

# **CERTIFICATION TEST REPORT**

**Report Number.**: 12678284-E8V2

**Applicant:** Samsung Electronics Co., Ltd.

129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16677, Korea

Model: SM-A305GN/DS and SM-A305GN

FCC ID : A3LSMA305GN

**EUT Description**: GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, ANT+

and NFC

Test Standard(s): FCC 47 CFR PART 15 SUBPART C

**Date Of Issue:** 

February 21, 2019

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A.

> TEL: (510) 771-1000 FAX: (510) 661-0888



REPORT NO: 12678284-E8V2 FCC ID: A3LSMA305GN

# **Revision History**

| Rev. | Issue<br>Date | Revisions                    | Revised By |
|------|---------------|------------------------------|------------|
| V1   | 2/18/2019     | Initial Issue                |            |
| V2   | 2/21/2019     | Updated Section 5.5, 6, 8.2, |            |

# **TABLE OF CONTENTS**

| 1.  | A                    | TTESTATION OF TEST RESULTS                          | 4      |
|-----|----------------------|-----------------------------------------------------|--------|
| 2.  | TI                   | EST METHODOLOGY                                     | 5      |
| 3.  | F                    | ACILITIES AND ACCREDITATION                         | 5      |
| 4   | 4.1.<br>4.2.<br>4.3. | SAMPLE CALCULATION  MEASUREMENT UNCERTAINTY         | 6<br>6 |
|     |                      | QUIPMENT UNDER TEST                                 |        |
| 5   | 5.1.<br>5.2.         |                                                     | 7      |
|     | 5.3.<br>5.4.         |                                                     |        |
| -   | 5. <i>4.</i><br>5.5. |                                                     |        |
|     | 5.6.                 | DESCRIPTION OF TEST SETUP                           |        |
| 6.  | TI                   | EST AND MEASUREMENT EQUIPMENT                       | 11     |
| 7.  | 0                    | CCUPIED BANDWIDTH                                   | 12     |
| 7   | 7.1.                 | <i>Type A</i>                                       | 13     |
|     | 7.2.<br>7.3.         | <i>5</i> ,                                          |        |
| 8.  | R                    | ADIATED EMISSION TEST RESULTS                       | 18     |
|     | 3.1.                 |                                                     |        |
| ε   | 3. <i>2.</i><br>8.   | FUNDAMENTAL AND SPURIOUS EMISSIONS (0.15 - 30 MHz), |        |
| 3   |                      | TX SPURIOUS EMISSION 30 TO 1000 MHz                 |        |
| 9.  | F                    | REQUENCY STABILITY                                  | 25     |
| g   | 9.1.                 | <i>Type A</i>                                       | 26     |
| 10. |                      | AC MAINS LINE CONDUCTED EMISSIONS                   | 27     |
| 1   | 0.1<br>10            | 1. Type A<br>0.1.1. NORMAL OPERATION, 106Kbps       |        |
| 11. |                      | SETUP PHOTOS                                        | 30     |

#### 1. ATTESTATION OF TEST RESULTS

**COMPANY NAME:** Samsung Electronics Co., Ltd.

129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16677, Korea

**EUT DESCRIPTION:** GSM/WCDMA/LTE phone with BT, DTS/UNII a/b/g/n/ac, ANT+

and NFC

MODEL: SM-A305GN/DS and SM-A305GN

SERIAL NUMBER: Radiated: R38KC0LPPB

**DATE TESTED:** January 23 – February 4, 2019

#### **APPLICABLE STANDARDS**

STANDARD TEST RESULTS

FCC PART 15 SUBPART C Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For

UL Verification Services Inc. By:

Reviewed By:

Dan Coronia Operations Leader Consumer Technology Division

UL Verification Services Inc.

Kiya Kedida Senior Project Engineer

Consumer Technology Division UL Verification Services Inc.

Page 4 of 31

#### 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, and FCC CFR 47 Part 15.

#### 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

| 47173 Benicia Street     | 47266 Benicia Street     | 47658 Kato Rd            |
|--------------------------|--------------------------|--------------------------|
| Chamber A (ISED:2324B-1) | Chamber D (ISED:22541-1) | Chamber I (ISED:2324A-5) |
| Chamber B (ISED:2324B-2) | Chamber E (ISED:22541-2) | Chamber J (ISED:2324A-6) |
| Chamber C (ISED:2324B-3) | Chamber F (ISED:22541-3) | Chamber K (ISED:2324A-1) |
|                          | Chamber G (ISED:22541-4) | Chamber L (ISED:2324A-3) |
|                          | Chamber H (ISED:22541-5) |                          |

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

#### 4. CALIBRATION AND UNCERTAINTY

#### 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

#### 4.2. SAMPLE CALCULATION

#### **RADIATED EMISSIONS**

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

#### **MAINS CONDUCTED EMISSIONS**

Where relevant, the following sample calculation is provided:

Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss.

36.5 dBuV + 0 dB + 10.1 dB + 0 dB = 46.6 dBuV

#### 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                                           | UNCERTAINTY |
|-----------------------------------------------------|-------------|
| Worst Case Conducted Disturbance, 9KHz to 0.15 MHz  | 3.84 dB     |
| Worst Case Conducted Disturbance, 0.15 to 30 MHz    | 3.65 dB     |
| Worst Case Radiated Disturbance, 9KHz to 30 MHz     | 3.15 dB     |
| Worst Case Radiated Disturbance, 30 to 1000 MHz     | 5.36 dB     |
| Worst Case Radiated Disturbance, 1000 to 18000 MHz  | 4.32 dB     |
| Worst Case Radiated Disturbance, 18000 to 26000 MHz | 4.45 dB     |
| Worst Case Radiated Disturbance, 26000 to 40000 MHz | 5.24 dB     |

Uncertainty figures are valid to a confidence level of 95%.

# 12678284-E8V2 DATE: 2/21/2019

5. EQUIPMENT UNDER TEST

## 5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA/LTE phone with BT,DTS/UNII a/b/g/n/ac, ANT+ and NFC.

#### 5.2. MAXIMUM FIELD STRENGTH

The testing was performed at 3 meters. The transmitter maximum E-field at 30 meter distance was 18.09 dBuV/m, which was converted from the 3 meter data.

#### 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes the loop antenna.

#### 5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was A305GN.001.

#### 5.5. WORST-CASE CONFIGURATION AND MODE

The fundamental of the EUT was investigated under three orthogonal orientations X (Flatbed), Y (Landscape), and Z (Portrait). The Y (Landscape) orientation was determined to be the worst-case orientation.

Although these tests were performed other than open filed site, adequate comparison measurements were confirmed against 30 m open filed site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788

**NOTE:** The EUT pre-scanned in three NFC type A, B & F. The worst type is A, and data rate of 106kbps was recorded to this report.

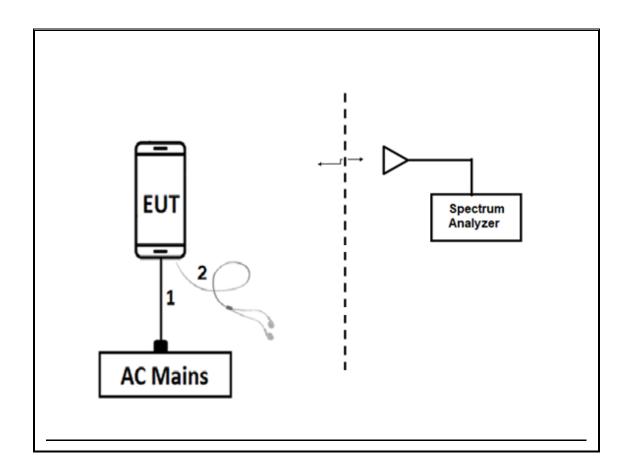
#### 5.6. DESCRIPTION OF TEST SETUP

#### **SUPPORT EQUIPMENT**

| Support Equipment List                           |         |            |               |        |  |
|--------------------------------------------------|---------|------------|---------------|--------|--|
| Description Manufacturer Model Serial Number FCC |         |            |               | FCC ID |  |
| AC Adapter                                       | Samsung | EP-TA50EWE | DW3J719AS/A-E | N/A    |  |
| Earphone                                         | Samsung | N/A        | N/A           | N/A    |  |

#### **I/O CABLES (CONDUCTED TEST)**

|             | I/O Cable List |                      |                   |             |                     |                 |  |
|-------------|----------------|----------------------|-------------------|-------------|---------------------|-----------------|--|
| Cable<br>No | Port           | # of identical ports | Connector<br>Type | Cable Type  | Cable<br>Length (m) | Remarks         |  |
| 1           | Antenna        | 1                    | RF                | Shielded    | 0.2                 | To PSA          |  |
| 2           | USB            | 1                    | USB               | Un-shielded | 1                   | EUT to AC Mains |  |


#### I/O CABLES (RADIATED AND CONDUCTED EMISSIONS)

|             | I/O Cable List |                      |                   |             |                     |         |  |
|-------------|----------------|----------------------|-------------------|-------------|---------------------|---------|--|
| Cable<br>No | Port           | # of identical ports | Connector<br>Type | Cable Type  | Cable<br>Length (m) | Remarks |  |
| 1           | USB            | 1                    | USB               | Shielded    | 1                   | N/A     |  |
| 2           | earphone       | 1                    | 3.5mm             | Un-shielded | 1                   | N/A     |  |

#### **TEST SETUP**

The EUT is a stand alone. Test software exercised the radio card.

#### RADIATED AND AC LINE CONDUCTED EMISSIONS SETUP DIAGRAM



#### **TEST SETUP**

For radiated tests: EUT has support equipment. The test software exercises the radio.

# **6. TEST AND MEASUREMENT EQUIPMENT**

The following test and measurement equipment was utilized for the tests documented in this report:

| TEST EQUIPMENT LIST                            |                                 |                    |            |            |            |
|------------------------------------------------|---------------------------------|--------------------|------------|------------|------------|
| Description                                    | Manufacturer                    | Model              | ID Num     | Cal Due    | Last Cal   |
| Antenna, Broadband Hybrid,<br>30MHz to 2000MHz | Sunol Sciences Corp.            | JB3                | T407       | 05/10/2019 | 05/10/2018 |
| Amplifier, 9kHz to 1GHz, 32dB                  | Sonoma Instrument               | 310                | 170649     | 11/01/2019 | 11/01/2018 |
| EMI Reciever                                   | Rohde & Schwarz                 | ESR                | T1436      | 02/21/2019 | 02/21/2018 |
| L.I.S.N.                                       | FCC INC.                        | FCC LISN<br>50/250 | T1310      | 06/15/2019 | 06/15/2018 |
| L.I.S.N.                                       | FCC INC.                        | FCC LISN<br>50/250 | T24        | 03/06/2019 | 03/06/2018 |
| Antenna, Active Loop 9kHz-<br>30MHz            | Com-Power Corp.                 | AL-130R            | PRE0165308 | 1/08/2020  | 1/08/2019  |
| Temp Chamber                                   | Thermotron Industries           | SE-600-10-<br>10   | T80        | 05/01/2019 | 11/01/2018 |
| Spectrum Analyzer, PXA, 3Hz to 44GHz           | Agilent (Keysight) Technologies | N9030A             | T339       | 09/11/2019 | 09/11/2018 |
| * Spectrum Analyzer, PXA, 3Hz to 44GHz         | Agilent (Keysight) Technologies | N9030A             | T1454      | 01/08/2019 | 01/08/2018 |

| Test Software List    |         |        |                       |  |  |
|-----------------------|---------|--------|-----------------------|--|--|
| Description           | Version |        |                       |  |  |
| Radiated Software     | UL      | UL EMC | Ver 9.5, Dec 01, 2016 |  |  |
| Antenna Port Software | UL      | UL RF  | Ver 9.0, Oct 31, 2018 |  |  |

Note: \* indicates automation software version used in the compliance certification testing

# 7. OCCUPIED BANDWIDTH

#### **LIMITS**

None; for reporting purposes only.

#### **TEST PROCEDURE**

The transmitter output is connected to the spectrum analyzer. The RBW is set to 10kHz. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Note: Because the measured signal is CW or CW-like adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW

#### **RESULTS**

#### 99% and 20dB BW

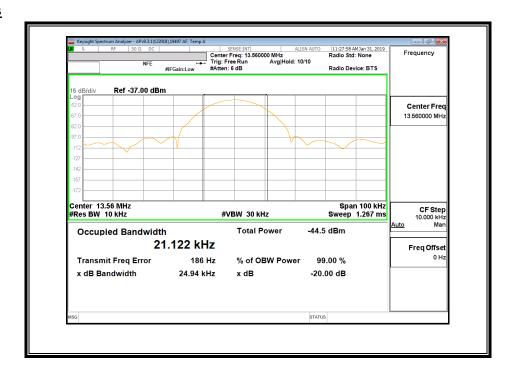
Type A (CE Mode)

| Mode<br>Kbps | Frequency<br>(MHz) | 99% Bandwidth<br>(KHz) | 20dB Bandwidth<br>(KHz) |
|--------------|--------------------|------------------------|-------------------------|
| 424          | 13.56              | 21.122                 | 24.93                   |
| 212          | 13.56              | 21.128                 | 24.95                   |
| 106          | 13.56              | 21.122                 | 24.94                   |

#### **TYPE B**

| • |              |                    |                        |                         |  |  |  |  |
|---|--------------|--------------------|------------------------|-------------------------|--|--|--|--|
|   | Mode<br>Kbps | Frequency<br>(MHz) | 99% Bandwidth<br>(KHz) | 20dB Bandwidth<br>(KHz) |  |  |  |  |
|   | 424          | 13.56              | 21.125                 | 24.94                   |  |  |  |  |
|   | 212          | 13.56              | 21.112                 | 24.87                   |  |  |  |  |
|   | 106          | 13.56              | 21.125                 | 24.94                   |  |  |  |  |

#### TYPE F


| Mode<br>Kbps | Frequency<br>(MHz) | 99% Bandwidth<br>(KHz) | 20dB Bandwidth<br>(KHz) |
|--------------|--------------------|------------------------|-------------------------|
| 424          | 13.56              | 21.109                 | 24.85                   |
| 212          | 13.56              | 21.133                 | 24.93                   |

# 7.1. Type A

#### 424Kbps







# 7.2. Type B

#### 424Kbps







# 7.3. Type F

#### 424Kbps





#### 8. RADIATED EMISSION TEST RESULTS

#### 8.1. LIMITS AND PROCEDURE

#### **LIMIT**

§15.225

- (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.
- (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz and shall not exceed the general radiated emission limits in § 15.209 as follows: §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Limits fo             | Limits for radiated disturbance of an intentional radiator |                          |  |  |  |  |  |  |  |  |  |
|-----------------------|------------------------------------------------------------|--------------------------|--|--|--|--|--|--|--|--|--|
| Frequency range (MHz) | Limits (µV/m)                                              | Measurement Distance (m) |  |  |  |  |  |  |  |  |  |
| 0.009 - 0.490         | 2400 / F (kHz)                                             | 300                      |  |  |  |  |  |  |  |  |  |
| 0.490 – 1.705         | 24000 / F (kHz)                                            | 30                       |  |  |  |  |  |  |  |  |  |
| 1.705 – 30.0          | 30                                                         | 30                       |  |  |  |  |  |  |  |  |  |
| 30 – 88               | 100**                                                      | 3                        |  |  |  |  |  |  |  |  |  |
| 88 - 216              | 150**                                                      | 3                        |  |  |  |  |  |  |  |  |  |
| 216 – 960             | 200**                                                      | 3                        |  |  |  |  |  |  |  |  |  |
| Above 960             | 500                                                        | 3                        |  |  |  |  |  |  |  |  |  |

<sup>\*\*</sup> Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g. §§ 15.231 and 15.241. §15.209 (b) In the emission table above, the tighter limit applies at the band edges.

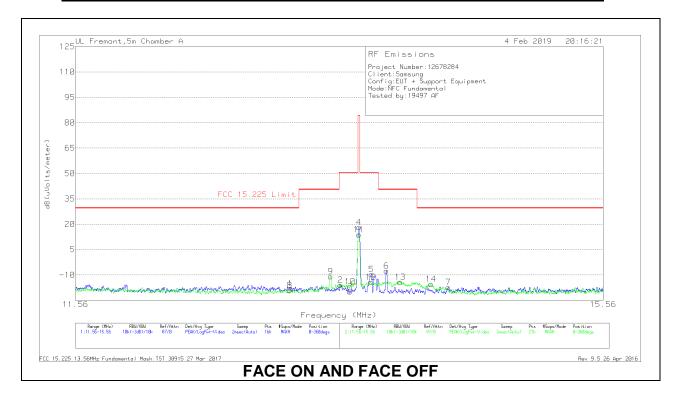
Formula for converting the filed strength from uV/m to dBuV/m is: Limit  $(dBuV/m) = 20 \log \lim (uV/m)$  REPORT NO: 12678284-E8V2 FCC ID: A3LSMA305GN

In addition:

§15.209 (d) The emission limits shown the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.

§15.209 (d) The provisions in §§ 15.225, measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

#### **TEST PROCEDURE**


ANSI C63.10, 2013

The EUT is an intentional radiator that incorporates a digital device, the highest fundamental frequency generated or used in the device is 13.56 MHz; therefore, the frequency range was investigated from 0.15 MHz to the 10<sup>th</sup> harmonic of the highest fundamental frequency, or 1000 MHz, whichever is greater.

#### **RESULTS**

# 8.2. FUNDAMENTAL AND SPURIOUS EMISSIONS (0.15 - 30 MHz), 8.2.1. Type A (CE Mode)

# FUNDAMENTAL EMISSION MASK - TYPE A, 106Kbps (11.56 - 15.56 MHz)



NOTE: All data rate Field Strength was investigated and Type A, 106k found to have the highest Field Strength results and represents as the worst case data rate.

| Marker | Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | Loop Antenna<br>(dB/m) | Cables (dB) | Dist Corr 30m | Corrected<br>Reading<br>dB(uVolts/me | FCC 15.225<br>Limit | PK Margin<br>(dB) | Azimuth<br>(Degs) |
|--------|--------------------|----------------------------|-----|------------------------|-------------|---------------|--------------------------------------|---------------------|-------------------|-------------------|
|        |                    |                            |     |                        |             |               | ter)                                 |                     |                   |                   |
| 8      | 13.044             | 10.19                      | Pk  | 10.3                   | .5          | -40           | -19.01                               | 29.54               | -48.55            | 0-360             |
| 1      | 13.04888           | 11.14                      | Pk  | 10.3                   | .5          | -40           | -18.06                               | 29.54               | -47.6             | 0-360             |
| 9      | 13.34562           | 18.32                      | Pk  | 10.3                   | .5          | -40           | -10.88                               | 40.51               | -51.39            | 0-360             |
| 2      | 13.41913           | 13.31                      | Pk  | 10.3                   | .5          | -40           | -15.89                               | 50.5                | -66.39            | 0-360             |
| 3      | 13.49225           | 9.44                       | Pk  | 10.3                   | .5          | -40           | -19.76                               | 50.5                | -70.26            | 0-360             |
| 10     | 13.49355           | 12.3                       | Pk  | 10.3                   | .5          | -40           | -16.9                                | 50.5                | -67.4             | 0-360             |
| 11     | 13.55963           | 43.21                      | Pk  | 10.2                   | .5          | -40           | 13.91                                | 84                  | -70.09            | 0-360             |
| 4      | 13.55988           | 47.39                      | Pk  | 10.2                   | .5          | -40           | 18.09                                | 84                  | -65.91            | 0-360             |
| 12     | 13.65191           | 15                         | Pk  | 10.2                   | .5          | -40           | -14.3                                | 50.5                | -64.8             | 0-360             |
| 5      | 13.65563           | 19.72                      | Pk  | 10.2                   | .5          | -40           | -9.58                                | 50.5                | -60.08            | 0-360             |
| 6      | 13.77213           | 21.78                      | Pk  | 10.2                   | .5          | -40           | -7.52                                | 40.51               | -48.03            | 0-360             |
| 13     | 13.88071           | 15.03                      | Pk  | 10.2                   | .5          | -40           | -14.27                               | 40.51               | -54.78            | 0-360             |
| 14     | 14.12232           | 13.87                      | Pk  | 10.2                   | .5          | -40           | -15.43                               | 29.54               | -44.97            | 0-360             |
| 7      | 14.25988           | 11.99                      | Pk  | 10.2                   | .5          | -40           | -17.31                               | 29.54               | -46.85            | 0-360             |

<sup>\* -</sup> Indicates fundamental frequency

Pk - Peak detector

DATE: 2/21/2019

## SPURIOUS EMISSIONS - TYPE A, 106kbps (0.09 - 30MHz)



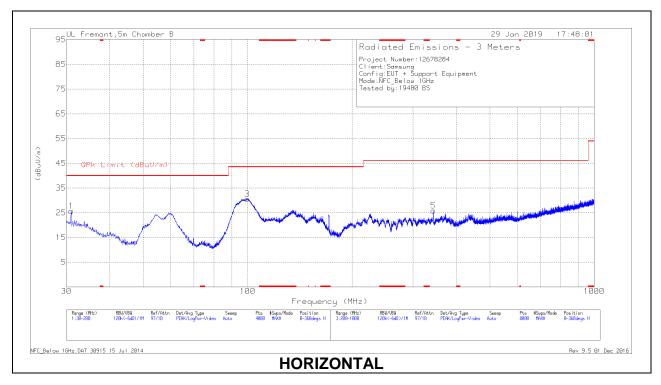
**FACE ON AND FACE OFF** 

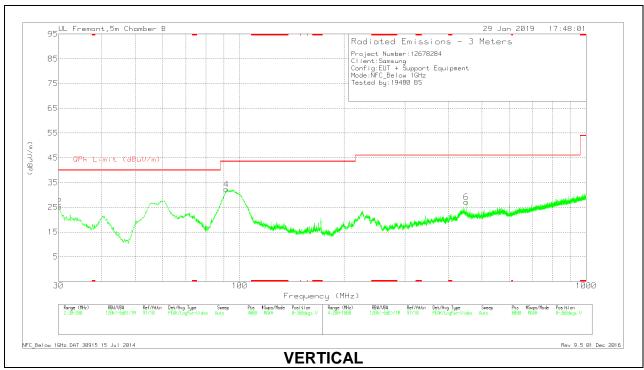
NOTE: KDB 937606 OFS and Chamber Correlation Justification

- Based on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the
- OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

#### Trace Markers

| Marker | Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | Loop<br>Antenna<br>(dB/m) | Cables<br>(dB) | Dist Corr<br>300m | Corrected<br>Reading<br>(dBuVolts) | Peak Limit<br>(dBuV/m) | Margin<br>(dB) | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Azimuth<br>(Degs) |
|--------|--------------------|----------------------------|-----|---------------------------|----------------|-------------------|------------------------------------|------------------------|----------------|-----------------------|----------------|-------------------|
| 5      | .04727             | 35.34                      | Pk  | 12.8                      | 0              | -80               | -31.86                             | 54.09                  | -85.95         | 34.09                 | -65.95         | 0-360             |
| 1      | .04777             | 35.62                      | Pk  | 12.8                      | 0              | -80               | -31.58                             | 54                     | -85.58         | 34                    | -65.58         | 0-360             |
| 2      | .22586             | 43.94                      | Pk  | 11.1                      | .1             | -80               | -24.86                             | 40.54                  | -65.4          | 20.54                 | -45.4          | 0-360             |
| 6      | .23362             | 44.53                      | Pk  | 11.1                      | .1             | -80               | -24.27                             | 40.25                  | -64.52         | 20.25                 | -44.52         | 0-360             |


#### Pk - Peak detector


| Marker | Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | Loop Antenna<br>(dB/m) | Cables<br>(dB) | Dist Corr 30m | Corrected<br>Reading<br>(dBuVolts) | QP Limit<br>(dBuV/m) | Margin<br>(dB) | Azimuth<br>(Degs) |
|--------|--------------------|----------------------------|-----|------------------------|----------------|---------------|------------------------------------|----------------------|----------------|-------------------|
| 7      | .73643             | 33.18                      | Pk  | 10.7                   | .1             | -40           | 3.98                               | 30.27                | -26.29         | 0-360             |
| 3      | 1.00786            | 30.5                       | Pk  | 10.7                   | .1             | -40           | 1.3                                | 27.55                | -26.25         | 0-360             |
| 8      | 8.76433            | 28.14                      | Pk  | 10.6                   | .4             | -40           | 86                                 | 29.5                 | -30.36         | 0-360             |
| 4      | 8.89428            | 28.09                      | Pk  | 10.6                   | .4             | -40           | 91                                 | 29.5                 | -30.41         | 0-360             |

Pk - Peak detector

#### 8.3. TX SPURIOUS EMISSION 30 TO 1000 MHz

#### 8.3.1. Type A





#### **Trace Markers**

| Marker | Frequency | Meter   | Det | AF T407 (dB/m) | Amp/Cbl (dB) | Corrected | QPk Limit (dBuV/m) | Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|-----|----------------|--------------|-----------|--------------------|--------|---------|--------|----------|
|        | (MHz)     | Reading |     |                |              | Reading   |                    | (dB)   | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |     |                |              | (dBuV/m)  |                    |        |         |        |          |
| 2      | 30.17     | 31.78   | Pk  | 24.9           | -31.4        | 25.28     | 40                 | -14.72 | 0-360   | 100    | V        |
| 1      | 30.9778   | 33.08   | Pk  | 24.1           | -31.4        | 25.78     | 40                 | -14.22 | 0-360   | 200    | Н        |
| 4      | 91.7452   | 50.66   | Pk  | 12             | -30.7        | 31.96     | 43.52              | -11.56 | 2       | 108    | V        |
|        | 91.7452   | 47.47   | Qp  | 12             | -30.7        | 28.77     | 43.52              | -14.75 | 2       | 108    | V        |
| 3      | 99.7606   | 47.1    | Pk  | 14.2           | -30.7        | 30.6      | 43.52              | -12.92 | 0-360   | 300    | Н        |
| 5      | 343.3186  | 37.1    | Pk  | 18.1           | -29.4        | 25.8      | 46.02              | -20.22 | 0-360   | 101    | Н        |
| 6      | 450.9326  | 35.36   | Pk  | 20.9           | -29.1        | 27.16     | 46.02              | -18.86 | 0-360   | 101    | V        |

<sup>\* -</sup> indicates frequency in CFR47 Pt 15 Restricted Band

Pk - Peak detector

Qp - Quasi-Peak detector

#### 9. FREQUENCY STABILITY

#### **LIMIT**

§15.225 (e) The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency, over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

#### **TEST PROCEDURE**

ANSI C63.10-2013 Clause 6.8

#### **RESULTS**

No non-compliance noted.

#### 9.1. Type A

|        |        |            | Refere | nce Frequency | : EUT Channe   | el 13.56 MHz @ | 20°C       |            |        |       |
|--------|--------|------------|--------|---------------|----------------|----------------|------------|------------|--------|-------|
|        |        |            | Limit: | kHz           |                |                |            |            |        |       |
| Power  | Envir. |            |        |               |                |                |            |            |        |       |
| Supply | Temp   |            |        | Frequen       | cy Deviation I | leasureed with | n Time Ela | apse       |        |       |
|        |        | Startup    | Delta  | @ 2 mins      | Delta          | @ 5 mins       | Delta      | @ 10 mins  | Delta  | Limit |
| (Vdc)  | (°C)   | (MHz)      | (ppm)  | (MHz)         | (ppm)          | (MHz)          | (ppm)      | (MHz)      | (ppm)  | (ppm) |
| 3.80   | 50     | 13.5600068 | -0.161 | 13.5600067    | -0.152         | 13.5600065     | -0.139     | 13.5600061 | -0.107 | ± 100 |
| 3.80   | 40     | 13.5600066 | -0.147 | 13.5600067    | -0.153         | 13.5600067     | -0.153     | 13.5600066 | -0.144 | ± 100 |
| 3.80   | 30     | 13.5600047 | -0.004 | 13.5600048    | -0.011         | 13.5600045     | 0.006      | 13.5600047 | -0.007 | ± 100 |
| 3.80   | 20     | 13.5600046 | 0.000  | 13.5600036    | 0.073          | 13.5600035     | 0.080      | 13.5600037 | 0.067  | ± 100 |
| 3.80   | 10     | 13.5600050 | -0.028 | 13.5600052    | -0.043         | 13.5600053     | -0.051     | 13.5600053 | -0.052 | ± 100 |
| 3.80   | 0      | 13.5600071 | -0.186 | 13.5600071    | -0.185         | 13.5600075     | -0.214     | 13.5600075 | -0.215 | ± 100 |
| 3.80   | -10    | 13.5600092 | -0.336 | 13.5600093    | -0.343         | 13.5600091     | -0.333     | 13.5600095 | -0.363 | ± 100 |
| 3.23   | 20     | 13.5600046 | 0.001  | 13.5600039    | 0.052          | 13.5600038     | 0.060      | 13.5600038 | 0.063  | ± 100 |
| 4.37   | 20     | 13.5600047 | -0.006 | 13.5600037    | 0.068          | 13.5600037     | 0.066      | 13.5600037 | 0.065  | ± 100 |

#### 10. AC MAINS LINE CONDUCTED EMISSIONS

#### **LIMITS**

§15.207

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a  $50\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

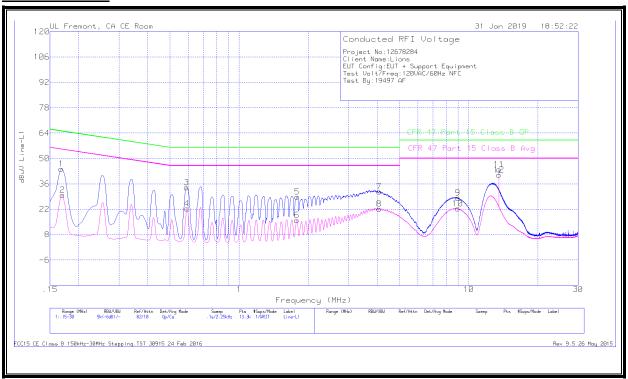
| Frequency range | Limit      | s (dBµV) |  |  |
|-----------------|------------|----------|--|--|
| (MHz)           | Quasi-peak | Average  |  |  |
| 0.15 to 0.50    | 66 to 56   | 56 to 46 |  |  |
| 0.50 to 5       | 56         | 46       |  |  |
| 5 to 30         | 60         | 50       |  |  |

#### Notes:

- 1. The lower limit shall apply at the transition frequencies
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

#### **TEST PROCEDURE**

ANSI C63.10:2013


#### **RESULTS**

No non-compliance noted:

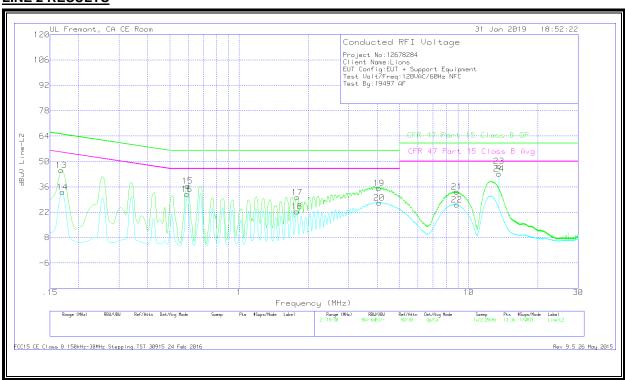
# 10.1. Type A

# 10.1.1. NORMAL OPERATION, 106Kbps

#### **LINE 1 RESULTS**



#### **Worst Emission**


| Rang   | e 1: Line-L        | 1 .15 - 30                 | MHz |         |                       |                 |                              |                                    |                      |                                     |                             |
|--------|--------------------|----------------------------|-----|---------|-----------------------|-----------------|------------------------------|------------------------------------|----------------------|-------------------------------------|-----------------------------|
| Marker | Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | LISN L1 | LC<br>Cables<br>C1&C3 | Limiter<br>(dB) | Corrected<br>Reading<br>dBuV | CFR 47<br>Part 15<br>Class B<br>QP | QP<br>Margin<br>(dB) | CFR 47<br>Part 15<br>Class B<br>Avg | Av(CISPR)<br>Margin<br>(dB) |
| 1      | .168               | 34.04                      | Qp  | .1      | 0                     | 10.1            | 44.24                        | 65.06                              | -20.82               | -                                   | -                           |
| 2      | .17025             | 19.67                      | Ca  | 0       | 0                     | 10.1            | 29.77                        | ı                                  | -                    | 54.95                               | -25.18                      |
| 3      | .591               | 23.92                      | Qp  | 0       | 0                     | 10.1            | 34.02                        | 56                                 | -21.98               | -                                   | -                           |
| 4      | .59325             | 12.34                      | Ca  | 0       | 0                     | 10.1            | 22.44                        | ı                                  | -                    | 46                                  | -23.56                      |
| 5      | 1.7925             | 18.63                      | Qp  | 0       | .1                    | 10.1            | 28.83                        | 56                                 | -27.17               | -                                   | -                           |
| 6      | 1.7835             | 5.8                        | Ca  | 0       | .1                    | 10.1            | 16                           | -                                  | -                    | 46                                  | -30                         |
| 7      | 4.07625            | 21.49                      | Qp  | 0       | .1                    | 10.1            | 31.69                        | 56                                 | -24.31               | -                                   | -                           |
| 8      | 4.07625            | 11.96                      | Ca  | 0       | .1                    | 10.1            | 22.16                        | ı                                  | -                    | 46                                  | -23.84                      |
| 9      | 8.961              | 17.91                      | Qp  | 0       | .2                    | 10.2            | 28.31                        | 60                                 | -31.69               | -                                   | -                           |
| 10     | 8.9565             | 11.91                      | Ca  | 0       | .2                    | 10.2            | 22.31                        | 1                                  | -                    | 50                                  | -27.69                      |
| 11     | 13.56              | 33.37                      | Qp  | .1      | .2                    | 10.2            | 43.87                        | 60                                 | -16.13               | -                                   | -                           |
| 12     | 13.56              | 30.54                      | Ca  | .1      | .2                    | 10.2            | 41.04                        | ı                                  | -                    | 50                                  | -8.96                       |

Qp - Quasi-Peak detector

Ca - CISPR average detection

Note: Markers 11 and 12 are the 13.56MHz NFC Fundamental

#### **LINE 2 RESULTS**



#### **Worst Emission**

| Rang   | je 2: Line-Li      | 2 .15 - 30                 | MHz |         |                       |                 |                              |                                    |                      |                                     |                             |
|--------|--------------------|----------------------------|-----|---------|-----------------------|-----------------|------------------------------|------------------------------------|----------------------|-------------------------------------|-----------------------------|
| Marker | Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | LISN L2 | LC<br>Cables<br>C2&C3 | Limiter<br>(dB) | Corrected<br>Reading<br>dBuV | CFR 47<br>Part 15<br>Class B<br>QP | QP<br>Margin<br>(dB) | CFR 47<br>Part 15<br>Class B<br>Avg | Av(CISPR)<br>Margin<br>(dB) |
| 13     | .168               | 34.97                      | Qp  | .1      | 0                     | 10.1            | 45.17                        | 65.06                              | -19.89               | -                                   | -                           |
| 14     | .17025             | 22.98                      | Ca  | 0       | 0                     | 10.1            | 33.08                        | ı                                  | -                    | 54.95                               | -21.87                      |
| 15     | .5955              | 26.39                      | Qp  | 0       | 0                     | 10.1            | 36.49                        | 56                                 | -19.51               | -                                   | -                           |
| 16     | .59325             | 21.85                      | Ca  | 0       | 0                     | 10.1            | 31.95                        | ı                                  | -                    | 46                                  | -14.05                      |
| 17     | 1.79025            | 19.96                      | Qp  | 0       | .1                    | 10.1            | 30.16                        | 56                                 | -25.84               | -                                   | -                           |
| 18     | 1.7835             | 12.19                      | Ca  | 0       | .1                    | 10.1            | 22.39                        | -                                  | -                    | 46                                  | -23.61                      |
| 19     | 4.06838            | 25.04                      | Qp  | 0       | .1                    | 10.1            | 35.24                        | 56                                 | -20.76               | -                                   | -                           |
| 20     | 4.07625            | 16.99                      | Ca  | 0       | .1                    | 10.1            | 27.19                        | 1                                  | -                    | 46                                  | -18.81                      |
| 21     | 8.87325            | 22.88                      | Qp  | 0       | .2                    | 10.2            | 33.28                        | 60                                 | -26.72               | -                                   | -                           |
| 22     | 8.87438            | 15.73                      | Ca  | 0       | .2                    | 10.2            | 26.13                        | -                                  | -                    | 50                                  | -23.87                      |
| 23     | 13.56              | 36.82                      | Qp  | .1      | .2                    | 10.2            | 47.32                        | 60                                 | -12.68               | -                                   | -                           |
| 24     | 13.56              | 32.73                      | Ca  | .1      | .2                    | 10.2            | 43.23                        | -                                  | -                    | 50                                  | -6.77                       |

Qp - Quasi-Peak detector

Ca - CISPR average detection

Note: Markers 23 and 24 are the 13.56MHz NFC Fundamental