CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 08/Jun/2018

In/2018 CERTIFICATE NUMBER : 12134282JD01A

Page 1 of 10

APPROVED SIGNATORY

M. Masec

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	14/May/2018
Manufacturer:	Speag		
Type/Model Number:	D750V3		
Serial Number:	1024		
Calibration Date:	16/May/2018		
Calibrated By:	Chanthu Thevarajah Senior Engineer		
Signature:	9		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5248

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0178316	Data Acquisition Electronics	SPEAG	DAE4	1542	06 Mar 2018	12
A2544	Probe	SPEAG	EX3DV4	3994	19 Mar 2018	12
A2545	Probe	SPEAG	EX3DV4	3995	24 Apr 2018	12
A2765	Dipole	SPEAG	D750V3	1147	21 Sep 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
M1855	Power Sensor	Rhode & Schwarz	NRP-Z51	103246	08 Nov 2017	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	10 Oct 2017	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	14 Dec 2017	12
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947	27 April 2018	12
M1838	Signal Generator	Rhode & Schwarz	SME06	831377/005	22 Mar 2018	12

UKAS Accredited Calibration Laboratory No. 5248

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L	
Robot Serial Number:	F17/5ENYG1/C/01	
DASY Version:	DASY 52 (v52.8.8.1258)	
Phantom:	Flat section of SAM Twin Phantom	
Distance Dipole Centre:	15 mm (with spacer)	
Frequency:	750 MHz	

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)
Hoad	Head 750 21.4 °C 21.0 °C 20	750 214 °C 21.0 °C	0 °C 20.9°C 21.0°C -	0% 21.0%	٤r	41.96	40.13	± 5%	
rieau		21.4 °C 21.0 °C 2		σ	0.89	0.91	± 5%		

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	2.08 W/Kg	8.28 W/Kg	± 17.57%
neau	SAR averaged over 10g	1.36 W/Kg	5.41 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	45.724 Ω 0.14 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	25.37	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

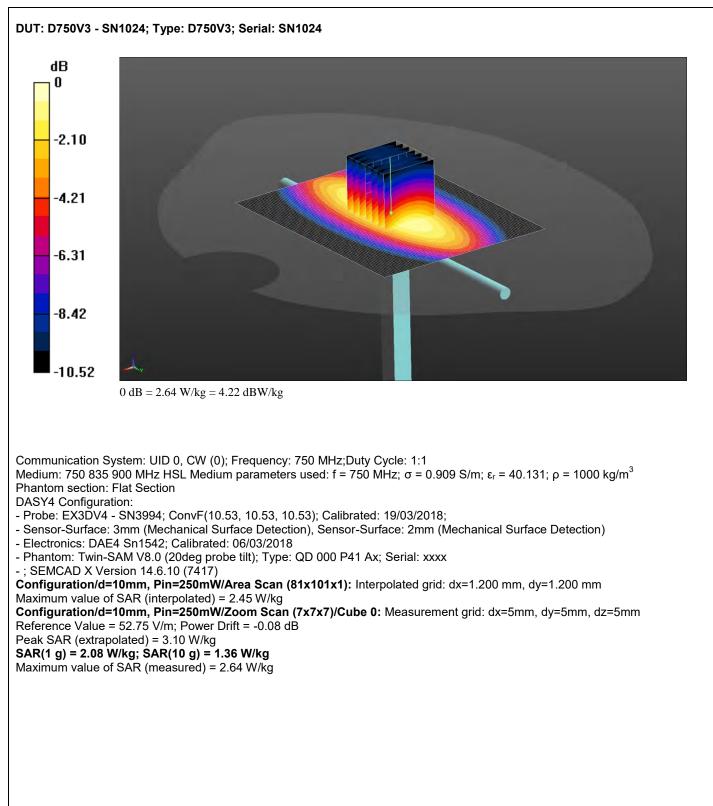
Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty	
	(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)	
Body	Body 750 22.0 °C 21.0 °C 21.2	c 210°C 212°C	22.0 °C 21.0 °C 21.2°C 21.0°C	°C 21.2°C	21.0 °C 21.2°C	21.0%	٤r	55.55	55.78	± 5%
Бойу	750	22.0 C	21.0 C			ງ ປີ 21.2 ປ	21.0 C	σ	0.96	0.95

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	2.27 W/Kg	9.03 W/Kg	± 18.06%
Бойу	SAR averaged over 10g	1.52 W/Kg	6.05 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

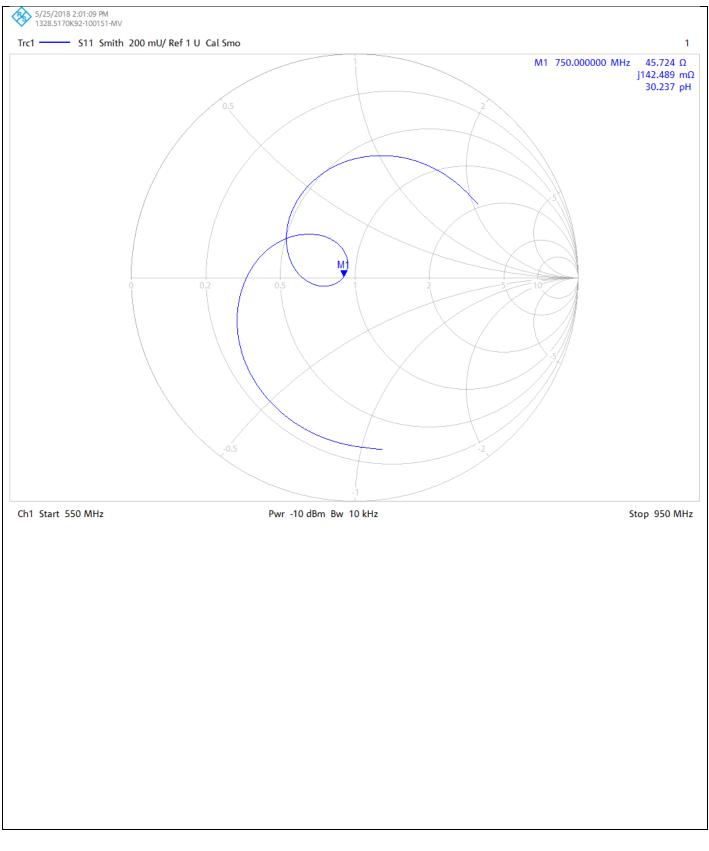

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	50.93 Ω 3.17 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	30.69	± 2.03 dB

CERTIFICATE NUMBER : 12134282JD01A

Page 5 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Head Stimulating Liquid (HSL)

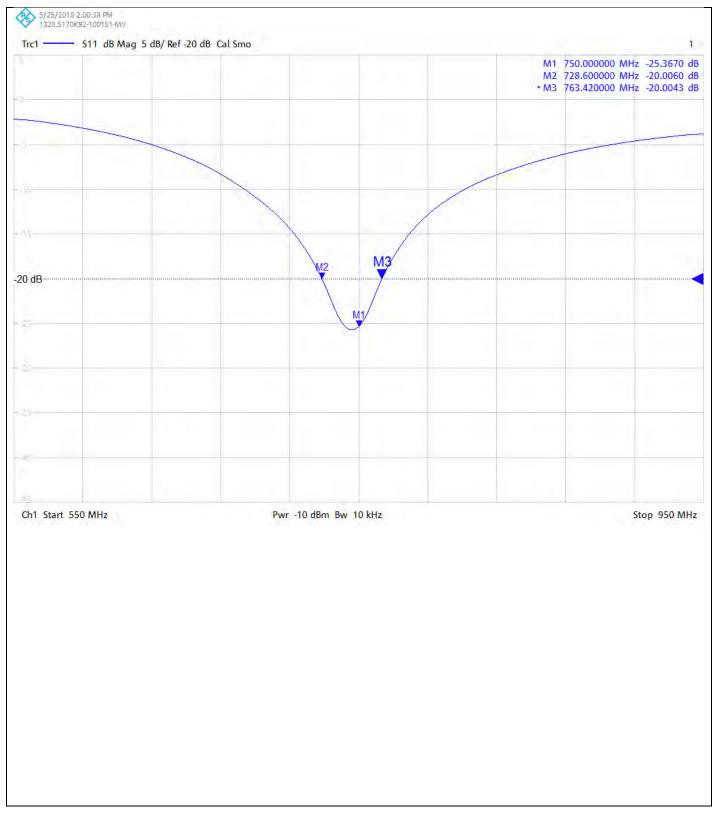


CERTIFICATE NUMBER : 12134282JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

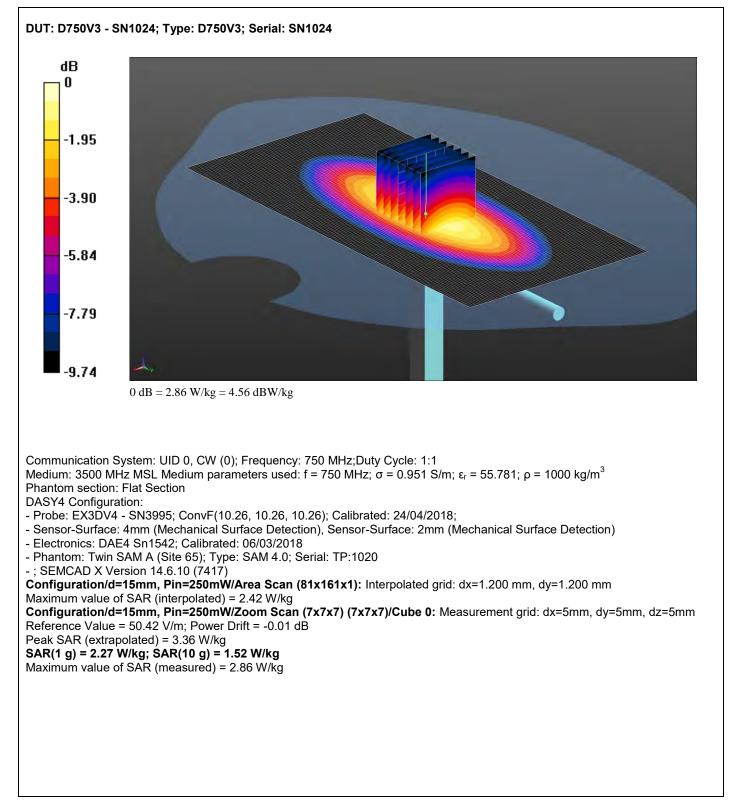


CERTIFICATE NUMBER : 12134282JD01A

UKAS Accredited Calibration Laboratory No. 5248

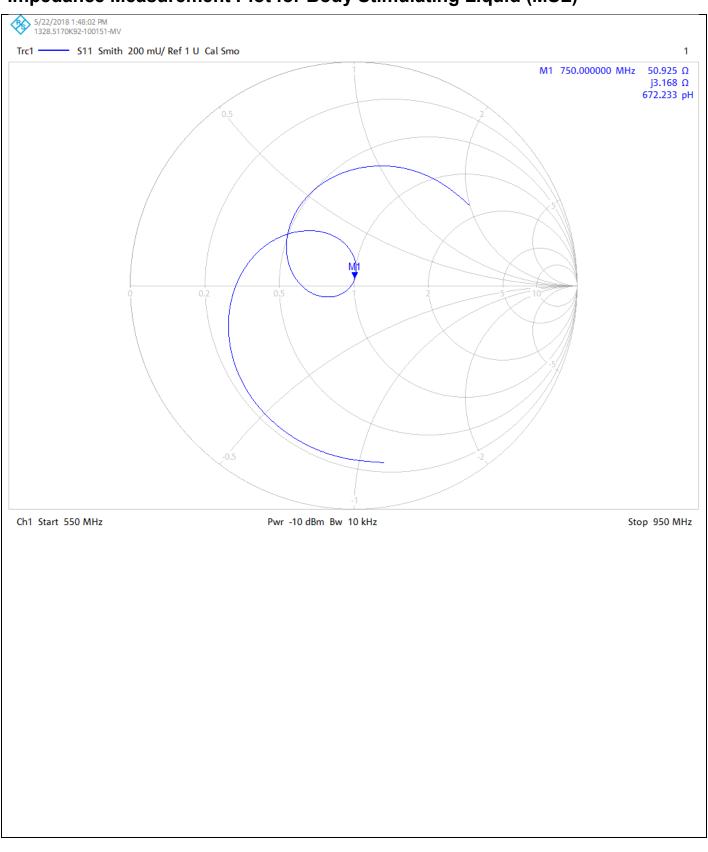
Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)



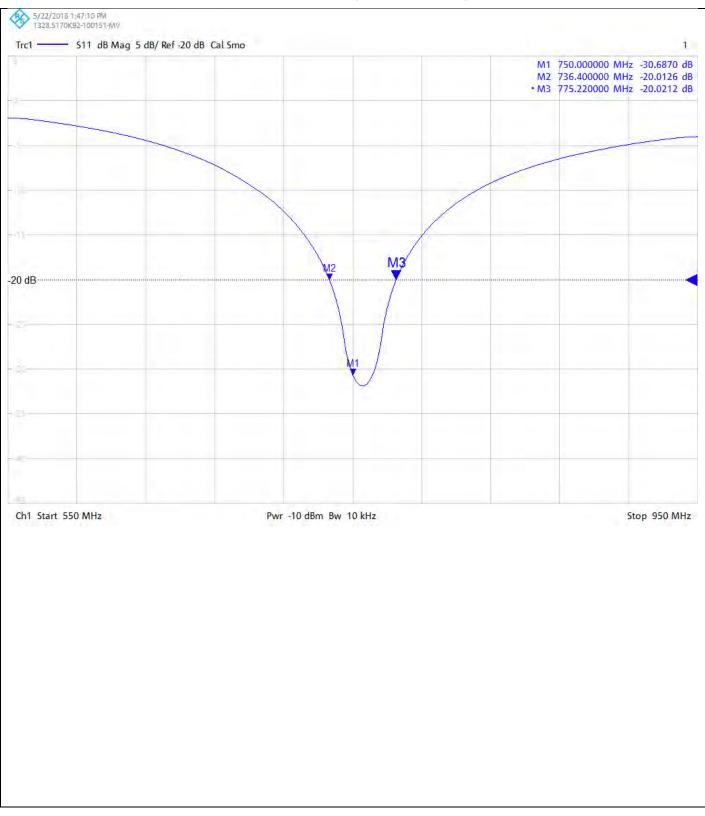
CERTIFICATE NUMBER : 12134282JD01A

Page 8 of 10


UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Body Stimulating Liquid (MSL)

UKAS Accredited Calibration Laboratory No. 5248


Impedance Measurement Plot for Body Stimulating Liquid (MSL)

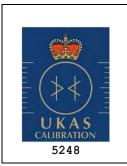
CERTIFICATE NUMBER : 12134282JD01A

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

	UL VS LTD - Tel: +44 (0) 1256312000
	Certificate Number: 12134282JD01A
$(\downarrow \downarrow)$	Instrument ID: 1024
	Calibration Date: 08/Jun/2018
5248	Calibration Due Date:


UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12134282JD01A

Instrument ID: 1024

Calibration Date: 08/Jun/2018

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12134282JD01A

Instrument ID: 1024

Calibration Date: 08/Jun/2018

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 08/Jun/2018

n/2018 CERTIFICATE NUMBER : 12134282JD01B

UL VS LTD UNIT 1 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

BC-MRA UKAS CALIBRATION 5248

Page 1 of 10

APPROVED SIGNATORY

M. Masec

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	14/May/2018
Manufacturer:	Speag		
Type/Model Number:	D835V2		
Serial Number:	4d117		
Calibration Date:	16/May/2018		
Calibrated By:	Chanthu Thevarajah Senior Engineer		
Signature:	9		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5248

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0178316	Data Acquisition Electronics	SPEAG	DAE4	1542	06 Mar 2018	12
A2544	Probe	SPEAG	EX3DV4	3994	19 Mar 2018	12
A2545	Probe	SPEAG	EX3DV4	3995	24 Apr 2018	12
A2115	Dipole	SPEAG	D835V2	438	28 Apr 2018	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
M1855	Power Sensor	Rhode & Schwarz	NRP-Z51	103246	08 Nov 2017	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	10 Oct 2017	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	14 Dec 2017	12
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947	27 April 2018	12
M1838	Signal Generator	Rhode & Schwarz	SME06	831377/005	22 Mar 2018	12

UKAS Accredited Calibration Laboratory No. 5248

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F17/5ENYG1/C/01
DASY Version:	DASY 52 (v52.8.8.1258)
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	15 mm (with spacer)
Frequency:	835 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)
Head	925	21 4 °C	21.0.%	20.9°C	21.0°C	٤r	41.50	39.89	± 5%
neau	000	835 21.4 °C 21.0 °C 20.9°	20.9 C	20.9% 21.0%	σ	0.90	0.94	± 5%	

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	2.48 W/Kg	9.87 W/Kg	± 17.57%
Head	SAR averaged over 10g	1.61 W/Kg	6.40 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Hood	Impedance	46.016 Ω .98 jΩ	± 0.28 Ω ± 0.044 jΩ
Head —	Return Loss	27.61	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

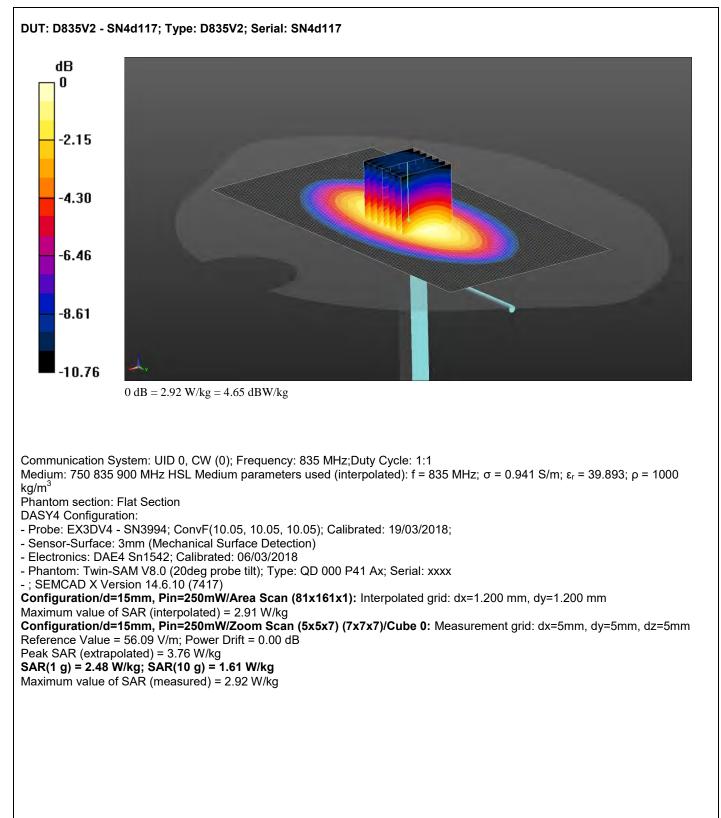
Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	T diameters	Value	Value	(%)
Body	835	22.0 °C	21.0.%	21.2℃	21.0°C	٤r	55.20	55.65	± 5%
Body	000	22.0 L	21.0 C	21.26	21.0 C	σ	0.97	0.98	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Pody	SAR averaged over 1g	2.59 W/Kg	10.31 W/Kg	± 18.06%
Body	SAR averaged over 10g	1.72 W/Kg	6.84 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

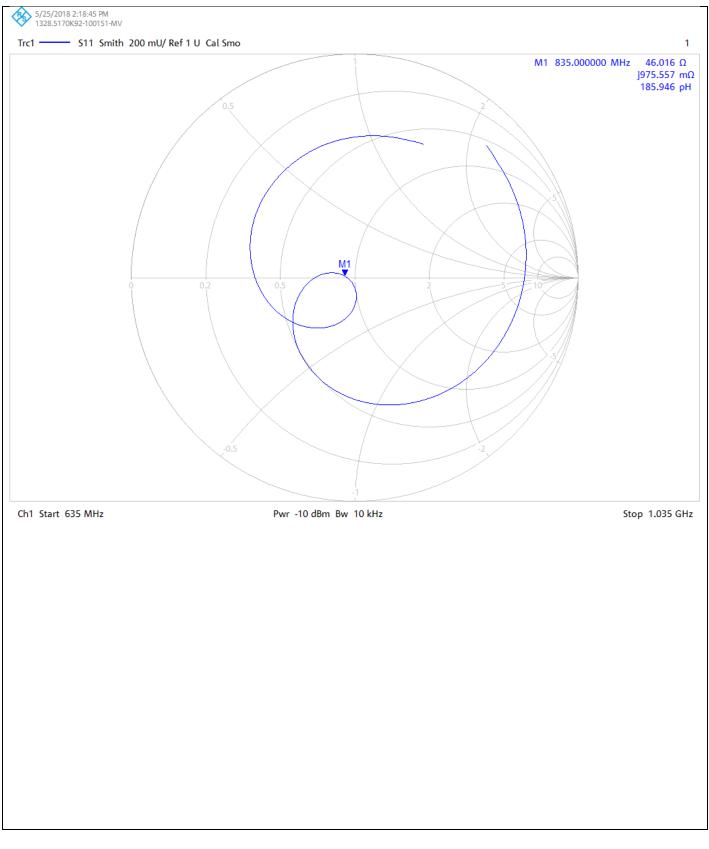

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Dedu	Impedance	45.10 Ω 5.69 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	23.07	± 2.03 dB

CERTIFICATE NUMBER : 12134282JD01B

Page 5 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Head Stimulating Liquid (HSL)

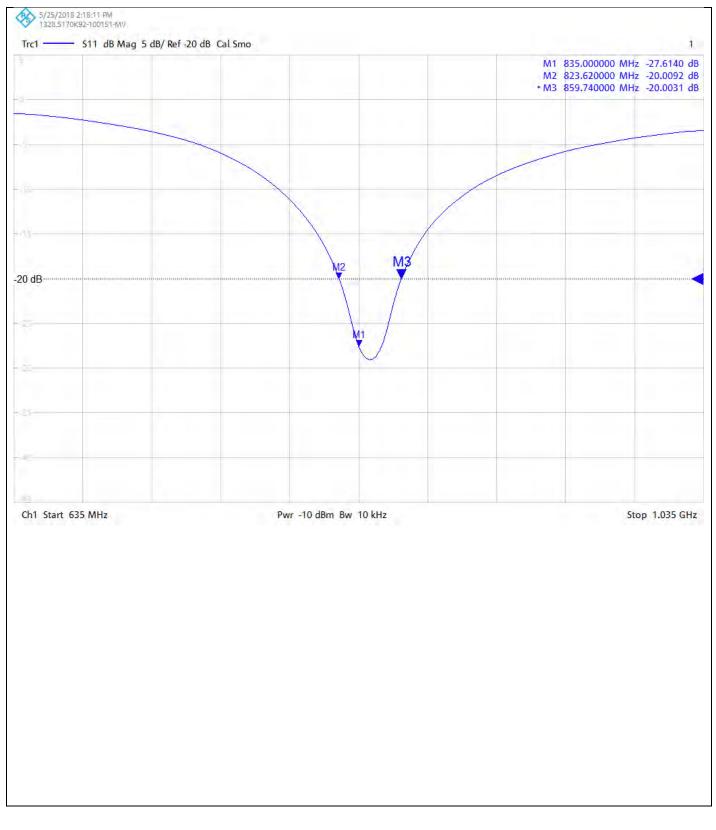


CERTIFICATE NUMBER : 12134282JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

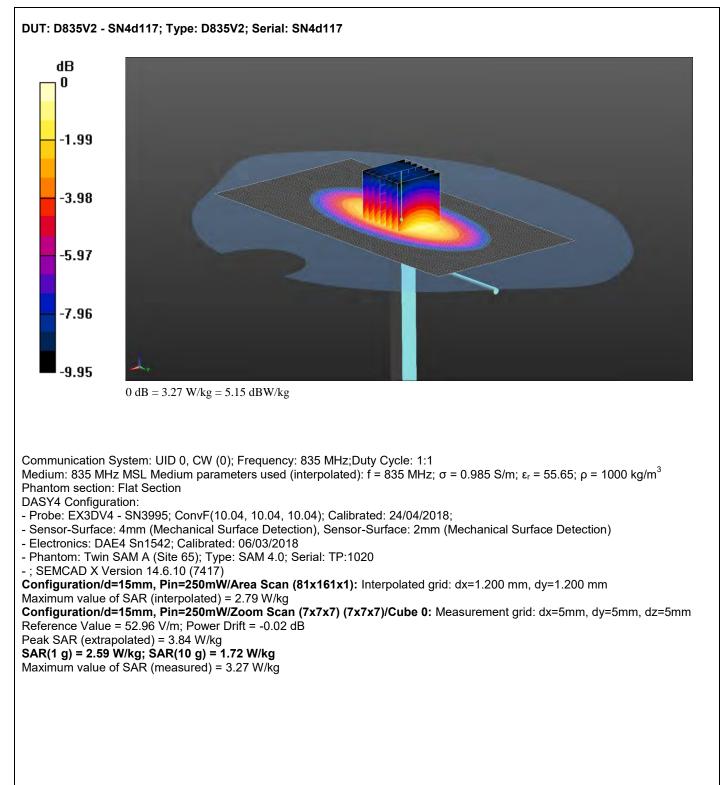


CERTIFICATE NUMBER : 12134282JD01B

UKAS Accredited Calibration Laboratory No. 5248

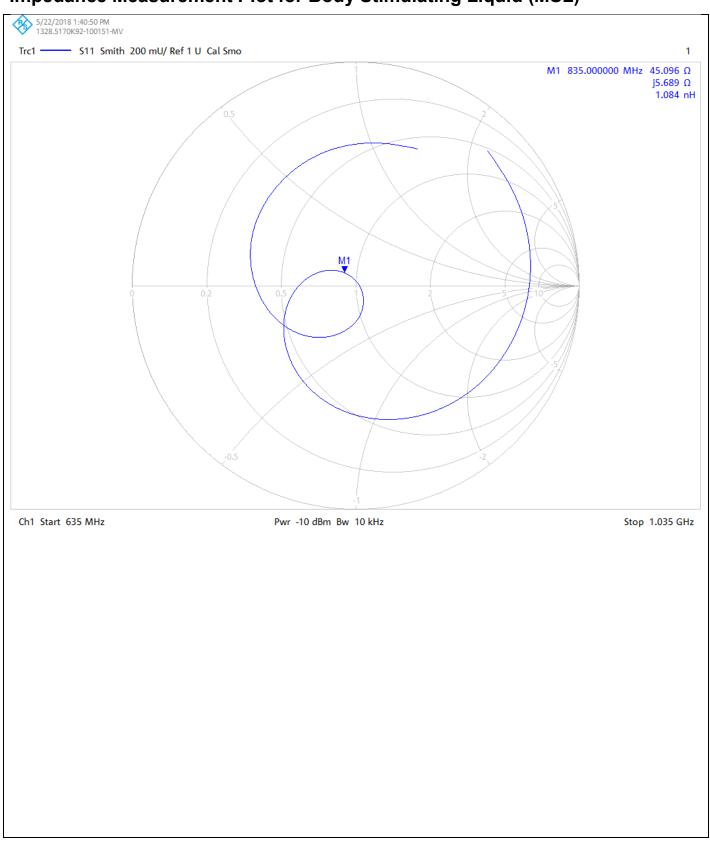
Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)



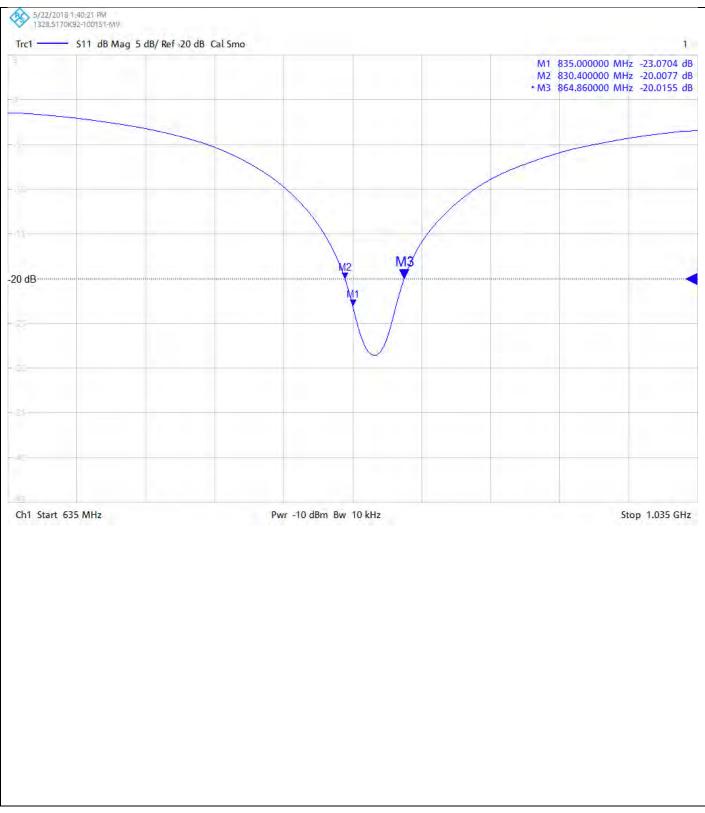
CERTIFICATE NUMBER : 12134282JD01B

Page 8 of 10


UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Body Stimulating Liquid (MSL)

UKAS Accredited Calibration Laboratory No. 5248


Impedance Measurement Plot for Body Stimulating Liquid (MSL)

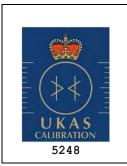
CERTIFICATE NUMBER : 12134282JD01B


Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

	UL VS LTD - Tel: +44 (0) 1256312000
	Certificate Number: 12134282JD01B
$(\diamond \langle \rangle$	Instrument ID: 4d117
	Calibration Date: 08/Jun/2018
5248	Calibration Due Date:


UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12134282JD01B

Instrument ID: 4d117

Calibration Date: 08/Jun/2018

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12134282JD01B

Instrument ID: 4d117

Calibration Date: 08/Jun/2018

Calibration Due Date:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL CCS USA

Certificate No: D835V2-4d142_Aug18

Calibration date: AL This calibration certificate documents th The measurements and the uncertaintie All calibrations have been conducted in Calibration Equipment used (M&TE crit Primary Standards ID Power meter NRP SI Power sensor NRP-Z91 SI Power sensor NRP-Z91 SI Power sensor NRP-Z91 SI Reference 20 dB Attenuator SI Type-N mismatch combination SI Reference Probe EX3DV4 SI DAE4 SI Secondary Standards ID Power meter EPM-442A SI	ugust 23, 2018 the traceability to nati ies with confidence p n the closed laborato	edure for dipole validation kits abo ional standards, which realize the physical un probability are given on the following pages ar ry facility: environment temperature (22 ± 3)°(<u>Cal Date (Certificate No.)</u> 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	hits of measurements (SI). Ind are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19
This calibration certificate documents the measurements and the uncertaintie The measurements and the uncertaintie All calibrations have been conducted in Calibration Equipment used (M&TE critter Primary Standards ID Power meter NRP SI Power sensor NRP-Z91 SI Power sensor NRP-Z91 SI Reference 20 dB Attenuator SI Type-N mismatch combination SI Reference Probe EX3DV4 SI DAE4 SI Secondary Standards ID Power meter EPM-442A SI	the traceability to natilies with confidence p in the closed laborato itical for calibration) D # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	robability are given on the following pages ar ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19
The measurements and the uncertaintie All calibrations have been conducted in Calibration Equipment used (M&TE crit Primary Standards ID Power meter NRP SI Power sensor NRP-Z91 SI Power sensor NRP-Z91 SI Reference 20 dB Attenuator SI Reference Probe EX3DV4 SI CAE4 SI Secondary Standards ID Power meter EPM-442A SI	ies with confidence p n the closed laborato itical for calibration) D # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	robability are given on the following pages ar ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19
Calibration Equipment used (M&TE critPrimary StandardsIDPower meter NRPSIPower sensor NRP-Z91SIPower sensor NRP-Z91SIReference 20 dB AttenuatorSIType-N mismatch combinationSIReference Probe EX3DV4SIDAE4SISecondary StandardsIDPower meter EPM-442ASI	itical for calibration) D # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19
Primary StandardsIDPower meter NRPSIPower sensor NRP-Z91SIPower sensor NRP-Z91SIPower sensor NRP-Z91SIReference 20 dB AttenuatorSIFype-N mismatch combinationSIReference Probe EX3DV4SIDAE4SISecondary StandardsIDPower meter EPM-442ASI	D # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19 Apr-19
Power meter NRPSIPower sensor NRP-Z91SIPower sensor NRP-Z91SIPower sensor NRP-Z91SIReference 20 dB AttenuatorSIType-N mismatch combinationSIReference Probe EX3DV4SIDAE4SISecondary StandardsIDPower meter EPM-442ASI	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19 Apr-19
Power sensor NRP-Z91SIPower sensor NRP-Z91SIPower sensor NRP-Z91SIReference 20 dB AttenuatorSIType-N mismatch combinationSIReference Probe EX3DV4SIDAE4SISecondary StandardsIDPower meter EPM-442ASI	SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19
Power sensor NRP-Z91 SI Reference 20 dB Attenuator SI Type-N mismatch combination SI Reference Probe EX3DV4 SI DAE4 SI Gecondary Standards ID Power meter EPM-442A SI	SN: 103245 SN: 5058 (20k)	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19
eference 20 dB AttenuatorSIype-N mismatch combinationSIeference Probe EX3DV4SIAE4SIecondary StandardsIDower meter EPM-442ASI	SN: 5058 (20k)	04-Apr-18 (No. 217-02673)	•
vpe-N mismatch combinationSIeference Probe EX3DV4SIAE4SIecondary StandardsIDower meter EPM-442ASI			•
eference Probe EX3DV4 SI AE4 SI econdary Standards ID ower meter EPM-442A SI	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02682)	Apr-19
AE4 SI econdary Standards ID ower meter EPM-442A SI		04-Apr-18 (No. 217-02683)	Apr-19
econdary Standards ID ower meter EPM-442A SI	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
ower meter EPM-442A SI	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
	D #	Check Date (in house)	Scheduled Check
	N: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
ower sensor HP 8481A SI	N: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A St	N: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
F generator R&S SMT-06 SI	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
etwork Analyzer Agilent E8358A SI	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
Na	lame	Function	Signature
Calibrated by: Mi	lichael Weber	Laboratory Technician	M. Neber Lelly
Approved by: Ka	atja Pokovic	Technical Manager	nn m
	aga ronovio	recrimedi Manayer	Slift
			Issued: August 24, 2018

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.48 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.10 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.68 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.36 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.5 Ω - 2.2 jΩ	
Return Loss	- 31.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9 Ω - 4.9 jΩ	
Return Loss	- 25.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction) 1.392 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

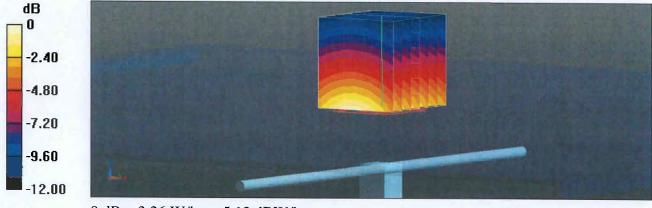
Manufactured by	SPEAG	
Manufactured on	March 27, 2012	

DASY5 Validation Report for Head TSL

Date: 22.08.2018

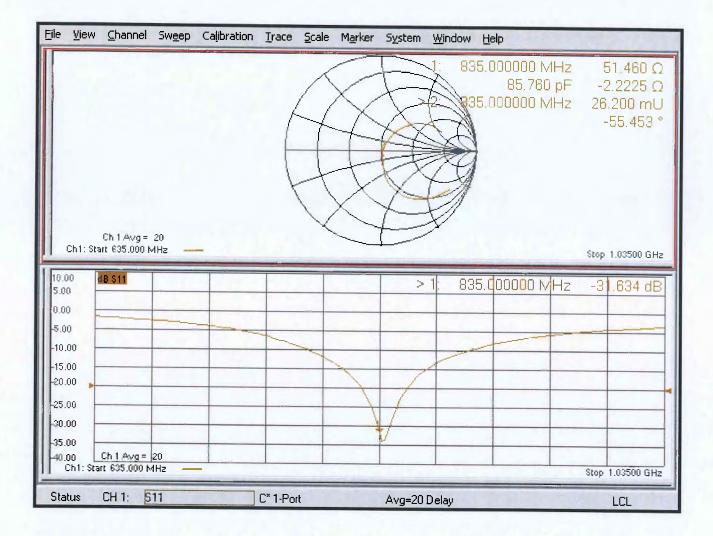
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d142


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 40.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 62.69 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.71 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.26 W/kg

0 dB = 3.26 W/kg = 5.13 dBW/kg

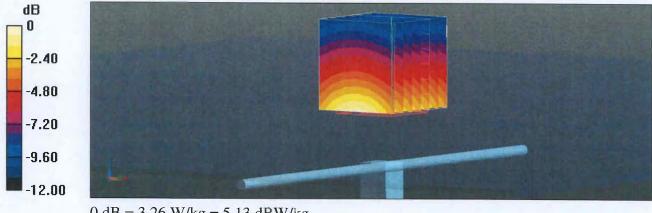
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

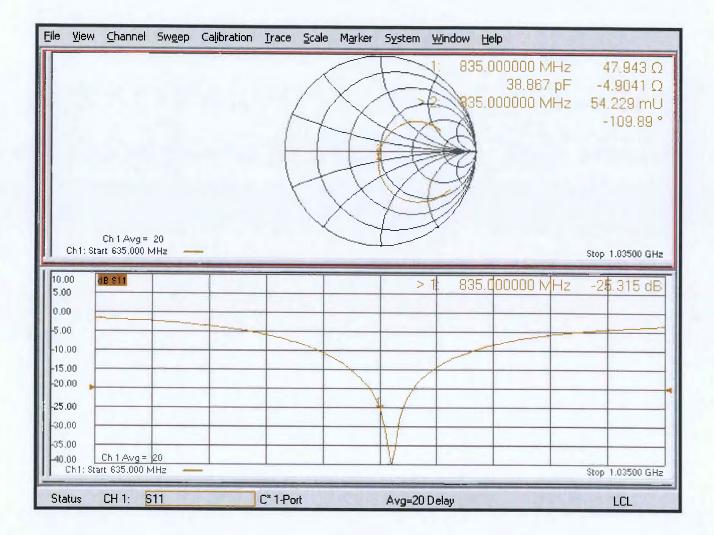
Date: 23.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d142


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 61.04 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.64 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.26 W/kg

0 dB = 3.26 W/kg = 5.13 dBW/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Evaluation Condition

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	250 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.05 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.97 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	250 mW input power	2.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.50 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	250 mW input power	1.63 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.36 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	250 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.03 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	250 mW input power	1.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.08 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	250 mW input power	1.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.73 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR (average measured)	250 mW input power	1.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.18 W/kg ± 16.9 % (k=2)

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 03/Oct/2018

18 CERTIFICATE NUMBER : 11903949JD01B

UL VS LTD UNIT 1 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

5248

APPROVED SIGNATORY

M-Masca

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	07/Sep/2018
Manufacturer:	Speag		
Type/Model Number:	D1750V2		
Serial Number:	1053		
Calibration Date:	02/Oct/2018		
Calibrated By:	Chanthu Thevarajah Senior Engineer		
Signature:	N		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER : 11903949JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. IEC 62209-2:2010: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013: IEEE** Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0178318	Data Acquisition Electronics	SPEAG	DAE4	1543	08 Mar 2018	12
PRE0178315	Probe	SPEAG	ES3DV3	3360	17 Aug 2018	12
A1236	Dipole	SPEAG	D1800V2	2d009	06 Feb 2018	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	103246	05 Feb 2018	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	14 Dec 2017	24
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947	27 Apr 2018	12
PRE0178154	Signal Generator	Rhode & Schwarz	SMB 100A	175325	09 Apr 2018	12

CERTIFICATE NUMBER: 11903949JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L		
Robot Serial Number:	F17/5ENYG1/C/01		
DASY Version:	DASY 52 (v52.8.8.1258)		
Phantom:	Flat section of SAM Twin Phantom		
Distance Dipole Centre:	10 mm (with spacer)		
Frequency:	1750 MHz		

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Circuit and Liquid	Frequency	Room	Temp	Liquid	d Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	raidificiers	Value	Value	(%)
	1750	22.2.00	00.0.00	22 100	00 400	٤r	40.10	38.34	± 5%
Head	1750	22.2 %	22.2 °C	22.4°C	22.4°C	σ	1.37	1.39	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
	SAR averaged over 1g	9.91 W/Kg	39.45 W/Kg	± 17.57%
Head	SAR averaged over 10g	5.23 W/Kg	20.82 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
	Impedance	49.35 Ω - 0.47 Ω	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	41.61	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

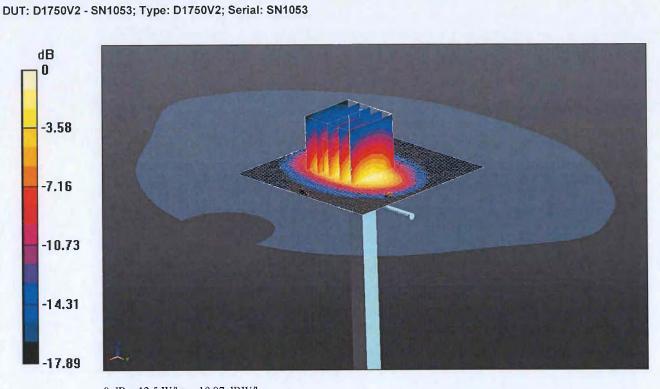
Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency (MHz)	Room Temp		Liquid Temp		Parameters	Target	Measured	Uncertainty
		Start	End	Start	End	1 arameters	Value	Value	(%)
Body	1750	22.2 °C 22.2	00.0.00	04.000	C 21.0°C	٤r	53.40	52.06	± 5%
			22.2 °C	21.0°C		σ	1.49	1.48	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	10.10 W/Kg	40.20 W/Kg	± 18.06%
	SAR averaged over 10g	5.41 W/Kg	21.53 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
	Impedance	49.38 Ω + 4.41 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	26.86	± 2 03 dB

UKAS Accredited Calibration Laboratory No. 5248

CERTIFICATE NUMBER : 11903949JD01B

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

0 dB = 12.5 W/kg = 10.97 dBW/kg

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: 1450, 1750, 2300 5% MHz HSL Medium parameters used: f = 1750 MHz; σ = 1.394 S/m; ϵ_r = 38.335; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3360; ConvF(5.27, 5.27, 5.27); Calibrated: 17/08/2018;

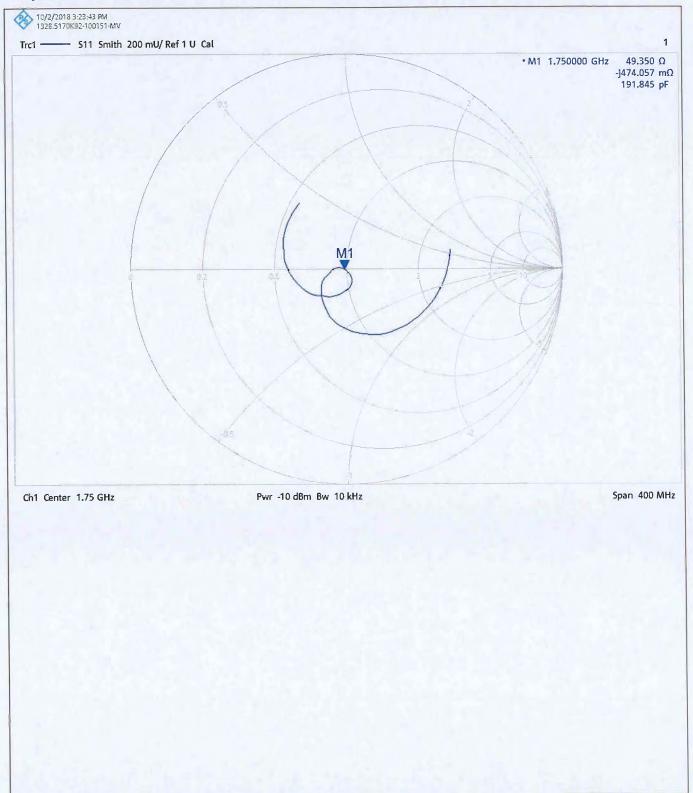
- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1543; Calibrated: 08/03/2018

- Phantom: Twin SAM A (Site 65); Type: SAM 4.0; Serial: 1031

-; SEMCAD X Version 14.6.10 (7417)

Configuration/d=10mm, Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.9 W/kg

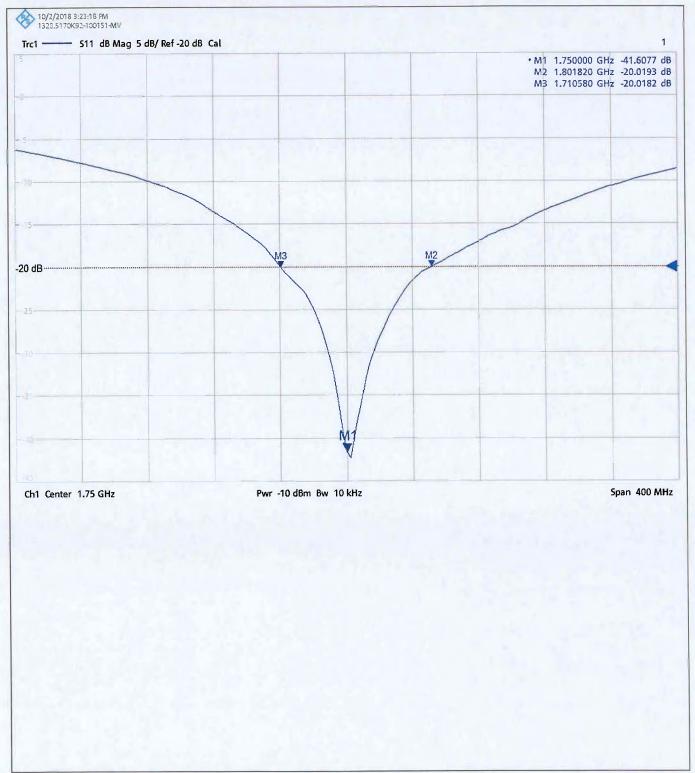

Configuration/d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 97.38 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 9.91 W/kg; SAR(10 g) = 5.23 W/kg Maximum value of SAR (measured) = 12.5 W/kg

CERTIFICATE NUMBER : 11903949JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

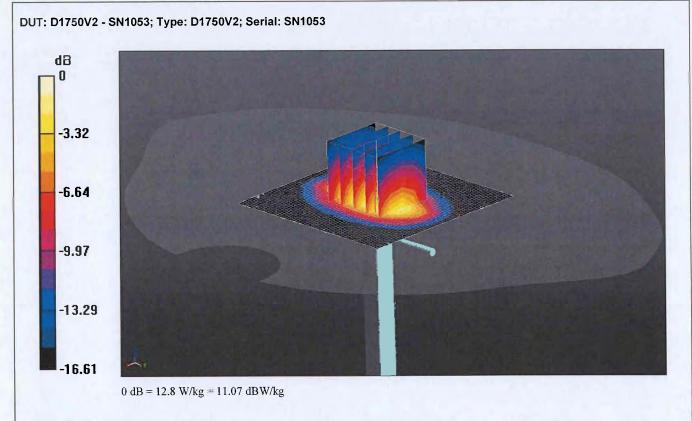


CERTIFICATE NUMBER : 11903949JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER: 11903949JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: 1450, 1750, 2300 5% MHz MSL Medium parameters used: f = 1750 MHz; σ = 1.478 S/m; ϵ_r = 52.059; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3360; ConvF(4.92, 4.92, 4.92); Calibrated: 17/08/2018;

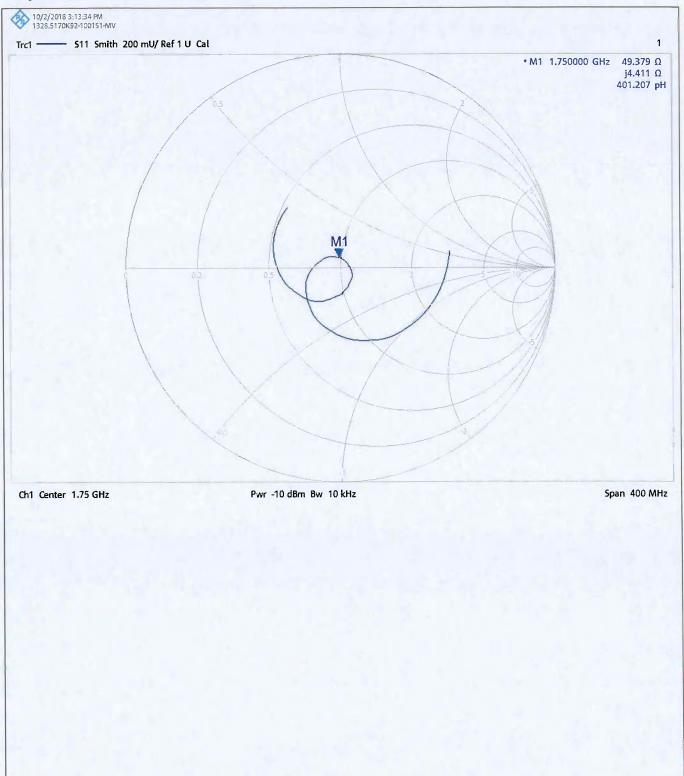
- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1543; Calibrated: 08/03/2018

- Phantom: Twin SAM B (Site 65); Type: SAM 8.0; Serial: 1945

-; SEMCAD X Version 14.6.10 (7417)

Configuration/d=10mm, Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.8 W/kg

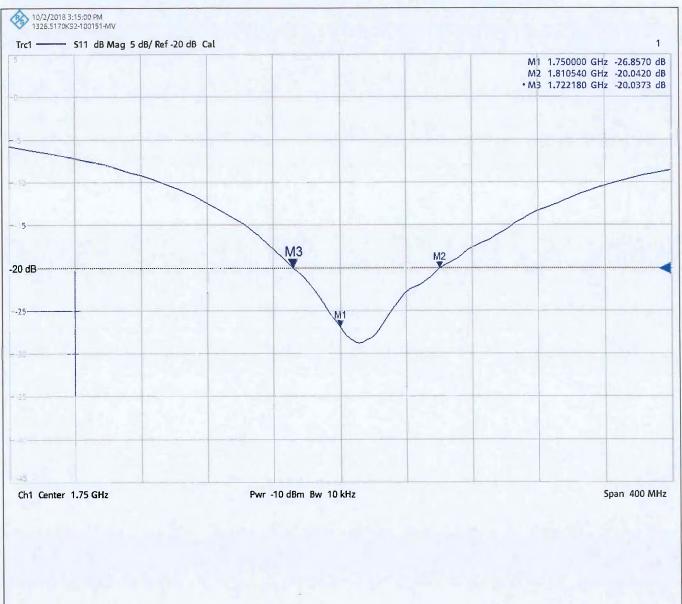

Configuration/d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 96.33 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.41 W/kg Maximum value of SAR (measured) = 12.8 W/kg

CERTIFICATE NUMBER : 11903949JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER : 11903949JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903949JD01B

Instrument ID: 1053

Calibration Date: 02/Oct/2018

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903949JD01B

Instrument ID: 1053

Calibration Date: 02/Oct/2018

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903949JD01B

Instrument ID: 1053

Calibration Date: 02/Oct/2018

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 16/Oct/2018 CERTIFICATE NUMBER : 12134285JD01D

UL VS LTD UNIT 1 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

BIC-MRA UKAS CALIBRATION 5248

APPROVED SIGNATORY

Page 1 of 10

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	08/Oct/2018
Manufacturer:	SPEAG		
Type/Model Number:	D1900V2		
Serial Number:	5d163		
Calibration Date:	16/Oct/2018		
Calibrated By:	Chanthu Thevarajah Senior Engineer		
Signature:	4		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

.....

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5248

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0178318	Data Acquisition Electronics	SPEAG	DAE4	1543	08 Mar 2018	12
PRE0178315	Probe	SPEAG	ES3DV3	3360	17 Aug 2018	12
PRE0178326	Dipole	SPEAG	D1900V2	5d227	07 Mar 2018	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	05 Feb 2018	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	14 Dec 2017	12
PRE0151877	Calibration Kit	Rhode & Schwarz	ZV-Z135	102947-Bt	27 Apr 2018	12
PRE0178154	Signal Generator	Rhode & Schwarz	SMB 100A	175325	09 Apr 2018	12

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number: F17/5ENYG1/A/01	
DASY Version:	DASY 52 (v52.8.8.1258)
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	1900 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	oom Temp Liquid Temp Par		Parameters	Target	Measured	Uncertainty	
	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
Head	Head 1900 22.0 °C 22.0 °C 2	21.1℃	21.1°C 21.5°C	٤r	40.00	39.71	± 5%		
neau	1900	22.0 C	22.0 C	21.10	21.5 C	σ	1.40	1.44	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Lland	SAR averaged over 1g	10.60 W/Kg	42.19 W/Kg	± 17.57%
Head	SAR averaged over 10g	5.46 W/Kg	21.73 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	47.246 Ω -3.29 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	27.20	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

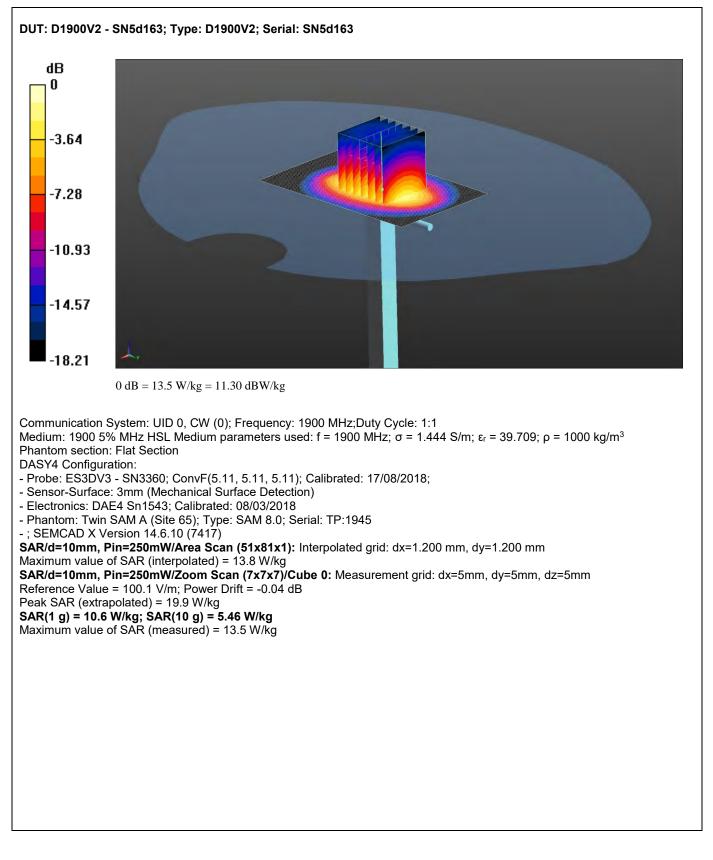
Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency			Liquid Temp		Parameters	Target	Measured	Uncertainty		
	(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)		
Body	Body 1900 20.0 °C 21.0 °C 19.9 °C	20 0 °C 2	20.0.%	20.0 °C 21.0 °C	10.0%	20 5%	20 5°C	٤r	53.30	53.10	± 5%
Бойу	1900	20.0 C	21.0 C	19.9 C	19.9°C 20.5°C	σ	1.52	1.58	± 5%		

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Pody	SAR averaged over 1g	10.70 W/Kg	42.59 W/Kg	± 18.06%
Body	SAR averaged over 10g	5.57 W/Kg	22.17 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

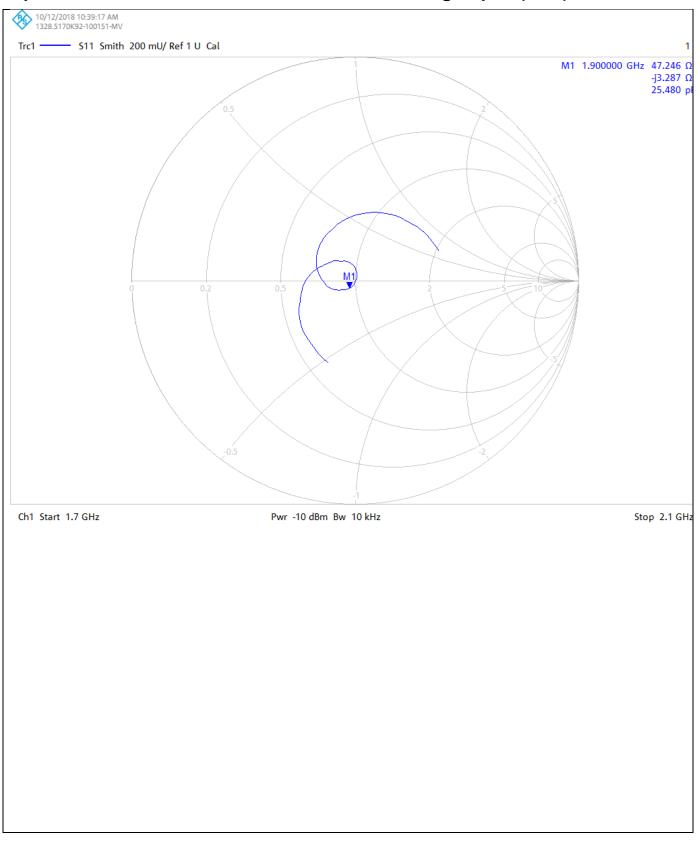

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	52.08 Ω -5.44 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	25.11	± 2.03 dB

CERTIFICATE NUMBER : 12134285JD01D

Page 5 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Head Stimulating Liquid (HSL)

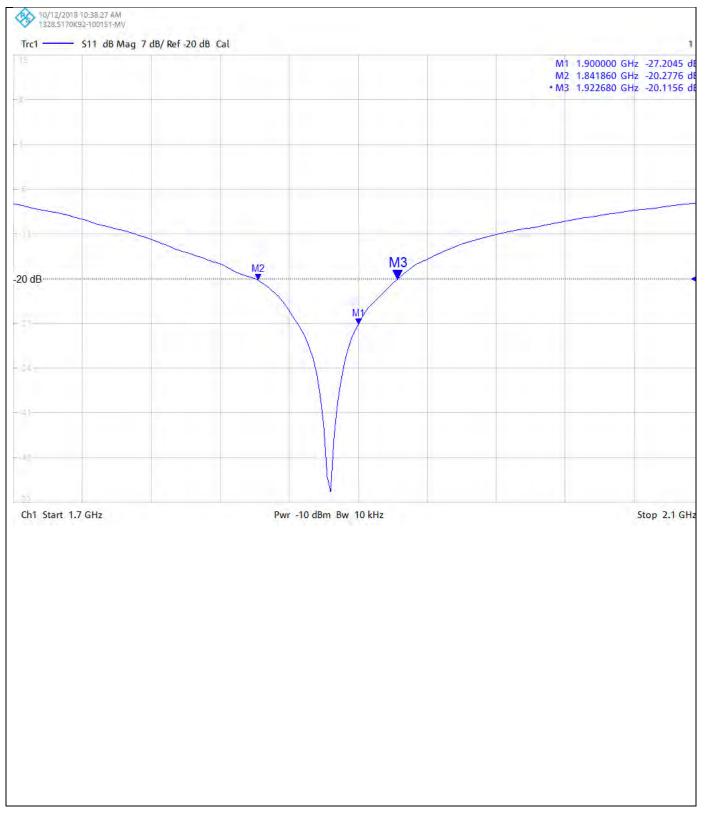


CERTIFICATE NUMBER : 12134285JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

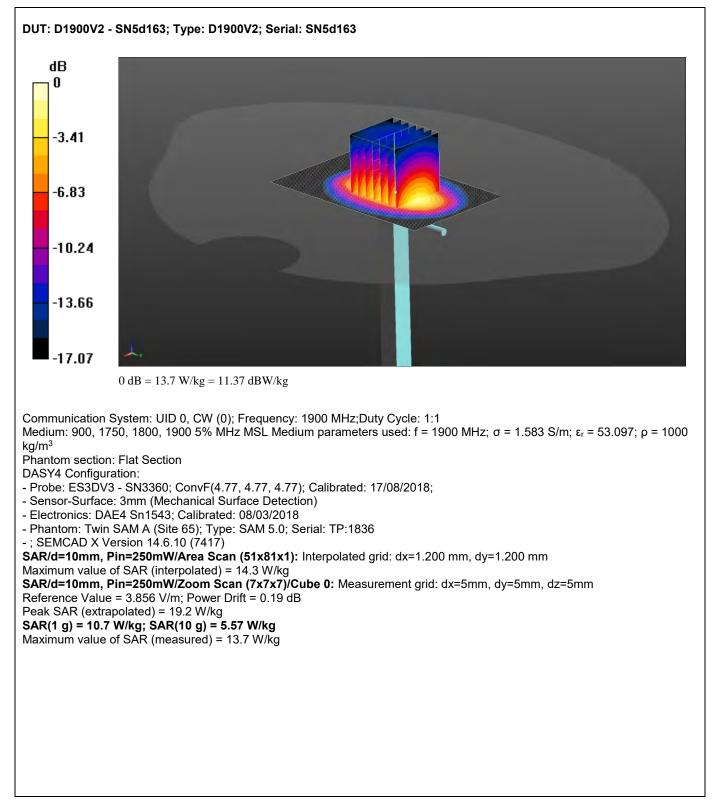


CERTIFICATE NUMBER : 12134285JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

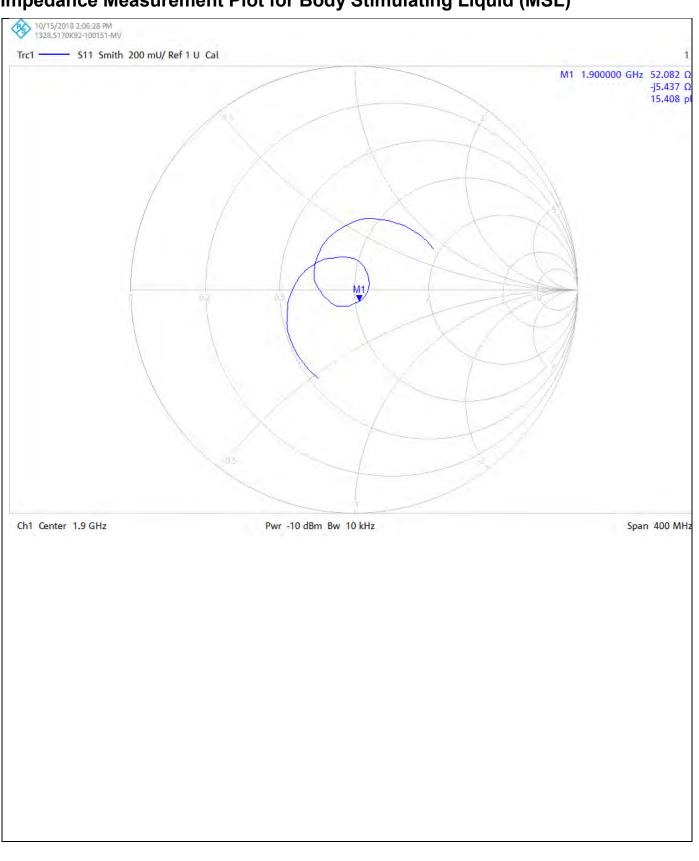
Return Loss Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 12134285JD01D

Page 8 of 10

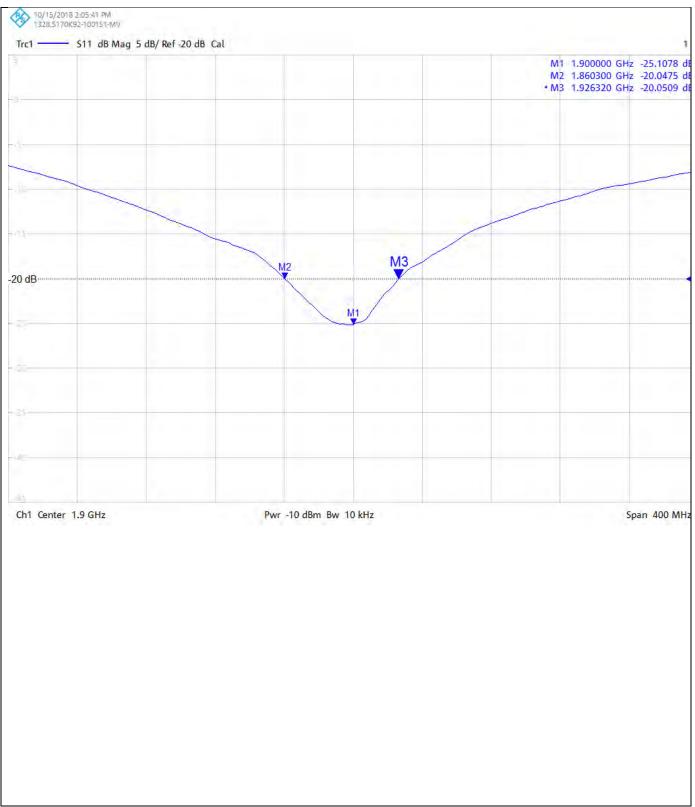
UKAS Accredited Calibration Laboratory No. 5248


DASY Validation Scan for Body Stimulating Liquid (MSL)

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER : 12134285JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

	UL VS LTD - Tel: +44 (0) 1256312000
	Certificate Number: 12134285JD01D
	Instrument ID: 5d163
	Calibration Date: 16/Oct/2018
5248	Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12134285JD01D

Instrument ID: 5d163

Calibration Date: 16/Oct/2018

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12134285JD01D

Instrument ID: 5d163

Calibration Date: 16/Oct/2018

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 26/Mar/2018

ar/2018 CERTIFICATE NUMBER : 12134276JD01C

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

M. Masec

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	15/Mar/2018
Manufacturer:	Speag		
Type/Model Number:	D2450V2		
Serial Number:	899		
Calibration Date:	16/Mar/2018		
Calibrated By:	Masood Khan Laboratory Engineer		
Signature:	Monado		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

Page 2 of 10

UKAS Accredited Calibration Laboratory No. 5248

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2110	Data Acquisition Electronics	SPEAG	DAE4	431	08 Nov 2017	12
A2077	Probe	SPEAG	EX3DV4	3814	28 Sep 2017	12
A2022	Dipole	SPEAG	D2440V2	701	05 Feb 2018	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	05 Feb 2018	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	10 Oct 2017	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	14 Dec 2017	24
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947	09 May 2017	12
M1838	Signal Generator	Rhode & Schwarz	SME06	831377/005	30 Mar 2017	12

UKAS Accredited Calibration Laboratory No. 5248

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L			
Robot Serial Number:	F14/5T5ZA1/A/01		
DASY Version:	DASY 52 (v52.8.8.1258)		
Phantom:	Flat section of SAM Twin Phantom		
Distance Dipole Centre:	10 mm (with spacer)		
Frequency:	2450 MHz		

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty			
		(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)		
	Head	2450	22 E °C	23.5 °C 23.5 °C 22.5 °C	22.5°C	35 °C 22 5°C	22.5°C 22.5°C	E%C 00 E%C	٤r	39.20	39.42	± 5%
	Head	2450 23.5 0	23.5 C			22.5°C	σ	1.80	1.83	± 5%		

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	13.00 W/Kg	51.75 W/Kg	± 17.57%
пеац	SAR averaged over 10g	6.08 W/Kg	24.20 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	46.548 Ω 1.86 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	-27.26	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

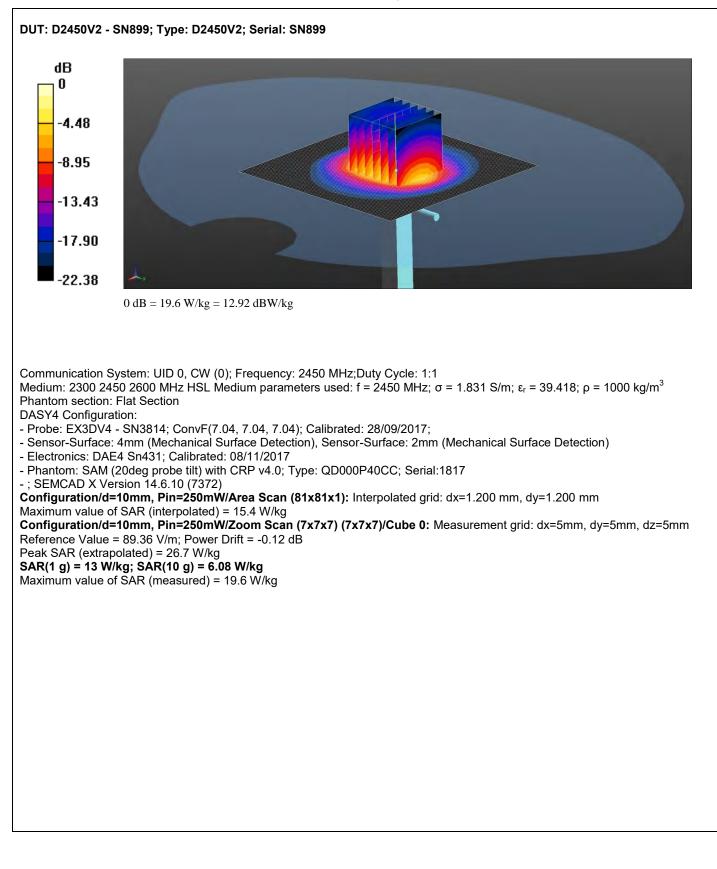
Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room Temp Liquid T		d Temp	Parameters	Target	Measured	Uncertainty	
	(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)
Pody	2450 22.0 °C	<u></u>	22.0 °C 23.0°C	23.0°C	23.0°C	٤r	52.70	51.71	± 5%
Body		22.0 °C 22.0 °C		23.0% 23.0%	σ	1.95	2.00	± 5%	

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Pody	SAR averaged over 1g	12.70 W/Kg	50.55 W/Kg	± 18.06%
Body	SAR averaged over 10g	5.83 W/Kg	23.20 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

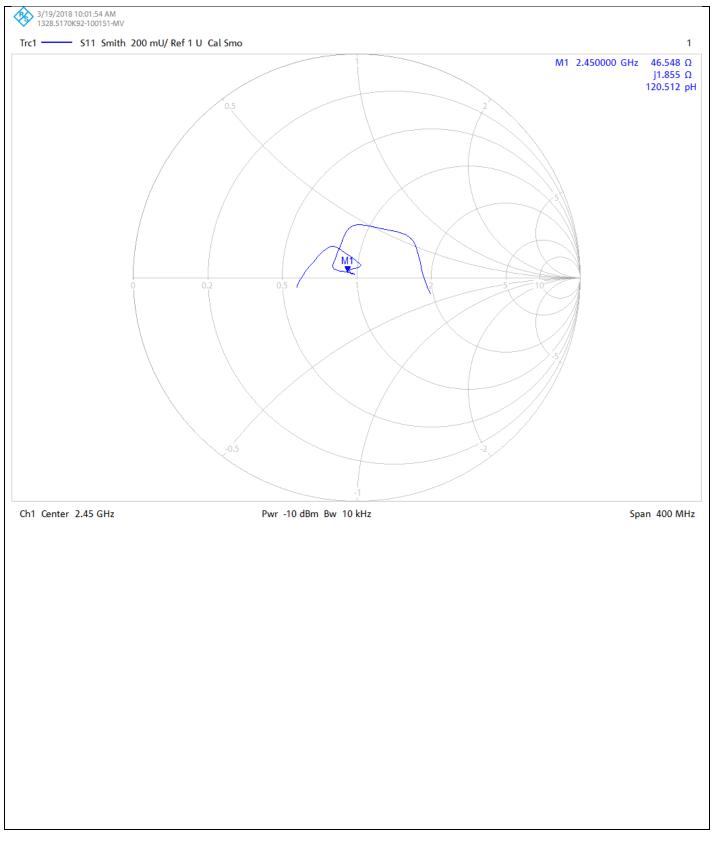

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	44.85 Ω -2.77 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	-25.93	± 2.03 dB

CERTIFICATE NUMBER : 12134276JD01C

Page 5 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 12134276JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

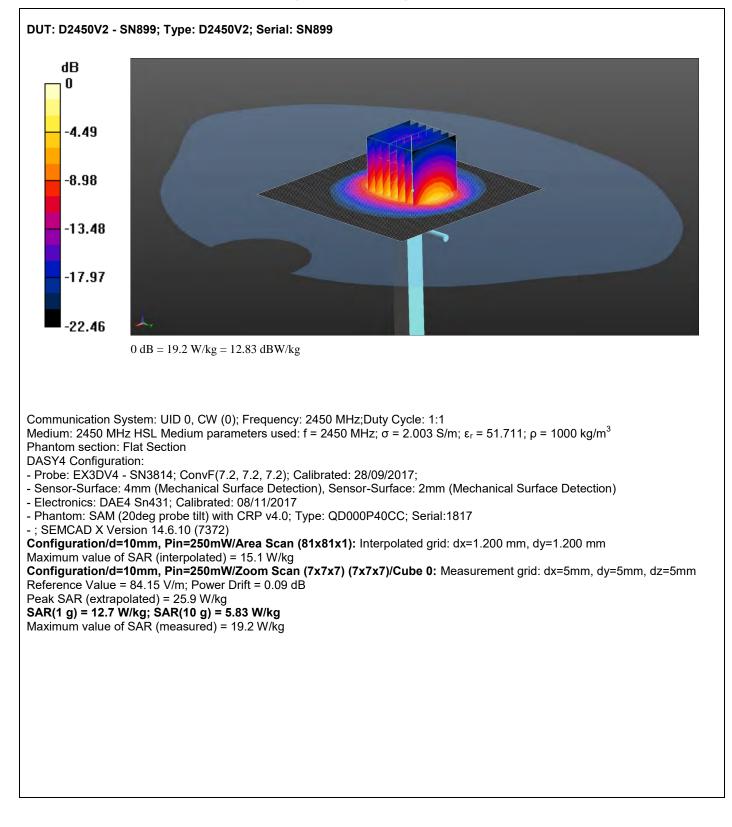
Impedance Measurement Plot for Head Stimulating Liquid (HSL)

CERTIFICATE NUMBER : 12134276JD01C

UKAS Accredited Calibration Laboratory No. 5248

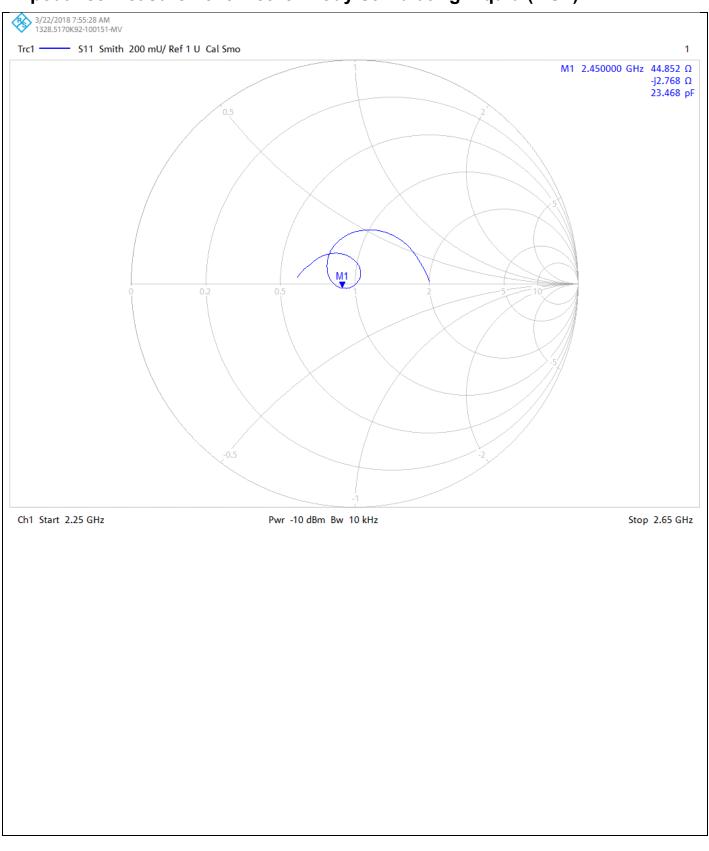
Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)



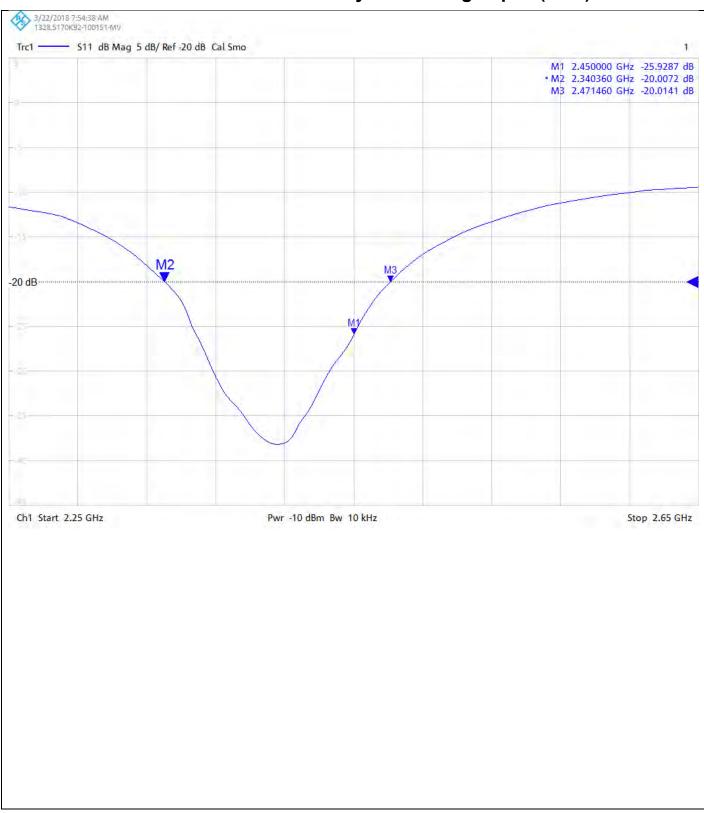
CERTIFICATE NUMBER : 12134276JD01C

Page 8 of 10


UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Body Stimulating Liquid (MSL)

UKAS Accredited Calibration Laboratory No. 5248


Impedance Measurement Plot for Body Stimulating Liquid (MSL)

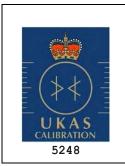
CERTIFICATE NUMBER : 12134276JD01C

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

	UL VS LTD - Tel: +44 (0) 1256312000
	Certificate Number: 12134276JD01C
	Instrument ID: 899
	Calibration Date: 16/Mar/2018
5248	Calibration Due Date:


UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12134276JD01C

Instrument ID: 899

Calibration Date: 16/Mar/2018

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12134276JD01C

Instrument ID: 899

Calibration Date: 16/Mar/2018

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 28/Mar/2018

ar/2018 CERTIFICATE NUMBER : 12134276JD01D

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

BC-MRA UKAS CALIBRATION 5248

Page 1 of 10

APPROVED SIGNATORY

M. Masca

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	15/Mar/2018
Manufacturer:	Speag		
Type/Model Number:	D2600V2		
Serial Number:	1036		
Calibration Date:	16/Mar/2018		
Calibrated By:	Masood Khan Laboratory Engineer		
Signature:			

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

Mante

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

Page 2 of 10

UKAS Accredited Calibration Laboratory No. 5248

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2110	Data Acquisition Electronics	SPEAG	DAE4	431	08 Nov 2017	12
A2077	Probe	SPEAG	EX3DV4	3814	28 Sep 2017	12
A2767	Dipole	SPEAG	D2600V2	1109	05 Feb 2018	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	05 Feb 2018	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	10 Oct 2017	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	14 Dec 2017	24
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947	09 May 2017	12
M1838	Signal Generator	Rhode & Schwarz	SME06	831377/005	30 Mar 2017	12

UKAS Accredited Calibration Laboratory No. 5248

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L			
Robot Serial Number:	F14/5T5ZA1/A/01		
DASY Version:	DASY 52 (v52.8.8.1258)		
Phantom:	Flat section of SAM Twin Phantom		
Distance Dipole Centre:	10 mm (with spacer)		
Frequency:	2600 MHz		

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room Temp Liquid Temp		d Temp	Parameters	Target	Measured	Uncertainty	
	(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)
Head	2600	23.5 °C	23.5 °C 23.5 °C 22.5°C 22.5°C	22.5°C	٤r	39.00	39.14	± 5%	
	2600 23.5 °C	3.5 L 23.5 L		22.3 6 22.3 6	σ	1.96	1.95	± 5%	

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	13.70 W/Kg	54.54 W/Kg	± 17.57%
	SAR averaged over 10g	6.17 W/Kg	24.56 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	52.04 Ω -6.56 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	-23.74	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

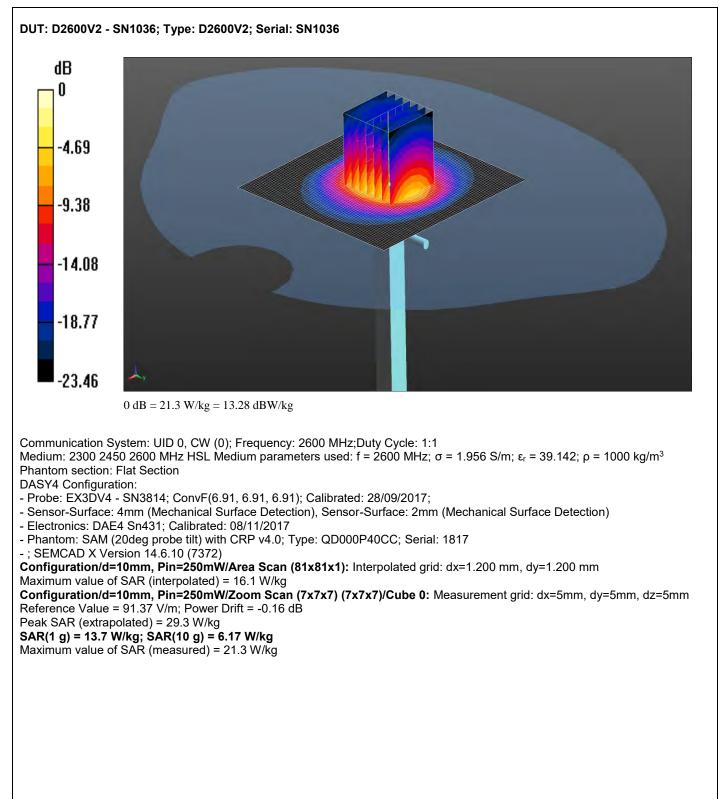
Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency (MHz)	Room Temp		Liquid Temp		Parameters	Target	Measured	Uncertainty
		Start	End	Start	End	1 alameters	Value	Value	(%)
Body	2600	18.1 °C 18.1	10 1 %	18.1 °C 19.0°C	19.0°C	٤r	52.50	53.41	± 5%
			10.1 C			σ	2.16	2.24	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	14.10 W/Kg	56.13 W/Kg	± 18.06%
	SAR averaged over 10g	6.29 W/Kg	25.04 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

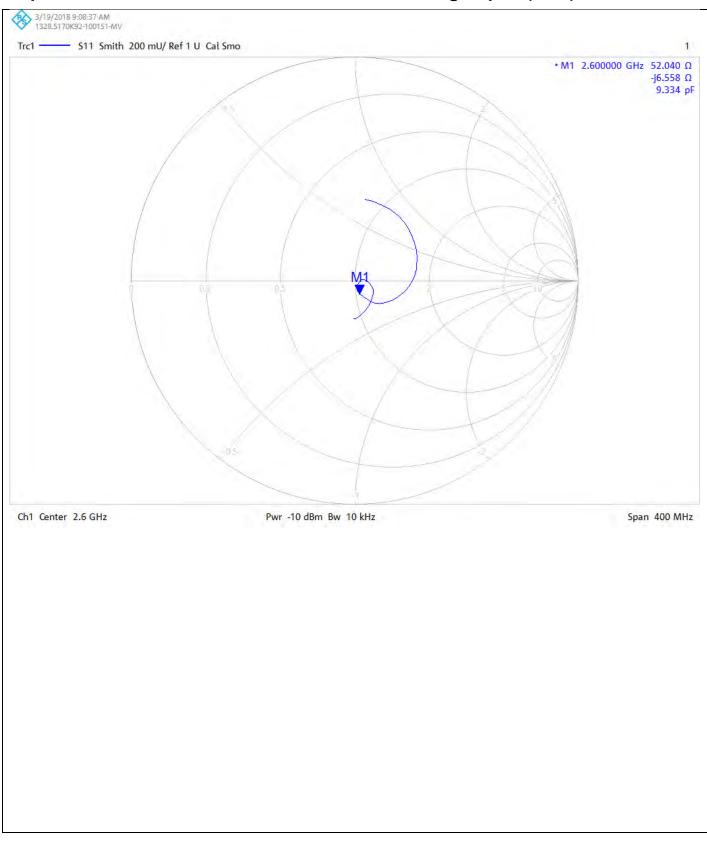

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	48.29 Ω -6.55 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	-25.48	± 2.03 dB

CERTIFICATE NUMBER : 12134276JD01D

Page 5 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Head Stimulating Liquid (HSL)

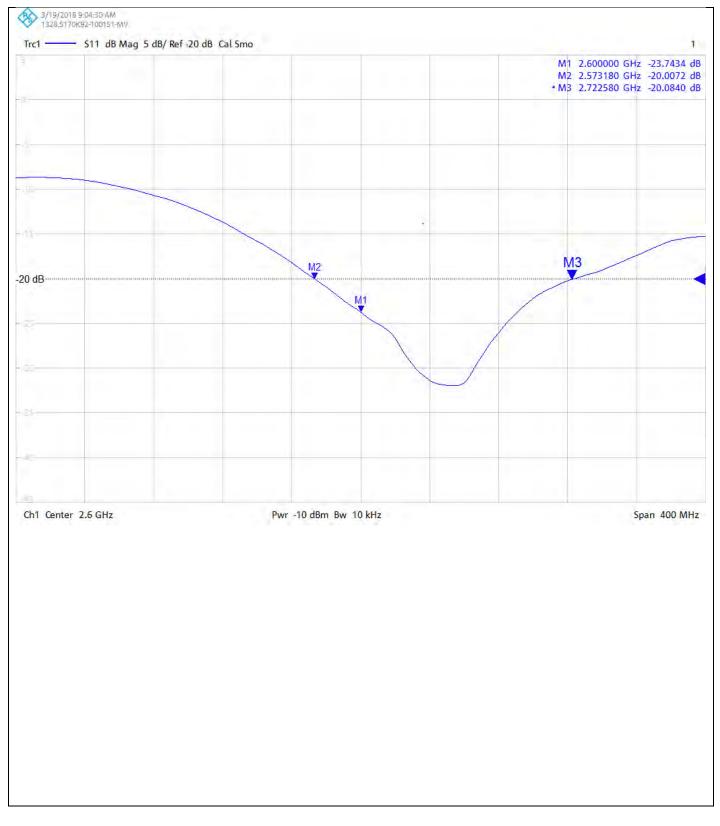


CERTIFICATE NUMBER : 12134276JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

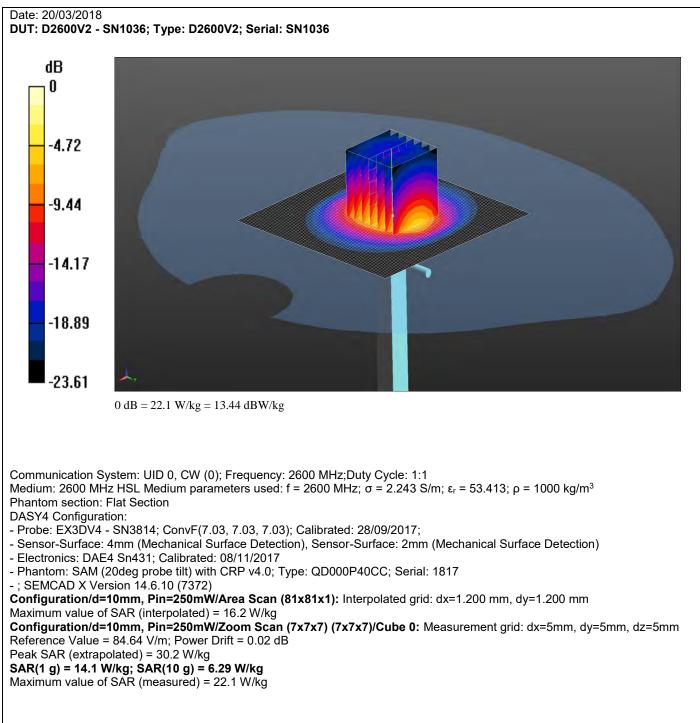


CERTIFICATE NUMBER : 12134276JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

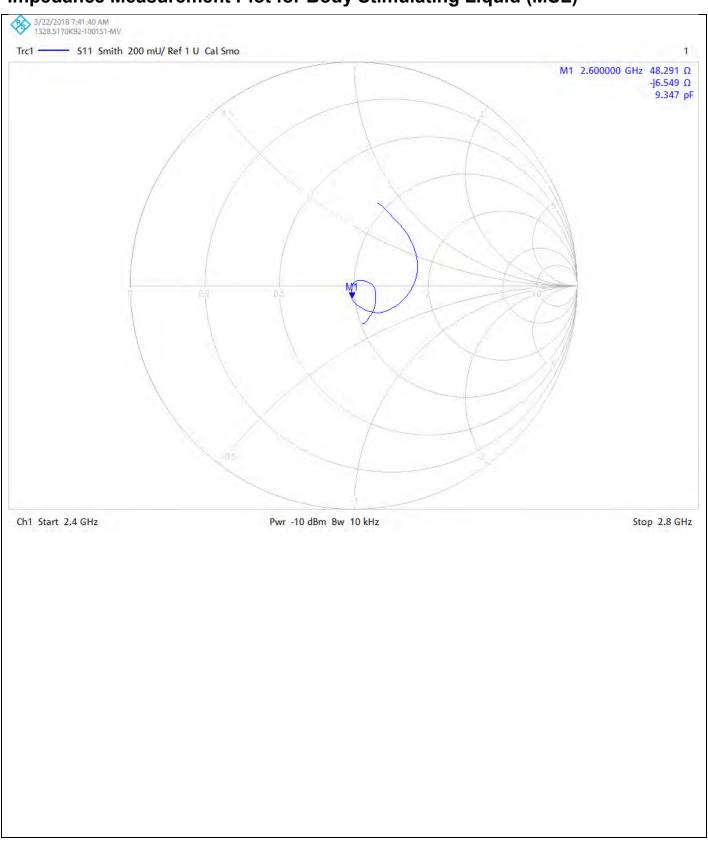
Return Loss Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 12134276JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10


DASY Validation Scan for Body Stimulating Liquid (MSL)

CERTIFICATE OF CALIBRATION ISSUED BY UL VS LTD

UKAS Accredited Calibration Laboratory No. 5248

Impedance Measurement Plot for Body Stimulating Liquid (MSL)

CERTIFICATE OF CALIBRATION ISSUED BY UL VS LTD

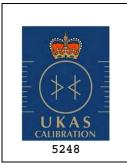
CERTIFICATE NUMBER : 12134276JD01D

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

	UL VS LTD - Tel: +44 (0) 1256312000
	Certificate Number: 12134276JD01D
	Instrument ID: 1036
	Calibration Date: 16/Mar/2018
5248	Calibration Due Date:


UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12134276JD01D

Instrument ID: 1036

Calibration Date: 16/Mar/2018

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12134276JD01D

Instrument ID: 1036

Calibration Date: 16/Mar/2018

Calibration Due Date:

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL CCS USA

Certificate No: D5GHzV2-1003_Mar18

Dbject	D5GHzV2 - SN:1003		
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits betw	ween 3-6 GHz
alibration date:	March 13, 2018		
he measurements and the uncer	tainties with confidence p ted in the closed laborator	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
Primary Standards	D #	Cal Date (Certificate No.)	Scheduled Calibration
	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
ower meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	
ower meter NRP ower sensor NRP-Z91		04-Apr-17 (No. 217-02521)	Apr-18 Apr-18 Apr-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator	SN: 104778 SN: 103244	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 Reference 20 dB Attenuator (ype-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Becondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Becondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. 217-02529) 30-Dec-17 (No. DAE4-601_Oct17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02222) 07-Oct-16 (No. 217-02223) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S

С

S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.58 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84. <mark>5 W/kg ± 19.9 % (k=2)</mark>

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.10 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.84 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.97 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.83 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.18 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	51.5 Ω - 8.3 jΩ
Return Loss	- 21.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.0 Ω - 1.4 jΩ
Return Loss	- 24.8 dB

Antenna Parameters with Head TSL at 5750 MHz

impedance, transformed to feed point	56.4 Ω - 4.4 jΩ
Return Loss	- 22.7 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	47.6 Ω - 6.6 jΩ	
Return Loss	- 22.9 dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.3 Ω - 1.2 jΩ
Return Loss	- 24.3 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	56.5 Ω - 4.7 jΩ
Return Loss	- 22.4 dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.203 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

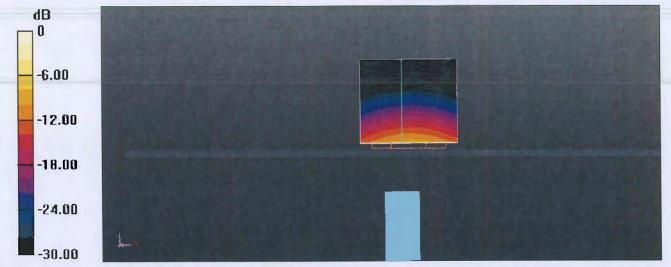
Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 08, 2003

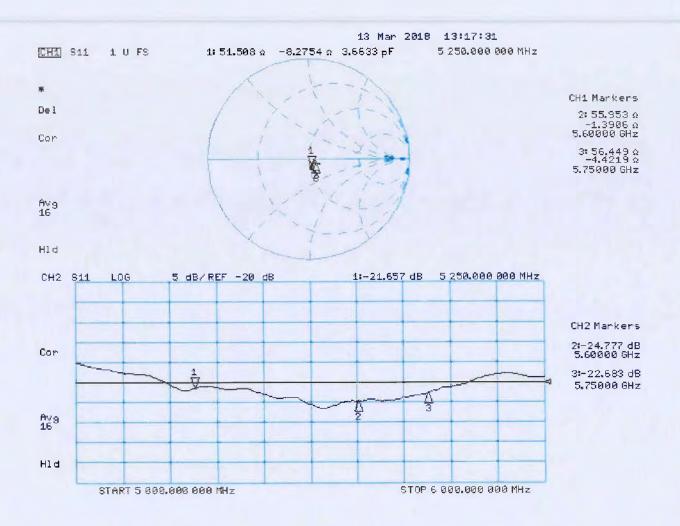
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1003

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.58$ S/m; $\epsilon_r = 36.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.94$ S/m; $\epsilon_r = 35.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.1$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Mcasurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017, ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.49 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.01 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.01 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 18.4 W/kg

0 dB = 18.4 W/kg = 12.65 dBW/kg

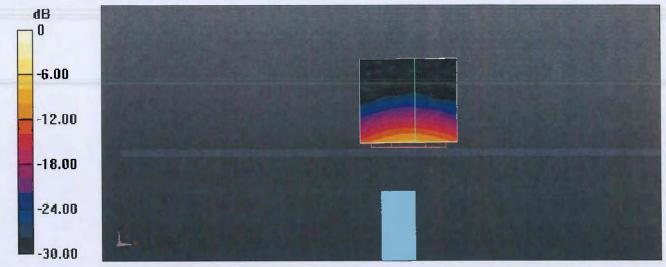
DASY5 Validation Report for Body TSL

Date: 12.03.2018

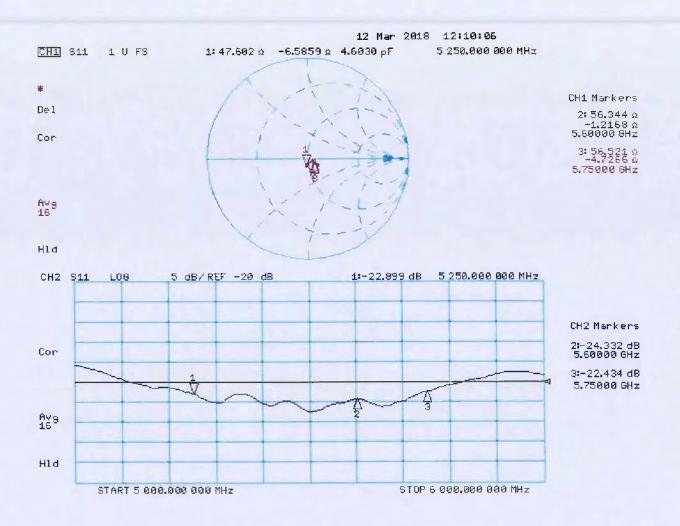
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1003

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 5.49 S/m; ϵ_r = 47.1; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.97 S/m; ϵ_r = 46.4; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 6.18 S/m; ϵ_r = 46.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017, ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.11 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.07 W/kg Maximum value of SAR (measured) = 17.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.20 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.19 W/kg Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.72 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 7.44 W/kg; SAR(10 g) = 2.08 W/kg Maximum value of SAR (measured) = 18.0 W/kg

0 dB = 18.0 W/kg = 12.55 dBW/kg

