

FCC BT REPORT Certification

Applicant Name: SAMSUNG Electronics Co., Ltd.

Address:

APPLICANT:

129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea Date of Issue: January 06, 2022

Test Site/Location: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA

Report No.: HCT-RF-2112-FC052

FCC ID: A3LSMA336M

SAMSUNG Electronics Co., Ltd.

Model:	SM-A336M/DSN
Additional Model:	SM-A336M
EUT Type:	Mobile Phone
Max. RF Output Power:	15.579 dBm (36.13 mW)
Frequency Range:	2 402 MHz – 2 480 MHz (Bluetooth)
Modulation type	GFSK(Normal), π /4DQPSK and 8DPSK(EDR)
FCC Classification:	FCC Part 15 Spread Spectrum Transmitter (DSS)
FCC Rule Part(s):	Part 15 subpart C 15.247

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

FCC ID: A3LSMA336M

REVIEWED BY

Not

Report prepared by : Sang Hoon Lee Engineer of Telecommunication Testing Center

Report approved by : Jong Seok Lee Manager of Telecommunication Testing Center

This test results were applied only to the test methods required by the standard.

This laboratory is not accredited for the test results marked *. The above Test Report is the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA. (HCT Accreditation No.: KT197)

* The report shall not be reproduced except in full(only partly) without approval of the laboratory.

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
HCT-RF-2112-FC052	January 06, 2022	- First Approval Report

Table of Contents

REVIEWED BY 2
1. EUT DESCRIPTION
2. Requirements for Bluetooth transmitter(15.247)
3. TEST METHODOLOGY
EUT CONFIGURATION
EUT EXERCISE
GENERAL TEST PROCEDURES
DESCRIPTION OF TEST MODES7
4. INSTRUMENT CALIBRATION
5. FACILITIES AND ACCREDITATIONS
FACILITIES
EQUIPMENT
6. ANTENNA REQUIREMENTS 8
7. MEASUREMENT UNCERTAINTY
8. DESCRIPTION OF TESTS 10
9. SUMMARY OF TEST RESULTS 28
10. TEST RESULT
10.1 PEAK POWER
10.2 BAND EDGES
10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99 % BW)
10.4 NUMBER OF HOPPING FREQUENCY
10.5 TIME OF OCCUPANCY (DWELL TIME) 54
10.6 SPURIOUS EMISSIONS
10.6.1 CONDUCTED SPURIOUS EMISSIONS60
10.6.2 RADIATED SPURIOUS EMISSIONS68
10.6.3 RADIATED RESTRICTED BAND EDGES76
10.7 POWERLINE CONDUCTED EMISSIONS 80
11. LIST OF TEST EQUIPMENT
12. ANNEX A_ TEST SETUP PHOTO

1. EUT DESCRIPTION

Model	SM-A336M/DSN	
Additional Model	SM-A336M	
EUT Type	Mobile Phone	
Power Supply	DC 3.86 V	
Frequency Range	2 402 MHz ~ 2 480 MHz	
Max. RF Output Power	15.579 dBm (36.13 mW)	
BT Operating Mode	Normal, EDR, AFH	
Modulation Type	GFSK(Normal), π/4DQPSK and 8DPSK(EDR)	
Modulation Technique	FHSS	
Number of Channels	79 Channels, Minimum 20 Channels(AFH)	
Date(s) of Tests	December 08, 2021 ~ January 06, 2022	
Serial number	Radiated : R3CRA0TYEFE Conducted: 5b225620bb337ece	

2. Requirements for Bluetooth transmitter(15.247)

This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.

• 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.

• 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device (ANSI C63.10-2013, KDB 558074) is used in the measurement of the test device.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHz with 1.5 m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the analyzer was set to peak detector and add the DCCF calsulations.

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of §15.203

7. MEASUREMENT UNCERTAINTY

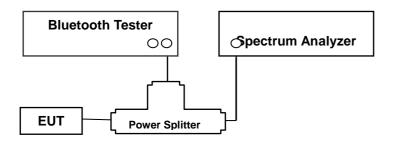
The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40 (Confidence level about 95 %, k=2)
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80 (Confidence level about 95 %, k=2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05 (Confidence level about 95 %, k=2)

8. DESCRIPTION OF TESTS


8.1. Conducted Maximum Peak Output Power

<u>Limit</u>

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 W. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 W.
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

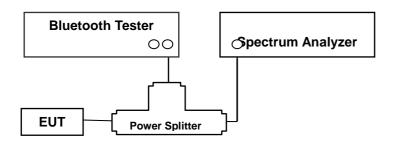
The Spectrum Analyzer is set to (7.8.5 in ANSI 63.10-2013 & Procedure 10(b)(6)(i) in KDB 558074 v05r02)

- 1) Span: approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- 2) RBW > the 20 dB bandwidth of the emission being measured
- 3) VBW ≥ RBW
- 4) Sweep = Auto
- 5) Detector = Peak
- 6) Trace = Max hold

Sample Calculation

Output Power = Spectrum Measured Power + Power Splitter loss + Cable loss(2 ea)

= 10 dBm + 6 dB + 1.5 dB = 17.5 dBm



8.2. Conducted Band Edge(Out of Band Emissions)

<u>Limit</u>

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

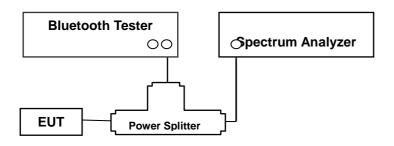
Test Configuration

Test Procedure

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (6.10.4 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) RBW: 100 kHz
- 6) VBW: 300 kHz
- 7) Detector: Peak
- 8) Trace: Max hold



8.3. Frequency Separation & 20 dB Bandwidth

<u>Limit</u>

According to §15.247(a)(1), Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

Test Procedure(Frequency Separation)

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.2 in ANSI 63.10-2013 & Procedure 10(b)(6)(iii) in KDB 558074 v05r02)

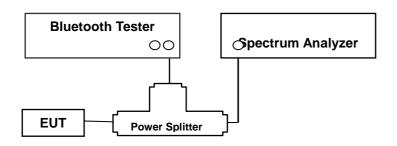
- 1) Span: Wide enough to capture the peaks of two adjacent channels
- 2) RBW: Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.
- 8) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Test Procedure (20 dB Bandwidth)

And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (6.9.2 in ANSI 63.10-2013)

- 1) Span: Set between two times and five times the OBW
- 2) RBW: 1 % to 5 % of the OBW.
- 3) VBW \ge 3 x RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.



8.4. Number of Hopping Frequencies

<u>Limit</u>

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

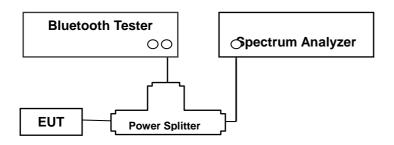
Test Configuration

Test Procedure

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (7.8.3 in ANSI 63.10-2013 & Procedure 10(b)(4) in KDB 558074 v05r02)

- 1) Span: the frequency band of operation
- 2) RBW: To identify clearly the individual channels, set the RBW to less than 30 % of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) Allow the trace to stabilize.



8.5. Time of Occupancy

<u>Limit</u>

According to \$15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

Test Procedure

This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.4 in ANSI 63.10-2013 & Procedure 10(b)(6)(iv) in KDB 558074 v05r02)

- 1) Span: Zero span, centered on a hopping channel
- RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3) Sweep = as necessary to capture the entire dwell time per hopping channel
- 4) Detector: Peak
- 5) Trace: Max hold

The marker-delta function was used to determine the dwell time.

Sample Calculation

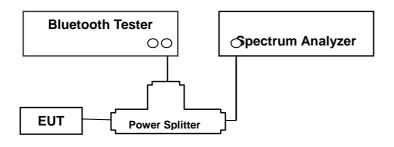
The following calculation process is not relevant to our measurement results. It is just an example.

- (1) Non-AFH Mode
- DH 5 (GFSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- (2) AFH Mode
- DH 5 (GFSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)

Note :

DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving.

Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.667 times of appearance. Each tx-time per appearance of DH5 is 2.890 ms.


Dwell time = Tx-time x 106.667 = 308.27 (ms)

8.6. Conducted Spurious Emissions

<u>Limit</u> Conducted > 20 dBc

Test Configuration

Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (7.8.8 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span: 30 MHz to 10 times the operating frequency in GHz.
- 2) RBW: 100 kHz
- 3) VBW: 300 kHz
- 4) Sweep: Coupled
- 5) Detector: Peak

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

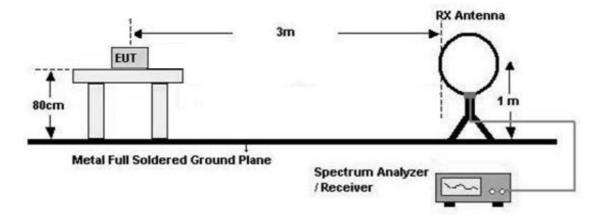
This test is performed with hopping off.

Factors for frequency

Freq(MHz)	Factor(dB)
30	16.09
100	16.19
200	16.26
300	16.37
400	16.43
500	16.46
600	16.46
700	16.50
800	16.53
900	16.57
1000	16.60
2000	16.88
2400	16.99
2480	16.99
2500	16.99
3000	17.09
4000	17.27
5000	17.43
5150	17.46
5850	17.55
6000	17.55
7000	17.72
8000	17.86
9000	17.99
10000	18.14
11000	18.21
12000	18.37
13000	18.55
14000	18.50
15000	18.57
16000	18.66
17000	18.74
18000	18.87
19000	18.94
20000	19.04
21000	19.42
22000	19.38
23000	19.61
24000	19.48
25000	19.55
26000	19.64

Note : 1. 2400 ~ 2500 MHz is fundamental frequency range.

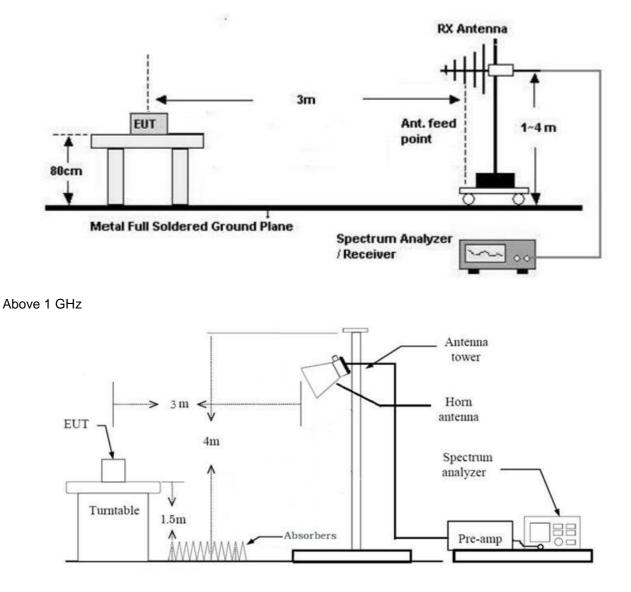
2. Factor = Attenuator loss(10 dB) + Cable loss(2 EA) + Splitter loss(6 dB) + EUT Cable loss


8.7. Radiated Test

<u>Limit</u>

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Configuration


Below 30 MHz

Report No.: HCT-RF-2112-FC052

30 MHz - 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3 m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = $40\log(3 \text{ m}/30 \text{ m}) = -40 \text{ dB}$

Measurement Distance : 3 m

- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \ge 3 x RBW
- 9. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1 GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1m to 4 m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - * In general, (1) is used mainly
- 7. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from

the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW ≥ 3 x RBW
 - (2) Measurement Type(Average):
 - Average value of pulsed emissions
 - Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall determined from the peak field strength after correcting for the worst-case duty cycle as described in Number.14 (On Page. 23)
 - ◆ Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 11. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 12. Total
 - (1)Measurement(Peak)

```
Reading Value(Peak) + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F)
(2)Measurement(Avg)
```

Reading Value(Peak) + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F) + + DCCF(AFH)

```
F-TP22-03 (Rev.00)
```

- 13. Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 229.100 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H ' =1
 - c. Worst Case Dwell Time = T [ms] x H ' = 2.9 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 14. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 20 channels = 58.00 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H ' = 2
 - c. Worst Case Dwell Time = T [ms] x H ' = 5.800 ms
 - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB

Test Procedure of Radiated Restricted Band Edge

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Average):
 - Average value of pulsed emissions
 - Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall determined from the peak field strength after correcting for the worst-case duty cycle as described in Number.14 (On Page. 23)
 - Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)

11. Total

(1)Measurement(Peak)

Reading Value(Peak) + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F) (2)Measurement(Avg)

Reading Value(Peak) + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F) + + DCCF(AFH)

8.8. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)	
0.50 to 5	56	46	
5 to 30	60	50	

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.
- 5. The EUT is the device operating below 30 MHz.
 - For unterminated the Antenna, the AC line conducted tests are performed with the antenna connected
 - For terminated the Antenna, the AC line conducted tests are performed with a dummy load connected to the EUT antenna output terminal.

Sample Calculation

Quasi-peak(Final Result) = Measured Value + Correction Factor

8.9 Worst case configuration and mode

Radiated test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone + External accessories (Earphone, etc)
- Worstcase : Stand alone
- 2. EUT Axis
 - Radiated Spurious Emissions : Y
 - Radiated Restricted Band Edge : X

3. All data rate of operation were investigated and the test results are worst case in highest datarate of each mode.

- GFSK : DH5
- $\pi/4DQPSK$: 2-DH5
- 8DPSK : 3-DH5
- 4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions. - Position : Horizontal, Vertical, Parallel to the ground plane
- 5. SM-A336M/DSN, SM-A336Mwere tested and the worst case results are reported.

(Worst case : SM-A336M/DSN)

Radiated test(DBS)

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone, Stand alone + External accessories(Earphone, etc)
 - Worstcase : Stand alone
- 2. EUT Axis
 - Radiated Spurious Emissions : Y, Z
- 3. The following tables show the worst case configurations determined during testing.

Description	Bluetooth Emission	5 GHz Emission
Antenna	WIFI/BT	WIFI/BT
Channel	0	165
Data Rate	1 Mbps	MCS 0
Mode	GFSK : DH5	802.11n(HT20)

AC Power line Conducted Emissions

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone + External accessories(Earphone, etc)+Travel Adapter

Stand alone + Travel Adapter

- Worstcase : Stand alone + Travel Adapter
- 2. SM-A336M/DSN, SM-A336Mwere tested and the worst case results are reported.

(Worst case : SM-A336M/DSN)

Conducted test

- 1. The EUT was configured with data rate of highest power.
 - GFSK : DH5
 - $\pi/4DQPSK$: 2-DH5
 - 8DPSK : 3-DH5
- 2. AFH & Non-AFH were tested and the worst case results are reported.
 - (Worst case : Non-AFH)
- 3. SM-A336M/DSN, SM-A336Mwere tested and the worst case results are reported.
- (Worst case : SM-A336M/DSN)

9. SUMMARY OF TEST RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§15.247(a)(1)	N/A		PASS
Occupied Bandwidth	N/A	N/A		N/A
Conducted Maximum Peak Output Power	§15.247(b)(1)	< 0.125 W		PASS
Carrier Frequency Separation	§15.247(a)(1)	> 25 kHz or >2/3 of the 20 dB BW		PASS
Number of Hopping Frequencies	§15.247(a)(1)(iii) ≥ 15		Conducted	PASS
Time of Occupancy	§15.247(a)(1)(iii)	< 400 ms		PASS
Conducted Spurious Emissions	§15.247(d)	> 20 dB for all out-of band emissions		PASS
Band Edge (Out of Band Emissions)	§15.247(d)			PASS
AC Power line Conducted Emissions	§15.207(a)	cf. Section 8.8		PASS
Radiated Spurious Emissions	§15.247(d), 15.205, 15.209	cf. Section 8.7	Radiated	PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 8.7	Kadiated	PASS

Note: Average Power data refer to SAR report

10. TEST RESULT

10.1 PEAK POWER

Channel	Frequency	Output Power (GFSK)		Limit
	(MHz)	(dBm)	(mW)	(mW)
Low	2402	15.579	36.13	
Mid	2441	15.236	33.39	125
High	2480	14.204	26.33	

Channel	Frequency	Output Power (8DPSK)		Limit
	(MHz)	(dBm)	(mW)	(mW)
Low	2402	14.604	28.87	
Mid	2441	14.273	26.75	125
High	2480	13.304	21.40	

Channel	Frequency (MHz)	Outpu (π/4D	Limit (mW)	
	(1917)	(dBm)	(mW)	(11177)
Low	2402	13.998	25.11	
Mid	2441	13.646	23.15	125
High	2480	12.708	18.66	

Note:

1. Spectrum measured values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

 Actual value of loss for the splitter and cable combination is 16.99 dB at 2400 MHz and is 16.99 dB at 2500 MHz. So, 16.99 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Test Plots (GFSK)

Peak Power (CH.0)

enter F	RF 50 Ω AC req 2.402000000	GHz PNO: Fast ↔	SENSE:INT Trig: Free Run Atten: 20 dB	ALIGNAUTO #Avg Type: RMS Avg Hold: 1/1	05:52:46 PM Dec 15, 2021 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P P	Frequency
0 dB/div	Ref Offset 16.99 dB Ref 25.00 dBm	IF Gall.LUW		Mkr1	2.402 034 GHz 15.579 dBm	Auto Tur
15.0			∳ ¹			Center Fr 2.402000000 G
5.00						Start Fr 2.399589753 G
25.0						Stop Fr 2.404410247 G
15.0						CF St 482.049 k <u>Auto</u> M
55.0						Freq Offs 0
55.0	402000 GHz				Span 4.820 MHz	
Res BW		#VBN	50 MHz	Sweep 1	.000 ms (1001 pts)	

Test Plots (GFSK) Peak Power (CH.39)

Test Plots (GFSK)

Peak Power (CH.78)

Agilent Spectr	rum Analyzer - Swept SA RF 50 Ω AC		SENSE:INT	ALIGNAUTO	05:53:09 PMDec 15, 2021	
	req 2.480000000	PNO: Fast +++	Frig: Free Run Atten: 20 dB	#Avg Type: RMS Avg Hold: 1/1	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P	Frequency
10 dB/div	Ref Offset 16.99 dB Ref 25.00 dBm	IFGain:Low	Atten: 20 dB	Mkr	1 2.479 909 GHz 14.204 dBm	Auto Tune
15.0			↓ ¹			Center Fre 2.480000000 GH
-5.00						Start Fre 2.477593209 G⊦
25.0						Stop Fre 2.482406791 GF
45.0						CF Ste 481.358 kl <u>Auto</u> M
55.0						Freq Offs
65.0						
Center 2.4 #Res BW	480000 GHz 3.0 MHz	#VBW 5	0 MHz	Sweep	Span 4.814 MHz 1.000 ms (1001 pts)	
ISG				STAT	us	

Test Plots (8DPSK) Peak Power (CH.0)

Test Plots (8DPSK)

Peak Power (CH.39)

#Res BW	3.0 MHZ	#VBV	/ 50 MHz	Sweep	1.000 ms (1001 pts)	
	441000 GHz	#1(5)4	(50 MU-		Span 6.665 MHz	
-65.0						
-55.0						Freq Offse 0 H
-45.0						
						666.500 kH <u>Auto</u> Ma
-35.0						CF Ste
-25.0						2.444332500 GF
-15.0						Stop Fre 2.444332500 G⊢
-5.00						2.437667500 GH
5.00						Start Fre
15.0						2.441000000 GH
			1			Center Fre
10 dB/div Log	Ref Offset 16.99 dE Ref 25.00 dBm	}			14.273 dBm	
		IFGain:Low	Atten: 20 dB		DET P P P P P P	Auto Tun
	req 2.44100000	0 GHz PNO: Fast ↔		#Avg Type: RMS Avg Hold: 1/1	TRACE 123456 TYPE MWWWWW DET P P P P P	Frequency
XI RL	rum Analyzer - Swept SA RF 50 Ω AC		SENSE:INT	ALIGNAUTO	05:54:08 PMDec 15, 2021	

Test Plots (8DPSK) Peak Power (CH.78)

Test Plots (π/4DQPSK)

Peak Power (CH.0)

enter Fre	RF 50 Ω AC 2 q 2.402000000	GHz	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold: 1/1	05:53:22 PM Dec 15, 2021 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
		PNO: Fast ↔ IFGain:Low	Atten: 20 dB		DETPPPP	Auto Tur
	Ref Offset 16.99 dB Ref 25.00 dBm			Mkr1	2.402 007 GHz 13.998 dBm	Auto Tur
			1			Center Fre
15.0						2.402000000 G
5.00						
5.00						Start Fr 2.398662500 G
5.00						
15.0						Stop Fr
25.0						2.405337500 G
						CF St
15.0						667.500 k
15.0						Auto M
55.0						Freq Offs
						0
5.0						
					0	
enter 2.40 Res BW 3	02000 GHz .0 MHz	#VBV	V 50 MHz	Sweep 1	Span 6.675 MHz 1.000 ms (1001 pts)	

Test Plots (π/4DQPSK) Peak Power (CH.39)

Test Plots (π /4DQPSK)

Peak Power (CH.78)

RL RF 50Ω AC	SENSE:INT		05:53:44 PM Dec 15, 2021	Frequency
enter Freq 2.480000000 0	PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 20 dB	#Avg Type: RMS Avg Hold: 1/1	TRACE 123456 TYPE MWWWWW DET PPPPP	
Ref Offset 16.99 dB dB/div Ref 25.00 dBm		Mkr1	2.479 900 GHz 12.708 dBm	Auto Tu
5.0	↓ 1			Center Fr 2.480000000 G
				Start Fr 2.476657500 G
5.0				Stop Fr 2.483342500 G
5.0				CF St 668.500 k <u>Auto</u> M
5.0				Freq Offs 0
5.0				
enter 2.480000 GHz Res BW 3.0 MHz	#VBW 50 MHz	Sweep 1	Span 6.685 MHz .000 ms (1001 pts)	

10.2 BAND EDGES

Without hopping

Outcido Eroquenov Band	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	55.015	52.113	52.034	00
Upper	61.311	58.814	57.930	20

With hopping

Outside Francese Band	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	55.912	58.154	52.744	00
Upper	62.665	60.758	62.267	20

Note :

1. Spectrum measured levels are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

 Actual value of loss for the splitter and cable combination is 16.99 dB at 2400 MHz and is 16.99 dB at 2500 MHz. So, 16.99 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Test Plots without hopping (GFSK) Band Edges (CH.0)

Test Plots without hopping (GFSK) Band Edges (CH.78)

Test Plots without hopping (8DPSK)

Band Edges (CH.0)

Test Plots without hopping (8DPSK) Band Edges (CH.78)

Test Plots without hopping (π /4DQPSK)

Band Edges (CH.0)

Test Plots without hopping (π /4DQPSK) Band Edges (CH.78)



Test Plots with hopping (GFSK)

Band Edges (CH.0)

Test Plots with hopping (GFSK) Band Edges (CH.78)

Test Plots with hopping (8DPSK)

Band Edges (CH.0)

Test Plots with hopping (8DPSK) Band Edges (CH.78)

Test Plots with hopping (π /4DQPSK)

Band Edges (CH.0)

Test Plots with hopping (π /4DQPSK) Band Edges (CH.78)

10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99 % BW)

99 % BW (kHz)										
Channel GFSK 8DPSK π/4DQPSK										
CH.0	878.63	1193.4	1191.6							
CH.39	877.37	1198.6	1193.8							
CH.78	876.14	1193.6	1189.4							

20 dB BW (kHz)										
Channel GFSK 8DPSK π/4DQPSK										
CH.0	964.1	1320	1335							
CH.39	964.6	1333	1340							
CH.78	962.7	1320	1337							

	Channel Separation(kHz)						
GFSK	GFSK 8DPSK π/4DQPSK						
			>25 kHz				
998	991	1001	or				
			>2/3 of the 20 dB BW				

Test Plots (GFSK)

Channel Separation

Agilent Spectrum Analyzer - Swept SA	
XI RL RF SD 0: AC SENSE:INT ALIONAUTO 06:08:58 FMDec 15: 2021 Center Freq 2.44410000000 GHz #Avg Type: RMS TRACE 23:44:00 12:3:4:0:00 PN0: Wide ↔ Trig: Free Run Avg[Hold: 1/1 TYPE Trace 12:3:4:0:0	Frequency
Ref Offset 16.99 dB ΔMkr3 998 kHz 10 dB/div -0.009 dB	Auto Tune
$\begin{array}{c} Log \\ 150 \\ 500 \\ 600 \end{array}$	Center Freq 2.441000000 GHz
-150 	Start Freq 2.439500000 GHz
-45.0 	Stop Freq 2.442500000 GHz
Center 2.441000 GHz Span 3.000 MHz #Res BW 30 kHz #VBW 100 kHz Sweep 3.176 ms (900 pts)	CF Step 300.000 kHz Auto Man
MKR MODE TRC SCL X Y FUNCTION FUNCTION VALUE 1 Δ2 1 f (Δ) 1.021 MHz (Δ) -0.124 dB	<u>Auto</u> mari
2 F 1 f 2.439 997 GHz 12.499 dBm 3 Δ4 1 f (Δ) 998 kHz Δ.009 dB 4 F 1 f 2.441 018 GHz 12.375 dBm 5 6 6 6 6 6	Freq Offset 0 Hz
7	
KG STATUS	

Test Plots (8DPSK)

Channel Separation

Test Plots (π/4DQPSK)

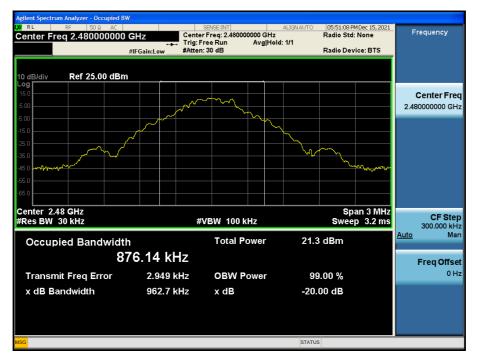
Channel Separation

	n Analyzer - Swept SA							
Center Fre	RF 50 Ω AC		SENSE:IN	#Avg Typ		06:10:44 PM Dec TRACE	3456	Frequency
		PNO: Wide ++ IFGain:Low	Trig: Free Ru #Atten: 20 dB	n Avg Hold			PPPP	Auto Tune
10 dB/div	Ref Offset 16.99 dB Ref 25.00 dBm					lkr3 1.001 -0.02		Auto Func
Log 15.0 5.00	~~~X2~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	<u>3</u> ∆4	~~~	Center Freq 2.441000000 GHz
-15.0 -25.0 -35.0								Start Freq 2.439500000 GHz
-45.0 -65.0 -65.0								Stop Freq 2.442500000 GHz
Center 2.44 #Res BW 3		#VBW	/ 100 kHz		Sweep 3	Span 3.000 3.176 ms (90	0 pts)	CF Step 300.000 kHz
MKR MODE TRC		1.001 MHz (Δ)	⊻ -0.085 dB	FUNCTION FU	INCTION WIDTH	FUNCTION VAL	.UE 🧧 🧍	<u>luto</u> Man
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	f 2.43 f (Δ)	1.001 MHZ (Δ) 9 987 GHZ 1.001 MHZ (Δ) 0 988 GHZ	-0.085 dB 7.738 dBm -0.022 dB 7.653 dBm					Freq Offset 0 Hz
6 6 7 8 9 1 0								
11							>	
MSG					STATUS			

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (GFSK)


20 dB Bandwidth & Occupied Bandwidth (CH.39)

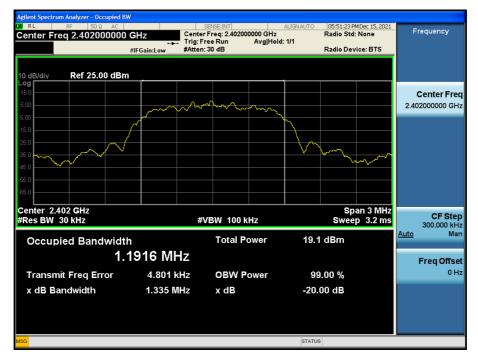
Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.78)

Test Plots (8DPSK) 20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)


Test Plots (8DPSK) 20 dB Bandwidth & Occupied Bandwidth (CH.78)

Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (π/4DQPSK) 20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (π/4DQPSK)

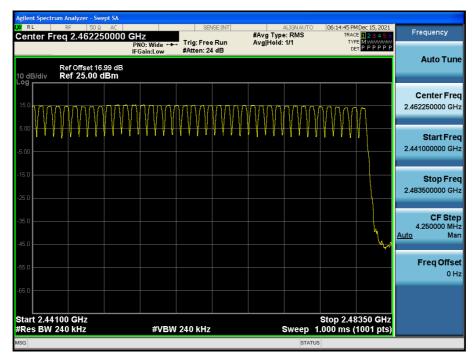
20 dB Bandwidth & Occupied Bandwidth (CH.78)

10.4 NUMBER OF HOPPING FREQUENCY

	Result (No. of CH)						
GFSK	GFSK 8DPSK π/4DQPSK						
79	79	79	>15				

Note :

In case of AFH mode, minimum number of hopping channels is 20.


Test Plots (GFSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (GFSK)

Number of Channels (2.441 GHz - 2.483.5 GHz)

Test Plots (8DPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

RL R	F 50 Ω AC		SENSE:I	NT	ALIGN AUTO	06:16:51 PMDec 15, 2021	
enter Freq	2.42050000	O GHz PNO: Wide ↔ IFGain:Low	Trig: Free Ru #Atten: 24 dB	n Avg Hol	pe: RMS d: 1/1	TRACE 12345 TYPE MWWWWW DET P P P P P	#
) dB/div Re	f Offset 16.99 dB ef 25.00 dBm		# KCC11 24 W2				Auto Tuno
og 16.0	ᠾᠬ᠇ᢧᠬ᠇ᡘ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ᠾᠬᢧᠺ᠋ᡘ᠊ᡀᢉ᠇ᡘ᠊ᠰ	V WWW	ᠰᠰᠰᠰ	mar way	Center Fre 2.420500000 GH
5.00							Start Fre 2.400000000 G⊦
5.0							Stop Fre 2.441000000 GH
5.0							CF Ste 4.100000 MI <u>Auto</u> Mi
5.0							Freq Offs
tart 2.40000		#VBV	V 240 kHz		Sweep 1	Stop 2.44100 GHz .000 ms (1001 pts	
G		- La			STATUS		4

Test Plots (8DPSK)

Number of Channels (2.441 GHz - 2.483.5 GHz)

Test Plots (π/4DQPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

	RF 50 Ω			SEM	ISE:INT		ALIGNAUTO		Dec 15, 2021	Frequency
enter Fred	2.42050	F	HZ NO: Wide ↔ Gain:Low	. Trig: Free #Atten: 24		#Avg Typ Avg Hold:		TRAC TYF DE	E 123456 E M VWWWWW T P P P P P P	Trequency
0 dB/div	ef Offset 16. ef 25.00 d	99 dB	Sumeow							Auto Tune
og 15.0	ᠬᡁᠬᡐᢦ᠈ᠰ	ᡃᡁᠬᡅᡢ᠊ᡪ	$\gamma \gamma $	ᡔᡎᠬ᠆᠕ᠬ	ᡁᡗ᠊᠋᠂ᡎᠬ	ᢩ᠕ᡟᡗ᠉ᠬ᠕᠆᠋	ᡟᠬᡃᠰ᠕᠆ᠡ	ww	᠋᠂ᡣᠬᢦ᠂ᡞᠬᠬ	Center Fred 2.420500000 GH;
5.00										Start Fred 2.400000000 GH;
5.0										Stop Fre 2.441000000 GH
5.0										CF Ste 4.100000 MH <u>Auto</u> Ma
5.0										Freq Offse 0 H
tart 2.4000 Res BW 24			#\/D\\\	240 kHz			Succes 1	Stop 2.44	100 GHz 1001 pts)	
	UKHZ		#VDVV	240 KHZ			sweep 1		roorpisj	

Test Plots (π/4DQPSK) Number of Channels (2.441 GHz - 2.483.5 GHz)

ec 15, 2021

TYPE MWWWWW DET P P P P P Frequency

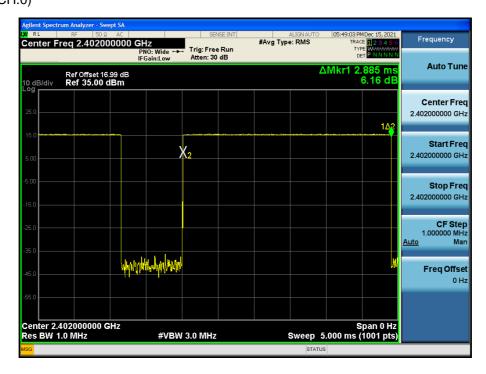
Auto Tune

Center Freq 2.462250000 GHz

10.5 TIME OF OCCUPANCY (DWELL TIME)

	Channel	GFSK	8DPSK	π/4DQPSK
Pulse Time	Low	2.885	2.890	2.895
(ms)	Mid	2.885	2.895	2.895
	High	2.885	2.895	2.895

Non-AFH Mode

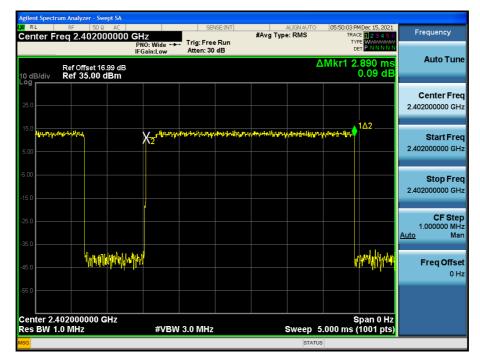

	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	307.73	308.27	308.80	31.6	
(ms)	Mid	307.73	308.80	308.80	31.6	400
	High	307.73	308.80	308.80	31.6	

AFH Mode

	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	153.87	154.13	154.40	8.0	
(ms)	Mid	153.87	154.40	154.40	8.0	400
	High	153.87	154.40	154.40	8.0	

Test Plots (GFSK) Dwell Time (CH.0)

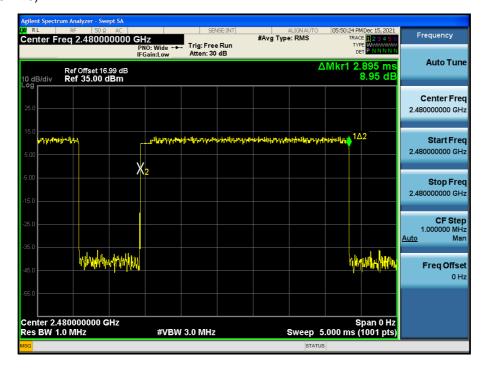

Test Plots (GFSK) Dwell Time (CH.39)



Test Plots (GFSK)

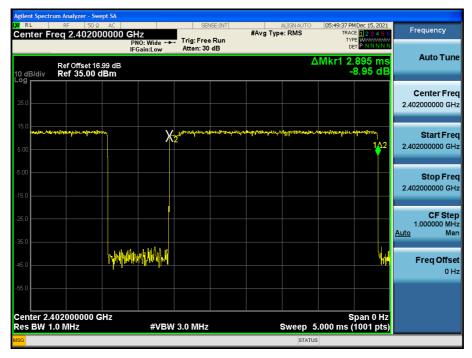
Dwell Time (CH.78)


Test Plots (8DPSK) Dwell Time (CH.0)



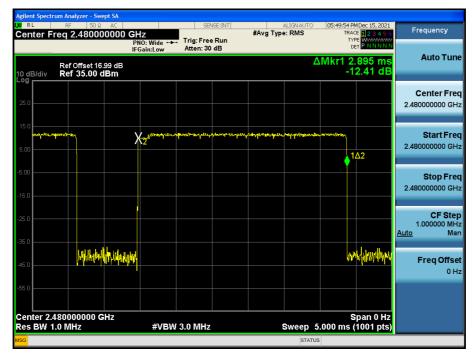
Test Plots (8DPSK)

Dwell Time (CH.39)


Test Plots (8DPSK) Dwell Time (CH.78)

Test Plots (π/4DQPSK)

Dwell Time (CH.0)


Test Plots (π/4DQPSK) Dwell Time (CH.39)

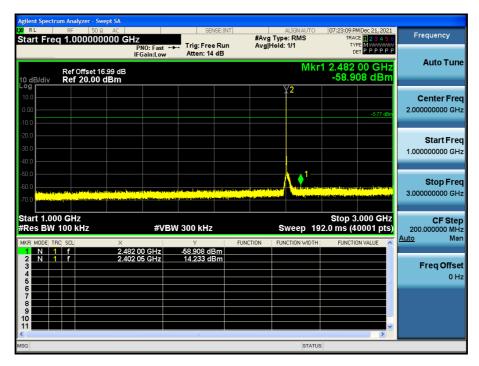
Test Plots (π /4DQPSK)

Dwell Time (CH.78)

10.6 SPURIOUS EMISSIONS 10.6.1 CONDUCTED SPURIOUS EMISSIONS

Test Result : please refer to the plot below.

In order to simplify the report, attached plots were only the worst case channel and data rate.

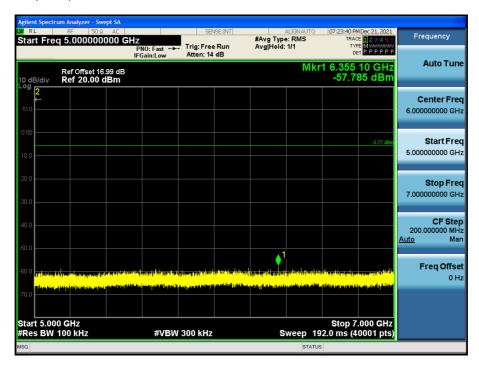


Test Plots (GFSK)- 30 MHz - 1 GHz

Spurious Emission (CH.0)

Start 30.0 #Res BW			#VBW	300 kHz		s	weep 93	Stop 1.0 .33 ms (2	0000 GHz 0000 pts)	
-60.0	al a faith i na faithean a tait Nga maint i na an taithean a sa	k partako an katoko				an fan traffering fe	udhaasaratta kila Passing - Angela		ahar mallandar Tasan sanatan ing	Freq Offset 0 Hz
-50.0								.1		
-40.0										CF Step 97.000000 MHz Auto Man
-30.0										Stop Freq 1.000000000 GHz
-20.0										Ctop Erog
-10.0									-5.77 dBm	Start Freq 30.000000 MHz
10.0										515.000000 MHz
10 dB/div Log	Ref 20.00 (dBm						-61.6	63 dBm 2	Center Freg
	Ref Offset 16	IF	NO: Fast Gain:Low	Atten: 14				₀ (r1 852 .	94 MHz	Auto Tune
Start Fre	RF 50 Ω cq 30.00000		NO: Fast ++	Televine	NSE:INT	#Avg Typ AvgiHold:		TRAC	ADec 21, 2021 E 1 2 3 4 5 6 E M 444444	Frequency

Test Plots (GFSK)- 1 GHz – 3 GHz

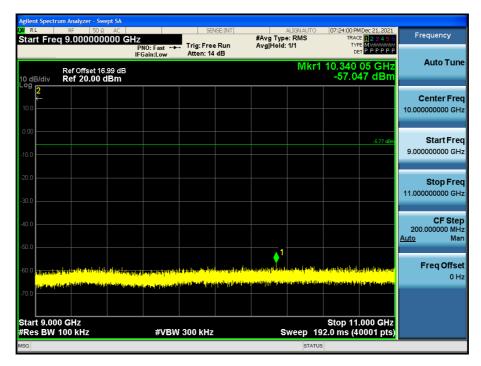


Test Plots(GFSK)- 3 GHz - 5 GHz

Spurious Emission (CH.0)

Agilent Spe	ectrum Analyzer - S	wept SA Ω AC		SEN	ISE:INT		ALIGNAUTO	07-23-29 DM	MDec 21, 2021	
	req 3.00000	0000 GHz	PNO: Fast 🔸			#Avg Type Avg Hold:	e: RMS	TRAC	E 123456	Frequency
			Gain:Low	Atten: 14		51		DE	I F F F F F F	Auto Tune
10 dB/div Log	Ref Offset 1 • Ref 20.00						Mkr		30 GHz 30 dBm	Auto Func
_~~ <mark>2</mark>										Center Freq
10.0										4.000000000 GHz
0.00										Start Freq
-10.0									-5.77 dBm	3.000000000 GHz
-20.0										Stop Freq 5.00000000 GHz
-30.0										
-40.0										CF Step 200.000000 MHz
-50.0									1	<u>Auto</u> Man
										Freq Offset
-60.0 <mark>1999</mark>			a and a second second		New Youppo	e real district	an standardad bit	ie werde findere en en en	Philippi University	0 Hz
-70.0	in phalenning a state of the second	an panananan sa	M	al series of the second se	allowed for the	Matana kadyada	() y lift the lift of the lif	a contraction of the second	are the last the	
	000 CH2							Stan 5	000 CH	
	000 GHz W 100 kHz		#VBW	300 kHz		s	weep 19		.000 GHz 0001 pts)	
MSG							STATUS	3		

Test Plots (GFSK)- 5 GHz - 7 GHz

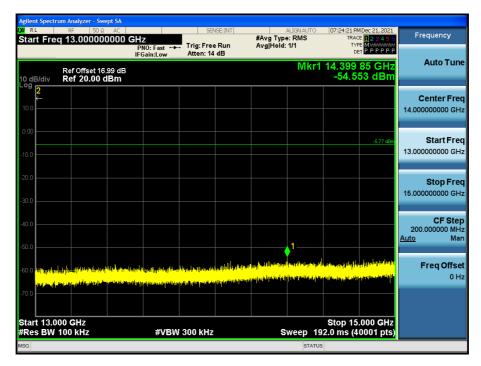


Test Plots(GFSK)- 7 GHz - 9 GHz

Spurious Emission (CH.0)

	um Analyzer - Swep									
Start Fre	RF 50 Ω q 7.0000000				ISE:INT	#Avg Type		TRAC	1Dec 21, 2021 E 1 2 3 4 5 6	Frequency
		PN	IO: Fast ↔ iain:Low	Trig: Free Atten: 14		Avg Hold:	1/1	TYF	E MWWWWWW T P P P P P P	
10 dB/div	Ref Offset 16.9 Ref 20.00 dE	9 dB	dimeon				Mkr	1 7.420	00 GHz 24 dBm	Auto Tune
	1(Cl 20.00 u									
+ 10.0										Center Freq
10.0										8.00000000 GHz
0.00										
									-5.77 dBm	Start Freq
-10.0										7.00000000 GHz
-20.0										Stop Freq
-30.0										9.000000000 GHz
-40.0		1								CF Step 200.000000 MHz
										<u>Auto</u> Man
-50.0										
-60.0 <mark></mark>	terlette kunnen it der jähre	A. R. Mar. J. A.	When the start	and a full disc of		hotellulus bet an	distant costs			Freq Offset
i	Notes - States - States - States	and states and	idinatia maalaantaa	an and blits much diam	الالتاما فأتأت وير	and succession of the second	in second second second	omente en la secondada Al antinana de la fasta	Line of the second s	0 Hz
-70.0				the off the state			In a block and a	an an a state l'Arthfal	aan waddal gaar e	
Start 7.00									.000 GHz	
#Res BW	100 kHz		#VBW	300 kHz		S		2.0 ms (4	0001 pts)	
MSG							STATUS			

Test Plots(GFSK)- 9 GHz - 11 GHz



Test Plots(GFSK) 11 GHz - 13 GHz

Spurious Emission (CH.0)

	um Analyzer - Swe									
Start Fre	RF 50 Ω q 11.000000	0000 GH			ISE:INT	#Avg Type		TRA	MDec 21, 2021	Frequency
			NO: Fast 🔸 Gain:Low	Trig: Free Atten: 14		Avg Hold:	1/1	D	ЕМилиини ТРРРРРР	
10 dB/div Log	Ref Offset 16. Ref 20.00 d						Mkr1	12.756 -56.8	35 GHz 00 dBm	Auto Tune
10.0 <mark>←</mark>										Center Freq 12.000000000 GHz
-10.0									-5.77 dBm	Start Freq 11.000000000 GHz
-20.0										Stop Freq 13.000000000 GHz
-40.0										CF Step 200.000000 MHz <u>Auto</u> Man
-60.0 <mark>headed()</mark>	leven kilvisstilleritaitet Asservise kan edipationite	a ka li ka na k	darred Harde derb	eleo co de de gelle Producente, fester	deserve geneligiet deserve geneligiet	a pilotagi kuta suka Kuta suka suka suka suka suka suka suka suk	ost fille (billed bi principality of the state	aladar Araba Man Warda Manazari	nd Jack Robert Biller March 1997 - March Baller	Freq Offset 0 Hz
-70.0										
Start 11.0 #Res BW			#VBW	300 kHz		s	weep 19	Stop 13 2.0 ms (4	.000 GHz 0001 pts)	
MSG							STATUS	3		

Test Plots (GFSK)- 13 GHz – 15 GHz

Test Plots(GFSK)- 15 GHz - 17 GHz

Spurious Emission (CH.0)

Agilent Spectrum Analyzer - Swept SA					
X RL RF 50 Ω AC Start Freq 15.000000000) GHz	#Avg Type	RMS TRAC	MDec 21, 2021	Frequency
	PNO: Fast Trig: Free IFGain:Low Atten: 14		1/1		
Ref Offset 16.99 di 10 dB/div Ref 20.00 dBm	В		Mkr1 15.589 -53.7	05 GHz 69 dBm	Auto Tune
2 ← 10.0					Center Freq 16.000000000 GHz
-10.0				-5.77 dBm	Start Freq 15.000000000 GHz
-20.0					Stop Freq 17.000000000 GHz
-40.0	1			A	CF Step 200.000000 MHz <u>uto</u> Man
.en n	ng biggen ga ang san sa ting bana gan bang sa tang sa t	allanan oliti kalitildilika any dia ditti Markati ya afatikana kinan ya tamai a	A CONTRACT OF	undiganga danar Masa manganga	Freq Offset 0 Hz
Start 15.000 GHz			Stop 17	.000 GHz	
#Res BW 100 kHz	#VBW 300 kHz	St	weep 192.0 ms (4	0001 pts)	

Test Plots(GFSK)- 17 GHz - 19 GHz

Test Plots (GFSK)- 19 GHz - 21 GHz

Spurious Emission (CH.0)

Frequency
Auto Tune
Center Freq
0.000000000 GHz
Start Freq
9.000000000 GHz
Stop Freq
1.00000000 GHz
CF Step 200.000000 MHz
<u>uto</u> Man
Freq Offset 0 Hz
0 Hz
5

Test Plots (GFSK)- 21 GHz - 23 GHz

Agilen	nt Spectru	ım Analyzer - Sw	ept SA								
LXI RI	-		AC	1.1	SEN	ISE:INT	#Avg Typ	ALIGNAUT		MDec 21, 2021 E 1 2 3 4 5 6	Frequency
Star	rt Fred	21.00000 p		PNO: Fast ++	, Trig: Free		Avg Hold:		TY		
				IFGain:Low	Atten: 14	dB					Auto Tune
		Ref Offset 16						Mk	r1 22.683		Auto Tune
10 dE Log		Ref 20.00	dBm						-50.8	30 dBm	
3	2										Center Freq
10.0	È										22.000000000 GHz
											22.0000000000000
0.00	L										
										-5.77 dBm	Start Freq
-10.0	<u> </u>										21.000000000 GHz
-20.0	<u> </u>										Stop Freq
											23.000000000 GHz
-30.0											
											OF Otom
-40.0											CF Step 200.000000 MHz
									<u>_</u> 1		<u>Auto</u> Man
-50.0		anos buyan da bayan			1 I.	a shittar a	a a la chemiali	d. 16 1 1	الترجيلة وورطهاويته	والمالية والمراجب	
										the altitude	Freq Offset
-60.0	Week produ	weighten Universitätigen	^a jawa da Ukuwa je	it is a second of the second o	وريميها يتواتلوا أتلا	فالشريب والاجتراد		and the states	<mark>depict for an instance of a started set of a started set of the start</mark>	A CONTRACTOR	0 Hz
70.0											
-70.0											
		00 GHz								.000 GHz	
#Re	sBW	100 kHz		#VBW	/ 300 kHz		S	weep	192.0 ms (4	0001 pts)	
MSG								ST/	ATUS		

Test Plots (GFSK)- 23 GHz - 25 GHz

Agilent Spectr LXI R L	r <mark>um Analyzer - Swept SA</mark> RF 50 Ω AC		SEN	ISE:INT		ALIGNAUTO		4Dec 21, 2021	_
Start Fre	q 23.000000000	GHz PNO: Fast ↔ IFGain:Low	Trig: Free Atten: 14		#Avg Type Avg Hold:		TYP	E 1 2 3 4 5 6 E M + + + + + + + + + + + + + + + + + +	Frequency
10 dB/div	Ref Offset 16.99 dB Ref 20.00 dBm	IFGam:Low	Aden. IA			Mkr	1 24.871 -46.8	20 GHz 88 dBm	Auto Tune
10.0 2									Center Freq 24.000000000 GHz
-10.00								-5.77 dBm	Start Fred 23.000000000 GHz
-20.0									Stop Freq 25.000000000 GHz
-40.0	11 And Alfred Actual Society and	te arte e est an statistifia	Press of the state	1) In statement of the late	energi harder bliver by		upper, thirty beyond the	1 orgebogrædder	CF Step 200.000000 MHz Auto Mar
-60.0 <mark>114,444,44</mark>	ne er af fan fan fan fan fan fan fan fan fan	n an	anna ann an a	ala ang panganana kala d	<mark>de plante di la especial</mark> i	nia politicajem	and Statistics (1994)	aanagaliiMatal	Freq Offset 0 Hz
-70.0 Start 23.0								.000 GHz	
#Res BW	100 kHz	#VBW	300 kHz		s	weep 1	192.0 ms (4 ^{US}	0001 pts)	

10.6.2 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30 MHz

Frequency	Measured Value	A.F+C.L+D.F	A.F+C.L+D.F POL		Limit	Margin		
[MHz]	[dBµV] [dB/m] [H/V] [dBµV/m]		[dBµV/m]	[dB]				
No Critical peaks found								

Note:

1. The Measured of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits ($dB\mu V$) + Distance extrapolation factor
- 4. Radiated test is performed with hopping off.

Frequency Range : Below 1 GHz

Frequency	Measured Value	A.F+C.L POL		Total	Limit	Margin					
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]					
	No Critical peaks found										

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode.

2. Radiated test is performed with hopping off.

Frequency Range : Above 1 GHz

Operation Mode: CH Low(GFSK)

		A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4804	39.94	5.14	V	0.00	45.08	73.98	28.90	PK
4804	39.94	5.14	V	-24.73	20.35	53.98	33.63	AV
7206	39.74	12.89	V	0.00	52.63	73.98	21.35	PK
7206	39.74	12.89	V	-24.73	27.90	53.98	26.08	AV
4804	41.34	5.14	Н	0.00	46.48	73.98	27.50	PK
4804	41.34	5.14	Н	-24.73	21.75	53.98	32.23	AV
7206	39.96	12.89	Н	0.00	52.85	73.98	21.13	PK
7206	39.96	12.89	н	-24.73	28.12	53.98	25.86	AV
Operation N	lode: CH M	1id(GFSK)						
Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	71
4882	40.62	5.46	V	0.00	46.08	73.98	27.90	PK
4882	40.62	5.46	V	-24.73	21.35	53.98	32.63	AV
7323	37.56	12.94	V	0.00	50.50	73.98	23.48	PK
7323	37.56	12.94	V	-24.73	25.77	53.98	28.21	AV
4882	40.76	5.46	Н	0.00	46.22	73.98	27.76	PK
4882	40.76	5.46	Н	-24.73	21.49	53.98	32.49	AV
7323	38.11	12.94	Н	0.00	51.05	73.98	22.93	PK
7323	38.11	12.94	Н	-24.73	26.32	53.98	27.66	AV
Operation M		Ŭ (Dutu				
Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4960	40.85	6.25	V	0.00	47.10	73.98	26.88	PK
4960	40.85	6.25	V	-24.73	22.37	53.98	31.61	AV
7440	38.45	12.61	V	0.00	51.06	73.98	22.92	PK
7440	38.45	12.61	V	-24.73	26.33	53.98	27.65	AV
4960	41.12	6.25	Н	0.00	47.37	73.98	26.61	PK
4960	41.12	6.25	Н	-24.73	22.64	53.98	31.34	AV
7440	38.63	12.61	Н	0.00	51.24	73.98	22.74	PK
7440	38.63	12.61	Н	-24.73	26.51	53.98	27.47	AV

Report No.: HCT-RF-2112-FC052

Operation Mode: CH Low(π/4DQPSK)

		A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	- 71
4804	39.90	5.14	V	0.00	45.04	73.98	28.94	PK
4804	39.90	5.14	V	-24.73	20.31	53.98	33.67	AV
7206	37.97	12.89	V	0.00	50.86	73.98	23.12	PK
7206	37.97	12.89	V	-24.73	26.13	53.98	27.85	AV
4804	41.35	5.14	Н	0.00	46.49	73.98	27.49	PK
4804	41.35	5.14	Н	-24.73	21.76	53.98	32.22	AV
7206	38.22	12.89	Н	0.00	51.11	73.98	22.87	PK
7206	38.22	12.89	Н	-24.73	26.38	53.98	27.60	AV
Operation N	lode: CH N	lid(π/4DQPSK)		_				
Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4882	40.28	5.46	V	0.00	45.74	73.98	28.24	PK
4882	40.28	5.46	V	-24.73	21.01	53.98	32.97	AV
7323	37.84	12.94	V	0.00	50.78	73.98	23.20	PK
7323	37.84	12.94	V	-24.73	26.05	53.98	27.93	AV
4882	40.49	5.46	Н	0.00	45.95	73.98	28.03	PK
4882	40.49	5.46	Н	-24.73	21.22	53.98	32.76	AV
7323	38.27	12.94	н	0.00	51.21	73.98	22.77	PK
7323	38.27	12.94	Н	-24.73	26.48	53.98	27.50	AV
		ligh(π/4DQPSK)		Destas				
Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4960	40.87	6.25	V	0.00	47.12	73.98	26.86	PK
4960	40.87	6.25	V	-24.73	22.39	53.98	31.59	AV
7440	37.82	12.61	V	0.00	50.43	73.98	23.55	PK
7440	37.82	12.61	V	-24.73	25.70	53.98	28.28	AV
4960	41.04	6.25	Н	0.00	47.29	73.98	26.69	PK
4960	41.04	6.25	Н	-24.73	22.56	53.98	31.42	AV
7440	38.07	12.61	Н	0.00	50.68	73.98	23.30	PK
7440	38.07	12.61	Н	-24.73	25.95	53.98	28.03	AV

Report No.: HCT-RF-2112-FC052

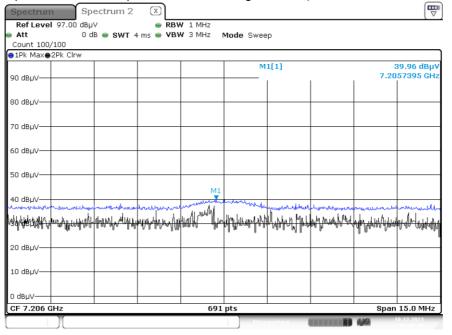
Operation Mode: CH Low(8DPSK)

Frequency		A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	1,900
4804	39.84	5.14	V	0.00	44.98	73.98	29.00	PK
4804	39.84	5.14	V	-24.73	20.25	53.98	33.73	AV
7206	38.12	12.89	V	0.00	51.01	73.98	22.97	PK
7206	38.12	12.89	V	-24.73	26.28	53.98	27.70	AV
4804	41.07	5.14	Н	0.00	46.21	73.98	27.77	PK
4804	41.07	5.14	Н	-24.73	21.48	53.98	32.50	AV
7206	38.49	12.89	н	0.00	51.38	73.98	22.60	РК
7206	38.49	12.89	Н	-24.73	26.65	53.98	27.33	AV
Operation M	lode: CH M	1id(8DPSK)						
Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	71
4882	40.50	5.46	V	0.00	45.96	73.98	28.02	PK
4882	40.50	5.46	V	-24.73	21.23	53.98	32.75	AV
7323	37.96	12.94	V	0.00	50.90	73.98	23.08	PK
7323	37.96	12.94	V	-24.73	26.17	53.98	27.81	AV
4882	40.75	5.46	Н	0.00	46.21	73.98	27.77	PK
4882	40.75	5.46	Н	-24.73	21.48	53.98	32.50	AV
7323	38.35	12.94	Н	0.00	51.29	73.98	22.69	PK
7323	38.35	12.94	Н	-24.73	26.56	53.98	27.42	AV
Operation M	lode: CH ⊢	ligh(8DPSK)		Dutit	1			1
Frequency	Measured Value	A.F+C.L-A.G+D.F		Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4960	41.12	6.25	V	0.00	47.37	73.98	26.61	PK
4960	41.12	6.25	V	-24.73	22.64	53.98	31.34	AV
7440	38.04	12.61	V	0.00	50.65	73.98	23.33	PK
7440	38.04	12.61	V	-24.73	25.92	53.98	28.06	AV
4960	41.30	6.25	Н	0.00	47.55	73.98	26.43	PK
4960	41.30	6.25	Н	-24.73	22.82	53.98	31.16	AV
7440	38.16	12.61	Н	0.00	50.77	73.98	23.21	PK
7440	38.16	12.61	Н	-24.73	26.04	53.98	27.94	AV

[DBS Mode]

Frequency	Measured Value	A.F+C.L-A.G+D.F	e.	Duty Cycle Correction		Limit		Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4804	42.86	5.14	V	0.00	48.00	73.98	25.98	PK
4804	42.86	5.14	V	-24.73	23.27	53.98	30.71	AV
7206	39.02	12.89	V	0.00	51.91	73.98	22.07	PK
7206	39.02	12.89	V	-24.73	27.18	53.98	26.80	AV
4804	43.43	5.14	н	0.00	48.57	73.98	25.41	PK
4804	43.43	5.14	н	-24.73	23.84	53.98	30.14	AV
7206	39.50	12.89	Н	0.00	52.39	73.98	21.59	PK
7206	39.50	12.89	Н	-24.73	27.66	53.98	26.32	AV

WLAN/BT Ant : 802.11n(HT20) ch. 165 & Bluetooth Ch. 0 (GFSK)


Note :

- 1. Used duty cycle correction factor.
- 2. WLAN DBS Data refer to UNII Test Report.

RESULT PLOTS

Radiated Spurious Emissions plot – Peak & Average Result (GFSK, Ch.0 3rd Harmonic, Z-H)

Radiated Spurious Emissions plot – Peak & Average Result (π/4DQPSK, Ch.39 3rd Harmonic, X-H)

Ref Level 9	7.00 dBµ	v	● RBV	V 1 MHz					('
Att		B 👄 SWT 4	1 ms 👄 VBV	N/3 MHz M	Mode Swee	p			
Count 100/10									
)1Pk Max⊕2P	k Clrw								
					M	1[1]			38.27 dBµ¥ 86657 GHz
90 dBµV								7.52	
30 dBµV									
70 dBµV									
50 dBµV									
50 dBµV									
								М1	
40 dBµV	Jan Martin	who have a second	- COMPLETING AL AN	und a harmonia	Alc.L. consistence of the	mballingh	and the second		un martine
أسالعان فاساليا	الألمهارية			WHINK HUNDLAND				սել հավեխշվել	
MURPHIC CONTRACT	tilling filmand	<u>ha tarihinak</u>	<u>ᢥᢉᢦᢔᢔᠰ</u> ᠰ <u>ᢦ</u> ᢂᡃᢦ	₩₩₽₩₩₩₩₩	₩₩₩₩₩₩	<mark>┝┵╖┉┉┙</mark> ╢╢	<u> Ա. ստվով Կա</u>	┉┤╋╫╝╝┩	արերունե
				Ů	Ť		Ů	-	
20 dBµV									
LO dBµV									
) dBµV									
CF 7.323 GH	z			691	pts			Span	15.0 MHz

Radiated Spurious Emissions plot – Peak & Average Result (8DPSK, Ch.0 3rd Harmonic, Z-H)

Spectrun	n Sp	ectrum 2	\mathbf{X}						[₩]
Ref Leve	97.00 dBµ	v	● RBW	1 MHz					
Att		B 👄 SWT 4	ms 😑 VBV	VI3 MHz I	Mode Swee	p			
Count 100,									
●1Pk Max●	2Pk Clrw								
					M	1[1]			88.49 dBµV 57829 GHz
90 dBµV—								7.20	57025 GHZ
80 dBµV—									
70 dBµV									
60 dBµV									
50 dBµV									
40 dBµV				M1					
ohneren o	holinghours	an chant freedbar	werenteren	downland a	whenhow	monumber	mound	and the second	man
.egiva#Upp=46	արհատությո	ՈՍԱԿԻՆԻՆ	Ň₩₩₩₩₽		՝ արին կանաստա րին անդանություններու հարորություններու հարորական հարորական հարորական հարորական հարորական հարորական Աներանական հարորական հ	₼₽₩₩₩₩₽₽	CINER AND	<u>↓₩₩₩₩</u>	╔╢╗╝┺╗╝╗
	V. 1	. h	վել Ու Ու ու		0 -0 0	0 .00	· • ••• · ·	01 01 0	0
20 dBµV—									
10 dBµV—									
0 dBµV									
CF 7.206 (GHz			691	pts		1	Span	15.0 MHz
) (Mea	suring		4.86	8.12.2021

Note:

Plot of worst case are only reported.

RESULT PLOTS(DBS)

WLAN/BT Ant : 802.11n(HT20) ch. 165 & Bluetooth Ch. 0 (GFSK)

Radiated Spurious Emissions plot – Average & Peak Result (3rd Harmonic, Z-H)

●1Pk Max●2P	9k Clrw								
90 dBµV					M	1[1]	I		39.50 dBµ' 62171 GH I
30 dBµV									
O dBµV									
о авил									
io dBµV									
о авил	mAssAnddAltan	han pure for the harmonic of	and the second	manth Mar	M1				MALELANA
weinter	Muhana	han the the terms of terms	utine state	duhpyrhymly	uruwahahahah	แหล่ใหล่สาย	lillipething the second	anggarihinihi	Winth
о авил									
o dBµV									

Note:

Plot of worst case are only reported.

10.6.3 RADIATED RESTRICTED BAND EDGES

Operation Mode	Normal(GFSK)				
Operating Frequency	2402 MHz, 2480 MHz				
Channel No	CH 0, CH 78				

Frequency	Measured Level	A.F+C.L+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
2390.0	52.44	2.99	Н	0	55.43	73.98	18.55	PK
2390.0	52.44	2.99	Н	-24.73	30.70	53.98	23.28	AV
2390.0	50.24	2.99	V	0	53.23	73.98	20.75	PK
2390.0	50.24	2.99	V	-24.73	28.50	53.98	25.48	AV
2483.5	54.85	4.20	Н	0	59.05	73.98	14.93	PK
2483.5	54.85	4.20	Н	-24.73	34.32	53.98	19.66	AV
2483.5	65.94	4.20	V	0	70.14	73.98	3.84	PK
2483.5	65.94	4.20	V	-24.73	45.41	53.98	8.57	AV

Operation Mode

EDR(π/4DQPSK)

Operating Frequency

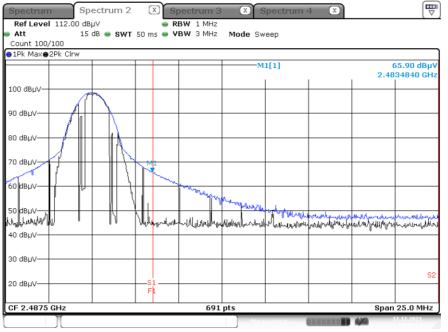
Channel No

2402 MHz, 2480 MHz

CH 0, CH 78

Frequency [MHz]	Level	A.F+C.L+D.F	Pol. [H/V]	Duty Cycle Correction [dB]		Limit	Margin	Measurement Type
2390.0	[dBµV] 50.02	[dB/m] 2.99	<u>[п/v]</u> Н	0	<u>тавруліт</u> 53.01	[dBµV/m] 73.98	[dB] 20.97	РК
2390.0	50.0Z	2.99	П	0	55.01	73.90	20.97	FIX
2390.0	50.02	2.99	Н	-24.73	28.28	53.98	25.70	AV
2390.0	49.39	2.99	V	0	52.38	73.98	21.60	PK
2390.0	49.39	2.99	V	-24.73	27.65	53.98	26.33	AV
2483.5	54.76	4.20	Н	0	58.96	73.98	15.02	PK
2483.5	54.76	4.20	Н	-24.73	34.23	53.98	19.75	AV
2483.5	65.90	4.20	V	0	70.10	73.98	3.88	PK
2483.5	65.90	4.20	V	-24.73	45.37	53.98	8.61	AV

Operation Mode	EDR(8DPSK)
Operating Frequency	2402 MHz, 2480 MHz
Channel No	CH 0, CH 78


Frequency	Measured Level	A.F+C.L+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
2390.0	49.90	2.99	н	0	52.89	73.98	21.09	PK
2390.0	49.90	2.99	н	-24.73	28.16	53.98	25.82	AV
2390.0	49.42	2.99	V	0	52.41	73.98	21.57	PK
2390.0	49.42	2.99	V	-24.73	27.68	53.98	26.30	AV
2483.5	54.59	4.20	н	0	58.79	73.98	15.19	PK
2483.5	54.59	4.20	н	-24.73	34.06	53.98	19.92	AV
2483.5	65.78	4.20	V	0	69.98	73.98	4.00	PK
2483.5	65.78	4.20	۷	-24.73	45.25	53.98	8.73	AV

RESULT PLOTS

Radiated Restricted Band Edges plot - Average & Peak Result (GFSK, Ch.78, Y-V) P Spectrum 2 X (X Ref Level 112.00 dBµV RBW 1 MHz • Att 15 dB 👄 SWT 50 ms 👄 VBW 3 MHz Mode Sweep Count 100/100 ●1Pk Max●2Pk Clrw M1[1] 65.94 dBµV 2.4835200 GH 100 dBuV-90 dBµV 80 dBµV 70 dBµV 60 dBu\ ŞANCENIX and whether have warmight for the for and the for the f 40 dBuV 30 dBµV S2 20 dBuV F Start 2.475 GHz 691 pts Stop 2.5 GHz

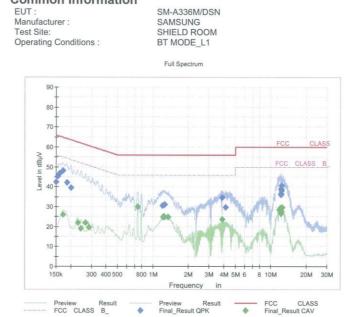
Radiated Restricted Band Edges plot – Average & Peak Result (π/4DQPSK, Ch.78, Y-V)

Spectrum 2 Spectrum Spectrum 3 Spectrum 4 X Ref Level 112.00 dBμV RBW 1 MHz Att 15 dB SWT 50 ms VBW 3 MHz Mode Sweep Count 100/100 ●1Pk Max●2Pk Clrw 65.78 dBµ\ 2.4834840 GH M1[1] 100 dBµV-90 dBµV-80 dBµV 70 dBµV 60 dBµV da i 50 dBµV-T վես_{ես}ակե Willing rout of the of a flow will be a flow of the flow of the stand 40 dBµV-30 dBµV-S2 20 dBµV-F Stop 2.5 GHz Start 2.475 GHz 691 pts

Radiated Restricted Band Edges plot – Average & Peak Result (8DPSK, Ch.78, Y-V)

Note:

Plot of worst case are only reported.


1/2

10.7 POWERLINE CONDUCTED EMISSIONS

Conducted Emissions (Line 1)

BT MODE_L1

Common Information

Test Report

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1500	42.43	66.00	23.57	9.000	L1	OFF	9.6
0.1545	45.17	65.75	20.58	9.000	L1	OFF	9.6
0.1613	46.61	65.40	18.78	9.000	L1	OFF	9.6
0.1725	48.24	64.84	16.60	9.000	L1	OFF	9.6
0.1860	42.26	64.21	21.96	9.000	L1	OFF	9.6
0.2018	39.39	63.54	24.15	9.000	L1	OFF	9.6
1.2043	30.62	56.00	25.38	9.000	L1	OFF	9.7
1.2403	30.73	56.00	25.27	9.000	L1	OFF	9.7
1.2628	31.15	56.00	24.85	9.000	L1	OFF	9.7
3.8705	34.66	56.00	21.34	9.000	L1	OFF	9.8
3.8750	34.74	56.00	21.26	9.000	L1	OFF	9.8
4.1338	29.57	56.00	26.43	9.000	L1	OFF	9.8
12.2113	36.06	60.00	23.94	9.000	L1	OFF	10.1
12.2180	36.30	60.00	23.70	9.000	L1	OFF	10.1
12.2225	36.62	60.00	23.38	9.000	L1	OFF	10.1
12.2293	39.03	60.00	20.97	9.000	L1	OFF	10.1
12.2900	37.99	60.00	22.01	9.000	L1	OFF	10.1
12.2945	40.62	60.00	19.38	9.000	L1	OFF	10.1

2021-12-18

오전 3:58:40

2/2

BT MODE_L1

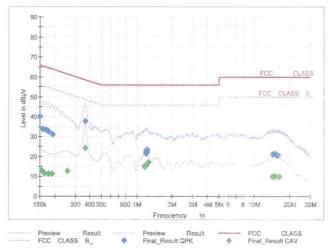
Final_Result_CAV

Frequency (MHz)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1725	25.93	54.84	28.91	9.000	L1	OFF	9.6
0.2288	21.81	52.50	30.69	9.000	L1	OFF	9.6
0.2445	19.12	51.94	32.82	9.000	L1	OFF	9.6
0.2670	22.04	51.21	29.17	9.000	L1	OFF	9.6
0.2850	19.55	50.67	31.12	9.000	L1	OFF	9.6
0.7430	29.87	46.00	16.13	9.000	L1	OFF	9.7
1.2178	24.80	46.00	21.20	9.000	L1	OFF	9.7
1.2335	24.80	46.00	21.20	9.000	L1	OFF	9.7
1.2403	24.96	46.00	21.04	9.000	L1	OFF	9.7
1.2538	24.91	46.00	21.09	9.000	L1	OFF	9.7
1.3505	24.82	46.00	21.18	9.000	L1	OFF	9.7
3.8728	23.69	46.00	22.31	9.000	L1	OFF	9.8
11.8445	28.49	50.00	21.51	9.000	L1	OFF	10.1
12.0245	29.41	50.00	20.59	9.000	L1	OFF	10.1
12.2383	26.42	50.00	23.58	9.000	L1	OFF	10.1
12.2990	27.51	50.00	22.49	9.000	L1	OFF	10.1
12.3598	29.10	50.00	20.90	9.000	L1	OFF	10.1
12.4205	29.58	50.00	20.42	9.000	L1	OFF	10.1

2021-12-18

오전 3:58:40

BT 45W MODE_L1


1/2

Test Report

Common Information

EUT : Manufacturer : Test Site: Operating Conditions : SM-A336M/DSN SAMSUNG SHIELD ROOM BT 45W MODE_L1

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBuV)	Limit (dBuV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1500	40.22	66.00	25.78	9.000	L1	OFF	9.6
0.1590	33.77	65.52	31.74	9.000	L1	OFF	9.6
0.1703	33.34	64.95	31.61	9.000	L1	OFF	9.6
0.1770	32.64	64.63	31.99	9.000	L1	OFF	9.6
0.1928	31.18	63.92	32.74	9.000	L1	OFF	9.6
0.3638	37.68	58.64	20.96	9.000	L1	OFF	9.6
1.1953	21.80	56.00	34.20	9.000	L1	OFF	9.7
1.1998	21.47	56.00	34.53	9.000	L1	OFF	9.7
1.2065	22.37	56.00	33.63	9.000	L1	OFF	9.7
1.2133	22.22	56.00	33.78	9.000	L1	OFF	9.7
1.2200	23.26	56.00	32.74	9.000	L1	OFF	9.7
1.2335	23.41	56.00	32.59	9.000	L1	OFF	9.7
14.3443	20.95	60.00	39.05	9.000	L1	OFF	10.2
15.1453	21.35	60.00	38.65	9.000	L1	OFF	10.2
15.1633	20.92	60.00	39.08	9.000	L1	OFF	10.2
15.1813	20.95	60.00	39.05	9.000	L1	OFF	10.2
15.5255	20.82	60.00	39.18	9.000	L1	OFF	10.2
15.8923	20.50	60.00	39.50	9.000	L1	OFF	10.3

2021-12-26

오전 5:59:40

2/2

BT 45W MODE_L1

Final_Result_CAV

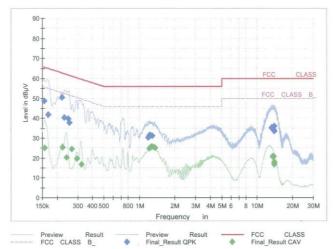
Frequency (MHz)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	12.85	55.75	42.91	9.000	L1	OFF	9.6
0.1635	11.63	55.28	43.65	9.000	L1	OFF	9.6
0.1770	11.18	54.63	43.45	9.000	L1	OFF	9.6
0.1905	11.13	54.02	42.88	9.000	L1	OFF	9.6
0.2580	12.79	51.50	38.70	9.000	L1	OFF	9.6
0.3660	24.10	48.59	24.49	9.000	L1	OFF	9.6
1.1615	15.13	46.00	30.87	9.000	L1	OFF	9.7
1.1728	15.03	46.00	30.97	9.000	L1	OFF	9.7
1.1930	15.14	46.00	30.86	9.000	L1	OFF	9.7
1.2065	15.71	46.00	30.29	9.000	L1	OFF	9.7
1.2178	16.29	46.00	29.71	9.000	L1	OFF	9.7
1.2538	17.00	46.00	29.00	9.000	L1	OFF	9.7
14.2340	9.80	50.00	40.20	9.000	L1	OFF	10.2
14.6953	10.18	50.00	39.82	9.000	L1	OFF	10.2
14.7583	10.09	50.00	39.91	9.000	L1	OFF	10.2
15.4693	9.94	50.00	40.06	9.000	L1	OFF	10.2
15.5075	9.71	50.00	40.29	9.000	L1	OFF	10.2
16.3985	9.68	50.00	40.32	9.000	L1	OFF	10.3

2021-12-26

오전 5:59:40

1/2

Conducted Emissions (Line 2)


BT MODE_N

Test Report

Common Information

EUT : Manufacturer : Test Site: Operating Conditions : SM-A336M/DSN SAMSUNG SHIELD ROOM BT MODE_N

Full Spectrum

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBuV)	Limit (dBuV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	48.89	65.75	16.86	9.000	N	OFF	9.6
0.1680	41.70	65.06	23.36	9.000	N	OFF	9.6
0.2198	50.34	62.83	12.49	9.000	N	OFF	9.6
0.2310	40.34	62.41	22.07	9.000	N	OFF	9.6
0.2490	39.90	61.79	21.89	9.000	N	OFF	9.6
0.2535	37.73	61.64	23.91	9.000	N	OFF	9.6
1.1908	30.21	56.00	25.79	9.000	N	OFF	9.7
1.2110	30.89	56.00	25.11	9.000	N	OFF	9.7
1.2155	31.52	56.00	24.48	9.000	N	OFF	9.7
1.2268	31.50	56.00	24.50	9.000	N	OFF	9.7
1.2403	31.47	56.00	24.53	9.000	N	OFF	9.7
1.2920	31.12	56.00	24.88	9.000	N	OFF	9.7
13.2148	35.09	60.00	24.91	9.000	N	OFF	10.2
13.2958	35.47	60.00	24.53	9.000	N	OFF	10.2
13.6018	34.23	60.00	25.77	9.000	N	OFF	10.2
13.7458	33.96	60.00	26.04	9.000	N	OFF	10.2
13.8830	35.97	60.00	24.03	9.000	N	OFF	10.2
14.0338	33.51	60.00	26.49	9.000	N	OFF	10.2

2021-12-18

오전 3:53:26

2/2

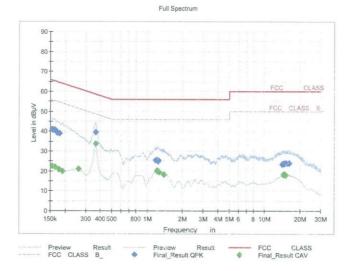
BT MODE_N

Final_Result_CAV

Frequency (MHz)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1568	25.23	55.63	30.41	9.000	N	OFF	9.6
0.2220	25.46	52.74	27.28	9.000	N	OFF	9.6
0.2400	20.32	52.10	31.77	9.000	N	OFF	9.6
0.2648	24.62	51.28	26.66	9.000	N	OFF	9.6
0.2940	19.62	50.41	30.79	9.000	N	OFF	9.6
0.3210	16.80	49.68	32.89	9.000	N	OFF	9.6
1.2178	24.93	46.00	21.07	9.000	N	OFF	9.7
1.2403	25.27	46.00	20.73	9.000	N	OFF	9.7
1.2650	25.80	46.00	20.20	9.000	N	OFF	9.7
1.2898	25.75	46.00	20.25	9.000	N	OFF	9.7
1.3505	25.36	46.00	20.64	9.000	N	OFF	9.7
1.3618	25.03	46.00	20.97	9.000	N	OFF	9.7
13.4983	20.70	50.00	29.30	9.000	N	OFF	10.2
13.6018	20.50	50.00	29.50	9.000	N	OFF	10.2
13.7323	20.70	50.00	29.30	9.000	N	OFF	10.2
13.8988	16.77	50.00	33.23	9.000	N	OFF	10.2
13.9190	17.99	50.00	32.01	9.000	N	OFF	10.2
13.9550	17.61	50.00	32.39	9,000	N	OFF	10.2

2021-12-18

오전 3:53:26


BT 45W MODE_N

1/2

Test Report

Common Information

EUT : Manufacturer : Test Site: Operating Conditions : SM-A336M/DSN SAMSUNG SHIELD ROOM BT 45W MODE_N

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBuV)	Limit (dBuV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	40.95	65.75	24.80	9.000	N	OFF	9.6
0.1590	40.61	65.52	24.90	9.000	N	OFF	9.6
0.1635	40.58	65.28	24.71	9.000	N	OFF	9.6
0.1725	39.34	64.84	25.50	9.000	N	OFF	9.6
0.1793	39.03	64.52	25.49	9.000	N	OFF	9.6
0.3638	39.60	58.64	19.04	9.000	N	OFF	9.6
1.1795	25.25	56.00	30.75	9.000	N	OFF	9.7
1.2110	25.26	56.00	30.74	9.000	N	OFF	9.7
1.2178	25.62	56.00	30.38	9.000	N	OFF	9.7
1.2335	25.64	56.00	30.36	9.000	N	OFF	9.7
1.2380	25.29	56.00	30.71	9.000	N	OFF	9.7
1.2448	24.90	56.00	31.10	9.000	N	OFF	9.7
14.0450	23.47	60.00	36.53	9.000	N	OFF	10.2
14.4118	23.77	60.00	36.23	9.000	N	OFF	10.3
14.7380	23.78	60.00	36.22	9.000	N	OFF	10.3
14.9585	23.94	60.00	36.06	9.000	N	OFF	10.3
15.4198	23.83	60.00	36.17	9.000	N	OFF	10.3
16.0835	23.89	60.00	36.11	9.000	N	OFF	10.3

2021-12-26

오전 5:54:02

2/2

BT 45W MODE_N

F	i	r	1	a	F	R	e	s	u	I	t	С	A	1	V	

Frequency (MHz)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	22.55	55.75	33.21	9.000	N	OFF	9.6
0.1635	21.85	55.28	33.44	9.000	N	OFF	9.6
0.1770	20.88	54.63	33.75	9.000	N	OFF	9.6
0.1905	19.95	54.02	34.06	9.000	N	OFF	9.6
0.2603	20.93	51.42	30.50	9.000	N	OFF	9.6
0.3660	33.66	48.59	14.93	9.000	N	OFF	9.6
1.2088	20.04	46.00	25.96	9.000	N	OFF	9.7
1.2178	20.16	46.00	25.84	9.000	N	OFF	9.7
1.2313	19.98	46.00	26.02	9.000	N	OFF	9.7
1.2403	19.87	46.00	26.13	9.000	N	OFF	9.7
1.2650	19.44	46.00	26.56	9.000	N	OFF	9.7
1.3865	18.27	46.00	27.73	9.000	N	OFF	9.7
14.3780	18.08	50.00	31.92	9.000	N	OFF	10.3
14.4973	18.14	50.00	31.86	9.000	N	OFF	10.3
14.5558	18.10	50.00	31.90	9.000	N	OFF	10.3
14.7200	18.05	50.00	31.95	9.000	N	OFF	10.3
14.9968	18.11	50.00	31.89	9.000	N	OFF	10.3
15.1745	17.95	50.00	32.05	9.000	N	OFF	10.3

2021-12-26

오전 5:54:02

11. LIST OF TEST EQUIPMENT

Conducted Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
LISN	ENV216	Rohde & Schwarz	102245	08/23/2022	Annual
EMI Test Receiver	ESR	Rohde & Schwarz	101910	06/17/2022	Annual
Temperature Chamber	SU-642	ESPEC	0093008124	03/15/2022	Annual
Signal Analyzer	N9030A	Agilent	MY49432108	03/09/2022	Annual
Power Meter	N1911A	Agilent	MY45100523	04/08/2022	Annual
Power Sensor	N1921A	Agilent	MY57820067	04/08/2022	Annual
Power Splitter	11667B	Hewlett Packard	10545	02/09/2022	Annual
DC Power Supply	E3632A	HP	MY50360067	02/26/2022	Annual
Attenuator(10 dB)(DC-26.5 GHz)	8493C	HP	07560	06/18/2022	Annual
Attenuator(10 dB)(DC-26.5 GHz)	8493C	HP	08285	06/28/2022	Annual
Attenuator(20 dB)	18N-20dB	Rohde & Schwarz	8	03/08/2022	Annual
Software	EMC32	Rohde & Schwarz	N/A	N/A	N/A
FCC WLAN&BT&BLE Conducted	N/A	HCT CO., LTD.	N/A	N/A	N/A
Test Software v3.0					

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Radiated Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
Controller(Antenna mast)	CO3000	Innco system	CO3000-4p	N/A	N/A
Antenna Position Tower	MA4640/800-XP-EP	Innco system	N/A	N/A	N/A
Controller	EM1000	Audix	060520	N/A	N/A
Turn Table	N/A	Audix	N/A	N/A	N/A
Amp & Filter Bank Switch Controller	FBSM-01B	TNM system	TM19050002	N/A	N/A
Loop Antenna	1513	Schwarzbeck	1513-333	03/19/2022	Biennial
Hybrid Antenna	VULB 9168	Schwarzbeck	9168-0895	09/04/2022	Biennial
Horn Antenna	BBHA 9120D	Schwarzbeck	02296	05/19/2022	Biennial
Horn Antenna(15 GHz ~ 40 GHz)	BBHA9170	Schwarzbeck	BBHA9170124	04/12/2023	Biennial
Spectrum Analyzer	FSV(10 Hz ~ 40 GHz)	Rohde & Schwarz	101055	05/14/2022	Annual
Band Reject Filter	WRCJV2400/2483.5- 2370/2520-60/12SS	Wainwright Instruments	2	01/06/2022	Annual
Band Reject Filter	WRCJV12-4900- 5100-5900-6100- 50SS	Wainwright Instruments	5	06/24/2022	Annual
Band Reject Filter	WRCJV12-4900- 5100-5900-6100- 50SS	Wainwright Instruments	6	06/24/2022	Annual
Power Amplifier	CBL18265035	CERNEX	22966	12/02/2022	Annual
Power Amplifier	CBL26405040	CERNEX	25956	03/23/2022	Annual
HPF(3~18GHz) + LNA1(1~18GHz)	FMSR-05B	TNM system	F6	01/20/2022	Annual
ATT(10dB) + LNA1(1~18GHz)	FMSR -05B	TNM system	None	01/20/2022	Annual
ATT(3dB) + LNA1(1~18GHz)	FMSR -05B	TNM system	None	01/20/2022	Annual
LNA1(1~18GHz)	FMSR -05B	TNM system	25540	01/20/2022	Annual
HPF(7~18GHz) + LNA2(6~18GHz)	FMSR -05B	TNM system	28550	01/20/2022	Annual
Thru(30MHz ~ 18GHz)	FMSR -05B	TNM system	None	01/20/2022	Annual

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

12. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2112-FC052-P