkr1	3.598 9 -35.33	GHz dBm	Auto Tun
10.0													Center Fre 5.015000000 G⊦
0.00													Start Fre 30.000000 MH
20.0					, 1-						DL1	-25.24 dBm	Stop Fre 10.000000000 GF
and the second second	المتحديدين وروا الاهي مراكز من مروا الاهي						terre de Districto National de Calendaria	unin <mark>U</mark> laukuis Staassatuluni	ana da Para Para Para Sa	Nerfley, Desgi	Real Contraction of the second	in ford and the solution	CF Ste 997.000000 Mi <u>Auto</u> Ma
50.0													Freq Offs 0 I
70.0											10.00		Scale Typ
Start 30 I Res BW		z		#	VBW	3.0 MHz			Sweep	18.00	op 10.00 ms (300	01 pt <u>s)</u>	
SG										TATUS			

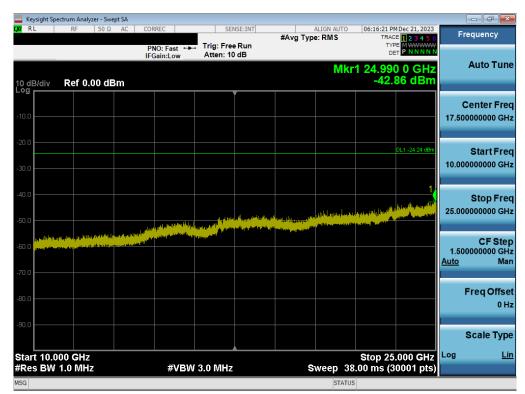
Plot 7-59. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 1)


Plot 7-60. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 1)

FCC ID: A3LSMA356U		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Daga 54 of 72		
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 54 of 72		
© 2022 ELEMENT	·	•	V11.1 08/28/2023		

Keysight Spectrum Analyzer - Swept SA							
Ι,ΧΙ RE 50 Ω AC	CORREC	SENSE:INT	#Avg Type:		06:08:12 PM D TRACE	1 2 3 4 5 6	Frequency
		g: Free Run ten: 30 dB			TYPE	M WWWWW P N N N N N	
	IFGalli:Low A	ten. oo ub		Mkr	1 6.858	5 GHz	Auto Tune
10 dB/div Ref 20.00 dBm					-35.72	2 dBm	
Log		Ť					
10.0							Center Freq
10.0							5.015000000 GHz
0.00							
							Start Freq
-10.0							30.000000 MHz
-20.0						1 -24.36 dBm	Stop Freq
						1 -24.36 übni	10.000000000 GHz
-30.0			1				
	a and the second of the	and and a state of the local sta	Laurushalwaydla	al and the second s	en des haltel model a consta	and a Magnetic Bally of	CF Step
-40.0	and the state of the	The second second second second second	أروا الألافة وطاريع ودوالقريات	little-ministration, and		الطاقيم فاسرم	997.000000 MHz
-50.0							<u>Auto</u> Man
-60.0							Freq Offset
							0 Hz
-70.0							
							Scale Type
Start 30 MHz					Stop 10.0	00 GHz	Log <u>Lin</u>
#Res BW 1.0 MHz	#VBW 3.0	MHz	Sw	/eep 18.0	0 ms (30	001 pts)	
MSG				STATUS			

Plot 7-61. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 6)


Plot 7-62. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA – 242 Tones – Ch. 6)

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage FE of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 55 of 72
© 2022 ELEMENT			V11.1 08/28/2023

	ectrum Analyzer - Sv	wept SA									
LXI RL	RF 50 \$	Ω AC	COR	REC		NSE:INT	#Avg Typ	ALIGN AUT e: RMS	TR/	PM Dec 21, 2023 ACE 1 2 3 4 5 6	Frequency
				IO: Fast ↔ Gain:Low	Trig: Fre Atten: 3				1		Auto Tune
10 dB/div Log	Ref 20.00	dBm							Vikr1 3.22 -35	20 7 GHz .82 dBm	Auto Tune
						Ĭ					Center Freq
10.0											5.015000000 GHz
0.00											Start Freq
-10.0											30.000000 MHz
-20.0											Stop Freq
-30.0										DL1 -24.24 dBm	10.000000000 GHz
							nahan da an ladaba	aliter and the second second	alalara distance and the best	a shadha	CF Step
-40.0			n ng ganga Lati da ba	a far a start a start a	دومه مرور بالبر البر المراجع الاحفاد من البر البر الله		فالمبريطير إعار باعتدا والنا		and the second	and final fifth to show that fills	997.000000 MHz Auto Man
-50.0 ⁴⁶⁰⁰⁰⁶⁶⁶⁶											
-60.0											Freq Offset 0 Hz
-70.0											
											Scale Type
Start 30 N #Res BW				#VB	W 3.0 MHz		s	weep	Stop 1 18.00 ms (0.000 GHz 30001 pts)	Log <u>Lin</u>
MSG									TUS		

Plot 7-63. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA - 242 Tones - Ch. 11)

Plot 7-64. Conducted Spurious Plot MIMO ANT2 (802.11ax OFDMA - 242 Tones - Ch. 11)

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage EC of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 56 of 72
© 2022 ELEMENT			V11.1 08/28/2023

7.7 Radiated Emission Measurements

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in FCC §15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown FCC §15.209 and RSS-Gen (8.9).

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-8. Radiated Limits

Test Procedures Used

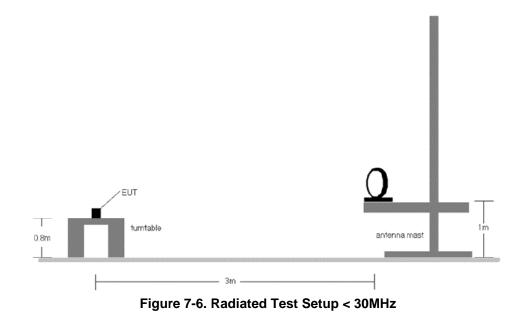
ANSI C63.10-2013 – Section 6.6.4.3

Test Settings

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dege 57 of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 57 of 72
© 2022 ELEMENT			V11.1 08/28/2023



Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo EQ of 72
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 58 of 72
© 2022 ELEMENT			V11.1 08/28/2023

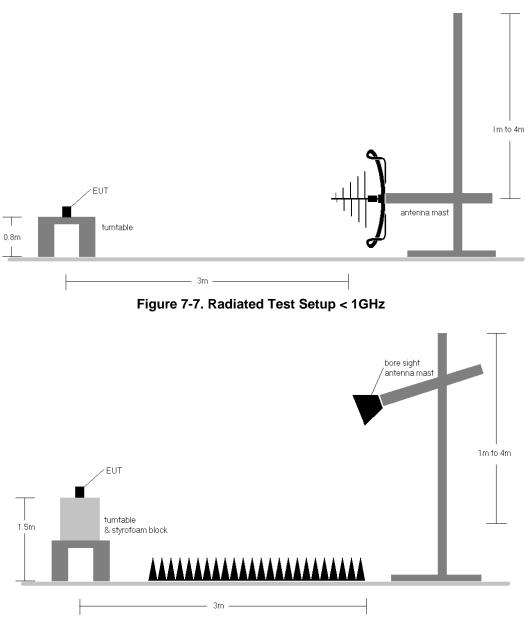


Figure 7-8. Test Instrument & Measurement Setup

Test Notes

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of ANSI C63.10-2013 Section 11.3 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limits shown in §15.209.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.

FCC ID: A3LSMA356U	MEASUREMENT REPORT		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 59 of 72		
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Fage 59 01 72		
© 2022 ELEMENT					

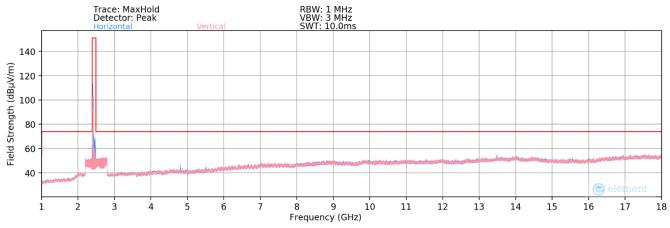
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 9. Some band edge measurements were performed using a channel integration method to determine compliance with the out of band average radiated spurious emissions limit in the 2483.5 2500MHz band. Per KDB 558074 D01 v05r02 Section 13.3, a measurement was performed using a RBW of 100kHz at the frequency with highest emission outside of band edge. For integration that does not start at 2483.5MHz, consideration was taken to ensure the worst-case emission is in the 1MHz spectrum. The results were integrated up to the 1MHz reference bandwidth to show compliance with the 15.209 radiated limit for emissions greater than 1GHz.
- 10. For radiated measurements, emissions were investigated for the fully-loaded RU configuration and for all the partially-loaded RU configurations. Among all of the available partially-loaded RU configurations, only the configuration with the worst case emissions is reported.

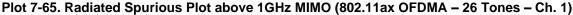
Sample Calculations

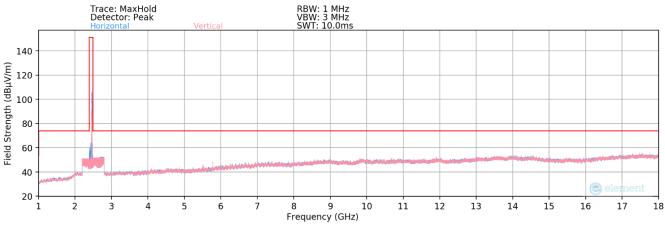
Determining Spurious Emissions Levels

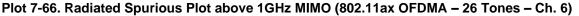
- Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

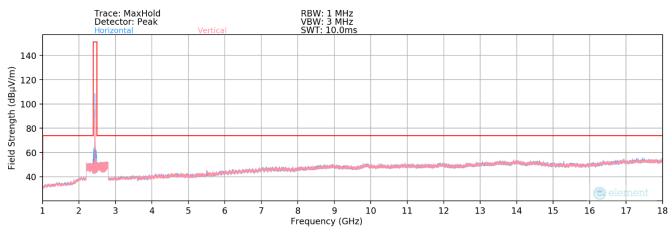
Radiated Band Edge Measurement Offset

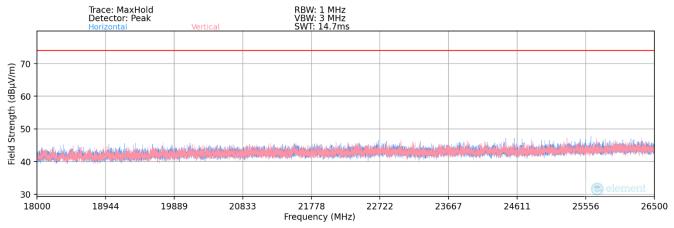

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.7 was calculated using the formula:

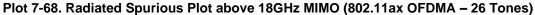

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain


FCC ID: A3LSMA356U		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 70	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 60 of 72	
© 2022 ELEMENT	· · · · ·		V11.1 08/28/2023	



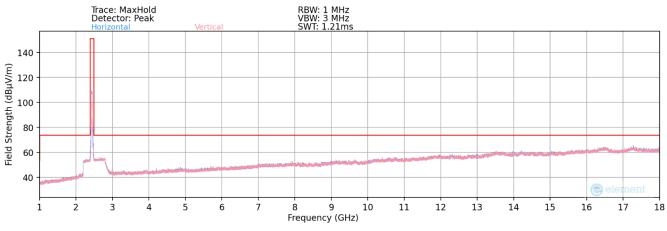

7.7.2 MIMO Radiated Spurious Emission Measurements

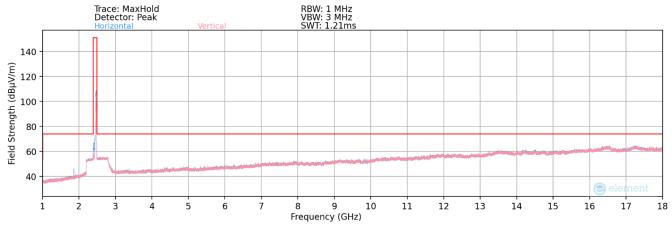


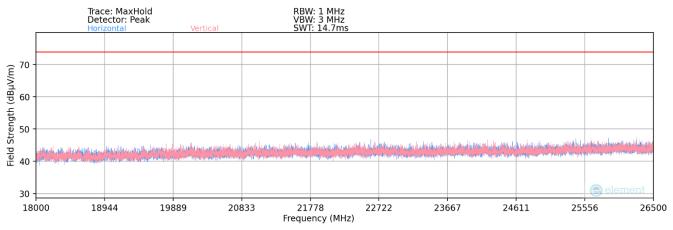


Plot 7-67. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA – 26 Tones – Ch. 11)

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 61 of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 61 of 72
© 2022 ELEMENT			V11.1 08/28/2023






Plot 7-70. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA – 242 Tones – Ch. 6)

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 62 of 72
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 62 of 72
© 2022 ELEMENT			V11.1 08/28/2023

Plot 7-71. Radiated Spurious Plot above 1GHz MIMO (802.11ax OFDMA – 242 Tones – Ch. 11)

Plot 7-72. Radiated Spurious Plot above 18GHz MIMO (802.11ax OFDMA – 242 Tones)

FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 62 of 72
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 63 of 72
© 2022 ELEMENT	-		V11.1 08/28/2023

MIMO Radiated Spurious Emission Measurements

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	1

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	Н	112	167	-74.68	2.81	0.00	35.13	53.98	-18.85
4824.00	Peak	Н	112	167	-61.53	2.81	0.00	48.28	73.98	-25.70
12060.00	Avg	Н	-	-	-81.21	12.85	0.00	38.64	53.98	-15.34
12060.00	Peak	Н	-	-	-69.52	12.85	0.00	50.33	73.98	-23.65

Table 7-9. Radiated Measurements MIMO (26 Tones)

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	3 Meters
Operating Frequency:	2437MHz
Channel:	6

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	Н	-	-	-78.85	3.15	0.00	31.30	53.98	-22.67
4874.00	Peak	н	-	-	-66.82	3.15	0.00	43.33	73.98	-30.64
7311.00	Avg	Н	-	-	-79.42	9.58	0.00	37.16	53.98	-16.82
7311.00	Peak	Н	-	-	-67.82	9.58	0.00	48.76	73.98	-25.22
12185.00	Avg	Н	-	-	-81.28	13.06	0.00	38.78	53.98	-15.20
12185.00	Peak	Н	-	-	-69.61	13.06	0.00	50.45	73.98	-23.53

Table 7-10. Radiated Measurements MIMO (26 Tones)

FCC ID: A3LSMA356U		MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dage 64 of 70			
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 64 of 72			
© 2022 ELEMENT	<u>.</u>		V11.1 08/28/2023			

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	4
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	н	-	-	-78.95	3.02	0.00	31.07	53.98	-22.91
4924.00	Peak	н	-	-	-67.20	3.02	0.00	42.82	73.98	-31.16
7386.00	Avg	н	-	-	-79.30	9.34	0.00	37.04	53.98	-16.94
7386.00	Peak	н	-	-	-67.63	9.34	0.00	48.71	73.98	-25.27
12310.00	Avg	н	-	-	-81.87	13.24	0.00	38.37	53.98	-15.61
12310.00	Peak	н	-	-	-81.87	13.24	0.00	38.37	73.98	-35.61

Table 7-11. Radiated Measurements MIMO (26 Tones)

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	1

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	Н	-	-	-78.73	9.43	0.00	37.70	53.98	-16.28
4824.00	Peak	Н	-	-	-68.98	9.43	0.00	47.45	73.98	-26.53
12060.00	Avg	Н	-	-	-83.44	22.48	0.00	46.04	53.98	-7.94
12060.00	Peak	Н	-	-	-72.70	22.48	0.00	56.78	73.98	-17.20

Table 7-12. Radiated Measurements MIMO (242 Tones)

FCC ID: A3LSMA356U		MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dage (E of 7)			
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 65 of 72			
© 2022 ELEMENT			V11.1 08/28/2023			

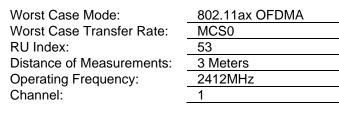
Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2437MHz
Channel:	6

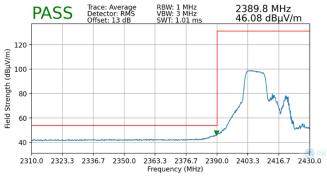
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	н	-	-	-79.84	9.74	0.00	36.90	53.98	-17.08
4874.00	Peak	н	-	-	-69.00	9.74	0.00	47.74	73.98	-26.24
7311.00	Avg	н	-	-	-82.28	15.50	0.00	40.22	53.98	-13.76
7311.00	Peak	н	-	-	-71.91	15.50	0.00	50.59	73.98	-23.39
12185.00	Avg	н	-	-	-84.03	23.13	0.00	46.10	53.98	-7.88
12185.00	Peak	н	-	-	-73.57	23.13	0.00	56.56	73.98	-17.42

Table 7-13. Radiated Measurements MIMO (242 Tones)

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

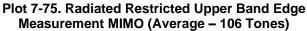
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	н	-	-	-80.48	9.88	0.00	36.40	53.98	-17.58
4924.00	Peak	н	-	-	-70.50	9.88	0.00	46.38	73.98	-27.60
7386.00	Avg	н	-	-	-82.46	15.45	0.00	39.99	53.98	-13.98
7386.00	Peak	н	-	-	-72.49	15.45	0.00	49.96	73.98	-24.01
12310.00	Avg	н	-	-	-84.39	23.67	0.00	46.28	53.98	-7.70
12310.00	Peak	н	-	-	-74.44	23.67	0.00	56.23	73.98	-17.75

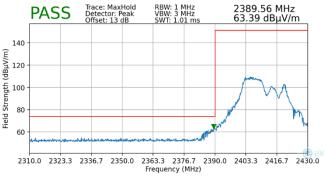

Table 7-14. Radiated Measurements MIMO (242 Tones)


FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 66 of 72
© 2022 ELEMENT		·	V11.1 08/28/2023

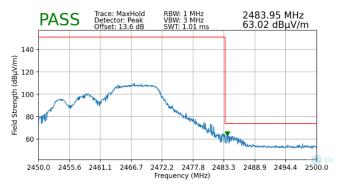
7.7.3 MIMO Radiated Restricted Band Edge Measurements

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.




Plot 7-73. Radiated Restricted Lower Band Edge Measurement MIMO (Average – 106 Tones)

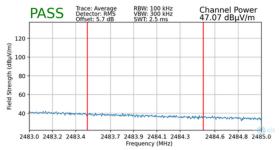
Worst Case Mode:
Worst Case Transfer Rate:
RU Index:
Distance of Measurements:
Operating Frequency:
Channel:


	802.11ax OFDMA
te:	MCS0
	53
nts:	3 Meters
	2462MHz
	11

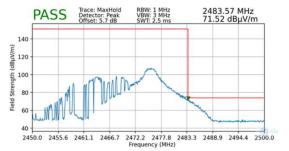
Plot 7-74. Radiated Restricted Lower Band Edge Measurement MIMO (Peak – 106 Tones)

Plot 7-76. Radiated Restricted Upper Band Edge Measurement MIMO (Peak – 106 Tones)

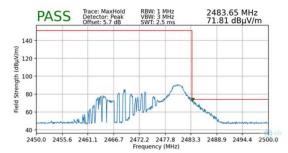
FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 67 of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 67 of 72
© 2022 ELEMENT	<u>.</u>		V11.1 08/28/2023



Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	53
Distance of Measurements:	3 Meters
Operating Frequency:	2467MHz
Channel:	12

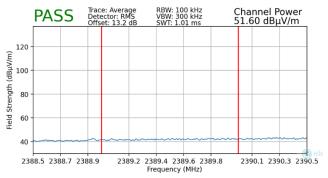


Plot 7-77. Radiated Restricted Upper Band Edge Measurement MIMO (Average – 106 Tones)


Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	53
Distance of Measurements:	3 Meters
Operating Frequency:	2472MHz
Channel:	13

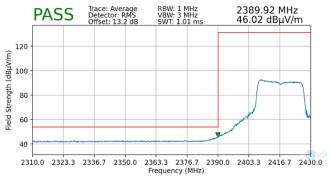
Plot 7-79. Radiated Restricted Upper Band Edge Measurement MIMO (Average – 106 Tones)

Plot 7-78. Radiated Restricted Upper Band Edge Measurement MIMO (Peak – 106 Tones)

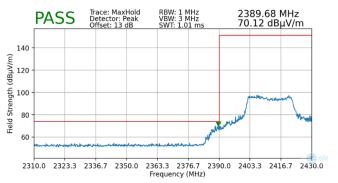


Plot 7-80. Radiated Restricted Upper Band Edge Measurement MIMO (Peak – 106 Tones)

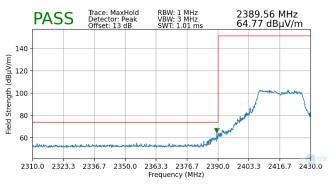
FCC ID: A3LSMA356U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 68 of 72
© 2022 ELEMENT	•		V11.1 08/28/2023



Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	1

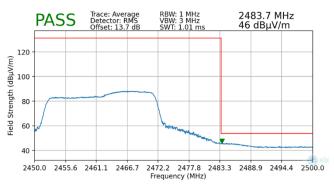


Plot 7-81. Radiated Restricted Lower Band Edge Measurement MIMO (Average – 242 Tones)


Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	1

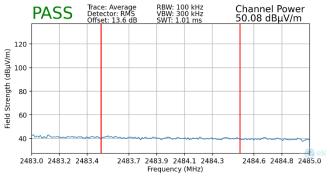
Plot 7-83. Radiated Restricted Lower Band Edge Measurement MIMO (Average – 242 Tones)

Plot 7-82. Radiated Restricted Lower Band Edge Measurement MIMO (Peak – 242 Tones)

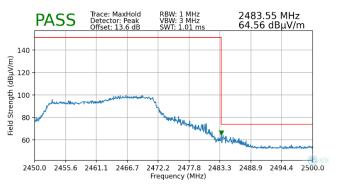


Plot 7-84. Radiated Restricted Lower Band Edge Measurement MIMO (Peak – 242 Tones)

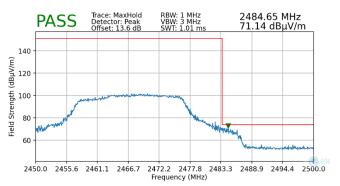
FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 69 of 72
© 2022 ELEMENT		•	V11.1 08/28/2023



Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

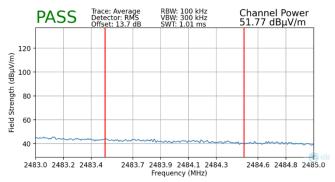


Plot 7-85. Radiated Restricted Upper Band Edge Measurement MIMO (Average – 242 Tones)

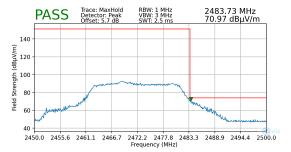

Worst Case Mode:	802.11ax OFDMA
Worst Case Transfer Rate:	MCS0
RU Index:	61
Distance of Measurements:	3 Meters
Operating Frequency:	2467MHz
Channel:	12

Plot 7-87. Radiated Restricted Upper Band Edge Measurement MIMO (Average – 242 Tones)

Plot 7-86. Radiated Restricted Upper Band Edge Measurement MIMO (Peak – 242 Tones)



Plot 7-88. Radiated Restricted Upper Band Edge Measurement MIMO (Peak – 242 Tones)


FCC ID: A3LSMA356U		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	D
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 70 of 72
© 2022 ELEMENT		•	V11.1 08/28/2023

802.11ax OFDMA
MCS0
61
3 Meters
2472MHz
13

Plot 7-89. Radiated Restricted Upper Band Edge Measurement MIMO (Average – 242 Tones)

Plot 7-90. Radiated Restricted Upper Band Edge Measurement MIMO (Peak – 242 Tones)

FCC ID: A3LSMA356U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 71 of 72
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 71 of 72
© 2022 ELEMENT			V11.1 08/28/2023

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMA356U** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules.

FCC ID: A3LSMA356U	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 70 of 70
1M2311010111-12.A3L	11/07-12/28/2023	Portable Handset	Page 72 of 72
© 2022 ELEMENT			V11.1 08/28/2023