

Plot 7-67. Occupied Bandwidth Plot (NR Band n77 DoD Band - 15MHz m/2 BPSK - Full RB)


Plot 7-68. Occupied Bandwidth Plot (NR Band n77 DoD Band - 15MHz QPSK - Full RB)

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 51 of 87 |



Plot 7-69. Occupied Bandwidth Plot (NR Band n77 DoD Band - 15MHz 16-QAM - Full RB)


Plot 7-70. Occupied Bandwidth Plot (NR Band n77 DoD Band - 10MHz m/2 BPSK - Full RB)

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 52 of 87 |



Plot 7-71. Occupied Bandwidth Plot (NR Band n77 DoD Band - 10MHz QPSK - Full RB)


Plot 7-72. Occupied Bandwidth Plot (NR Band n77 DoD Band - 10MHz 16-QAM - Full RB)

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |  |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1 M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 53 of 87 |

### 7.4 Spurious and Harmonic Emissions at Antenna Terminal

## Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its $10^{\text {th }}$ harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated, and the worst-case configuration results are reported in this section.

For operations in the $3700-3980 \mathrm{MHz}$ band and the $3450-3550 \mathrm{MHz}$ band, the maximum permissible conducted power level of any spurious emission is $-13 \mathrm{dBm} / \mathrm{MHz}$.

## Test Procedure Used

ANSI C63.26-2015 - Section 5.7.4

## Test Settings

1. Start frequency was set to 30 MHz and stop frequency was set to the tenth harmonic of the highest transmit frequency (separated into at least two plots per channel)
2. Detector $=$ RMS
3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
4. Sweep time = auto couple
5. The trace was allowed to stabilize.
6. Please see test notes below for RBW and VBW settings

## Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.


Figure 7-3. Test Instrument \& Measurement Setup

## Test Notes

1. Per Part 27.53(I) and Part 27.53(n), compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz .
2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-sOFDM) were investigated to determine the worst-case configuration. All modes of operation were investigated, and the worst-case configuration results are reported in this section.

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 54 of 87 |
| © 2023 ELEMENT |  | V11.1 $08 / 28 / 2023$ |  |


| Mode | Bandwidth | Channel | Range [MHz] | Level [dBm] | Limit [dBm] | Margin [dB] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NR-n77 PC2 DoD | 100 MHz | Mid | 30.0-3450.0 | -30.59 | -13 | -17.59 |
|  |  | Mid | 3550.0-20000.0 | -30.91 | -13 | -17.91 |
|  |  | Mid | 20000.0-40000.0 | -43.60 | -13 | -30.60 |
| NR-n77 PC2 <br> C-Band | 100 MHz | Low | 30.0-3700.0 | -32.15 | -13 | -19.15 |
|  |  | Low | 3980.0-20000.0 | -35.22 | -13 | -22.22 |
|  |  | Low | 20000.0-40000.0 | -42.68 | -13 | -29.68 |
|  |  | Mid | 30.0-3700.0 | -38.73 | -13 | -25.73 |
|  |  | Mid | 3980.0-20000.0 | -34.68 | -13 | -21.68 |
|  |  | Mid | 20000.0-40000.0 | -43.29 | -13 | -30.29 |
|  |  | High | 30.0-3700.0 | -41.05 | -13 | -28.05 |
|  |  | High | 3980.0-20000.0 | -30.63 | -13 | -17.63 |
|  |  | High | 20000.0-40000.0 | -43.10 | -13 | -30.10 |

Table 7-6. Conducted Emission Test Results

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT <br> Technical Manager |  |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 55 of 87 |

## NR Band n77 PC2 C-Band



Plot 7-73. Conducted Spurious Plot (NR Band n77-100MHz QPSK - 1RB - Low Channel)


Plot 7-74. Conducted Spurious Plot (NR Band n77-100MHz QPSK - 1RB - Low Channel)

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT |  | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 56 of 87 |



Plot 7-75. Conducted Spurious Plot (NR Band n77-100MHz QPSK - 1RB - Low Channel)

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT |  | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 57 of 87 |

## NR Band n77 PC2 DoD Band



Plot 7-76. Conducted Spurious Plot (NR Band n77 DoD Band - 100MHz QPSK - 1RB - Mid Channel)


Plot 7-77. Conducted Spurious Plot (NR Band n77 DoD Band - 100MHz QPSK - 1RB - Mid Channel)

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |  |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1 M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 58 of 87 |



Plot 7-78. Conducted Spurious Plot (NR Band n77 DoD Band - 100MHz QPSK - 1RB - Mid Channel)

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 59 of 87 |

### 7.5 Band Edge Emissions at Antenna Terminal

## Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated, and the worstcase configuration results are reported in this section.

For operations in the 3700 - 3980MHz band and the $3450-3550 \mathrm{MHz}$ band, the maximum permissible conducted power level of any out-of-band emission is $-13 \mathrm{dBm} / \mathrm{MHz}$.

## Test Procedure Used

ANSI C63.26-2015 - Section 5.7.3

## Test Settings

1. Start and stop frequency were set such that the band edge would be placed in the center of the plot.
2. Span was set large enough to capture all out of band emissions near the band edge.
3. RBW $\geq 1 \%$ of the emission bandwidth
4. VBW $\geq 3 \times$ RBW
5. $\quad$ Detector $=$ RMS
6. Number of sweep points $\geq 2 \times$ Span/RBW
7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
8. Sweep time = auto couple
9. The trace was allowed to stabilize.

## Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.


Figure 7-4. Test Instrument \& Measurement Setup

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT |  | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: | Test Dates: | EUT Type: | Page 60 of 87 |
| 1M2310260110-06.A3L | $11 / 30 / 2023-12 / 12 / 2023$ | Portable Handset |  |
| © 2023 ELEMENT | V11.1 08/28/2023 |  |  |

## Test Notes

1. Per Part $27.53(\mathrm{I})$, compliance with the $-13 \mathrm{dBm} / \mathrm{MHz}$ conducted power limit for out-of-band emissions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be either one percent of the emission bandwidth of the fundamental emission of the transmitter or 350 kHz . In the bands between 1 and 5 MHz removed from the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be 500 kHz .
2. Per Part $27.53(\mathrm{n})$, compliance with the $-13 \mathrm{dBm} / \mathrm{MHz}$ conducted power limit for out-of-band emissions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed but limited to a maximum of 200 kHz . In the bands between 1 and 5 MHz removed from the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be 500 kHz .
3. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
4. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-sOFDM) were investigated to determine the worst-case configuration. All modes of operation were investigated, and the worst-case configuration results are reported in this section.

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 61 of 87 |
| © 2023 ELEMENT |  | V11.108/28/2023 |  |


| Mode | Bandwidth | Channel | Test Case | Level [dBm] | Limit <br> [dBm] | Margin [dB] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { NR-n77 PC2 } \\ & \text { C-Band } \end{aligned}$ | 100 MHz | Low | Band Edge | -33.84 | -13 | -20.84 |
|  |  | High | Band Edge | -33.77 | -13 | -20.77 |
|  | 90MHz | Low | Band Edge | -34.22 | -13 | -21.22 |
|  |  | High | Band Edge | -33.13 | -13 | -20.13 |
|  | 80MHz | Low | Band Edge | -33.49 | -13 | -20.49 |
|  |  | High | Band Edge | -31.46 | -13 | -18.46 |
|  | 70MHz | Low | Band Edge | -33.14 | -13 | -20.14 |
|  |  | High | Band Edge | -30.90 | -13 | -17.90 |
|  | 60 MHz | Low | Band Edge | -35.08 | -13 | -22.08 |
|  |  | High | Band Edge | -31.44 | -13 | -18.44 |
|  | 50 MHz | Low | Band Edge | -33.56 | -13 | -20.56 |
|  |  | High | Band Edge | -29.14 | -13 | -16.14 |
|  | 40MHz | Low | Band Edge | -31.50 | -13 | -18.50 |
|  |  | High | Band Edge | -30.01 | -13 | -17.01 |
|  | 30MHz | Low | Band Edge | -33.28 | -13 | -20.28 |
|  |  | High | Band Edge | -29.66 | -13 | -16.66 |
|  | 25MHz | Low | Band Edge | -32.45 | -13 | -19.45 |
|  |  | High | Band Edge | -29.32 | -13 | -16.32 |
|  | 20MHz | Low | Band Edge | -31.31 | -13 | -18.31 |
|  |  | High | Band Edge | -28.93 | -13 | -15.93 |
|  | 15MHz | Low | Band Edge | -30.30 | -13 | -17.30 |
|  |  | High | Band Edge | -27.92 | -13 | -14.92 |
|  | 10MHz | Low | Band Edge | -28.77 | -13 | -15.77 |
|  |  | High | Band Edge | -25.72 | -13 | -12.72 |

Table 7-7. Conducted Band Edge Test Results - NR n77 PC2 C-Band

| FCC ID: A3LSMA356E |  | Approved by: <br> Technical Manager |  |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 62 of 87 |

## NR Band n77 PC2 C-Band



Plot 7-79. Lower ACP Plot (NR Band n77-10MHz CP-OFDM-QPSK - Full RB)


Plot 7-80. Upper ACP Plot (NR Band n77-10MHz CP-OFDM-QPSK - Full RB - Ant1)

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT |  | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 63 of 87 |


| Mode | Bandwidth | Channel | Test Case | Level [dBm] | Limit [dBm] | Margin [dB] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NR-n77 PC2 DoD | 100 MHz | Low | Band Edge | -35.18 | -13 | -22.18 |
|  |  | High | Band Edge | -33.64 | -13 | -20.64 |
|  | 90MHz | Low | Band Edge | -35.12 | -13 | -22.12 |
|  |  | High | Band Edge | -33.87 | -13 | -20.87 |
|  | 80MHz | Low | Band Edge | -34.07 | -13 | -21.07 |
|  |  | High | Band Edge | -32.54 | -13 | -19.54 |
|  | 70MHz | Low | Band Edge | -33.73 | -13 | -20.73 |
|  |  | High | Band Edge | -31.71 | -13 | -18.71 |
|  | 60 MHz | Low | Band Edge | -34.95 | -13 | -21.95 |
|  |  | High | Band Edge | -31.67 | -13 | -18.67 |
|  | 50 MHz | Low | Band Edge | -31.90 | -13 | -18.90 |
|  |  | High | Band Edge | -29.92 | -13 | -16.92 |
|  | 40MHz | Low | Band Edge | -32.32 | -13 | -19.32 |
|  |  | High | Band Edge | -30.11 | -13 | -17.11 |
|  | 30 MHz | Low | Band Edge | -32.90 | -13 | -19.90 |
|  |  | High | Band Edge | -30.05 | -13 | -17.05 |
|  | 25MHz | Low | Band Edge | -30.23 | -13 | -17.23 |
|  |  | High | Band Edge | -29.38 | -13 | -16.38 |
|  | 20MHz | Low | Band Edge | -31.49 | -13 | -18.49 |
|  |  | High | Band Edge | -29.65 | -13 | -16.65 |
|  | 15MHz | Low | Band Edge | -30.42 | -13 | -17.42 |
|  |  | High | Band Edge | -27.90 | -13 | -14.90 |
|  | 10MHz | Low | Band Edge | -29.07 | -13 | -16.07 |
|  |  | High | Band Edge | -27.11 | -13 | -14.11 |

Table 7-8. Conducted Band Edge Test Results - NR n77 PC2 DoD Band

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 64 of 87 |

## NR Band n77 PC2 DoD Band



Plot 7-81. Lower ACP Plot (NR Band n77 DoD Band - 10MHz CP-OFDM-QPSK - Full RB)


Plot 7-82. Upper ACP Plot (NR Band n77 DoD Band - 10MHz CP-OFDM-QPSK - Full RB)

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 65 of 87 |

## element

### 7.6 Peak-Average Ratio

## Test Overview

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in each bandwidth. The CCDF curve shows how much time the peak waveform spends at, or above, a given average power level. The percentage of time the signal spends at or above the level defines the probability for that power level.

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB .

## Test Procedure Used

ANSI C63.26-2015 - Section 5.2.3.4

## Test Settings

1. The signal analyzer's CCDF measurement profile is enabled.
2. Frequency = carrier center frequency
3. Measurement BW $\geq$ OBW or specified reference bandwidth
4. The signal analyzer was set to collect one million samples to generate the CCDF curve.
5. The measurement interval was set depending on the type of signal analyzed. For continuous signals ( $>98 \%$ duty cycle), the measurement interval was set to 1 ms . For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power.

## Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.


Figure 7-5. Test Instrument \& Measurement Setup

## Test Notes

For the QAM modulations, 256QAM was found to have the worst-case peak-to-average ratio so it is the only QAM measurement included in this section.

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 66 of 87 |
| © 2023 ELEMENT |  | V11.1 $08 / 28 / 2023$ |  |


| Mode | Bandwidth | Modulation | Average Power [dBm] | $\begin{gathered} \text { PAR at } \\ 0.1 \% \\ \text { [dB] } \end{gathered}$ | PAR Limit [dB] | Margin [dB] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NR-n77 PC2 C-Band | 100MHz | m/2 BPSK | 25.24 | 5.27 | 13.0 | -7.73 |
|  |  | QPSK | 22.69 | 8.74 | 13.0 | -4.26 |
|  |  | 256QAM | 19.19 | 8.54 | 13.0 | -4.46 |
|  | 90MHz | п/2 BPSK | 25.27 | 4.56 | 13.0 | -8.44 |
|  |  | QPSK | 22.69 | 8.65 | 13.0 | -4.35 |
|  |  | 256QAM | 19.16 | 8.49 | 13.0 | -4.51 |
|  | 80MHz | п/2 BPSK | 25.26 | 5.19 | 13.0 | -7.81 |
|  |  | QPSK | 22.73 | 8.66 | 13.0 | -4.34 |
|  |  | 256QAM | 19.18 | 8.53 | 13.0 | -4.47 |
|  | 70MHz | п/2 BPSK | 25.31 | 4.71 | 13.0 | -8.29 |
|  |  | QPSK | 22.75 | 8.63 | 13.0 | -4.37 |
|  |  | 256QAM | 19.23 | 8.49 | 13.0 | -4.51 |
|  | 60MHz | п/2 BPSK | 25.30 | 4.57 | 13.0 | -8.43 |
|  |  | QPSK | 22.77 | 8.63 | 13.0 | -4.37 |
|  |  | 256QAM | 19.24 | 8.40 | 13.0 | -4.60 |
|  | 50MHz | п/2 BPSK | 25.34 | 4.89 | 13.0 | -8.11 |
|  |  | QPSK | 22.79 | 8.63 | 13.0 | -4.37 |
|  |  | 256QAM | 19.27 | 8.57 | 13.0 | -4.43 |
|  | 40MHz | m/2 BPSK | 25.35 | 4.75 | 13.0 | -8.25 |
|  |  | QPSK | 22.77 | 8.57 | 13.0 | -4.43 |
|  |  | 256QAM | 19.26 | 8.45 | 13.0 | -4.55 |
|  | 30 MHz | m/2 BPSK | 24.98 | 5.05 | 13.0 | -7.95 |
|  |  | QPSK | 22.77 | 8.59 | 13.0 | -4.41 |
|  |  | 256QAM | 19.25 | 8.44 | 13.0 | -4.56 |
|  | 25MHz | п/2 BPSK | 25.26 | 4.67 | 13.0 | -8.33 |
|  |  | QPSK | 22.71 | 8.67 | 13.0 | -4.33 |
|  |  | 256QAM | 19.19 | 8.72 | 13.0 | -4.28 |
|  | 20MHz | m/2 BPSK | 25.25 | 4.59 | 13.0 | -8.41 |
|  |  | QPSK | 22.71 | 8.51 | 13.0 | -4.49 |
|  |  | 256QAM | 19.20 | 8.73 | 13.0 | -4.27 |
|  | 15MHz | m/2 BPSK | 25.27 | 4.52 | 13.0 | -8.48 |
|  |  | QPSK | 22.69 | 8.45 | 13.0 | -4.55 |
|  |  | 256QAM | 19.18 | 8.48 | 13.0 | -4.52 |
|  | 10MHz | m/2 BPSK | 25.25 | 4.55 | 13.0 | -8.45 |
|  |  | QPSK | 22.69 | 8.52 | 13.0 | -4.48 |
|  |  | 256QAM | 19.17 | 8.23 | 13.0 | -4.77 |

Table 7-9. Peak-Average Ratio Test Results - NR n77 PC2 C-Band

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT |  | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 67 of 87 |

## element

## NR Band n77 PC2 C-Band



Plot 7-83. PAR Plot (NR Band n77-100MHz DFT-s-OFDM BPSK - Full RB)


Plot 7-84. PAR Plot (NR Band n77-100MHz CP-OFDM QPSK - Full RB)

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |  |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 68 of 87 |



| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT |  | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 69 of 87 |


| Mode | Bandwidth | Modulation | Average Power [dBm] | PAR at 0.1\% [dB] | PAR Limit [dB] | Margin [dB] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NR-n77 PC2 DoD | 100MHz | п/2 BPSK | 24.87 | 5.28 | 13.0 | -7.72 |
|  |  | QPSK | 22.62 | 8.12 | 13.0 | -4.88 |
|  |  | 256QAM | 19.10 | 8.44 | 13.0 | -4.56 |
|  | 90MHz | п/2 BPSK | 25.13 | 4.42 | 13.0 | -8.58 |
|  |  | QPSK | 22.88 | 7.92 | 13.0 | -5.08 |
|  |  | 256QAM | 19.39 | 8.36 | 13.0 | -4.64 |
|  | 80MHz | m/2 BPSK | 25.16 | 4.92 | 13.0 | -8.08 |
|  |  | QPSK | 22.87 | 7.96 | 13.0 | -5.04 |
|  |  | 256QAM | 19.35 | 8.42 | 13.0 | -4.58 |
|  | 70MHz | п/2 BPSK | 24.56 | 5.06 | 13.0 | -7.94 |
|  |  | QPSK | 22.77 | 7.95 | 13.0 | -5.05 |
|  |  | 256QAM | 19.25 | 8.40 | 13.0 | -4.60 |
|  | 60MHz | m/2 BPSK | 24.82 | 4.70 | 13.0 | -8.30 |
|  |  | QPSK | 22.72 | 8.01 | 13.0 | -4.99 |
|  |  | 256QAM | 19.20 | 8.35 | 13.0 | -4.65 |
|  | 50MHz | п/2 BPSK | 25.18 | 4.65 | 13.0 | -8.35 |
|  |  | QPSK | 22.70 | 8.01 | 13.0 | -4.99 |
|  |  | 256QAM | 19.17 | 8.46 | 13.0 | -4.54 |
|  | 40MHz | п/2 BPSK | 25.06 | 4.59 | 13.0 | -8.41 |
|  |  | QPSK | 22.68 | 7.97 | 13.0 | -5.03 |
|  |  | 256QAM | 19.18 | 8.35 | 13.0 | -4.65 |
|  | 30 MHz | п/2 BPSK | 24.85 | 4.79 | 13.0 | -8.21 |
|  |  | QPSK | 22.67 | 8.02 | 13.0 | -4.98 |
|  |  | 256QAM | 19.18 | 8.36 | 13.0 | -4.64 |
|  | 25MHz | п/2 BPSK | 25.11 | 4.47 | 13.0 | -8.53 |
|  |  | QPSK | 22.59 | 8.05 | 13.0 | -4.95 |
|  |  | 256QAM | 19.09 | 8.54 | 13.0 | -4.46 |
|  | 20MHz | m/2 BPSK | 25.12 | 4.38 | 13.0 | -8.62 |
|  |  | QPSK | 22.61 | 7.97 | 13.0 | -5.03 |
|  |  | 256QAM | 19.10 | 8.57 | 13.0 | -4.43 |
|  | 15MHz | п/2 BPSK | 25.11 | 4.32 | 13.0 | -8.68 |
|  |  | QPSK | 22.60 | 7.94 | 13.0 | -5.06 |
|  |  | 256QAM | 19.09 | 8.35 | 13.0 | -4.65 |
|  | 10MHz | п/2 BPSK | 25.11 | 4.35 | 13.0 | -8.65 |
|  |  | QPSK | 22.60 | 7.92 | 13.0 | -5.08 |
|  |  | 256QAM | 19.08 | 8.20 | 13.0 | -4.80 |

Table 7-10. Peak-Average Ratio Test Results - NR n77 PC2 DoD Band

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT |  | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 70 of 87 |

## NR Band n77 PC2 DoD Band



Plot 7-86. PAR Plot (NR Band n77 DoD Band - 100MHz DFT-s-OFDM BPSK - Full RB)


Plot 7-87. PAR Plot (NR Band n77 DoD Band - 100MHz CP-OFDM QPSK - Full RB)

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 71 of 87 |



Plot 7-88. PAR Plot (NR Band n77 DoD Band - 100MHz CP-OFDM 256-QAM - Full RB)

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT |  | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 72 of 87 |

### 7.7 Radiated Power (EIRP)

## Test Overview

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

## Test Procedures Used

ANSI C63.26-2015 - Section 5.2.4.4

## Test Settings

1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation. For signals with burst transmission, the signal analyzer's "time domain power" measurement capability is used.
2. RBW $=1-5 \%$ of the expected OBW, not to exceed 1 MHz
3. VBW $\geq 3 \times$ RBW
4. Span $=1.5$ times the OBW
5. No. of sweep points $\geq 2 \times$ span / RBW
6. $\quad$ Detector $=$ RMS
7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration.
8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power.
9. Trace mode $=$ trace averaging (RMS) over 100 sweeps
10. The trace was allowed to stabilize.

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT <br> Approved by: |  |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 73 of 87 |

## Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.


Figure 7-6. Radiated Test Setup >1GHz

## Test Notes

1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst-case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
2) This unit was tested with its standard battery.
3) For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-sOFDM) were investigated to determine the worst-case configuration. All modes of operation were investigated, and the worst-case configuration results are reported in this section.

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT <br> Technical Manager |  |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 74 of 87 |

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com

| Bandwidth | Mod. | $\begin{gathered} \text { Frequency } \\ \text { [MHz2] } \end{gathered}$ | $\left.\begin{array}{c} \text { Ant. Pol. } \\ \text { [HVN } \end{array}\right)$ |  |  | $\underset{\text { Ant: Gain }}{\substack{\text { dadin }}}$ | $\begin{gathered} \text { RB } \\ \text { Size/Offset } \end{gathered}$ | Substitute Level $[$ dBm $]$ |  | $\underset{\text { [WRP }}{\substack{\text { [Wats] }}}$ | EIRP Limit $[\mathrm{dBm}]$ | Margin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \frac{1}{2} \\ & \stackrel{8}{8} \end{aligned}$ | T/2 2PSK | 3750.00 | H | ${ }^{117}$ | ${ }^{143}$ | 7.01 | ${ }^{1 / 136}$ | 21.17 | ${ }^{28.18}$ | 0.658 | 30.00 | -1.82 |
|  | T/2 2 PSS | 3440.00 | H | 121 | 146 | 7.15 | 1/1 | 20.70 | ${ }^{27.85}$ | 0.610 | 30.00 | $-2.15$ |
|  | \#/2 2 PSK | 3930.00 | H | 127 | 145 | 7.39 | 1/136 | 20.21 | 27.60 | 0.576 | 30.00 | $-2.40$ |
|  | QPSK | ${ }^{3750.00}$ | H | 117 | 143 | 7.01 | 1/136 | 21.02 | 28.03 | 0.636 | 30.00 | $-1.97$ |
|  | QPSK | 3440.00 | H | ${ }^{121}$ | 146 | ${ }^{7.15}$ | 1/1/ | 20.69 | 27.84 | 0.609 | 30.00 | $-2.16$ |
|  | OPSK | 3930.00 | H | 127 | 145 | 7.39 | 1/136 | 20.22 | 27.61 | 0.577 | 30.00 | -2,39 |
|  | 16.OAM | ${ }^{3750.00}$ | H | 117 | ${ }^{143}$ | 7.01 | 1/136 | 20.16 | ${ }^{27.17}$ | ${ }^{0.522}$ | 30.00 | ${ }^{-283}$ |
|  | 16.OAM | 3840.00 | H | 121 | 146 | 7.15 | 1/1 | 19.48 | 26.63 | 0.461 | 30.00 | $-3.37$ |
|  | 16.0AM | 3330.00 | H | ${ }_{1}^{127}$ | 145 | 7.39 | 1/136 | 19.39 | 26.78 | 0.477 | 30.00 | -3.22 |
|  | T/2 2 PPSK | ${ }^{3745.02}$ | H | ${ }^{117}$ | ${ }^{143}$ | 7.00 | 1/243 | ${ }^{21.06}$ | ${ }^{28.06}$ | ${ }^{0.640}$ | 30.00 300 | -1.94 |
|  | T/2 2 PSK | 3440.00 | H | 121 | 146 | 7.15 | 1/1 | 20.61 | ${ }^{27.76}$ | 0.597 | 30.00 | $-2.24$ |
|  | ${ }_{\text {T/2 }} / 2$ BPSK | 3934.98 | H | 127 | 145 | 7.40 | 1/122 | 20.30 | 27.70 | 0.589 | 30.00 | -2.30 |
|  | OPSK | 3745.02 | H | 117 | 143 | 7.00 | $1 / 243$ | 20.94 | 27.94 | 0.623 | 30.00 | $-2.06$ |
|  | QPSK | 3440.00 | H | ${ }^{121}$ | ${ }^{146}$ | 7.15 | 1/1/ | 20.68 | ${ }^{27.83}$ | ${ }^{0.607}$ | 30.00 | -2.17 |
|  | QPSK | 3934.98 | H | 127 | 145 | 7.40 | 1/122 | 20.34 | 27.74 | 0.594 | 30.00 | $-2.26$ |
|  | 16.OAM | ${ }^{3745.02}$ | H | 117 | 143 | 7.00 | $1 / 243$ | 20.18 | 27.18 | ${ }^{0.523}$ | 30.00 | -282 |
|  | 16.OAM | 3840.00 | H | 121 | 146 | 7.15 | 1/1 | 19.55 | 26.70 | 0.468 | 30.00 | ${ }_{-3.30}$ |
|  | 16.OAM | 3934.98 | H | 127 | 145 | 7.40 | 1/122 | 19.50 | 26.90 | 0.490 | 30.00 | $-3.10$ |
| $\begin{aligned} & \frac{N}{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \boxed{\infty} \end{aligned}$ | T/2 2 BPSK | 3740.01 | H | ${ }^{117}$ | ${ }^{143}$ | 6.99 | 1/215 | 21.35 | 28.33 | 0.682 | 30.00 | -1.67 |
|  | \#1/2 ${ }^{\text {PPSK }}$ | 3840.00 | H | 121 | 146 | 7.15 | 1/215 | 20.64 | 27.79 | 0.602 | 30.00 | $-2.21$ |
|  | \#/2 2 PSK | 3939.99 | H | 127 | 145 | 7.41 | 1/108 | 20.24 | 27.65 | 0.582 | 30.00 | $-2.35$ |
|  | QPSK | 3740.01 | H | 117 | 143 | 6.99 | 1/215 | 21.22 | 28.20 | ${ }^{0.661}$ | 30.00 | ${ }^{-1.80}$ |
|  | QPSK | 3840.00 | H | 121 | 146 | 7.15 | 1/215 | 20.68 | 27.83 | 0.607 | 30.00 | $-2.17$ |
|  | OPSK | 3393.99 | H | ${ }^{127}$ | 145 | 7.41 | 1/108 | 20.37 | 27.78 | 0.600 | 30.00 | -2.22 |
|  | 16.OAM | 3740.01 | H | 117 | 143 | 6.99 | 1/215 | 20.41 | 27.39 | 0.549 | 30.00 | -2.61 |
|  | 16.OAM | 3840.00 | H | 121 | 146 | 7.15 | 1/215 | 19.27 | 26.42 | 0.439 | 30.00 | -3.58 |
|  | 16.OAM | 3939.99 | H | 127 | 145 | 7.41 | 1/108 | 19.61 | 27.02 | 0.504 | 30.00 | -2.98 |
| $\begin{aligned} & \text { N } \\ & \stackrel{N}{2} \\ & \dot{R} \end{aligned}$ | \#/2 BPSK | 3735.00 | H | ${ }^{117}$ | ${ }^{143}$ | 6.97 | 1/187 | 21.43 | 28.40 | 0.693 | 30.00 | -1.60 |
|  | T/2 ${ }^{\text {BPSK }}$ | 3440.00 | H | 121 | 146 | 7.15 | 1/1 | 20.62 | 27.77 | 0.599 | 30.00 | $-2.23$ |
|  | \#/2 2 PSK | 3945.00 | H | ${ }^{127}$ | 145 | 7.42 | 1/94 | 20.02 | 27.44 | 0.555 | 30.00 | $-2.56$ |
|  | OPSK | 3735.00 | H | 117 | 143 | 6.97 | 1/187 | 21.30 | ${ }^{28.27}$ | 0.672 | 30.00 | -1.73 |
|  | OPSK | 3840.00 | H | 121 | 146 | 7.15 | 1/1 | 20.68 | ${ }^{27.83}$ | 0.607 | 30.00 | $-2.17$ |
|  | OPSK | 3945.00 | H | 127 | 145 | 7.42 | 1/94 | 20.15 | 27.57 | 0.572 | 30.00 | $-2.43$ |
|  | 16.OAM | 3735.00 | H | 117 | 143 | 6.97 | $1 / 187$ | 20.49 | 27.46 | 0.558 | 30.00 | $-2.54$ |
|  | 16-OAM | 3440.00 | H | 121 | 146 | 7.15 | 1/1 | 19.32 | 26.47 | 0.444 | 30.00 | ${ }^{-3.53}$ |
|  | 16.OAM | 3945.00 | H | 127 | 145 | 7.42 | 1/94 | 19.48 | 26.90 | 0.490 | 30.00 | $-3.10$ |
| $\begin{aligned} & \frac{N}{2} \\ & \frac{8}{8} \end{aligned}$ | T/2 2 BPSK | 3730.02 | H | 117 | 143 | 6.96 | 1/160 | 21.36 | ${ }^{28.31}$ | 0.678 | 30.00 | -1.69 |
|  | \#/2 2 PSK | 3840.00 | H | 121 | 146 | 7.15 | 1/1 | 20.63 | 27.78 | 0.600 | 30.00 | -2.22 |
|  | \#/2 ${ }^{\text {BPSK }}$ | 3949.98 | H | 127 | 145 | 7.43 | 1/81 | 20.12 | 27.54 | 0.568 | 30.00 | $-2.46$ |
|  | QPSK | 3730.02 | H | ${ }^{117}$ | ${ }^{143}$ | 6.96 | 1/160 | 21.23 | 28.18 | 0.658 | 30.00 | -1.82 |
|  | QPSK | 3440.00 | , | 121 | 146 | 7.15 | 1/1 | 20.71 | 27.86 | 0.611 | 30.00 | $-2.14$ |
|  | apsK | 3949.98 | H | 127 | 145 | 7.43 | 1/81 | 20.19 | 27.61 | 0.577 | 30.00 | $-239$ |
|  | 16-OAM | ${ }^{3730.02}$ | H | 117 | 143 | 6.96 | 1/160 | 20.41 | 27.36 | 0.545 | 30.00 | -2.64 |
|  | 16.OAM | 3840.00 | H | 121 | 146 | 7.15 | 1/1 | 19.22 | 26.37 | 0.434 | 30.00 | ${ }^{-3.63}$ |
|  | 16.OAM | 3949.98 | H | ${ }^{127}$ | 145 | 7.43 | 1/81 | 19.27 | 22.69 | 0.467 | 30.00 | $\stackrel{-3.31}{ }$ |
| $\begin{aligned} & \text { N } \\ & \stackrel{N}{2} \\ & \text { N } \end{aligned}$ | \#/2 ${ }^{\text {BPSK }}$ | 3725.01 | H | 117 | 143 | 6.94 | 1/131 | 21.03 | 27.97 | 0.627 | 30.00 | $-2.03$ |
|  | I/2 BPSK | ${ }^{3844.00}$ | H | ${ }^{121}$ | ${ }^{146}$ | ${ }_{7}^{7.15}$ | 1/1 | 20.70 | ${ }^{27.85}$ | ${ }_{0}^{0.610}$ | 30.00 <br> 3000 | $\begin{array}{r}-2.15 \\ -25 \\ \hline\end{array}$ |
|  | I/2 2PSK | 3 3954.99 | H | ${ }^{127}$ | 145 | 7.43 | $1 / 1$ | 20.05 | 27.48 | ${ }^{0.560}$ | 30.00 | -2.52 |
|  | QPSK | 3725.01 | H | 117 | 143 | 6.94 | 1/131 | 20.89 | 27.83 | 0.607 | 30.00 | -2.17 |
|  | QPSK | 3840.00 | H | 121 | 146 | 7.15 | 1/1 | 20.77 | 27.92 | 0.620 | 30.00 | -2.08 |
|  | OPSK | ${ }^{3954.99}$ | H | 127 | 145 | ${ }^{7} .43$ | 1/1 | 20.20 | 27.63 | ${ }^{0.558}$ | 30.00 | -2.37 |
|  | 16.0AM | 3725.01 | H | 117 | 143 | 6.94 | 1/131 | 20.12 | 27.06 | 0.509 | 30.00 | -2.94 |
|  | 16.OAM | 3440.00 | H | 121 | 146 | 7.15 | 1/1 | 19.35 | 26.50 | 0.447 | 30.00 | -3.50 |
|  | 16-OAM | 3954.99 | H | 127 | 145 | 7.43 | 1/1 | 19.31 | 26.74 | 0.472 | 30.00 | $-3.26$ |
| $\begin{aligned} & \frac{N}{2} \\ & \stackrel{y}{c} \end{aligned}$ | \#/2 2 PPSK | 3720.00 | H | 117 | 143 | 6.93 | $1 / 53$ | 20.98 | 27.90 | 0.617 | 30.00 | $-2.10$ |
|  | T/2 ${ }^{\text {BPSK }}$ | 3840.00 | H | 121 | 146 | 7.15 | 1/1 | 20.71 | 27.86 | 0.611 | 30.00 | $-2.14$ |
|  | T/2 ${ }^{\text {BPSK }}$ | 3960.00 | H | 127 | 145 | 7.44 | 1/1 | 20.06 | 27.50 | 0.563 | 30.00 | -2.50 |
|  | OPSK | 3720.00 | H | 117 | 143 | 6.93 | $1 / 53$ | 20.81 | 27.73 | 0.594 | 30.00 | $-2.27$ |
|  | apsK | 3840.00 | H | 121 | 146 | 7.15 | 1/1 | 20.81 | 27.96 | 0.626 | 30.00 | $-2.04$ |
|  | QPSK | 3960.00 | H | 127 | 145 | 7.44 | 1/1 | 20.22 | 27.66 | 0.584 | 30.00 | -2.34 |
|  | 16.OAM | 3720.00 | H | 117 | 143 | 6.93 | $1 / 53$ | 19.86 | 26.78 | 0.477 | 30.00 | ${ }^{-3.22}$ |
|  | 16.OAM | 3840.00 | H | 121 | 146 | 7.15 | 1/1 | 19.48 | ${ }^{26.63}$ | 0.461 | 30.00 | ${ }^{-3.37}$ |
|  | 16.OAM | 3960.00 | H | 127 | 145 | 7.44 | 1/1 | 19.44 | 26.88 | 0.488 | 30.00 | -3.12 |
| $\begin{aligned} & \frac{N}{2} \\ & \stackrel{N}{\Sigma} \\ & \text { ® } \end{aligned}$ | T/2 BPSK | 3775.02 | H | 117 | 143 | 6.91 | $1 / 39$ | 20.92 | 27.83 | 0.607 | 30.00 | $-2.17$ |
|  | [1/2 BPSK | 33440.00 | H | 121 | 146 | 7.15 | 1/1 | 20.70 | 27.85 | 0.610 | 30.00 | $-2.15$ |
|  | T/2 ${ }^{\text {BPSK }}$ | 3964.98 | H | 127 | 145 | 7.45 | 1/1 | 19.90 | 27.35 | 0.543 | 30.00 | -2.65 |
|  | QPSK | 3715.02 | H | ${ }^{117}$ | ${ }^{143}$ | 6.91 | 1/39 | 20.78 | 27.69 | 0.588 | 30.00 | -2.31 |
|  | OPSK | 38440.00 | H | 121 | 146 | 7.15 | 1/1 | 20.77 | 27.92 | ${ }^{0.620}$ | 30.00 | -2.08 |
|  | apSK | 3964.98 | H | ${ }^{127}$ | 145 | 7.45 | $1 / 1$ | 20.09 | ${ }^{27.54}$ | ${ }^{0.568}$ | 30.00 | $-2.46$ |
|  | 16-OAM | 3775.02 | H | 117 | 143 | 6.91 | 1/39 | 19.93 | ${ }^{26.84}$ | 0.484 | 30.00 | ${ }^{-3.16}$ |
|  | 16-OAM | 3440.00 | H | ${ }^{121}$ | 146 | 7.15 | 1/1 | 19.46 | 26.61 | 0.458 | 30.00 | $-3.39$ |
|  | 16.OAM | 3964.98 | H | 127 | 145 | 7.45 | 1/1 | 19.22 | 26.67 | 0.465 | 30.00 | -.333 |
| $\begin{aligned} & \frac{N}{2} \\ & \sum_{\sim}^{2} \end{aligned}$ | ${ }_{\text {T/2 }}^{\text {T/ } 2 \text { PPSK }}$ | 3712.50 38400 | ${ }_{\text {H }}^{\text {H }}$ | ${ }_{1}^{124}$ | 140 <br> 140 | 6.91 7.715 | $\frac{1 / 32}{1 / 1}$ | ${ }_{\substack{21.02 \\ 20.68}}$ | ${ }_{2}^{27.92} 2$ | ${ }_{0}^{0.620}$ | 30.00 3000 | $\begin{array}{r}-2.08 \\ -217 \\ \hline\end{array}$ |
|  | ${ }_{\text {T/2 }}^{\text {T/2 PPSK }}$ | 384000 396750 | H | 124 <br> 124 | 140 <br> 140 <br> 1 | 7.15 7.46 | $\frac{1 / 1}{1 / 1}$ | 20.68 <br> 19.68 | 27.83 | 0.607 | 30.00 30.00 | -2.17 -287 |
|  | OPSK | ${ }^{3712.50}$ | H | 124 | 140 | 6.91 | $1 / 32$ | 21.01 | 27.91 | 0.619 | 30.00 | $\stackrel{-209}{ }$ |
|  | QPSK | ${ }^{3840.00}$ | H | 124 | ${ }_{140}$ | 7.15 | 1/1 | 20.75 | ${ }^{27.90}$ | 0.617 | 30.00 | $\stackrel{-2.10}{ }$ |
|  | apsk | 3967.50 | H | 124 | 140 | 7.46 | 1/1 | 19.88 | 27.33 | ${ }_{0}^{0.541}$ | 30.00 | -2.67 |
|  | 16.0 AM | 3712.50 | H | 124 | 140 | 6.91 | 1/32 | 20.11 | 27.01 | 0.503 | 30.00 | -299 |
|  | 16.OAM | 3840.00 | H | 124 | 140 | 7.15 | 1/1 | 19.50 | 26.65 | 0.463 | 30.00 | ${ }_{-3.35}$ |
|  | 16.OAM | 3967.50 | H | 124 | 140 | 7.46 | 1/1 | 18.98 | 26.43 | 0.440 | 30.00 | -3.57 |
| $\begin{aligned} & \frac{N}{2} \\ & \stackrel{y}{2} \\ & \hline \end{aligned}$ | I/2 BPSK | 3710.01 | H | ${ }^{117}$ | ${ }^{143}$ | ${ }^{6.90}$ | 1/25 | ${ }^{21.00}$ | ${ }^{27.90}$ | 0.617 | 30.00 | $-2.10$ |
|  | T/2 BPSK | 3440.00 | H | 121 | 146 | 7.15 | 1/1 | 20.63 | 27.78 | 0.600 | 30.00 | -2.22 |
|  | ${ }^{1 / 2}$ 2 PPSK | ${ }^{3969.99}$ | H | ${ }^{127}$ | 145 | 7.46 | 1/49 | 19.67 | 27.13 | 0.517 | 30.00 | $-287$ |
|  | QPSK | ${ }^{3710.01}$ | H | ${ }^{117}$ | ${ }^{143}$ | ${ }^{6.90}$ | $1 / 25$ | 20.91 | 27.81 | 0.605 | 30.00 | -2.19 |
|  | ${ }^{\text {OPSK }}$ | 3840.00 | H | ${ }^{121}$ | ${ }^{146}$ | ${ }^{7.15}$ | 1/1/ | 20.67 | ${ }^{27.82}$ | ${ }^{0.606}$ | 30.00 | $-2.18$ |
|  | QPSK | 3369.99 | H | ${ }^{127}$ | 145 | 7.46 | 1/49 | 19.84 | ${ }^{27.30}$ | ${ }^{0.537}$ | 30.00 | -2.70 |
|  | 16-OAM | 3710.01 | H | ${ }^{117}$ | ${ }^{143}$ | 6.90 | 1/25 | 19.96 | 26.86 | ${ }^{0.486}$ | 30.00 | -. 314 |
|  | ${ }^{16-O A M}$ | 3840.00 | H | ${ }^{121}$ | 146 | 7.15 | 1/1 | 19.37 | 26.52 | ${ }^{0.449}$ | 30.00 | - -3.48 |
|  | 16.OAM | 3969.99 | H | ${ }^{127}$ | 145 | 7.46 | 1/49 | 19.07 | 26.53 | 0.450 | 30.00 | $-3.47$ |
|  | \#/2 2 PSK | 3707.52 | H | 117 | 143 | 6.89 | 1/36 | 20.98 | 27.87 | 0.613 | 30.00 | $-2.13$ |
| $\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{N}{0} \\ & \stackrel{0}{n} \end{aligned}$ | \#1/2 ${ }^{\text {PPSK }}$ | 3840.00 | H | 121 | 146 | 7.15 | 1/1 | 20.59 | 27.74 | 0.595 | 30.00 | $-2.26$ |
|  | \#12 2 PSK | 3972.48 | H | 127 | 145 | 7.46 | 1/36 | 19.71 | 27.17 | 0.521 | 30.00 | -2.83 |
|  | QPSK | 3707.52 | H | ${ }^{117}$ | ${ }^{143}$ | 6.89 | 1/36 | 20.89 | ${ }^{27.78}$ | ${ }^{0.600}$ | 30.00 | -2.22 |
|  | OPSK | 3840.00 | H | 121 | 146 | 7.15 | 1/1 | 20.58 | 27.73 | 0.593 | 30.00 | -2.27 |
|  | ${ }_{\text {apSK }}$ | 3972.48 | H | ${ }^{127}$ | 145 | ${ }^{7.46}$ | 1/36 | 19.88 | 27.34 | ${ }^{0.542}$ | 30.00 | $-2.66$ |
|  | 16.OAM | ${ }^{3707.52}$ | H | ${ }^{117}$ | ${ }^{143}$ | 6.89 | $1 / 36$ | 19.98 | 26.87 | ${ }^{0.487}$ | 30.00 | -3.13 |
|  | ${ }^{16-O A M}$ | 3440.00 | H | ${ }^{121}$ | 146 | 7.15 | 1/1/ | 19.43 | ${ }^{26.58}$ | ${ }^{0.455}$ | 30.00 | - -3.42 |
|  | 16.OAM | 3972.48 | H | 127 | 145 | 7.46 | 1/36 | 19.06 | 26.52 | 0.449 | 30.00 | $-3.48$ |
| $\begin{aligned} & \stackrel{N}{\Sigma} \\ & \stackrel{N}{0} \end{aligned}$ | \#1/2 ${ }^{\text {PPSK }}$ | 3705.00 | H | 117 | 143 | 6.89 | 1/12 | 20.99 | 27.87 | 0.613 | 30.00 | $-2.13$ |
|  | T/2 2PSK | 3840.00 | H | ${ }^{121}$ | 146 | 7.15 | 1/1 | 20.51 | ${ }^{27.66}$ | ${ }^{0.584}$ | 30.00 | $-2.34$ |
|  | ${ }_{\text {T/2 }}^{\text {OPSK }}$ ( | 3375.00 370500 | ${ }_{\text {H }}^{\text {H }}$ | $\stackrel{127}{117}$ | $\stackrel{145}{143}$ | 7.47 <br> 6.89 | $\frac{1 / 22}{1 / 12}$ | 19.62 2088 | 27.09 2776 | 0.512 | 30.00 300 | - 2.291 |
|  | ${ }_{\text {OPSK }}$ | 3705.00 38000 | H | $\stackrel{117}{121}$ | 143 146 | 6.89 7.15 | $\frac{1 / 12}{1 / 1}$ | 20.88 20.52 | ${ }_{2}^{27.76}$ | $\stackrel{0.598}{0.555}$ | 30.00 30.00 | -2.24 <br> -2.33 |
|  | QPSK | 3975.00 | H | ${ }^{127}$ | 145 | 7.47 | 1/22 | 19.80 | ${ }^{27.27}$ | ${ }_{0}^{0.533}$ | 30.00 | --273 |
|  | 16.0AM | 3705.00 | H | 117 | 143 | 6.89 | 1/12 | 19.88 | 26.76 | 0.475 | 30.00 | -3.24 |
|  | $\frac{16.09 M}{16.09 M}$ | 384000 399500 | H | ${ }^{121}$ | ${ }^{146}$ | ${ }^{7.15}$ | 1/1/1 | 19.31 | ${ }^{26.46}$ | ${ }^{0.443}$ | 30.00 | $-3.54$ |
|  | 16-0AM | 3975.00 | H | 127 | 145 | 7.47 | $1 / 22$ | 18.98 | 26.45 | ${ }^{0.442}$ | 30.00 | ${ }^{-3.55}$ |
| 100 MHz | OPSK (CP-OFOM) | 3750.00 | H | ${ }^{127}$ | 143 | ${ }^{7} .01$ | 1/136 | 19.66 | 26.67 | ${ }^{0.465}$ | 30.00 | ${ }^{-3.33}$ |

Table 7-11. EIRP Data (NR Band n77 PC2 C-Band)

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT |  | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 75 of 87 |

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

| Bandwidh | Mod. | Frequency $[\mathrm{MHz}]$ | $\left.\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Anvo } \end{array} \right\rvert\,$ |  | $\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { Arimulte } \\ \text { degreep } \end{array}$ | $\begin{gathered} \text { Ant. Gain } \\ \text { [dBII } \end{gathered}$ | $\begin{gathered} \text { Sizelotset } \end{gathered}$ | Substitute Level [dBm] | $\underset{\text { }}{\substack{\text { dirpmp }}}$ | $\underset{\text { [Watsp }}{\substack{\text { [IRP }}}$ | $\begin{aligned} & \text { EIRP Limit } \\ & {[\mathrm{dBm}]} \end{aligned}$ | $\begin{gathered} \text { Margin } \\ {[\mathrm{dBj}]} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \dot{k} \\ & \stackrel{i}{c} \end{aligned}$ | / $/ 12$ BPSK | 350.01 | H | 124 | 140 | 6.46 | 1/271 | 20.33 | 26.79 | 0.478 | 30.00 | ${ }_{-3.21}$ |
|  | ${ }^{\text {apSK }}$ | 3500.01 | H | ${ }^{124}$ | 140 | 6.46 | 1/271 | 20.65 | ${ }^{27.11}$ | 0.515 | 30.00 | $-2.89$ |
|  | 16.OAM | 3500.01 | H | 124 | 140 | 6.46 | 1/271 | 19.49 | 25.95 | 0.394 | 30.00 | ${ }_{-4.05}$ |
| $\begin{aligned} & \text { N N } \\ & \frac{2}{2} \\ & \text { 。 } \end{aligned}$ | T/2 2 BPS | ${ }^{3495.00}$ | H | ${ }^{124}$ | 140 | 6.46 | 1/243 | 20.34 | 26.79 | 0.478 | 30.00 | ${ }^{-3.21}$ |
|  | \#/2 BPSK | 3500.01 | H | 124 | 140 | 6.46 | 1/243 | 20.37 | 26.83 | 0.482 | 30.00 | -3.17 |
|  | \#/2 BPSK | 3504.99 | H | 124 | 140 | 6.47 | 1/243 | 20.38 | 26.84 | 0.484 | 30.00 | -3.16 |
|  | OPSK | 3495.00 | H | 124 | 140 | 6.46 | 1/243 | 20.62 | 27.07 | 0.510 | 30.00 | $-2.93$ |
|  | QPSK | ${ }^{3500.01}$ | H | ${ }^{124}$ | 140 | 6.46 | $1 / 243$ | 20.64 | 27.10 | 0.513 | 30.00 | -2.90 |
|  | OPSK | 3504.99 | H | ${ }^{124}$ | 140 | 6.47 | 1/243 | 20.67 | 27.13 | 0.517 | 30.00 | -2.87 |
|  | 16.OAM | 3495.00 | H | ${ }^{124}$ | 140 | 6.46 | $1 / 243$ | 19.41 | 25.86 | 0.386 | 30.00 | ${ }^{-4.14}$ |
|  | 16.0АM | ${ }^{3500.01}$ | H | 124 | 140 | 6.46 | 1/243 | 19.40 | 25.86 | 0.386 | 30.00 | ${ }_{-4.14}$ |
|  | 16.0AM | 3504.99 | H | ${ }^{124}$ | 140 | 6.47 | 1/243 | 19.32 | 25.78 | 0.379 | 30.00 | -4.22 |
| $\begin{aligned} & \text { N } \\ & \stackrel{N}{2} \\ & \text { © } \end{aligned}$ | \#/2 2 PPSK | ${ }^{3490.02}$ | H | 124 | 140 | 6.45 | 1/215 | 20.50 | 26.95 | 0.496 | 30.00 | ${ }^{-3.05}$ |
|  | \#/2BPSK | ${ }^{3500.01}$ | H | ${ }^{124}$ | 140 | 6.46 | 1/215 | 20.42 | 26.88 | 0.488 | 30.00 | ${ }^{-3.12}$ |
|  | \#/2 BPSK | 3510.00 | H | 124 | 140 | 6.47 | 1/215 | 20.34 | 26.81 | 0.480 | 30.00 | -3.19 |
|  | OPSK | ${ }^{340,02}$ | H | 124 | 140 | 6.45 | 1/215 | 20.79 | 27.24 | 0.530 | 30.00 | $-2.76$ |
|  | OPSK | ${ }^{3500.01}$ | H | 124 | 140 | 6.46 | 1/215 | 20.77 | 27.23 | 0.529 | 30.00 | -2.77 |
|  | apsk | 3510.00 | H | 124 | 140 | 6.47 | 1/215 | 20.64 | 27.11 | 0.515 | 30.00 | $-2.89$ |
|  | 16.OAM | 3490.02 | H | ${ }^{124}$ | 140 | 6.45 | 1/215 | 19.56 | 26.01 | 0.399 | 30.00 | $\stackrel{-3.99}{ }$ |
|  | 16.OAM | 3500.01 | H | 124 | 140 | 6.46 | 1/215 | 19.56 | 26.02 | 0.400 | 30.00 | -3.98 |
|  | 16.OAM | 3510.00 | H | 124 | 140 | 6.47 | 1/215 | 19.42 | 25.89 | 0.389 | 30.00 | -4.11 |
| $\begin{aligned} & \frac{N}{2} \\ & R \\ & R \end{aligned}$ | \#/2 ${ }^{\text {PPSK }}$ | 3485.01 | H | 124 | 140 | 6.45 | 1/187 | 20.35 | 26.79 | 0.478 | 30.00 | -3.21 |
|  | ${ }_{\text {H/2 } 2 \text { PSSK }}$ | ${ }^{3500.01}$ | H | ${ }^{124}$ | ${ }^{140}$ | ${ }^{6.46}$ | 1/187 | 20.50 | ${ }^{26.96}$ | 0.497 | 30.00 | -3.04 |
|  | \#/2 BPSK | ${ }^{3514.98}$ | H | 124 | 140 | 6.47 | 1/187 | 20.47 | 26.94 | 0.495 | 30.00 | ${ }^{-3.06}$ |
|  | QPSK | ${ }^{3485.01}$ | H | 124 | 140 | 6.45 | 1/187 | 20.57 | 27.01 | 0.503 | 30.00 | -2.99 |
|  | QPSK | 3500.01 | H | 124 | 140 | 6.46 | 1/187 | 20.79 | 27.25 | 0.531 | 30.00 | $-2.75$ |
|  | apsK | ${ }^{3514.98}$ | H | 124 | 140 | 6.47 | 1/187 | 20.78 | ${ }^{27.25}$ | 0.531 | 30.00 | $-2.75$ |
|  | 16.0AM | 3485.01 | H | 124 | 140 | 6.45 | 1/187 | 19.40 | 25.84 | 0.384 | 30.00 | ${ }_{-4.16}$ |
|  | 16-OAM | ${ }^{3500.01}$ | H | 124 | 140 | 6.46 | 1/187 | 19.54 | 26.00 | 0.399 | 30.00 | ${ }_{-4.00}$ |
|  | 16.OAM | ${ }^{3514.98}$ | H | 124 | 140 | 6.47 | 1/187 | 19.55 | 26.02 | 0.400 | 30.00 | -3.98 |
| $\begin{aligned} & \frac{N}{2} \\ & \stackrel{y}{2} \\ & \hline 8 \end{aligned}$ | [/2 ${ }^{\text {BPSK }}$ | 3488.00 | H | 124 | 140 | 6.44 | 1/160 | 20.16 | 26.60 | 0.458 | 30.00 | ${ }_{-3.40}$ |
|  | \#/2 2 PSK | ${ }^{3500.01}$ | H | 124 | 140 | 6.46 | 1/160 | 20.54 | 27.00 | 0.502 | 30.00 | -3.00 |
|  | ${ }_{\text {H/2 } 2 \text { PSSK }}$ | ${ }^{3519.99}$ | H | 124 | 140 | 6.48 | 1/81 | 20.58 | 27.05 | 0.508 | 30.00 | -2.95 |
|  | QPSK | ${ }^{3480.00}$ | H | ${ }^{124}$ | 140 | 6.44 | 1/160 | ${ }^{20.43}$ | 26.87 | 0.487 | 30.00 | ${ }^{-3.13}$ |
|  | apsK | 3500.01 | H | 124 | 140 | 6.46 | 1/160 | 20.84 | 27.30 | 0.538 | 30.00 | $-2.70$ |
|  | OPSK | ${ }^{3519.99}$ | H | ${ }^{124}$ | 140 | 6.48 | 1/81 | 20.91 | ${ }^{27.38}$ | 0.548 | 30.00 | $-2.62$ |
|  | 16.OAM | 3488.00 | H | 124 | 140 | 6.44 | 1/160 | 19.28 | 25.72 | 0.374 | 30.00 | ${ }_{-4.28}$ |
|  | 16.OAM | ${ }^{3500.01}$ | H | 124 | 140 | 6.46 | 1/160 | 19.42 | ${ }^{25.88}$ | 0.388 | 30.00 | ${ }^{-4.12}$ |
|  | 16.OAM | 3519.99 | H | 124 | 140 | 6.48 | 1/81 | 19.59 | 26.06 | 0.404 | 30.00 | ${ }^{-3.94}$ |
| $\begin{aligned} & \text { N } \\ & \stackrel{N}{2} \\ & 0.0 \end{aligned}$ | [/2 ${ }^{\text {BPSK }}$ | ${ }^{345.02}$ | H | ${ }^{124}$ | 140 | 6.43 | 1/66 | 20.18 | 26.61 | 0.459 | 30.00 | ${ }^{-3.39}$ |
|  | \#/2 BPSK | 3500.01 | H | 124 | 140 | 6.46 | 1/131 | 20.48 | 26.94 | 0.495 | 30.00 | $-3.06$ |
|  | \#/2 BPSK | 3525.00 | H | 124 | 140 | 6.48 | 1/66 | 20.62 | 27.09 | 0.512 | 30.00 | -2.91 |
|  | QPSK | ${ }^{3475.02}$ | H | ${ }^{124}$ | 140 | 6.43 | ${ }^{1 / 66}$ | 20.43 | ${ }^{26.86}$ | 0.486 | 30.00 | -3.14 |
|  | QPSK | ${ }^{3500.01}$ | H | ${ }^{124}$ | 140 | 6.46 | 1/131 | ${ }^{20.76}$ | 27.22 | 0.528 | 30.00 | $-2.78$ |
|  | QPSK | ${ }^{3525.00}$ | H | 124 | 140 | 6.48 | 1/66 | 20.89 | ${ }^{27.36}$ | 0.545 | 30.00 | $-2.64$ |
|  | 16.OAM | ${ }^{3475.02}$ | H | 124 | 140 | 6.43 | 1/66 | 19.09 | 25.52 | 0.357 | 30.00 | ${ }_{-4.48}$ |
|  | 16.0AM | ${ }^{3500.01}$ | H | 124 | 140 | 6.46 | 1/131 | 19.50 | 25.96 | 0.395 | 30.00 | -4.04 |
|  | 16.OAM | 3525.00 | H | 124 | 140 | 6.48 | 1/66 | 19.66 | 26.13 | 0.411 | 30.00 | ${ }_{-3.87}$ |
|  | \#/2 2 PSSK | ${ }^{3470.01}$ | H | ${ }^{124}$ | ${ }^{140}$ | 6.43 | $1 / 53$ | 20.14 | ${ }^{26.56}$ | 0.453 | 30.00 | ${ }^{-3.44}$ |
|  | T/2 BPSK | 3500.01 | H | 124 | 140 | 6.46 | 1/104 | 20.39 | 26.85 | 0.485 | 30.00 | ${ }^{-3.15}$ |
|  | \#/2 BPSK | ${ }^{3529.98}$ | H | 124 | 140 | 6.48 | 1/53 | 20.70 | 27.18 | 0.523 | 30.00 | $-2.82$ |
|  | apsk | ${ }^{3470.01}$ | H | 124 | 140 | 6.43 | 1/53 | 20.46 | 26.88 | 0.488 | 30.00 | -3.12 |
|  | apsk | ${ }^{3500.01}$ | H | ${ }^{124}$ | 140 | 6.46 | 1/104 | 20.72 | 27.18 | 0.523 | 30.00 | -2.82 |
|  | OPSK | ${ }^{3529.98}$ | H | 124 | 140 | 6.48 | $1 / 53$ | 20.94 | ${ }^{27.42}$ | 0.553 | 30.00 | ${ }^{-2.58}$ |
|  | 16.OAM | 3470.01 | H | 124 | 140 | 6.43 | $1 / 53$ | 19.19 | 25.61 | 0.364 | 30.00 | ${ }_{-4.39}$ |
|  | 16.OAM | 3500.01 | H | 124 | 140 | 6.46 | 1/104 | 19.44 | 25.90 | 0.389 | 30.00 | -4.10 |
|  | 16.OAM | 3529.98 | H | 124 | 140 | 6.48 | $1 / 53$ | 19.76 | 26.24 | 0.421 | 30.00 | -.3.76 |
| $\underset{\sim}{\Sigma}$ | \#/2 2 PPSK | ${ }^{3465.00}$ | H | ${ }^{124}$ | 140 | 6.42 | 1/39 | 20.09 | 26.51 | 0.448 | 30.00 | ${ }^{-3.49}$ |
|  | $\pi / 2$ BPSK | ${ }^{3500.01}$ | H | 124 | 140 | 6.46 | $1 / 76$ | 20.31 | ${ }^{26.77}$ | 0.476 | 30.00 | ${ }^{-3.23}$ |
|  | \#/2 ${ }^{\text {PPSK }}$ | 3534.99 | H | 124 | 140 | 6.48 | 1/39 | 20.71 | 27.19 | 0.524 | 30.00 | $-2.81$ |
|  | QPSK | ${ }^{3465.00}$ | H | 124 | 140 | 6.42 | 1/39 | 20.39 | 26.81 | 0.480 | 30.00 | -3.19 |
|  | apsk | 3500.01 | H | 124 | 140 | 6.46 | 1/76 | 20.63 | 27.09 | 0.512 | 30.00 | -2.91 |
|  | QPSK | ${ }^{3534.99}$ | H | 124 | 140 | 6.48 | 1/39 | 20.95 | 27.43 | 0.554 | 30.00 | -2.57 |
|  | 16.OAM | ${ }^{3465.00}$ | H | 124 | 140 | 6.42 | 1/39 | 19.22 | 25.64 | 0.367 | 30.00 | ${ }_{-4.36}$ |
|  | 16.OAM | 3500.01 | H | 124 | 140 | 6.46 | 1 176 | 19.32 | 25.78 | 0.379 | 30.00 | -4.22 |
|  | 16-OAM | 3534.99 | H | 124 | 140 | 6.48 | 1/39 | 19.86 | 26.34 | 0.431 | 30.00 | ${ }_{-}^{-3.66}$ |
| $\stackrel{\sim}{8}$ | [/2 ${ }^{\text {PPSK }}$ | ${ }^{3462.51}$ | H | 124 | 140 | 6.42 | 1/32 | 20.12 | 26.53 | 0.450 | 30.00 | ${ }^{-3.47}$ |
|  | \#/2 BPSK | ${ }^{3500.01}$ | H | ${ }^{124}$ | 140 | 6.46 | 1/63 | 20.25 | 26.71 | 0.469 | 30.00 | -3.29 |
|  | \#/2 2 PSSK | ${ }^{3537.48}$ | H | 124 | 140 | 6.48 | 1/32 | 20.53 | 27.01 | 0.503 | 30.00 | -2.99 |
|  | QPSK | ${ }^{3462.51}$ | H | 124 | 140 | 6.42 | 1/32 | 20.48 | 26.89 | 0.489 | 30.00 | -3.11 |
|  | aPSK | 3500.01 | H | 124 | 140 | 6.46 | 1/63 | 20.57 | 27.03 | 0.505 | 30.00 | -2.97 |
|  | QPSK | ${ }^{3537.48}$ | H | ${ }^{124}$ | 140 | 6.48 | 1/32 | 20.82 | 27.30 | ${ }^{0.538}$ | 30.00 | -2.70 |
|  | 16-OAM | ${ }^{3462.51}$ | H | ${ }^{124}$ | 140 | 6.42 | 1/32 | 19.18 | 22.59 | 0.363 | 30.00 | -4.41 |
|  | 16.OAM | 3500.01 | H | 124 | 140 | 6.46 | 1/63 | 19.28 | 25.74 | 0.375 | 30.00 | ${ }_{-4.26}$ |
|  | 16.OAM | ${ }^{3537.48}$ | H | 124 | 140 | 6.48 | 1/32 | 19.52 | 26.00 | 0.399 | 30.00 | ${ }_{-4.00}$ |
| $\begin{aligned} & \stackrel{N}{\Sigma} \\ & \stackrel{y}{2} \end{aligned}$ | [/2 ${ }^{\text {BPSK }}$ | ${ }^{3460.02}$ | H | 124 | 140 | 6.42 | 1/49 | 20.14 | 26.55 | 0.452 | 30.00 | ${ }^{-3.45}$ |
|  | ${ }_{\text {H/2 } 2 \text { PSSK }}$ | ${ }^{3500.01}$ | H | ${ }^{124}$ | 140 | 6.46 | 1/49 | 20.22 | ${ }^{26.68}$ | 0.466 | 30.00 | -3.32 |
|  | T/2 BPSK | ${ }^{3540.00}$ | H | ${ }^{124}$ | 140 | 6.49 | 1/1 | 20.58 | 27.06 | 0.509 | 30.00 | -2.94 |
|  | OPSK | ${ }^{3460.02}$ | H | 124 | 140 | 6.42 | 1/49 | 20.45 | ${ }^{26.86}$ | 0.486 | 30.00 | ${ }^{-3.14}$ |
|  | OPSK | 3500.01 | H | 124 | 140 | 6.46 | 1/49 | 20.50 | 26.96 | 0.497 | 30.00 | -3.04 |
|  | QPSK | ${ }^{3540.00}$ | H | 124 | 140 | 6.49 | 1/1 | 20.88 | ${ }^{27.36}$ | 0.545 | 30.00 | $-2.64$ |
|  | 16.0AM | ${ }^{3460.02}$ | H | 124 | 140 | 6.42 | 1/49 | 19.20 | 25.61 | 0.364 | 30.00 | -4.39 |
|  | 16.OAM | ${ }^{3500.01}$ | H | ${ }^{124}$ | 140 | 6.46 | 1/49 | 19.31 | 25.77 | 0.378 | 30.00 | -4.23 |
|  | 16.OAM | ${ }^{3540.00}$ | H | ${ }_{124}^{124}$ | 140 | 6.49 | 1/1 | 19.55 | 26.03 | 0.401 | 30.00 | -3.97 |
| $\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{N}{2} \\ & \stackrel{y}{0} \end{aligned}$ | \#/2 2 PSK | ${ }^{3457.50}$ | H | 124 | 140 | 6.41 | 1/36 | 20.07 | ${ }^{26.48}$ | 0.445 | 30.00 | ${ }^{-3.52}$ |
|  | \#/2 2 PPSK | ${ }^{3500.01}$ | H | 124 | 140 | 6.46 | 1/36 | 20.17 | ${ }^{26.63}$ | 0.461 | 30.00 | -3.37 |
|  | \#/2 BPSK | ${ }^{3542.49}$ | H | ${ }^{124}$ | 140 | 6.49 | 1/19 | 20.57 | 27.05 | 0.508 | 30.00 | -2.95 |
|  | ${ }^{\text {QPSKK }}$ | ${ }^{3457.50}$ | H | ${ }^{124}$ | 140 | 6.41 | 1/36 | 20.39 | 26.80 | 0.479 | 30.00 | ${ }^{-3.20}$ |
|  | QPSK | ${ }^{3500.01}$ | H | 124 | 140 | 6.46 | 1/36 | 20.50 | 26.96 | 0.497 | 30.00 | -3.04 |
|  | QPSK | ${ }^{3542.49}$ | H | 124 | 140 | 6.49 | 1/19 | 21.00 | ${ }^{27.48}$ | 0.560 | 30.00 | -2.52 |
|  | 16.OAM | 3457.50 | H | 124 | 140 | 6.41 | 1/36 | 19.14 | 25.55 | 0.359 | 30.00 | ${ }_{-4.45}$ |
|  | 16.OAM | 3500.01 | H | 124 | 140 | 6.46 | 1/36 | 19.15 | 25.61 | 0.364 | 30.00 | -4.39 |
|  | 16.OAM | ${ }^{3542.49}$ | H | 124 | 140 | 6.49 | 1/19 | 19.66 | 26.14 | 0.412 | 30.00 | -3.86 |
|  | \#/2 2 PSSK | ${ }^{3455.01}$ | H | ${ }^{124}$ | 140 | 6.41 | $1 / 11$ | 20.11 | 26.51 | 0.448 | 30.00 | ${ }^{-3.49}$ |
|  | \#/2 2 PSK | ${ }^{3500.01}$ | H | 124 | 140 | 6.46 | 1/22 | 20.14 | 26.60 | 0.458 | 30.00 | -3.40 |
|  | ${ }_{\text {H/2 } 2 \text { PSSK }}$ | ${ }^{3544.98}$ | H | ${ }^{124}$ | 140 | 6.49 | 1/12 | 20.63 | 27.11 | 0.515 | 30.00 | $-2.89$ |
|  | OPSK | ${ }^{3455.01}$ | H | 124 | 140 | 6.41 | 1/1 | 20.39 | 26.79 | 0.478 | 30.00 | ${ }^{-3.21}$ |
|  | QPSK | ${ }^{3500.01}$ | H | ${ }^{124}$ | 140 | ${ }^{6.46}$ | $1 / 22$ | ${ }^{20.43}$ | 26.89 | 0.489 | 30.00 | ${ }^{-3.11}$ |
|  | QPSK | ${ }^{3544.98}$ |  | ${ }^{124}$ | 140 | 6.49 | 1/12 | 20.87 | ${ }^{27.35}$ | ${ }^{0.544}$ | 30.00 | $-2.65$ |
|  | 16.OAM | 3455.01 | H | 124 | 140 | 6.41 | 1/1 | 19.13 | 25.53 | 0.358 | 30.00 | ${ }_{-4.47}$ |
|  | ${ }^{16-O A M}$ | ${ }^{3500.01}$ | H | ${ }^{124}$ | ${ }^{140}$ | 6.46 | $1 / 22$ | 19.15 | ${ }^{25.61}$ | 0.364 | 30.00 | -4.39 |
|  | ${ }^{\text {16.OAM }}$ | ${ }_{3544.98}$ | H | ${ }_{124}^{124}$ | $\frac{140}{140}$ | ${ }_{6}^{6.49} 6$ | $\frac{1 / 12}{1 / 136}$ | 19.59 | 26.07 | ${ }^{0.405}$ | 30.00 3000 | $\begin{array}{r}-3.93 \\ -.385 \\ \hline\end{array}$ |
| 100 MHz | SK (CP-OFDM) |  |  |  |  |  |  |  | 26.15 |  |  |  |

Table 7-12. EIRP Data (NR Band n77 PC2 DoD Band)

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT |  | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 76 of 87 |

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

### 7.8 Radiated Spurious Emissions Measurements

## Test Overview

Radiated spurious emissions measurements are performed using the field strength conversion method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1 GHz are performed using hybrid (biconical/log) antennas. Measurements on signals operating above 1 GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

## Test Procedures Used

ANSI C63.26-2015 - Section 5.5.4

## Test Settings

1. $\mathrm{RBW}=100 \mathrm{kHz}$ for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
2. VBW $\geq 3 \times$ RBW
3. Span $=1.5$ times the OBW
4. No. of sweep points $\geq 2 \times$ span / RBW
5. Detector $=$ RMS
6. Trace mode = Average (Max Hold for pulsed emissions)
7. The trace was allowed to stabilize.

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: | Test Dates: | EUT Type: |  |
| 1M2310260110-06.A3L | $11 / 30 / 2023-12 / 12 / 2023$ | Portable Handset | Page 77 of 87 |
| © 2023 ELEMENT |  | V11.1 08/28/2023 |  |

## Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.


Figure 7-7. Test Instrument \& Measurement Setup < 1GHz


Figure 7-8. Test Instrument \& Measurement Setup >1 GHz

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT <br> Technical Manager |  |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 78 of 87 |

## Test Notes

1) Field strengths are calculated using the Measurement quantity conversions in ANSI C63.26-2015 Section 5.2.7:
b) $\mathrm{E}(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})=$ Measured amplitude level $(\mathrm{dBm})+107+$ Cable Loss ( dB ) + Antenna Factor ( $\mathrm{dB} / \mathrm{m}$ )
d) $\operatorname{EIRP}(d B m)=E(d B \mu V / m)+20 \log D-104.8$; where $D$ is the measurement distance in meters.
2) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst-case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
3) This unit was tested with its standard battery.
4) The spectrum is measured from 9 kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
5) Emissions below 18 GHz were measured at a 3 -meter test distance while emissions above 18 GHz were measured at a 1-meter test distance with the application of a distance correction factor.
6) The "-" shown in the following RSE tables are used to denote a noise floor measurement.
7) For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-sOFDM) were investigated to determine the worst-case configuration. All modes of operation were investigated, and the worst-case configuration results are reported in this section.
8) Spurious emission in EN-DC Operating mode with Sub 6 GHz NR carrier as well as an LTE carrier (anchor) has been checked and was found to not to be the worst case. Spurious emissions from the NR carrier device are subject to the rules under which the NR carrier operates. Spurious emissions caused by the LTE carrier must meet the requirements of the rules under which the LTE carrier operates.

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 79 of 87 |
| © 2023 ELEMENT |  | V11.1 $08 / 28 / 2023$ |  |

## element

## NR Band n77 PC2 C-Band



Plot 7-89. Radiated Spurious Plot - Below 1GHz (NR Band n77 PC2 C-Band)

| Bandwidth (MHz): | 100 |
| ---: | :---: |
| Frequency (MHz): | 3930.00 |
| RB / Offset: | $1 / 136$ |


| Frequency [MHz] | Ant. Pol. <br> $[\mathrm{H} / \mathrm{V}]$ | Antenna <br> Height $[\mathrm{cm}]$ | Turntable <br> Azimuth <br> [degree] | Analyzer <br> Level <br> $[\mathrm{dBm}]$ | AFCL <br> $[\mathrm{dB} / \mathrm{m}]$ | Field <br> Strength <br> $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]$ | ERP Spurious <br> Emission Level <br> $[\mathrm{dBm}]$ | Limit <br> $[\mathrm{dBm}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 187.24 | V | - | - | -62.16 | -14.43 | 30.41 | -66.99 | -13.00 |
| $[\mathrm{~dB}]$ |  |  |  |  |  |  |  |  |

Table 7-13. Radiated Spurious Data Below 1GHz (NR Band n77 PC2 C-Band - Mid Channel)


Plot 7-90. Radiated Spurious Plot - 1GHz - 18GHz (NR Band n77 PC2 C-Band)

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 80 of 87 |
| © 2023 ELEMENT |  | V11.108/28/2023 |  |

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.


Plot 7-91. Radiated Spurious Plot - 18GHz - 26.5GHz (NR Band n77 PC2 C-Band)


Plot 7-92. Radiated Spurious Plot $-26.5 \mathrm{GHz}-40 \mathrm{GHz}$ (NR Band n77 PC2 C-Band)

| Bandwidth (MHz): | 100 |
| ---: | :---: |
| Frequency (MHz): | 3750.00 |
| RB / Offset: | $1 / 136$ |


| Frequency [MHz] | Ant. Pol. [H/V] | Antenna Height [cm] | Turntable Azimuth [degree] | Analyzer Level [dBm] | AFCL <br> [dB/m] | Field Strength [ $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ ] | EIRP Spurious Emission Level [dBm] | $\begin{aligned} & \text { Limit } \\ & \text { [dBm] } \end{aligned}$ | Margin [dB] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7500.00 | V | 133 | 44 | -62.68 | 12.59 | 56.91 | -38.35 | -13.00 | -25.35 |
| 11250.00 | V | 150 | 353 | -78.87 | 18.24 | 46.37 | -48.88 | -13.00 | -35.88 |
| 15000.00 | V | - | - | -79.94 | 23.03 | 50.09 | -45.16 | -13.00 | -32.16 |
| 18750.00 | V | 150 | 17 | -55.05 | 1.53 | 53.49 | -51.31 | -13.00 | -38.31 |
| 22500.00 | V | 150 | 352 | -55.59 | 3.77 | 55.19 | -49.61 | -13.00 | -36.61 |
| 26250.00 | V | - | - | -56.02 | 4.18 | 55.16 | -49.64 | -13.00 | -36.64 |
| 30000.00 | V | - | - | -56.86 | 5.99 | 56.13 | -48.67 | -13.00 | -35.67 |
| 33750.00 | V | - | - | -57.65 | 7.49 | 56.84 | -47.96 | -13.00 | -34.96 |

Table 7-14. Radiated Spurious Data (NR Band n77 PC2 C-Band - Low Channel)

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 81 of 87 |
| © 2023 ELEMENT |  | V11.1 $08 / 28 / 2023$ |  |


| Bandwidth (MHz): | 100 |
| ---: | :---: |
| Frequency (MHz): | 3840.00 |
| RB / Offset: | $1 / 136$ |


| Frequency [MHz] | Ant. Pol. [H/V] | Antenna Height [cm] | Turntable Azimuth [degree] | Analyzer Level [dBm] | AFCL <br> [dB/m] | Field Strength [dB $\mu \mathrm{V} / \mathrm{m}$ ] | EIRP Spurious Emission Level [dBm] | Limit <br> [dBm] | Margin [dB] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7680.00 | V | 137 | 62 | -64.03 | 13.02 | 55.99 | -39.27 | -13.00 | -26.27 |
| 11520.00 | V | 159 | 13 | -78.98 | 18.34 | 46.36 | -48.90 | -13.00 | -35.90 |
| 15360.00 | V | - | - | -79.83 | 23.20 | 50.37 | -44.89 | -13.00 | -31.89 |
| 19200.00 | V | 150 | 20 | -54.98 | 2.06 | 54.08 | -50.72 | -13.00 | -37.72 |
| 23040.00 | V | 150 | 32 | -54.49 | 3.74 | 56.26 | -48.54 | -13.00 | -35.54 |
| 26880.00 | V | - | - | -56.01 | 4.42 | 55.41 | -49.39 | -13.00 | -36.39 |
| 30720.00 | V | - | - | -57.02 | 6.66 | 56.64 | -48.16 | -13.00 | -35.16 |
| 34560.00 | V | - | - | -56.94 | 7.55 | 57.61 | -47.19 | -13.00 | -34.19 |

Table 7-15. Radiated Spurious Data (NR Band n77 PC2 C-Band - Mid Channel)

| Bandwidth (MHz): | 100 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency (MHz): | 3930.00 |  |  |  |  |  |  |  |  |
| RB / Offset: | 1/136 |  |  |  |  |  |  |  |  |
| Frequency [MHz] | Ant. Pol. [H/V] | Antenna Height [cm] | Turntable Azimuth [degree] | Analyzer Level [dBm] | AFCL <br> [dB/m] | Field Strength [dB $\mu \mathrm{V} / \mathrm{m}$ ] | EIRP Spurious Emission Level [dBm] | Limit <br> [dBm] | Margin [dB] |
| 7860.00 | V | 153 | 292 | -59.70 | 13.34 | 60.64 | -34.62 | -13.00 | -21.62 |
| 11790.00 | V | 126 | 22 | -76.32 | 18.45 | 49.13 | -46.12 | -13.00 | -33.12 |
| 15720.00 | V | - | - | -80.10 | 24.42 | 51.32 | -43.94 | -13.00 | -30.94 |
| 19650.00 | V | 150 | 19 | -54.26 | 2.49 | 55.23 | -49.57 | -13.00 | -36.57 |
| 23580.00 | V | 150 | 346 | -53.41 | 3.77 | 57.37 | -47.43 | -13.00 | -34.43 |
| 27510.00 | V | - | - | -56.46 | 4.33 | 54.88 | -49.92 | -13.00 | -36.92 |
| 31440.00 | V | - | - | -56.92 | 6.69 | 56.78 | -48.02 | -13.00 | -35.02 |
| 35370.00 | V | - | - | -57.95 | 8.67 | 57.72 | -47.08 | -13.00 | -34.08 |

Table 7-16. Radiated Spurious Data (NR Band n77 PC2 C-Band - High Channel)

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT <br> Technical Manager |  |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 82 of 87 |
| © 2023 ELEMENT |  |  |  |

## NR Band n77 PC2 DoD Band



Plot 7-93. Radiated Spurious Plot - Below 1GHz (NR Band n77 PC2 DoD Band)

| Bandwidth (MHz): | 100 |
| ---: | :---: |
| Frequency (MHz): | 3930.00 |
| RB / Offset: | $1 / 136$ |


| Frequency [MHz] | Ant. Pol. [H/V] | Antenna Height [cm] | Turntable Azimuth [degree] | Analyzer Level [dBm] | AFCL [dB/m] | Field Strength [ $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ ] | ERP Spurious Emission Level [dBm] | Limit [dBm] | Margin [dB] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 633.93 | V | - | - | -66.94 | -4.59 | 35.47 | -61.94 | -13.00 | -48.94 |

Table 7-17. Radiated Spurious Data Below 1GHz (NR Band n77 PC2 DoD Band - Mid Channel)


| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 83 of 87 |
| © 2023 ELEMENT |  | V11.1 $08 / 28 / 2023$ |  |



Plot 7-95. Radiated Spurious Plot - 18GHz - 26.5GHz (NR Band n77 PC2 DoD Band)


Plot 7-96. Radiated Spurious Plot $-26.5 \mathrm{GHz}-40 \mathrm{GHz}$ (NR Band n77 PC2 DoD Band)

| Bandwidth (MHz): | 50 |
| ---: | :---: |
| Frequency (MHz): | 3500.01 |
| RB / Offset: | $1 / 136$ |


| Frequency [MHz] | Ant. Pol. <br> [H/V] | Antenna Height [cm] | Turntable Azimuth [degree] | Analyzer Level [dBm] | AFCL <br> [dB/m] | Field Strength [ $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ ] | EIRP Spurious Emission Level [dBm] | Limit [dBm] | Margin [dB] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7000.02 | V | 181 | 113 | -64.82 | 12.76 | 54.94 | -40.32 | -13.00 | -27.32 |
| 10500.03 | V | 136 | 17 | -77.36 | 17.16 | 46.80 | -48.46 | -13.00 | -35.46 |
| 14000.04 | V | 127 | 333 | -76.74 | 21.98 | 52.24 | -43.02 | -13.00 | -30.02 |
| 17500.05 | V | - | - | -80.24 | 27.33 | 54.09 | -41.17 | -13.00 | -28.17 |
| 21000.06 | V | 150 | 307 | -55.82 | 3.52 | 54.70 | -50.10 | -13.00 | -37.10 |
| 24500.07 | V | - | - | -56.76 | 3.88 | 54.13 | -50.67 | -13.00 | -37.67 |
| 28000.08 | V | - | - | -56.50 | 4.51 | 55.01 | -49.79 | -13.00 | -36.79 |
| 31500.09 | V | - | - | -57.00 | 7.25 | 57.24 | -47.56 | -13.00 | -34.56 |

Table 7-18. Radiated Spurious Data (NR Band n77 PC2 DoD Band - Mid Channel)

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT <br> Approved by: <br> Technical Manager |  |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 84 of 87 |

### 7.9 Frequency Stability / Temperature Variation

## Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:
a.) Temperature: The temperature is varied from $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ in $10^{\circ} \mathrm{C}$ increments using an environmental chamber.
b.) Primary Supply Voltage: The primary supply voltage is varied from $85 \%$ to $115 \%$ of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 27, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

## Test Procedure Used

ANSI C63.26-2015 - Section 5.6

## Test Settings

1. The carrier frequency of the transmitter is measured at room temperature $\left(20^{\circ} \mathrm{C}\right.$ to provide a reference).
2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
3. Frequency measurements are made at $10^{\circ} \mathrm{C}$ intervals ranging from $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

## Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

## Test Notes

None

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT |  | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 85 of 87 |
| © 2023 ELEMENT | V11.1 08/28/2023 |  |  |

## NR Band n77 C-Band



Table 7-19. NR Band n77 Frequency Stability Data


Plot 7-97. NR Band n77 Frequency Stability Chart

| FCC ID: A3LSMA356E | PART 27 MEASUREMENT REPORT |  | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 86 of 87 |

### 8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the Samsung Portable Handset FCC ID: A3LSMA356E complies with all the requirements of Part 27 of the FCC rules.

| FCC ID: A3LSMA356E |  | PART 27 MEASUREMENT REPORT | Approved by: <br> Technical Manager |
| :--- | :--- | :--- | :--- |
| Test Report S/N: <br> 1M2310260110-06.A3L | Test Dates: <br> $11 / 30 / 2023-12 / 12 / 2023$ | EUT Type: <br> Portable Handset | Page 87 of 87 |
| © 2023 ELEMENT |  | V11.1 08/28/2023 |  |

