

### SAR EVALUATION REPORT

# **IEEE Std 1528-2013**

For

GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac and ANT+

FCC ID: A3LSMA305F Model Name: SM-A305F/DS and SM-A305F

> Report Number: 12678282-S1V3 Issue Date: 2/20/2019

> > Prepared for

Samsung Electronics Co. Ltd 129 Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16677, Korea

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888



NVLAP LAB CODE 200065-0

# **Revision History**

| Rev. | Date      | Revisions                             | Revised By      |
|------|-----------|---------------------------------------|-----------------|
| V1   | 2/1/2019  | Initial Issue Final                   |                 |
| V2   | 2/8/2019  | Updated in accordance to TCB Feedback | Miguel Llamas   |
| V3   | 2/20/2019 | Section 9.6: Updated Ch 102 Tune-up   | Coltyce Sanders |
|      |           |                                       |                 |

# **Table of Contents**

| 1.   | Attestation of Test Results                         | 5  |
|------|-----------------------------------------------------|----|
| 2.   | Test Specification, Methods and Procedures          | 6  |
| 3.   | Facilities and Accreditation                        | 6  |
| 4.   | SAR Measurement System & Test Equipment             | 7  |
| 4.1. | SAR Measurement System                              | 7  |
| 4.2. | SAR Scan Procedures                                 | 8  |
| 4.3. | Test Equipment                                      | 10 |
| 5.   | Measurement Uncertainty                             | 11 |
| 6.   | Device Under Test (DUT) Information                 | 12 |
| 6.1. | DUT Description                                     | 12 |
| 6.2. | . Wireless Technologies                             | 13 |
| 6.3. | . General LTE SAR Test and Reporting Considerations | 14 |
| 6.4. | . LTE (TDD) Considerations                          | 15 |
| 7.   | RF Exposure Conditions (Test Configurations)        | 16 |
| 8.   | Dielectric Property Measurements & System Check     | 18 |
| 8.1. | Dielectric Property Measurements                    | 18 |
| 8.2. | System Check                                        | 21 |
| 9.   | Conducted Output Power Measurements                 | 23 |
| 9.1. | GSM                                                 | 23 |
| 9.2. | . W-CDMA                                            | 25 |
| 9.3. | . LTE                                               | 29 |
| 9.4. | LTE Carrier Aggregation                             | 34 |
| 9.5. | . Wi-Fi 2.4GHz (DTS Band)                           | 37 |
| 9.6. | . Wi-Fi 5GHz (U-NII Bands)                          | 38 |
| 9.7. | . Bluetooth                                         | 41 |
| 10.  | Measured and Reported (Scaled) SAR Results          | 43 |
| 10.1 | 1. GSM850                                           | 45 |
| 10.2 | 2. GSM1900                                          | 45 |
| 10.3 | 3. W-CDMA Band II                                   | 46 |
| 10.4 | 4. W-CDMA Band V                                    | 46 |
| 10.5 | 5. LTE Band 5 (10MHz Bandwidth)                     | 47 |
| 10.6 | 6. LTE Band 41 (20MHz Bandwidth)                    | 47 |
| 10.7 | 7. Wi-Fi (DTS Band)                                 | 48 |
|      |                                                     |    |

| 10  | 0.8.   | Wi-Fi (U-NII Band)                                          | 48 |
|-----|--------|-------------------------------------------------------------|----|
| 10  | 0.9.   | Bluetooth                                                   | 49 |
| 11. | SAI    | R Measurement Variability                                   | 50 |
| 12. | Sim    | nultaneous Transmission Conditions                          | 51 |
| 12  | 2.1.   | Simultaneous transmission SAR test exclusion considerations | 51 |
|     | 12.1.1 | . Sum of SAR                                                | 51 |
| 12  | 2.2.   | Sum of the SAR for WWAN & Wi-Fi & BT                        | 51 |
| Арр | endix  | es                                                          | 52 |
| A   | ppend  | ix A: SAR Setup Photos                                      | 52 |
| A   | opend  | ix B: SAR System Check Plots                                | 52 |
| A   | ppend  | ix C: SAR Highest Test Plots                                | 52 |
| A   | ppend  | ix D: SAR Tissue Ingredients                                | 52 |
| A   | ppend  | ix E: SAR Probe Certificates                                | 52 |
| Α   | ppend  | ix F: SAR Dipole Certificates                               | 52 |

# 1. Attestation of Test Results

| Applicant Name                                |                   | Samsung Electronics Co. Ltd                                             |                                        |            |                                                           |  |
|-----------------------------------------------|-------------------|-------------------------------------------------------------------------|----------------------------------------|------------|-----------------------------------------------------------|--|
| FCC ID                                        |                   | A3LSMA305F                                                              |                                        |            |                                                           |  |
| Model Name                                    |                   | SM-A305F/DS and SM-A305F<br>(Used model SM-A305F/DS for final testing). |                                        |            |                                                           |  |
| Applicable Standards                          |                   | Published RF exposure KDB procedures IEEE Std 1528-2013                 |                                        |            |                                                           |  |
|                                               |                   |                                                                         | SAR Limi                               | its (W/Kg) |                                                           |  |
| Exposure Category                             | Exposure Category |                                                                         | Peak spatial-average<br>(1g of tissue) |            | Extremities (hands, wrists, ankles, etc.) (10g of tissue) |  |
| General population /<br>Uncontrolled exposure |                   | 1.6                                                                     |                                        | 4          |                                                           |  |
| RF Exposure Cond                              | litions           | Equipment Class - Highest Reported SAR (W/kg)                           |                                        |            |                                                           |  |
| KF Exposure Cond                              | aitioris          | PCE                                                                     | DTS                                    | NII        | DSS                                                       |  |
| Head                                          |                   | 0.315                                                                   | 0.106                                  | 0.142      | 0.051                                                     |  |
| Body-worn                                     |                   | 0.522                                                                   | 0.117                                  | 0.167      | 0.004                                                     |  |
| Hotspot                                       |                   | 1.148                                                                   | 0.280                                  | 0.153      | 0.018                                                     |  |
| Product specific 1                            | 0g SAR            | N/A                                                                     | N/A                                    | 0.583      | N/A                                                       |  |
|                                               | Head              | 0.457                                                                   | 0.421                                  | 0.457      | 0.366                                                     |  |
| Simultaneous TX                               | Body-worn         | 0.689                                                                   | 0.639                                  | 0.689      | 0.526                                                     |  |
|                                               | Hotspot           | 1.428                                                                   | 1.428                                  | 1.301      | 1.166                                                     |  |
| Date Tested                                   |                   | 1/14/2019 to 2/1/2019                                                   |                                        |            |                                                           |  |
| Test Results                                  |                   | Pass                                                                    |                                        |            |                                                           |  |

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

| Approved & Released By:       | Prepared By:                  |
|-------------------------------|-------------------------------|
| Jan Cung                      | Miguel Elaimos                |
| Devin Chang                   | Miguel Llamas                 |
| Senior Test Engineer          | Laboratory Technician         |
| UL Verification Services Inc. | UL Verification Services Inc. |

# 2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures:

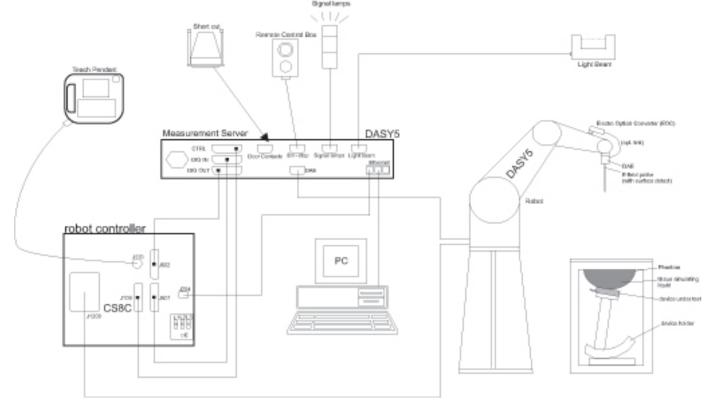
- 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- o 447498 D03 Supplement C Cross-Reference v01
- o 648474 D04 Handset SAR v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02
- 941225 D01 3G SAR Procedures v03r01
- 941225 D05 SAR for LTE Devices v02r05
- 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02
- o 941225 D06 Hotspot Mode v02r01

In addition to the above, the following information was used:

- TCB workshop October 2014; RF Exposure Procedures (Other LTE Considerations)
- TCB workshop October 2015; RF Exposure Procedures (KDB 941225 D05A)
- TCB workshop April 2016; RF Exposure Procedures (LTE Carrier Aggregation for DL)
- TCB workshop October 2016; RF Exposure Procedures (Bluetooth Duty Factor)
- o <u>TCB workshop</u> October 2016; RF Exposure Procedures (DUT Holder Perturbations)
- o TCB workshop May 2017; RF Exposure Procedures (Broadband Liquid Above 3 GHz)
- TCB workshop April 2018; RF Exposure Procedures (LTE DL CA SAR Test Exclusion)

## 3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at


| 47173 Benicia Street | 47266 Benicia Street |
|----------------------|----------------------|
| SAR Lab A            | SAR Lab 1            |
| SAR Lab B            | SAR Lab 2            |
| SAR Lab C            | SAR Lab 3            |
| SAR Lab D            | SAR Lab 4            |
| SAR Lab E            | SAR Lab 5            |
| SAR Lab F            |                      |
| SAR Lab G            |                      |
| SAR Lab H            |                      |

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

# 4. SAR Measurement System & Test Equipment

# 4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:



- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

### 4.2. SAR Scan Procedures

# **Step 1: Power Reference Measurement**

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

## Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

|                                                                                                        | ≤ 3 GHz                                                                                                                                                                                                                                                                | > 3 GHz                                                    |  |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm                                                                                                                                                                                                                                                               | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ |  |
| Maximum probe angle from probe axis to phantom surface normal at the measurement location              | 30° ± 1°                                                                                                                                                                                                                                                               | 20° ± 1°                                                   |  |
|                                                                                                        | ≤ 2 GHz: ≤ 15 mm<br>2 – 3 GHz: ≤ 12 mm                                                                                                                                                                                                                                 | 3 – 4 GHz: ≤ 12 mm<br>4 – 6 GHz: ≤ 10 mm                   |  |
| Maximum area scan spatial resolution: $\Delta x_{Area}$ , $\Delta y_{Area}$                            | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be $\leq$ the corresponding x or y dimension of the test device with at least one measurement point on the test device. |                                                            |  |

#### Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

|                                                                                                 |                                                         |                                                                                                                                                | ≤3 GHz                                                           | > 3 GHz                                                                                                                      |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Maximum zoom scan spatial resolution: $\Delta x_{Zoom}$ , $\Delta y_{Zoom}$                     |                                                         |                                                                                                                                                | $\leq$ 2 GHz: $\leq$ 8 mm<br>2 – 3 GHz: $\leq$ 5 mm <sup>*</sup> | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$<br>$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$                                         |
|                                                                                                 | uniform grid: $\Delta z_{Zoom}(n)$                      |                                                                                                                                                | ≤ 5 mm                                                           | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$<br>$4 - 5 \text{ GHz: } \le 3 \text{ mm}$<br>$5 - 6 \text{ GHz: } \le 2 \text{ mm}$   |
| Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface                        | graded                                                  | Δz <sub>Zoom</sub> (1): between 1 <sup>st</sup> two points closest to phantom surface                                                          | ≤ 4 mm                                                           | $3 - 4 \text{ GHz: } \le 3 \text{ mm}$<br>$4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$<br>$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ |
|                                                                                                 | grid $\Delta z_{Zoom}(n>1)$ : between subsequent points |                                                                                                                                                | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$                            |                                                                                                                              |
| $\begin{array}{ccc} \mbox{Minimum zoom scan} & \mbox{$x,y,z$} & \geq 30 \mbox{ mm} \end{array}$ |                                                         | $3 - 4 \text{ GHz:} \ge 28 \text{ mm}$<br>$\ge 30 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$<br>$5 - 6 \text{ GHz:} \ge 22 \text{ mm}$ |                                                                  |                                                                                                                              |

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

#### Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

# 4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

| Name of Equipment    | Manufacturer                      | Type/Model    | Serial No.    | Cal. Due Date |
|----------------------|-----------------------------------|---------------|---------------|---------------|
| Network Analyzer     | Agilent                           | ZNLE6         | 1323          | 7/16/2019     |
| Dielectric Probe kit | SPEAG                             | DAK-3.5       | 1082          | 9/11/2019     |
| Shorting block       | SPEAG                             | DAK-3.5 Short | SM DAK 200 BA | 9/11/2019     |
| Thermometer          | Traceable Calibration Control Co. | 4242          | 122529162     | 12/8/2019     |

#### **System Check**

| Cycloin Chicek               |              |                        |            |               |
|------------------------------|--------------|------------------------|------------|---------------|
| Name of Equipment            | Manufacturer | Type/Model             | Serial No. | Cal. Due Date |
| Synthesized Signal Generator | Agilent      | N5181A                 | MY50140610 | 6/7/2019      |
| Power Meter                  | Keysight     | N1912A                 | MY55196007 | 7/23/2019     |
| Power Sensor                 | Agilent      | N1921A                 | MY53020038 | 4/23/2019     |
| Power Sensor                 | Agilent      | N1921A                 | MY53260010 | 10/17/2019    |
| Amplifier                    | MITEQ        | AMF-4D-00400600-50-30P | 1795093    | N/A           |
| Directional coupler          | Werlatone    | C8060-102              | 2148       | N/A           |
| DC Power Supply              | Sorensen     | 1611                   | 1817A2680  | N/A           |
| Synthesized Signal Generator | Agilent      | N5181A                 | MY50240680 | 5/25/2019     |
| Power Meter                  | Keysight     | N1912A                 | MY55196004 | 7/26/2019     |
| Power Sensor                 | Agilent      | N1921A                 | MY52200012 | 10/18/2019    |
| Amplifier                    | MITEQ        | AMF-4D-00400600-50-30P | 1795092    | N/A           |
| Directional coupler          | Werlatone    | C8060-102              | 2141       | N/A           |
| DC Power Supply              | BK Precision | XT 15-4                | 215-02292  | N/A           |
| Synthesized Signal Generator | R&S          | SMB 100A               | 1406       | 7/4/2019      |
| Power Sensor                 | R&S          | NRP18A                 | 1424       | 6/19/2019     |

#### Lab Equipment

| <u> Lub Equipmont</u>                     |              |            |            |               |
|-------------------------------------------|--------------|------------|------------|---------------|
| Name of Equipment                         | Manufacturer | Type/Model | Serial No. | Cal. Due Date |
| E-Field Probe (SAR Lab A)                 | SPEAG        | EX3DV4     | 3885       | 9/18/2019     |
| E-Field Probe (SAR Lab B)                 | SPEAG        | EX3DV4     | 3772       | 2/13/2019     |
| E-Field Probe (SAR Lab D)                 | SPEAG        | EX3DV4     | 3773       | 4/23/2019     |
| E-Field Probe (SAR Lab E)                 | SPEAG        | EX3DV4     | 3990       | 8/17/2019     |
| E-Field Probe (SAR Lab G)                 | SPEAG        | EX3DV4     | 7463       | 7/20/2019     |
| E-Field Probe (SAR Lab H)                 | SPEAG        | EX3DV4     | 7482       | 7/23/2019     |
| Data Acquisition Electronics (SAR Lab A)  | SPEAG        | DAE4       | 1540       | 2/23/2019     |
| Data Acquisition Electronics (SAR Lab B)  | SPEAG        | DAE4       | 1377       | 9/14/2019     |
| Data Acquisition Electronics (SAR Lab D)* | SPEAG        | DAE4       | 1352       | 11/6/2019     |
| Data Acquisition Electronics (SAR Lab E)  | SPEAG        | DAE4       | 1548       | 5/3/2019      |
| Data Acquisition Electronics (SAR Lab G)  | SPEAG        | DAE4       | 1359       | 2/9/2019      |
| Data Acquisition Electronics (SAR Lab H)  | SPEAG        | DAE4       | 1239       | 7/11/2019     |
| System Validation Dipole                  | SPEAG        | D835V2     | 4d142      | 8/23/2019     |
| System Validation Dipole                  | SPEAG        | D1900V2    | 5d140      | 4/11/2019     |
| System Validation Dipole                  | SPEAG        | D2450V2    | 899        | 3/16/2019     |
| System Validation Dipole                  | SPEAG        | D2600V2    | 1006       | 10/16/2019    |
| System Validation Dipole                  | SPEAG        | D5GHzV2    | 1138       | 8/21/2019     |
|                                           |              |            |            |               |

### Note(s):

<sup>\*</sup>Equipment not used past calibration due date.

#### Other

| Name of Equipment      | Manufacturer | Type/Model | Serial No. | Cal. Due Date |
|------------------------|--------------|------------|------------|---------------|
| Power Meter            | Agilent      | N1912A     | MY50001018 | 10/18/2019    |
| Power Sensor           | Agilent      | N1921A     | MY52200012 | 10/18/2019    |
| Power Sensor           | Agilent      | N1921A     | MY53260010 | 10/17/2019    |
| Base Station Simulator | R&S          | CMW500     | 164541     | 2/19/2019     |
| Base Station Simulator | R&S          | CMW500     | 135384     | 6/1/2019      |
| Spectrum Analyzer PXA  | Agilent      | E4446A     | MY45300064 | 8/13/2019     |

# 5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be  $\leq$  30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

# 6. Device Under Test (DUT) Information

# 6.1. DUT Description

|                         | Overall (Length x Width)    |                                         |                                                    |
|-------------------------|-----------------------------|-----------------------------------------|----------------------------------------------------|
| Device Dimension        | Overall Diagonal: 165.2     |                                         |                                                    |
|                         | Display Diagonal: 157.5     | mm                                      |                                                    |
|                         | This is a Phablet Device    | (display diagonal dimension > 15        | 5.0 cm or an overall diagonal dimension > 16.0 cm) |
| Back Cover              | The Back Cover is not re    | emovable                                |                                                    |
| Battery Options         | The rechargeable batter     | y is not user accessible.               |                                                    |
| Accessory               | Headset                     |                                         |                                                    |
| Wireless Router         | Wi-Fi Hotspot mode pern     | nits the device to share its cellular o | data connection with other Wi-Fi-enabled devices.  |
| (Hotspot)               | ☑ Mobile Hotspot (Wi-Fi     | 2.4 GHz)                                |                                                    |
| (оброт)                 |                             | 5 GHz Ch 149)                           |                                                    |
|                         | Wi-Fi Direct enabled dev    | ices transfer data directly between     | each other.                                        |
| Wi-Fi Direct            | Wi-Fi Direct is only availa | able in hand use configuration.         |                                                    |
| WIFFI DILECT            | ⊠ Wi-Fi Direct (Wi-Fi 2.4   | GHz)                                    |                                                    |
|                         | ⊠ Wi-Fi Direct (Wi-Fi 5.2   | 7/5.8 GHz)                              |                                                    |
| Divistanth Tatharing    | BT Tethering mode perm      | its the device to share its cellular d  | ata connection with other devices.                 |
| Bluetooth Tethering     |                             | th 2.4 GHz)                             |                                                    |
|                         | S/N                         | IMEI                                    | Notes                                              |
|                         | R38KC08WKGY                 | 354872100024904                         | Radiated Sample                                    |
|                         | R38KC08WKVH                 | 354872100025026                         | Radiated Sample                                    |
|                         | R38KC08WJSN                 | 354872100024672                         | Radiated Sample                                    |
| Test sample information | R38KC08WLXV                 | 354872100025372                         | Radiated Sample                                    |
|                         | R38KC08WKMZ                 | 354872100024953                         | Radiated Sample                                    |
|                         | R38KC08WHJE                 | 354872100024268                         | Conducted Sample                                   |
|                         | R38KC08WG2A                 | 354872100023773                         | Conducted Sample                                   |
| Hardware Version        | REV 1.0                     |                                         |                                                    |
| Software Version        | A305F.001                   |                                         |                                                    |

#### **Wireless Technologies** 6.2.

| Wireless<br>technologies | Frequency bands                                      | Opera                                                                                                   | ating mode                                                    | Duty Cycle used for SAR testing                                                              |
|--------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| GSM                      | 850<br>1900                                          | Voice (GMSK)<br>GPRS (GMSK)<br>EDGE (8PSK)                                                              | GSM Class : B<br>Multi-Slot Class:<br>Class 33 - 4 Up, 5 Down | GSM Voice: 12.5%<br>(E)GPRS: 1 Slot: 12.5%<br>2 Slots: 25%<br>3 Slots: 37.5%<br>4 Slots: 50% |
|                          | Does this device support DTM                         | // (Dual Transfer Mode)? □                                                                              | Yes ⊠ No                                                      |                                                                                              |
| W-CDMA<br>(UMTS)         | Band II<br>Band V                                    | UMTS Rel. 99 (Voice & D<br>HSDPA (Category 24)<br>HSUPA (Category 6)<br>HSPA+ (Rel. 9 DL only)          | ata)                                                          | 100%                                                                                         |
| LTE                      | FDD Band 5 TDD Band 41  Does this device support SV- | QPSK 16QAM 64AQM (Rx only) Rel. 10 Carrier Aggregation                                                  |                                                               | 100% (FDD)<br>63.3% (TDD) Refer to §6.4                                                      |
|                          | 2.4 GHz                                              | 802.11b<br>802.11g<br>802.11n (HT20)                                                                    | ⊠ NU                                                          | 100% <sub>(802.11b)</sub> 1                                                                  |
| Wi-Fi                    | 5 GHz                                                | 802.11a<br>802.11n (HT20)<br>802.11n (HT40)<br>802.11ac (VHT20)<br>802.11ac (VHT40)<br>802.11ac (VHT80) |                                                               | 93.97% <sub>(802.11a)</sub> <sup>1</sup> 74.26% <sub>(802.11ac 80MHz BW)</sub> <sup>1</sup>  |
|                          | Does this device support ban-                        | \ /                                                                                                     | s □ No                                                        | •                                                                                            |
|                          | Does this device support Ban                         |                                                                                                         |                                                               |                                                                                              |
| Bluetooth                | 2.4 GHz                                              | Version 5.0 LE                                                                                          |                                                               | 76.68% <sup>2</sup>                                                                          |

# Notes:

Duty cycle for Wi-Fi is referenced from the DTS and UNII report. Refer to §9.7 for Bluetooth GFSK Duty Cycle

#### **General LTE SAR Test and Reporting Considerations** 6.3.

| Frequency range, Channel Bandwidth,                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | / range: 82                                        | 24 - 849                                                           | MHz (BW                                                        | = 25 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Numbers and Frequencies                                        | Band 5 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chani                                              | nel Band                                                           | dwidth                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
| •                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 MHz                                             | <u>z</u> 1                                                         | 5 MHz                                                          | 3 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4 MHz                                              |
|                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20450                                              | / 2                                                                | 20425/                                                         | 20415/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20407/                                               |
|                                                                | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 829                                                |                                                                    | 826.5                                                          | 825.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 824.7                                                |
|                                                                | Mid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20525                                              | / 2                                                                | 20525/                                                         | 20525/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20525/                                               |
|                                                                | IVIIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 836.5                                              | ;                                                                  | 836.5                                                          | 836.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 836.5                                                |
|                                                                | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20600                                              | / 2                                                                | 20625/                                                         | 20635/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20643/                                               |
|                                                                | riigii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 844                                                |                                                                    | 846.5                                                          | 847.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 848.3                                                |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Frequency r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ange: 249                                          | 6 - 2690                                                           | MHz (BW                                                        | / = 194 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
|                                                                | Band 41 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chan                                               | nel Band                                                           | dwidth                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 MH                                              | z :                                                                | 5 MHz                                                          | 3 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4 MHz                                              |
|                                                                | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | / 2506.0                                           |                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
|                                                                | Low-Mid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | / 2549.5                                           |                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
|                                                                | Mid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | / 2593.0                                           |                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
|                                                                | Mid-High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | / 2636.5                                           |                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
|                                                                | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | / 2680.0                                           |                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
|                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
| LTF transmitter and antenna                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
| LTE transmitter and antenna                                    | Refer to Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pendix A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
| implementation                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
|                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pendix A.<br>e 6.2.3-1: Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | imum Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reduction                                          | n (MPR)                                                            | for Powe                                                       | er Class 1, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and 3                                                |
| implementation                                                 | Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e 6.2.3-1: Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | ` '                                                                |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
| implementation                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e 6.2.3-1: Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | imum Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ridth / Tran                                       | smissior<br>10                                                     | n bandwid                                                      | th (N <sub>RB</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and 3                                                |
| implementation                                                 | Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e 6.2.3-1: Max<br>tion C<br>1.4<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Channel bandw<br>3.0<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vidth / Tran<br>5<br>MHz                           | smissior<br>10<br>MHz                                              | n bandwid<br>15<br>MHz                                         | th (N <sub>RB</sub> )<br>20<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MPR (dB)                                             |
| implementation                                                 | Table Modulat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e 6.2.3-1: Max<br>tion C<br>1.4<br>MHz<br>< > 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Channel bandw<br>3.0<br>MHz<br>> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ridth / Tran<br>5<br>MHz<br>> 8                    | smission<br>10<br>MHz<br>> 12                                      | n bandwid<br>15<br>MHz<br>> 16                                 | th (N <sub>RB</sub> ) 20 MHz > 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MPR (dB) ≤ 1                                         |
| implementation                                                 | Table  Modulat  QPSt 16 QA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e 6.2.3-1: Max tion C 1.4 MHz < K > 5 M \leq 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0<br>MHz<br>> 4<br>≤ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ridth / Tran<br>5<br>MHz<br>> 8<br>≤ 8             | smissior<br>10<br>MHz<br>> 12<br>≤ 12                              | n bandwid<br>15<br>MHz<br>> 16<br>≤ 16                         | th (N <sub>RB</sub> )  20  MHz  > 18  ≤ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MPR (dB)  ≤ 1 ≤ 1                                    |
| implementation                                                 | Table  Modulat  QPSI 16 QA 16 QA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e 6.2.3-1: Max<br>tion C<br>1.4<br>MHz<br>K > 5<br>M ≤ 5<br>M > 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2. Shannel bandw<br>3.0<br>MHz<br>> 4<br>≤ 4<br>> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | yidth / Tran 5 MHz > 8 ≤ 8 > 8                     | smissior<br>10<br>MHz<br>> 12<br>≤ 12<br>> 12                      | n bandwid<br>15<br>MHz<br>> 16<br>≤ 16<br>> 16                 | th (N <sub>RB</sub> )  20  MHz  > 18  ≤ 18  > 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MPR (dB)  ≤ 1  ≤ 1  ≤ 2                              |
| implementation                                                 | Table  Modulat  QPSt 16 QA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion C 1.4 MHz  K 55 M 55 M 55 M 55 M 55 M 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.0<br>MHz<br>> 4<br>≤ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ridth / Tran<br>5<br>MHz<br>> 8<br>≤ 8             | smissior<br>10<br>MHz<br>> 12<br>≤ 12                              | n bandwid<br>15<br>MHz<br>> 16<br>≤ 16                         | th (N <sub>RB</sub> )  20  MHz  > 18  ≤ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MPR (dB)  ≤ 1 ≤ 1                                    |
| implementation                                                 | Table  Modulat  QPSI  16 QA  16 QA  64 QA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion C 1.4 MHz  K > 5 M ≤ 5 M > 5 M ≤ 5 M > 5 M > 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /idth / Tran 5 MHz > 8 ≤ 8 > 8 ≤ 8                 | smissior<br>10<br>MHz<br>> 12<br>≤ 12<br>> 12<br>≤ 12<br>> 12      | n bandwid<br>15<br>MHz<br>> 16<br>≤ 16<br>> 16<br>≤ 16         | th (N <sub>RB</sub> )  20  MHz  > 18  ≤ 18  > 18  ≤ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MPR (dB)  ≤ 1  ≤ 1  ≤ 2  ≤ 2                         |
| implementation                                                 | Table   Modulat   QPSi   16 QA   16 QA   64 QA   64 QA   256 QA   256 QA   Control     | e 6.2.3-1: Max tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7idth / Tran 5 MHz > 8 ≤ 8 > 8 ≤ 8 > 8             | smissior<br>10<br>MHz<br>> 12<br>≤ 12<br>> 12<br>≤ 12<br>> 12      | n bandwid<br>15<br>MHz<br>> 16<br>≤ 16<br>> 16<br>≤ 16         | th (N <sub>RB</sub> )  20  MHz  > 18  ≤ 18  > 18  ≤ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MPR (dB)  ≤ 1  ≤ 1  ≤ 2  ≤ 2  ≤ 3                    |
| implementation                                                 | Table  Modulat  QPSi  16 QA  16 QA  64 QA  64 QA  256 QA  MPR Built-ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion C 1.4 MHz  K > 5 M ≤ 5 M > 5 M > 5 M > 5 M > 5 M > 5 M > 5 M > 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 Shannel bandw<br>3.0 MHz<br>> 4<br>≤ 4<br>> 4<br>≤ 4<br>> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fidth / Tran 5 MHz > 8 ≤ 8 > 8 ≤ 8 > 8 ≤ 8 > 8 ≤ 8 | smission<br>10<br>MHz<br>> 12<br>≤ 12<br>> 12<br>≤ 12<br>> 12<br>1 | n bandwid<br>15<br>MHz<br>> 16<br>≤ 16<br>> 16<br>≤ 16<br>> 16 | th (N <sub>RB</sub> )  20  MHz  > 18  ≤ 18  > 18  ≤ 18  > 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MPR (dB)  ≤ 1  ≤ 1  ≤ 2  ≤ 2  ≤ 3  ≤ 5               |
| implementation                                                 | Table  Modulat  QPSI  16 QA  16 QA  64 QA  64 QA  256 QA  MPR Built-in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion C 1.4 MHz  K > 5 M ≤ 5 M > 5 M > 5 M > 5 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M | 2. Shannel bandw<br>3.0<br>MHz<br>> 4<br>≤ 4<br>> 4<br>≤ 4<br>> 4<br>Alues are alwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fidth / Tran 5 MHz > 8 ≤ 8 > 8 ≤ 8 > 8 ≤ 8 > 8 ≤ 8 | smission<br>10<br>MHz<br>> 12<br>≤ 12<br>> 12<br>≤ 12<br>> 12<br>1 | n bandwid<br>15<br>MHz<br>> 16<br>≤ 16<br>> 16<br>≤ 16<br>> 16 | th (N <sub>RB</sub> )  20  MHz  > 18  ≤ 18  > 18  ≤ 18  > 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MPR (dB)  ≤ 1  ≤ 1  ≤ 2  ≤ 2  ≤ 3  ≤ 5               |
| implementation                                                 | Modulat  QPSI 16 QA 16 QA 64 QA 64 QA 256 QA  MPR Built-ii The manufa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e 6.2.3-1: Max tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0   MHz   > 4     ≤ 4     > 4     ≤ 4     > 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #####################################              | smissior<br>10<br>MHz<br>> 12<br>≤ 12<br>> 12<br>≤ 12<br>> 12<br>1 | n bandwid<br>15<br>MHz<br>> 16<br>≤ 16<br>> 16<br>≤ 16<br>> 16 | th (N <sub>RB</sub> )  20  MHz  > 18  ≤ 18  > 18  ≤ 18  > 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MPR (dB)  ≤ 1  ≤ 1  ≤ 2  ≤ 2  ≤ 3  ≤ 5               |
| implementation  Maximum power reduction (MPR)                  | Table  Modulat  QPSi 16 QA 16 QA 64 QA 256 QA  MPR Built-in The manufa not follow th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion C 1.4 MHz  K > 5 M ≤ 5 M > 5 M > 5 M > 5 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M > 7 M | 3.0   MHz   > 4     ≤ 4     > 4     ≤ 4     > 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #####################################              | smissior<br>10<br>MHz<br>> 12<br>≤ 12<br>> 12<br>≤ 12<br>> 12<br>1 | n bandwid<br>15<br>MHz<br>> 16<br>≤ 16<br>> 16<br>≤ 16<br>> 16 | th (N <sub>RB</sub> )  20  MHz  > 18  ≤ 18  > 18  ≤ 18  > 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MPR (dB)  ≤ 1  ≤ 1  ≤ 2  ≤ 2  ≤ 3  ≤ 5               |
| implementation  Maximum power reduction (MPR)  Power reduction | Table  Modulat  QPSi 16 QA 16 QA 64 QA 256 QA  MPR Built-in The manufa not follow th A-MPR (add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e 6.2.3-1: Max  tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Channel bandw 3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                  | smissior<br>10<br>MHz<br>> 12<br>≤ 12<br>> 12<br>≤ 12<br>> 12<br>1 | n bandwid<br>15<br>MHz<br>> 16<br>≤ 16<br>> 16<br>≤ 16<br>> 16 | th (N <sub>RB</sub> )  20  MHz  > 18  ≤ 18  > 18  ≤ 18  > 18  < 18  < 18  > 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MPR (dB)  ≤ 1  ≤ 1  ≤ 2  ≤ 2  ≤ 3  ≤ 5  ance but may |
| implementation  Maximum power reduction (MPR)                  | Table  Modulat  QPSi 16 QA 16 QA 64 QA 256 QA  MPR Built-in The manufa not follow th A-MPR (add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e 6.2.3-1: Max tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Channel bandw 3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                  | smissior<br>10<br>MHz<br>> 12<br>≤ 12<br>> 12<br>≤ 12<br>> 12<br>1 | n bandwid<br>15<br>MHz<br>> 16<br>≤ 16<br>> 16<br>≤ 16<br>> 16 | th (N <sub>RB</sub> )  20  MHz  > 18  ≤ 18  > 18  ≤ 18  > 18  < 18  < 18  > 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MPR (dB)  ≤ 1  ≤ 1  ≤ 2  ≤ 2  ≤ 3  ≤ 5  ance but may |
| implementation  Maximum power reduction (MPR)  Power reduction | Modulating Approperty of Appro | e 6.2.3-1: Max  tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ## 3.0    MHz     > 4     ≤ 4     > 4     ≤ 4     > 4     A     A     A     A    ## A | 5                                                  | smission<br>10<br>MHz<br>> 12<br>≤ 12<br>> 12<br>≤ 12<br>> 12<br>1 | n bandwid<br>15<br>MHz<br>> 16<br>≤ 16<br>> 16<br>≤ 16<br>> 16 | th (N <sub>RB</sub> )  20  MHz  > 18  ≤ 18  > 18  ≤ 18  > 18    MHZ  And power meaning power | MPR (dB)                                             |

### Notes:

Maximum bandwidth does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices.

LTE band 41 test channels in accordance with October 2014 TCB workshop for all channels bandwidths.

SAR Testing for LTE was performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

# 6.4. LTE (TDD) Considerations

According to KDB 941225 D05 SAR for LTE Devices, for Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

LTE TDD Bands support 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations and Table 4.2-1 for Special subframe configurations.

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS)

|                           | N                       | ormal cyclic prefix in               | tended cyclic prefix i                 | n downlink              |                                        |                                    |  |
|---------------------------|-------------------------|--------------------------------------|----------------------------------------|-------------------------|----------------------------------------|------------------------------------|--|
| Special                   | DwPTS                   | Upf                                  | PTS                                    |                         |                                        | PTS                                |  |
| subframe<br>configuration |                         | Normal cyclic<br>prefix<br>in uplink | Extended cyclic<br>prefix<br>in uplink |                         | Normal cyclic<br>prefix in uplink      | Extended cyclic prefix in uplink   |  |
| 0                         | $6592 \cdot T_{\rm s}$  |                                      |                                        | $7680 \cdot T_{\rm s}$  |                                        |                                    |  |
| 1                         | $19760 \cdot T_{\rm s}$ |                                      |                                        | $20480 \cdot T_{\rm s}$ | $(1+X)\cdot 2192\cdot T_s$             | $(1+X)\cdot 2560\cdot T_s$         |  |
| 2                         | $21952 \cdot T_{\rm s}$ | $(1+X)\cdot 2192\cdot T_s$           | $(1+X)\cdot 2560\cdot T_s$             | 23040 · T <sub>s</sub>  | $(1+X)\cdot 2192\cdot I_s$             | $(1+X)\cdot 2500\cdot T_{\rm s}$   |  |
| 3                         | 24144 · T <sub>s</sub>  |                                      |                                        | 25600 · T <sub>s</sub>  |                                        |                                    |  |
| 4                         | 26336·T <sub>s</sub>    |                                      |                                        | 7680 · T <sub>s</sub>   |                                        |                                    |  |
| 5                         | 6592 · T <sub>s</sub>   |                                      |                                        | 20480 · T <sub>s</sub>  | (2+V), 2102, T                         | $(2+X)\cdot 2560\cdot T_s$         |  |
| 6                         | 19760 · T <sub>s</sub>  |                                      |                                        | 23040 · T <sub>s</sub>  | $(2+\Lambda)\cdot 2192\cdot I_{\rm s}$ | $(2+\Lambda) \cdot 2300 \cdot I_s$ |  |
| 7                         | $21952 \cdot T_{\rm s}$ | $(2+X)\cdot 2192\cdot T_s$           | $(2+X)\cdot 2560\cdot T_s$             | 12800 · T <sub>s</sub>  |                                        |                                    |  |
| 8                         | 24144 · T <sub>s</sub>  |                                      |                                        | -                       | -                                      | -                                  |  |
| 9                         | 13168 · T <sub>s</sub>  |                                      |                                        | -                       | -                                      | -                                  |  |
| 10                        | 13168 · T <sub>s</sub>  | $13152 \cdot T_s$                    | 12800 · T <sub>s</sub>                 | -                       | -                                      | -                                  |  |

Table 4.2-2: Uplink-downlink configurations & Calculated Duty Cycle

| Uplink-<br>Downlink | Downlink-to-<br>Uplink Switch- |   | Subframe Number |   |   |   |   |   |   |   |   | Calculated Duty<br>Cycle |
|---------------------|--------------------------------|---|-----------------|---|---|---|---|---|---|---|---|--------------------------|
| Configuration       | point<br>Periodicity           | 0 | 1               | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | (%)                      |
| 0                   | 5 ms                           | D | S               | U | U | J | D | S | U | U | U | 63.3%                    |
| 1                   | 5 ms                           | D | S               | U | U | D | D | S | U | U | D | 43.3%                    |
| 2                   | 5 ms                           | D | S               | U | D | D | D | S | U | D | D | 23.3%                    |
| 3                   | 10 ms                          | D | S               | U | U | U | D | D | D | D | D | 31.7%                    |
| 4                   | 10 ms                          | D | S               | U | U | D | D | D | D | D | D | 21.7%                    |
| 5                   | 10 ms                          | D | S               | U | D | D | D | D | D | D | D | 11.7%                    |
| 6                   | 5 ms                           | D | S               | U | U | U | D | S | U | U | D | 53.3%                    |

Calculated Duty Cycle = Extended cyclic prefix in uplink \*  $(T_s)$  \* # of S + # of U / period

#### Note(s):

This device supports uplink-downlink configurations 0-6. The configuration with highest duty cycle was used for SAR Testing: configuration 0 at 63.3% duty cycle.

# 7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

| Wireless                      | RF Exposure     | DUT-to-User | Test             | Antenna-to-     | SAR          |      |  |
|-------------------------------|-----------------|-------------|------------------|-----------------|--------------|------|--|
| technologies                  | Conditions      | Separation  | Position         | edge/surface    | Required     | Note |  |
|                               |                 |             | Left Touch       | N/A             | Yes          |      |  |
|                               | Head            | 0 mm        | Left Tilt (15°)  | N/A             | Yes          |      |  |
|                               | rieau           | O IIIIII    | Right Touch      | N/A             | Yes          |      |  |
|                               |                 |             | Right Tilt (15°) | N/A             | Yes          |      |  |
|                               | Body            | 15 mm       | Rear             | N/A             | Yes          |      |  |
|                               | Бойу            | 15 111111   | Front            | N/A             | Yes          |      |  |
|                               |                 |             | Rear             | < 25 mm         | Yes          |      |  |
|                               |                 |             | Front            | < 25 mm         | Yes          |      |  |
| WWAN                          | Hotspot         | 10 mm       | Edge 1 (Top)     | > 25 mm         | No           | 1    |  |
| (Main Ant. 1)                 | Поівроі         | 10 111111   | Edge 2 (Right)   | < 25 mm         | Yes          |      |  |
|                               |                 |             | Edge 3 (Bottom)  | < 25 mm         | Yes          |      |  |
|                               |                 |             | Edge 4 (Left)    | < 25 mm         | Yes          |      |  |
|                               |                 |             | Rear             |                 |              | •    |  |
|                               |                 |             | Front            |                 |              |      |  |
|                               | Product Specifc | 0           | Edge 1 (Top)     | Dofe            | or to note 2 |      |  |
|                               | 10g             | 0 mm        | Edge 2 (Right)   | Refer to note 2 |              |      |  |
|                               |                 |             | Edge 3 (Bottom)  |                 |              |      |  |
|                               |                 |             | Edge 4 (Left)    |                 |              |      |  |
|                               |                 |             | Left Touch       | N/A             | Yes          |      |  |
|                               | Head            | 0           | Left Tilt (15°)  | N/A             | Yes          |      |  |
|                               | пеац            | 0 mm        | Right Touch      | N/A             | Yes          |      |  |
|                               |                 |             | Right Tilt (15°) | N/A             | Yes          |      |  |
|                               | Body            | 1E mm       | Rear             | N/A             | Yes          |      |  |
|                               | Бойу            | 15 mm       | Front            | N/A             | Yes          |      |  |
|                               |                 |             | Rear             | < 25 mm         | Yes          |      |  |
| 1404/45/                      |                 |             | Front            | < 25 mm         | Yes          |      |  |
| WWAN                          | Hotspot         | 10 mm       | Edge 1 (Top)     | > 25 mm         | No           | 1    |  |
| (Main Ant. 2)<br>LTE B41 only | поізроі         | 10 111111   | Edge 2 (Right)   | < 25 mm         | Yes          |      |  |
| ETE BTT OTHY                  |                 |             | Edge 3 (Bottom)  | < 25 mm         | Yes          |      |  |
|                               |                 |             | Edge 4 (Left)    | > 25 mm         | No           | 1    |  |
|                               |                 |             | Rear             |                 |              | •    |  |
|                               |                 |             | Front            |                 |              |      |  |
|                               | Product Specifc | 0 mm        | Edge 1 (Top)     | Dofo            | er to note 2 |      |  |
|                               | 10g             | U IIIIII    | Edge 2 (Right)   | Kere            | SI TO HOLE Z |      |  |
|                               |                 |             | Edge 3 (Bottom)  | 1               |              |      |  |
|                               |                 |             | Edge 4 (Left)    |                 |              |      |  |

#### Notes:

SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.

For Phablet devices: when hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg. WWAN Main Antenna #2 Supports LTE Band 41.

| Wireless technologies | RF Exposure<br>Conditions | DUT-to-User<br>Separation | Test<br>Position | Antenna-to-<br>edge/surface | SAR<br>Required | Note |
|-----------------------|---------------------------|---------------------------|------------------|-----------------------------|-----------------|------|
|                       |                           |                           | Left Touch       | N/A                         | Yes             |      |
|                       | Llood                     | 0                         | Left Tilt (15°)  | N/A                         | Yes             |      |
|                       | Head                      | 0 mm                      | Right Touch      | N/A                         | Yes             |      |
|                       |                           |                           | Right Tilt (15°) | N/A                         | Yes             |      |
|                       | Body                      | 15 mm                     | Rear             | N/A                         | Yes             |      |
|                       | Бойу                      | 15 111111                 | Front            | N/A                         | Yes             |      |
|                       |                           |                           | Rear             | < 25 mm                     | Yes             |      |
|                       |                           |                           | Front            | < 25 mm                     | Yes             |      |
| WLAN & BT             | Hotspot<br>(2.4/5.8 GHz   | 10 mm                     | Edge 1 (Top)     | < 25 mm                     | Yes             |      |
| WLANGBI               | (2.4/3.8 GHZ<br>Bands)    | 10 111111                 | Edge 2 (Right)   | < 25 mm                     | Yes             |      |
|                       | ,                         |                           | Edge 3 (Bottom)  | > 25 mm                     | No              | 1    |
|                       |                           |                           | Edge 4 (Left)    | > 25 mm                     | No              | 1    |
|                       |                           |                           | Rear             |                             |                 |      |
|                       |                           |                           | Front            |                             |                 |      |
|                       | Product Specifc           | 0 mm                      | Edge 1 (Top)     | Pofor t                     | to notes 2 & 3  |      |
|                       | 10g                       | Ollilli                   | Edge 2 (Right)   | ivelet i                    | to notes 2 & 3  |      |
|                       |                           |                           | Edge 3 (Bottom)  |                             |                 |      |
|                       |                           |                           | Edge 4 (Left)    |                             |                 |      |

#### Notes:

- 1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.
- 2. For Phablet devices: when hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
- 3. For Phablet devices: when Hotspot Mode is not supported, Product Specific 10-g SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.
- 4. Wi-Fi Direct is only available in hand use configuration.

# 8. Dielectric Property Measurements & System Check

# 8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within  $18^{\circ}$ C to  $25^{\circ}$ C and within  $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant  $(\epsilon r)$  and conductivity  $(\sigma)$  of typical tissue-equivalent media recipes are expected to be within  $\pm$  5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for  $\epsilon r$  and  $\sigma$  may be relaxed to  $\pm$  10%. This is limited to frequencies  $\leq$  3 GHz.

#### **Tissue Dielectric Parameters**

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

| Target Frequency (MHz)   | H                 | ead     | Во             | dy      |
|--------------------------|-------------------|---------|----------------|---------|
| raiget Frequency (Miriz) | $\varepsilon_{r}$ | σ (S/m) | $\epsilon_{r}$ | σ (S/m) |
| 150                      | 52.3              | 0.76    | 61.9           | 0.80    |
| 300                      | 45.3              | 0.87    | 58.2           | 0.92    |
| 450                      | 43.5              | 0.87    | 56.7           | 0.94    |
| 835                      | 41.5              | 0.90    | 55.2           | 0.97    |
| 900                      | 41.5              | 0.97    | 55.0           | 1.05    |
| 915                      | 41.5              | 0.98    | 55.0           | 1.06    |
| 1450                     | 40.5              | 1.20    | 54.0           | 1.30    |
| 1610                     | 40.3              | 1.29    | 53.8           | 1.40    |
| 1800 – 2000              | 40.0              | 1.40    | 53.3           | 1.52    |
| 2450                     | 39.2              | 1.80    | 52.7           | 1.95    |
| 3000                     | 38.5              | 2.40    | 52.0           | 2.73    |
| 5000                     | 36.2              | 4.45    | 49.3           | 5.07    |
| 5100                     | 36.1              | 4.55    | 49.1           | 5.18    |
| 5200                     | 36.0              | 4.66    | 49.0           | 5.30    |
| 5300                     | 35.9              | 4.76    | 48.9           | 5.42    |
| 5400                     | 35.8              | 4.86    | 48.7           | 5.53    |
| 5500                     | 35.6              | 4.96    | 48.6           | 5.65    |
| 5600                     | 35.5              | 5.07    | 48.5           | 5.77    |
| 5700                     | 35.4              | 5.17    | 48.3           | 5.88    |
| 5800                     | 35.3              | 5.27    | 48.2           | 6.00    |

#### IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

| SAR |           | Band  | Tissue | Frequency | Relat    | ive Permittivi | ty (er)      | С        | onductivity ( | J)           |
|-----|-----------|-------|--------|-----------|----------|----------------|--------------|----------|---------------|--------------|
| Lab | Date      | (MHz) | Туре   | (MHz)     | Measured | Target         | Delta<br>(%) | Measured | Target        | Delta<br>(%) |
|     |           |       |        | 5250      | 35.54    | 35.93          | -1.09        | 4.48     | 4.70          | -4.83        |
| Α   | 1/22/2019 | 5250  | Head   | 5150      | 35.73    | 36.05          | -0.88        | 4.38     | 4.60          | -4.71        |
|     |           |       |        | 5350      | 35.39    | 35.82          | -1.20        | 4.60     | 4.80          | -4.26        |
|     |           |       |        | 5250      | 46.96    | 48.95          | -4.07        | 5.38     | 5.35          | 0.41         |
| Α   | 1/22/2019 | 5250  | Body   | 5150      | 47.17    | 49.09          | -3.91        | 5.27     | 5.24          | 0.68         |
|     |           |       |        | 5350      | 46.83    | 48.82          | -4.07        | 5.53     | 5.47          | 1.03         |
|     |           |       |        | 2450      | 37.60    | 39.20          | -4.08        | 1.73     | 1.80          | -4.00        |
| В   | 1/23/2019 | 2450  | Head   | 2400      | 37.65    | 39.30          | -4.19        | 1.69     | 1.75          | -3.41        |
|     |           |       |        | 2480      | 37.59    | 39.16          | -4.01        | 1.75     | 1.83          | -4.72        |
|     |           |       |        | 2450      | 50.23    | 52.70          | -4.69        | 2.00     | 1.95          | 2.41         |
| В   | 1/22/2019 | 2450  | Body   | 2400      | 50.39    | 52.77          | -4.51        | 1.93     | 1.90          | 1.74         |
|     |           |       |        | 2480      | 50.15    | 52.66          | -4.77        | 2.03     | 1.99          | 2.00         |
|     |           |       |        | 2450      | 51.56    | 52.70          | -2.16        | 2.04     | 1.95          | 4.46         |
| В   | 2/1/2019  | 2450  | Body   | 2400      | 51.76    | 52.77          | -1.92        | 1.97     | 1.90          | 3.84         |
|     |           |       |        | 2480      | 51.48    | 52.66          | -2.24        | 2.07     | 1.99          | 4.11         |
|     |           |       |        | 2600      | 38.77    | 39.01          | -0.62        | 1.90     | 1.96          | -3.02        |
| D   | 1/23/2019 | 2600  | Head   | 2495      | 38.88    | 39.14          | -0.67        | 1.81     | 1.85          | -1.98        |
|     |           |       |        | 2690      | 38.59    | 38.90          | -0.79        | 1.98     | 2.06          | -4.00        |
|     |           |       |        | 2600      | 51.81    | 52.51          | -1.33        | 2.11     | 2.16          | -2.49        |
| D   | 1/23/2019 | 2600  | Body   | 2495      | 52.05    | 52.64          | -1.13        | 1.98     | 2.01          | -1.65        |
|     |           |       |        | 2690      | 51.54    | 52.40          | -1.64        | 2.22     | 2.29          | -3.16        |
|     |           |       |        | 5250      | 37.65    | 35.93          | 4.78         | 4.54     | 4.70          | -3.49        |
| E   | 1/16/2019 | 5250  | Head   | 5150      | 37.80    | 36.05          | 4.86         | 4.42     | 4.60          | -3.87        |
|     |           |       |        | 5350      | 37.44    | 35.82          | 4.53         | 4.66     | 4.80          | -3.03        |
|     |           |       |        | 5600      | 37.06    | 35.53          | 4.29         | 4.92     | 5.06          | -2.73        |
| Е   | 1/16/2019 | 5600  | Head   | 5500      | 37.27    | 35.65          | 4.55         | 4.80     | 4.96          | -3.17        |
|     |           |       |        | 5725      | 36.80    | 35.39          | 3.98         | 5.09     | 5.19          | -1.93        |
|     |           |       |        | 5750      | 36.83    | 35.36          | 4.15         | 5.13     | 5.21          | -1.53        |
| E   | 1/16/2019 | 5750  | Head   | 5700      | 36.90    | 35.42          | 4.18         | 5.04     | 5.16          | -2.35        |
|     |           |       |        | 5850      | 36.65    | 35.30          | 3.82         | 5.23     | 5.27          | -0.80        |
|     |           |       |        | 5250      | 48.63    | 48.95          | -0.66        | 5.34     | 5.35          | -0.26        |
| Е   | 1/16/2019 | 5250  | Body   | 5150      | 48.76    | 49.09          | -0.67        | 5.19     | 5.24          | -0.83        |
|     |           |       |        | 5350      | 48.40    | 48.82          | -0.85        | 5.50     | 5.47          | 0.48         |
|     |           |       |        | 5600      | 47.99    | 48.48          | -1.01        | 5.84     | 5.76          | 1.35         |
| E   | 1/16/2019 | 5600  | Body   | 5500      | 48.22    | 48.61          | -0.81        | 5.68     | 5.64          | 0.56         |
|     |           |       |        | 5725      | 47.71    | 48.31          | -1.24        | 6.05     | 5.91          | 2.36         |
|     |           |       |        | 5750      | 47.77    | 48.27          | -1.05        | 6.09     | 5.94          | 2.66         |
| E   | 1/16/2019 | 5750  | Body   | 5700      | 47.78    | 48.34          | -1.16        | 5.99     | 5.88          | 1.90         |
|     |           |       |        | 5850      | 47.53    | 48.20          | -1.39        | 6.23     | 6.00          | 3.87         |
|     |           |       |        | 5600      | 47.23    | 48.48          | -2.57        | 5.89     | 5.76          | 2.20         |
| Е   | 1/28/2019 | 5600  | Body   | 5500      | 47.10    | 48.61          | -3.11        | 5.64     | 5.64          | -0.15        |
|     |           |       |        | 5725      | 46.88    | 48.31          | -2.96        | 6.09     | 5.91          | 3.17         |

Dielectric Property Measurements Results (Continued):

| Dielectric | Property   | Weasuren      | ilenis Res     | ults (Cont         |          | ive Permittivit | hy (cr)            | C        | onductivity ( | <del>-</del> / |
|------------|------------|---------------|----------------|--------------------|----------|-----------------|--------------------|----------|---------------|----------------|
| SAR<br>Lab | Date       | Band<br>(MHz) | Tissue<br>Type | Frequency<br>(MHz) | Measured | Target          | Delta              | Measured | Target        | Delta<br>(%)   |
|            |            |               |                | 835                | 41.72    | 41.50           | <b>(%)</b><br>0.53 | 0.89     | 0.90          | -1.22          |
| G          | 1/14/2019  | 835           | Head           | 805                | 41.75    | 41.68           | 0.33               | 0.88     | 0.90          | -1.71          |
| 9          | 1/14/2019  | 033           | Heau           | 850                | 41.71    | 41.50           | 0.17               | 0.89     | 0.90          | -2.34          |
|            |            |               |                |                    |          |                 |                    |          |               |                |
| 0          | 4/4.4/0040 | 205           | Deste          | 835                | 53.66    | 55.20           | -2.79              | 0.96     | 0.97          | -1.45          |
| G          | 1/14/2019  | 835           | Body           | 805                | 53.66    | 55.33           | -3.03              | 0.95     | 0.97          | -1.93          |
|            |            |               |                | 850                | 53.64    | 55.16           | -2.75              | 0.96     | 0.99          | -2.69          |
|            |            |               |                | 5750               | 46.52    | 48.27           | -3.63              | 6.03     | 5.94          | 1.52           |
| G          | 1/29/2019  | 5750          | Body           | 5700               | 46.43    | 48.34           | -3.96              | 6.13     | 5.88          | 4.26           |
|            |            |               |                | 5850               | 46.23    | 48.20           | -4.09              | 6.26     | 6.00          | 4.33           |
|            |            |               |                | 1900               | 38.46    | 40.00           | -3.85              | 1.42     | 1.40          | 1.14           |
| Н          | 1/14/2019  | 1900          | Head           | 1850               | 38.55    | 40.00           | -3.63              | 1.39     | 1.40          | -1.00          |
|            |            |               |                | 1920               | 38.45    | 40.00           | -3.87              | 1.43     | 1.40          | 2.21           |
|            |            |               |                | 1900               | 52.65    | 53.30           | -1.22              | 1.58     | 1.52          | 3.82           |
| Н          | 1/14/2019  | 1900          | Body           | 1850               | 52.71    | 53.30           | -1.11              | 1.54     | 1.52          | 1.38           |
|            |            |               |                | 1920               | 52.62    | 53.30           | -1.28              | 1.59     | 1.52          | 4.87           |
|            |            |               |                | 2450               | 50.33    | 52.70           | -4.50              | 2.03     | 1.95          | 4.00           |
| Н          | 1/22/2019  | 2450          | Body           | 2400               | 50.38    | 52.77           | -4.53              | 1.99     | 1.90          | 4.64           |
|            |            |               |                | 2480               | 50.30    | 52.66           | -4.49              | 2.05     | 1.99          | 2.80           |
|            |            |               |                | 2450               | 37.73    | 39.20           | -3.75              | 1.75     | 1.80          | -2.78          |
| Н          | 1/23/2018  | 2450          | Head           | 2400               | 37.79    | 39.30           | -3.83              | 1.71     | 1.75          | -2.26          |
|            |            |               |                | 2480               | 37.73    | 39.16           | -3.66              | 1.77     | 1.83          | -3.52          |
|            |            |               |                | 5250               | 47.60    | 48.95           | -2.76              | 5.31     | 5.35          | -0.84          |
| Н          | 1/30/2019  | 5250          | Body           | 5150               | 47.78    | 49.09           | -2.66              | 5.17     | 5.24          | -1.23          |
|            |            |               |                | 5350               | 47.41    | 48.82           | -2.88              | 5.44     | 5.47          | -0.50          |

# 8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

## **System Performance Check Measurement Conditions:**

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
   For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
   For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

# **System Check Results**

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within  $\pm 10\%$  of the manufacturer calibrated dipole SAR target. Refer to Appendix B for the SAR System Check Plots.

|            |           |                |                            |                            | Me                     | asured Res          | ults for 1g S             | SAR            | Mea                    | asured Resu         | ılts for 10g              | SAR            |             |
|------------|-----------|----------------|----------------------------|----------------------------|------------------------|---------------------|---------------------------|----------------|------------------------|---------------------|---------------------------|----------------|-------------|
| SAR<br>Lab | Date      | Tissue<br>Type | Dipole Type_Serial #       | Dipole<br>Cal. Due<br>Data | Zoom Scan<br>to 100 mW | Normalize<br>to 1 W | Target<br>(Ref.<br>Value) | Delta<br>±10 % | Zoom Scan<br>to 100 mW | Normalize<br>to 1 W | Target<br>(Ref.<br>Value) | Delta<br>±10 % | Plot<br>No. |
| Α          | 1/22/2019 | Head           | D5GHzV2 SN:1138 (5.25 GHz) | 8/21/2019                  | 7.990                  | 79.90               | 82.60                     | -3.27          | 2.280                  | 22.80               | 23.80                     | -4.20          | 1,2         |
| Α          | 1/22/2019 | Body           | D5GHzV2 SN:1138 (5.25 GHz) | 8/21/2019                  | 7.570                  | 75.70               | 76.60                     | -1.17          | 2.160                  | 21.60               | 21.40                     | 0.93           |             |
| В          | 1/23/2019 | Body           | D2450V2 SN:899             | 3/16/2019                  | 5.550                  | 55.50               | 50.55                     | 9.79           | 2.530                  | 25.30               | 23.20                     | 9.05           | 3,4         |
| В          | 1/23/2019 | Head           | D2450V2 SN:899             | 3/16/2019                  | 4.990                  | 49.90               | 51.75                     | -3.57          | 2.320                  | 23.20               | 24.20                     | -4.13          |             |
| В          | 2/1/2019  | Body           | D2450V2 SN:899             | 3/16/2019                  | 5.280                  | 52.80               | 50.55                     | 4.45           | 2.430                  | 24.30               | 23.20                     | 4.74           |             |
| D          | 1/23/2019 | Head           | D2600V2 SN:1006            | 10/16/2019                 | 5.740                  | 57.40               | 59.31                     | -3.22          | 2.570                  | 25.70               | 26.43                     | -2.76          |             |
| D          | 1/23/2019 | Body           | D2600V2 SN:1006            | 10/16/2019                 | 6.080                  | 60.80               | 58.52                     | 3.90           | 2.670                  | 26.70               | 26.15                     | 2.10           | 5,6         |
| Е          | 1/16/2019 | Head           | D5GHzV2 SN:1138 (5.25 GHz) | 8/21/2019                  | 8.080                  | 80.80               | 82.60                     | -2.18          | 2.350                  | 23.50               | 23.80                     | -1.26          |             |
| Е          | 1/16/2019 | Head           | D5GHzV2 SN:1138 (5.6 GHz)  | 8/21/2019                  | 8.620                  | 86.20               | 86.00                     | 0.23           | 2.470                  | 24.70               | 24.60                     | 0.41           |             |
| Е          | 1/16/2019 | Head           | D5GHzV2 SN:1138 (5.75 GHz) | 8/21/2019                  | 7.610                  | 76.10               | 82.40                     | -7.65          | 2.180                  | 21.80               | 23.60                     | -7.63          | 7,8         |
| E          | 1/16/2019 | Body           | D5GHzV2 SN:1138 (5.25 GHz) | 8/21/2019                  | 8.020                  | 80.20               | 76.60                     | 4.70           | 2.280                  | 22.80               | 21.40                     | 6.54           | 9,10        |
| E          | 1/16/2019 | Body           | D5GHzV2 SN:1138 (5.6 GHz)  | 8/21/2019                  | 8.190                  | 81.90               | 79.50                     | 3.02           | 2.310                  | 23.10               | 22.20                     | 4.05           |             |
| Е          | 1/16/2019 | Body           | D5GHzV2 SN:1138 (5.75 GHz) | 8/21/2019                  | 7.350                  | 73.50               | 74.10                     | -0.81          | 2.070                  | 20.70               | 20.60                     | 0.49           |             |
| E          | 1/28/2019 | Body           | D5GHzV2 SN:1003 (5.60 GHz) | 3/13/2019                  | 8.170                  | 81.70               | 77.70                     | 5.15           | 2.300                  | 23.00               | 21.70                     | 5.99           | 11,12       |
| G          | 1/14/2019 | Head           | D835V2 SN:4d142            | 8/23/2019                  | 0.942                  | 9.42                | 9.48                      | -0.63          | 0.617                  | 6.17                | 6.10                      | 1.15           |             |
| G          | 1/14/2019 | Body           | D835V2 SN:4d142            | 8/23/2019                  | 1.010                  | 10.10               | 9.68                      | 4.34           | 0.663                  | 6.63                | 6.36                      | 4.25           | 13,14       |
| G          | 1/29/2019 | Body           | D5GHzV2 SN:1003 (5.75 GHz) | 3/13/2019                  | 7.670                  | 76.70               | 73.90                     | 3.79           | 2.160                  | 21.60               | 20.60                     | 4.85           | 15,16       |
| Н          | 1/14/2019 | Head           | D1900V2 SN:5d140           | 4/11/2019                  | 4.210                  | 42.10               | 38.93                     | 8.14           | 2.160                  | 21.60               | 20.14                     | 7.25           | 17,18       |
| Н          | 1/14/2019 | Body           | D1900V2 SN:5d140           | 4/11/2019                  | 4.260                  | 42.60               | 41.00                     | 3.90           | 2.190                  | 21.90               | 21.05                     | 4.04           |             |
| Н          | 1/22/2019 | Body           | D2450V2 SN:899             | 3/16/2019                  | 4.940                  | 49.40               | 50.55                     | -2.27          | 2.290                  | 22.90               | 23.20                     | -1.29          |             |
| Н          | 1/23/2019 | Head           | D2450V2 SN:899             | 3/16/2019                  | 5.340                  | 53.40               | 51.75                     | 3.19           | 2.470                  | 24.70               | 24.20                     | 2.07           | 19,20       |
| Н          | 1/30/2019 | Body           | D5GHzV2 SN:1003 (5.25 GHz) | 3/13/2019                  | 7.440                  | 74.40               | 73.60                     | 1.09           | 2.100                  | 21.00               | 20.50                     | 2.44           | 21,22       |

# 9. Conducted Output Power Measurements

### 9.1. GSM

# Per KDB 941225 D01 3G SAR Procedures:

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

When different maximum output power applies to GSM voice or GPRS/EDGE time slots, GSM voice and GPRS/EDGE time slots should be tested separately to determine compliance by summing the corresponding reported SAR.

The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance

### Per October 2013 TCB Workshop:

When the maximum frame-averaged powers levels are within 0.25 dB of each other, test the configuration with the most number of time slots.

SAR is not required for EDGE (8PSK) mode because the maximum output power and tune-up limit is  $\leq$  1/4dB higher than GPRS/EDGE (GMSK) or the adjusted SAR of the highest reported SAR of GPRS/EDGE (GMSK) is  $\leq$  1.2W/kg.

#### **GSM850 Measured Results**

|           | Coding           | Time  |        | Frog           | Maxir | num Avera  | ge Power ( | dBm)     |       |  |
|-----------|------------------|-------|--------|----------------|-------|------------|------------|----------|-------|--|
| Mode      | Coding<br>Scheme | Slots | Ch No. | Freq.<br>(MHz) | Meas  | ured       | Tune-ւ     | ıp Limit |       |  |
|           |                  |       |        | ` ′            |       | Frame Pw r |            |          |       |  |
|           |                  |       | 128    | 824.2          | 32.61 | 23.58      |            |          |       |  |
|           |                  | 1     | 190    | 836.6          | 32.61 | 23.58      | 34.00      | 24.97    |       |  |
|           |                  |       | 251    | 848.8          | 32.72 | 23.69      |            |          |       |  |
|           |                  |       | 128    | 824.2          | 30.13 | 24.11      |            |          |       |  |
|           |                  | 2     | 190    | 836.6          | 29.92 | 23.90      | 31.00      | 24.98    |       |  |
| GPRS/EDGE | CS1              |       | 251    | 848.8          | 30.05 | 24.03      |            |          |       |  |
| (GMSK)    | ω <sub>1</sub>   |       | 128    | 824.2          | 28.55 | 24.29      |            |          |       |  |
|           |                  | 3     | 190    | 836.6          | 28.73 | 24.47      | 30.00      | 25.74    |       |  |
|           |                  |       | 251    | 848.8          | 28.75 | 24.49      |            |          |       |  |
|           |                  |       | 128    | 824.2          | 27.22 | 24.21      |            |          |       |  |
|           |                  | 4     | 190    | 836.6          | 27.32 | 24.31      | 28.50      | 25.49    |       |  |
|           |                  |       | 251    | 848.8          | 27.26 | 24.25      |            |          |       |  |
|           |                  |       | 128    | 824.2          | 26.54 | 17.51      |            |          |       |  |
|           |                  | 1     | 190    | 836.6          | 26.48 | 17.45      | 27.50      | 18.47    |       |  |
|           |                  |       | 251    | 848.8          | 26.34 | 17.31      |            |          |       |  |
|           |                  |       | 128    | 824.2          | 24.71 | 18.69      |            |          |       |  |
|           |                  | 2     | 190    | 836.6          | 24.54 | 18.52      | 25.50      | 19.48    |       |  |
| EDGE      | MCS5             |       | 251    | 848.8          | 24.43 | 18.41      |            |          |       |  |
| (8PSK)    | IVICOS           |       | 128    | 824.2          | 23.28 | 19.02      |            |          |       |  |
|           |                  | 3     | 190    | 836.6          | 23.22 | 18.96      | 24.20      | 19.94    |       |  |
|           |                  |       | 251    | 848.8          | 23.13 | 18.87      |            |          |       |  |
|           |                  |       |        |                |       | 128        | 824.2      | 21.85    | 18.84 |  |
|           |                  | 4     | 190    | 836.6          | 21.68 | 18.67      | 22.50      | 19.49    |       |  |
|           |                  |       | 251    | 848.8          | 21.74 | 18.73      |            |          |       |  |

#### **Notes**

GPRS/EDGE (GMSK) mode with 3 time slots for Max power based on the Tune-up Procedure.

# **GSM1900 Measured Results**

|           | Co dia a         | T             |        | F              | Maxii      | num Avera  | ge Power ( | dBm)       |  |  |
|-----------|------------------|---------------|--------|----------------|------------|------------|------------|------------|--|--|
| Mode      | Coding<br>Scheme | Time<br>Slots | Ch No. | Freq.<br>(MHz) | Meas       | sured      | Tune-u     | ıp Limit   |  |  |
|           |                  |               |        | , ,            | Burst Pw r | Frame Pw r | Burst Pw r | Frame Pw r |  |  |
|           |                  |               | 512    | 1850.2         | 29.84      | 20.81      |            |            |  |  |
|           |                  | 1             | 661    | 1880.0         | 29.88      | 20.85      | 31.00      | 21.97      |  |  |
|           |                  |               | 810    | 1909.8         | 29.63      | 20.60      |            |            |  |  |
|           |                  |               | 512    | 1850.2         | 26.56      | 20.54      |            |            |  |  |
|           |                  | 2             | 661    | 1880.0         | 26.62      | 20.60      | 28.00      | 21.98      |  |  |
| GPRS/EDGE | CS1              |               | 810    | 1909.8         | 26.59      | 20.57      |            |            |  |  |
| (GMSK)    | ω <sub>1</sub>   |               | 512    | 1850.2         | 25.20      | 20.94      |            |            |  |  |
|           |                  | 3             | 661    | 1880.0         | 25.11      | 20.85      | 26.60      | 22.34      |  |  |
|           |                  |               | 810    | 1909.8         | 25.11      | 20.85      |            |            |  |  |
|           |                  | 4             | 512    | 1850.2         | 23.47      | 20.46      |            |            |  |  |
|           |                  |               | 661    | 1880.0         | 23.55      | 20.54      | 25.00      | 21.99      |  |  |
|           |                  |               | 810    | 1909.8         | 23.57      | 20.56      |            |            |  |  |
|           |                  |               | 512    | 1850.2         | 26.31      | 17.28      |            |            |  |  |
|           |                  | 1             | 661    | 1880.0         | 26.33      | 17.30      | 27.00 17   | 17.97      |  |  |
|           |                  |               | 810    | 1909.8         | 26.25      | 17.22      |            |            |  |  |
|           |                  | ļ             |        |                | 512        | 1850.2     | 23.84      | 17.82      |  |  |
|           |                  | 2             | 661    | 1880.0         | 23.79      | 17.77      | 24.20      | 18.18      |  |  |
| EDGE      | MCS5             |               | 810    | 1909.8         | 23.79      | 17.77      |            |            |  |  |
| (8PSK)    | IVICOS           |               | 512    | 1850.2         | 22.34      | 18.08      |            |            |  |  |
| , ,       |                  | 3             | 661    | 1880.0         | 22.32      | 18.06      | 23.00      | 18.74      |  |  |
|           |                  |               | 810    | 1909.8         | 22.32      | 18.06      |            |            |  |  |
|           |                  |               | 512    | 1850.2         | 21.07      | 18.06      |            |            |  |  |
|           |                  | 4             | 661    | 1880.0         | 21.17      | 18.16      | 21.50      | 18.49      |  |  |
|           |                  |               | 810    | 1909.8         | 21.19      | 18.18      |            |            |  |  |

Notes:

GPRS/EDGE (GMSK) mode with 3 time slots for Max power based on the Tune-up Procedure.

### 9.2. W-CDMA

#### Per KDB 941225 D01 3G SAR Procedures for W-CDMA:

Maximum output power is verified on the high, middle and low channels and using the appropriate 12.2 kbps RMC with TPC (transmit power control) set to all "1's"

#### Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1. A summary of these settings is illustrated below:

| Mode                    | Subtest                 | Rel99        |
|-------------------------|-------------------------|--------------|
|                         | Loopback Mode           | Test Mode 2  |
| WCDMA General Settings  | Rel99 RMC               | 12.2kbps RMC |
| WCDIMA General Settings | Power Control Algorithm | Algorithm2   |
|                         | βc/βd                   | 8/15         |

# **HSDPA Setup Procedures used to establish the test signals**

The following 4 Sub-tests were completed according to procedures in table C.10.1.4 of 3GPP TS 34.121-1 A summary of these settings is illustrated below:

Table C.10.1.4:  $\beta$  values for transmitter characteristics tests with HS-DPCCH

| Sub-test | βο       | βd       | β <sub>d</sub><br>(SF) | βс/βа    | βнs<br>(Note1,<br>Note 2) | CM (dB)<br>(Note 3) | MPR (dB)<br>(Note 3) |
|----------|----------|----------|------------------------|----------|---------------------------|---------------------|----------------------|
| 1        | 2/15     | 15/15    | 64                     | 2/15     | 4/15                      | 0.0                 | 0.0                  |
| 2        | 12/15    | 15/15    | 64                     | 12/15    | 24/15                     | 1.0                 | 0.0                  |
|          | (Note 4) | (Note 4) |                        | (Note 4) |                           |                     |                      |
| 3        | 15/15    | 8/15     | 64                     | 15/8     | 30/15                     | 1.5                 | 0.5                  |
| 4        | 15/15    | 4/15     | 64                     | 15/4     | 30/15                     | 1.5                 | 0.5                  |

Note 1:  $\triangle_{ACK}$ ,  $\triangle_{NACK}$  and  $\triangle_{CQI} = 30/15$  with  $\beta_{hs} = 30/15 * \beta_c$ .

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA,  $\triangle_{\text{ACK}}$  and  $\triangle_{\text{NACK}}$  = 30/15 with  $\beta_{\text{hc}}$  = 30/15 \*  $\beta_c$ , and  $\triangle_{\text{CQI}}$  = 24/15 with

 $\beta_{hs} = 24/15 * \beta_c$ 

Note 3: CM = 1 for  $\beta_{\rm e}/\beta_{\rm d}$  =12/15,  $\beta_{\rm hs}/\beta_{\rm e}$ =24/15. For all other combinations of DPDCH, DPCCH and HSDPCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the  $\beta_c/\beta_d$  ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to  $\beta_c$  = 11/15 and  $\beta_d$  = 15/15

### **HSUPA Setup Procedures used to establish the test signals**

The following 5 Sub-tests were completed according to procedures in table C.11.1.3 of 3GPP TS 34.121-1. A summary of these settings is illustrated below:

Table C.11.1.3:  $\beta$  values for transmitter characteristics tests with HS-DPCCH and E-DCH

| Sub-<br>test                                                                                                                                                                                                                                                                                                                                                              | βα    | βa    | β <sub>d</sub><br>(SF) | βс∕βа | βнs<br>(Note1) | βес   | βed<br>(Note 4)<br>(Note 5)                          | β <sub>ed</sub><br>(SF) | β <sub>ed</sub><br>(Codes) | CM<br>(dB)<br>(Note<br>2) | MPR<br>(dB)<br>(Note<br>2)<br>(Note<br>6) | AG<br>Index<br>(Note<br>5) | E-<br>TFCI |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------------------|-------|----------------|-------|------------------------------------------------------|-------------------------|----------------------------|---------------------------|-------------------------------------------|----------------------------|------------|
| 1   11/15   15/15   64   11/15   22/15   209/2   1309/225   4   1   1.0   0.0   20   75   (Note 3)   (Note 3)   3)   3)   3   3   3   3   3   3                                                                                                                                                                                                                           |       |       |                        |       |                |       |                                                      |                         |                            |                           |                                           |                            |            |
| 2                                                                                                                                                                                                                                                                                                                                                                         | 6/15  | 15/15 | 64                     | 6/15  | 12/15          | 12/15 | 94/75                                                | 4                       | 1                          | 3.0                       | 2.0                                       | 12                         | 67         |
| 3                                                                                                                                                                                                                                                                                                                                                                         | 15/15 | 9/15  | 64                     | 15/9  | 30/15          | 30/15 | β <sub>ed</sub> 1: 47/15<br>β <sub>ed</sub> 2: 47/15 | 4                       | 2                          | 2.0                       | 1.0                                       | 15                         | 92         |
| 4                                                                                                                                                                                                                                                                                                                                                                         | 2/15  | 15/15 | 64                     | 2/15  | 4/15           | 2/15  | 56/75                                                | 4                       | 1                          | 3.0                       | 2.0                                       | 17                         | 71         |
| 5                                                                                                                                                                                                                                                                                                                                                                         | 15/15 | 0     | -                      | -     | 5/15           | 5/15  | 47/15                                                | 4                       | 1                          | 1.0                       | 0.0                                       | 12                         | 67         |
| Note 1: For sub-test 1 to 4, $\Delta_{\text{ACK}}$ , $\Delta_{\text{NACK}}$ and $\Delta_{\text{CQI}}$ = 30/15 with $\beta_{hs}$ = 30/15 * $\beta_c$ . For sub-test 5, $\Delta_{\text{ACK}}$ , $\Delta_{\text{NACK}}$ and $\Delta_{\text{CQI}}$ = 5/15 with $\beta_{hs}$ = 5/15 * $\beta_c$ .                                                                              |       |       |                        |       |                |       |                                                      |                         |                            |                           |                                           |                            |            |
| Note 2: CM = 1 for β <sub>c</sub> /β <sub>d</sub> =12/15, β <sub>hs</sub> /β <sub>c</sub> =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.  Note 3: For subtest 1 the β <sub>c</sub> /β <sub>d</sub> ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by |       |       |                        |       |                |       |                                                      |                         |                            |                           |                                           |                            |            |

 $<sup>\</sup>begin{array}{ccc} & TS25.306 \ Table \ 5.1 \ g. \\ \text{Note 5:} & \beta_{ed} \ can \ not \ be \ set \ directly; \ it \ is \ set \ by \ Absolute \ Grant \ Value. \end{array}$ 

setting the signalled gain factors for the reference TFC (TF1, TF1) to  $\beta_c$  = 10/15 and  $\beta_d$  = 15/15. In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to

## HSPA+ Setup Procedures used to establish the test signals

Note 4:

Since 16QAM is not used for uplink, the uplink Category and release is same as HSUPA. Therefore, the RF conducted power is not measured.

SAR measurement is not required for the HSDPA, HSUPA, and HSPA $^+$ . When primary mode and the adjusted SAR is  $\leq 1.2$  W/kg and secondary mode is  $\leq 1/4$  dB higher than the primary mode

Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

# **W-CDMA Band II Measured Results**

| D.4-       | do         | LII. Cla Ma | Freq.  | Maximum Ave  | erage P | Power (dBm)   |  |
|------------|------------|-------------|--------|--------------|---------|---------------|--|
| IVIC       | ode        | UL Ch No.   | (MHz)  | Measured Pwr | MPR     | Tune-up Limit |  |
|            | Rel 99     | 9262        | 1852.4 | 25.04        |         |               |  |
| Release 99 | (RMC, 12.2 | 9400        | 1880.0 | 25.20        | N/A     | 25.50         |  |
|            | kbps)      | 9538        | 1907.6 | 25.20        |         |               |  |
|            |            | 9262        | 1852.4 | 24.68        |         |               |  |
|            | Subtest 1  | 9400        | 1880.0 | 24.54        | 0       | 25.50         |  |
|            |            | 9538        | 1907.6 | 24.42        |         |               |  |
|            |            | 9262        | 1852.4 | 24.65        |         |               |  |
|            | Subtest 2  | 9400        | 1880.0 | 24.56        | 0       | 25.50         |  |
| HSDPA      |            | 9538        | 1907.6 | 24.44        |         |               |  |
| HODPA      |            | 9262        | 1852.4 | 23.66        |         |               |  |
|            | Subtest 3  | 9400        | 1880.0 | 23.55        | 0.0     | 25.50         |  |
|            |            | 9538        | 1907.6 | 23.38        |         |               |  |
|            |            | 9262        | 1852.4 | 25.05        |         |               |  |
|            | Subtest 4  | 9400        | 1880.0 | 25.20        | 0.0     | 25.50         |  |
|            |            | 9538        | 1907.6 | 25.28        |         |               |  |
|            |            | 9262        | 1852.4 | 23.00        |         |               |  |
|            | Subtest 1  | 9400        | 1880.0 | 21.48        | 2       | 23.00         |  |
|            |            | 9538        | 1907.6 | 21.38        |         |               |  |
|            |            | 9262        | 1852.4 | 21.09        |         |               |  |
|            | Subtest 2  | 9400        | 1880.0 | 20.54        | 3       | 22.00         |  |
|            |            | 9538        | 1907.6 | 20.42        |         |               |  |
|            |            | 9262        | 1852.4 | 23.00        |         |               |  |
| HSUPA      | Subtest 3  | 9400        | 1880.0 | 21.58        | 2       | 23.00         |  |
|            |            | 9538        | 1907.6 | 21.44        |         |               |  |
|            |            | 9262        | 1852.4 | 21.65        |         |               |  |
|            | Subtest 4  | 9400        | 1880.0 | 20.55        | 3       | 22.00         |  |
|            |            | 9538        | 1907.6 | 20.39        |         |               |  |
|            |            | 9262        | 1852.4 | 24.99        |         |               |  |
|            | Subtest 5  | 9400        | 1880.0 | 23.43        | 0       | 25.00         |  |
|            |            | 9538        | 1907.6 | 23.28        |         |               |  |

# **W-CDMA Band V Measured Results**

| , A-       | , do       | LII Ch Na | Freq.       | Maximum Ave  | erage P | Power (dBm)   |  |
|------------|------------|-----------|-------------|--------------|---------|---------------|--|
| IVIC       | ode        | UL Ch No. | (MHz)       | Measured Pwr | MPR     | Tune-up Limit |  |
|            | Rel 99     | 4132      | 826.4       | 24.74        |         |               |  |
| Release 99 | (RMC, 12.2 | 4183      | 836.6       | 24.52        | N/A     | 25.50         |  |
|            | kbps)      | 4233      | 846.6       | 24.27        |         |               |  |
|            |            | 4132      | 826.4       | 23.37        |         |               |  |
|            | Subtest 1  | 4183      | 836.6       | 23.15        | 0       | 24.00         |  |
|            |            | 4233      | 846.6       | 22.87        |         |               |  |
|            |            | 4132      | 826.4       | 22.56        |         |               |  |
|            | Subtest 2  | 4183      | 836.6       | 22.25        | 0       | 24.00         |  |
| HSDPA      |            | 4233      | 846.6       | 22.02        |         |               |  |
| HODFA      |            | 4132      | 826.4       | 21.36        |         |               |  |
|            | Subtest 3  | 4183      | 836.6       | 21.41        | 0.5     | 23.50         |  |
|            |            | 4233      | 846.6       | 21.64        |         |               |  |
|            |            | 4132      | 826.4       | 21.45        |         |               |  |
|            | Subtest 4  | 4183      | 836.6       | 21.08        | 0.5     | 23.50         |  |
|            |            | 4233      | 846.6       | 21.12        |         |               |  |
|            |            | 4132      | 826.4 19.89 |              |         |               |  |
|            | Subtest 1  | 4183      | 836.6       | 19.68        | 2       | 21.80         |  |
|            |            | 4233      | 846.6       | 19.33        |         |               |  |
|            |            | 4132      | 826.4       | 18.91        |         |               |  |
|            | Subtest 2  | 4183      | 836.6       | 18.66        | 3       | 20.80         |  |
|            |            | 4233      | 846.6       | 18.33        |         |               |  |
|            |            | 4132      | 826.4       | 19.93        |         |               |  |
| HSUPA      | Subtest 3  | 4183      | 836.6       | 19.68        | 2       | 21.80         |  |
|            |            | 4233      | 846.6       | 19.35        |         |               |  |
|            |            | 4132      | 826.4       | 18.87        | _       |               |  |
|            | Subtest 4  | 4183      | 836.6       | 18.55        | 3       | 20.80         |  |
|            |            | 4233      | 846.6       | 18.31        |         |               |  |
|            |            | 4132      | 826.4       | 22.76        |         |               |  |
|            | Subtest 5  | 4183      | 836.6       | 22.42        | 0       | 23.80         |  |
|            |            | 4233      | 846.6       | 22.02        |         |               |  |

# 9.3. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3

| Modulation | Cha | nnel bandw | idth / Tra | ansmission | bandwidth ( | N <sub>RB</sub> ) | MPR (dB) |  |  |  |
|------------|-----|------------|------------|------------|-------------|-------------------|----------|--|--|--|
|            | 1.4 | 3.0        | 5          | 10         | 15          | 20                |          |  |  |  |
|            | MHz | MHz        | MHz        | MHz        | MHz         | MHz               |          |  |  |  |
| QPSK       | > 5 | > 4        | > 8        | > 12       | > 16        | > 18              | ≤ 1      |  |  |  |
| 16 QAM     | ≤ 5 | ≤ 4        | ≤ 8        | ≤ 12       | ≤ 16        | ≤ 18              | ≤ 1      |  |  |  |
| 16 QAM     | > 5 | > 4        | > 8        | > 12       | > 16        | > 18              | ≤ 2      |  |  |  |
| 64 QAM     | ≤ 5 | ≤ 4        | ≤ 8        | ≤ 12       | ≤ 16        | ≤ 18              | ≤ 2      |  |  |  |
| 64 QAM     | > 5 | > 4        | > 8        | > 12       | > 16        | > 18              | ≤ 3      |  |  |  |
| 256 QAM    |     | ≥ 1        |            |            |             |                   |          |  |  |  |

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS 01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

| Network<br>Signalling<br>value | Requirements<br>(subclause) | E-UTRA Band | Channel<br>bandwidth<br>(MHz) | Resources<br>Blocks (N <sub>RB</sub> ) | A-MPR (dB) |
|--------------------------------|-----------------------------|-------------|-------------------------------|----------------------------------------|------------|
| NS_01                          | 6.6.2.1.1                   | Table 5.5-1 | 1.4, 3, 5, 10,<br>15, 20      | Table 5.6-1                            | N/A        |

LTE QPSK configuration has the highest maximum average output power per 3GPP standard.

SAR measurement is not required for the 16QAM. When the highest maximum output power for 16QAM is  $\leq \frac{1}{2}$  dB higher than the QPSK or when the reported SAR for the QPSK configuration is  $\leq 1.45$  W/kg.

Please refer to section 6.3. for LTE detail test channels.

### LTE Band 5 Measured Results

|          | 5 Measured Results  Maximum Average Power (dBm)  RB RB RB 20525 |            |        |           |           |                |     |         |  |
|----------|-----------------------------------------------------------------|------------|--------|-----------|-----------|----------------|-----|---------|--|
| BW       | Mode                                                            |            |        |           | 20525     | Ů (            |     | Tune-up |  |
| (MHz)    |                                                                 | Allocation | offset |           | 836.5 MHz |                | MPR | Limit   |  |
|          |                                                                 | 1          | 0      |           | 24.50     |                | 0   | 25      |  |
|          |                                                                 | 1          | 25     |           | 24.50     |                | 0   | 25      |  |
|          |                                                                 | 1          | 49     |           | 24.50     |                | 0   | 25      |  |
|          | QPSK                                                            | 25         | 0      |           | 23.05     |                | 1   | 24      |  |
|          |                                                                 | 25         | 12     |           | 23.05     |                | 1   | 24      |  |
|          |                                                                 | 25         | 25     |           | 23.06     |                | 1   | 24      |  |
|          |                                                                 | 50         | 0      |           | 23.05     |                | 1   | 24      |  |
| 10 MHz   |                                                                 | 1          | 0      |           | 23.50     |                | 1   | 24      |  |
|          |                                                                 | 1          | 25     |           | 23.50     |                | 1   | 24      |  |
|          |                                                                 | 1          | 49     |           | 23.50     |                | 1   | 24      |  |
|          | 16QAM                                                           | 25         | 0      |           | 22.50     |                | 2   | 23      |  |
|          |                                                                 | 25         | 12     |           | 22.50     |                | 2   | 23      |  |
|          |                                                                 | 25         | 25     |           | 22.50     |                | 2   | 23      |  |
|          |                                                                 | 50         | 0      |           | 22.50     |                | 2   | 23      |  |
|          |                                                                 |            |        |           |           | rage Power (di |     |         |  |
| BW       | Mode                                                            | RB         | RB     | 20425     | 20525     | 20625          | ,   | Tune-up |  |
| (MHz)    |                                                                 | Allocation | offset | 826.5 MHz | 836.5 MHz | 846.5 MHz      | MPR | Limit   |  |
|          |                                                                 | 1          | 0      | 23.72     | 23.78     | 23.55          | 0   | 25      |  |
|          |                                                                 | 1          | 12     | 23.74     | 23.75     | 23.51          | 0   | 25      |  |
|          |                                                                 | 1          | 24     | 23.68     | 23.76     | 23.47          | 0   | 25      |  |
|          | QPSK                                                            | 12         | 0      | 22.17     | 22.25     | 22.00          | 1   | 24      |  |
|          | α. σ. τ                                                         | 12         | 7      | 22.16     | 22.25     | 22.00          | 1   | 24      |  |
|          |                                                                 | 12         | 13     | 22.15     | 22.27     | 22.00          | 1   | 24      |  |
|          |                                                                 | 25         | 0      | 22.18     | 22.25     | 22.02          | 1   | 24      |  |
| 5 MHz    |                                                                 | 1          | 0      | 22.67     | 22.76     | 22.51          | 1   | 24      |  |
|          |                                                                 | 1          | 12     | 22.60     | 22.71     | 22.45          | 1   | 24      |  |
|          |                                                                 | 1          | 24     | 22.60     | 22.73     | 22.44          | 1   | 24      |  |
|          | 16QAM                                                           | 12         | 0      | 21.58     | 21.59     | 21.49          | 2   | 23      |  |
|          | 10001111                                                        | 12         | 7      | 21.61     | 21.66     | 21.42          | 2   | 23      |  |
|          |                                                                 | 12         | 13     | 21.58     | 21.61     | 21.43          | 2   | 23      |  |
|          |                                                                 | 25         | 0      | 21.71     | 21.70     | 21.42          | 2   | 23      |  |
|          |                                                                 | 20         | Ü      | 21.71     |           | rage Power (di |     | 20      |  |
| BW       | Mode                                                            | RB         | RB     | 20415     | 20525     | 20635          |     | Tune-up |  |
| (MHz)    |                                                                 | Allocation | offset | 825.5 MHz | 836.5 MHz | 847.5 MHz      | MPR | Limit   |  |
|          |                                                                 | 1          | 0      | 23.79     | 23.87     | 23.65          | 0   | 25      |  |
|          |                                                                 | 1          | 8      | 23.78     | 23.84     | 23.62          | 0   | 25      |  |
|          |                                                                 | 1          | 14     | 23.74     | 23.86     | 23.54          | 0   | 25      |  |
|          | QPSK                                                            | 8          | 0      | 22.17     | 22.26     | 22.02          | 1   | 24      |  |
|          | 2. 5.1                                                          | 8          | 4      | 22.15     | 22.28     | 22.00          | 1   | 24      |  |
|          |                                                                 | 8          | 7      | 22.16     | 22.28     | 22.00          | 1   | 24      |  |
|          |                                                                 | 15         | 0      | 22.17     | 22.25     | 22.00          | 1   | 24      |  |
| 3 MHz    |                                                                 | 1          | 0      | 22.91     | 22.63     | 22.42          | 1   | 24      |  |
|          |                                                                 | 1          | 8      | 22.98     | 22.49     | 22.32          | 1   | 24      |  |
|          |                                                                 | 1          | 14     | 22.87     | 22.59     | 22.45          | 1   | 24      |  |
|          | 16QAM                                                           | 8          | 0      | 21.72     | 21.72     | 21.46          | 2   | 23      |  |
|          | 10301111                                                        | 8          | 4      | 21.72     | 21.75     | 21.45          | 2   | 23      |  |
|          |                                                                 | 8          | 7      | 21.70     | 21.75     | 21.42          | 2   | 23      |  |
|          |                                                                 | 15         | 0      | 21.62     | 21.69     | 21.42          | 2   | 23      |  |
| Noto(s): |                                                                 | 10         | U      | 21.02     | 21.09     | 21.41          |     | 23      |  |

Note(s):

10 MHz Bandwidths does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices

LTE Band 5 Measured Results (continued)

| DW          |       | DD               | 55           |           | Maximum Ave | rage Power (di | Bm)   |         |
|-------------|-------|------------------|--------------|-----------|-------------|----------------|-------|---------|
| BW<br>(MHz) | Mode  | RB<br>Allocation | RB<br>offset | 20407     | 20525       | 20643          | MPR   | Tune-up |
| (141112)    |       | Tulocation       | Olioci       | 824.7 MHz | 836.5 MHz   | 848.3 MHz      | IVIPK | Limit   |
|             |       | 1                | 0            | 23.51     | 23.79       | 23.51          | 0     | 25      |
|             |       | 1                | 3            | 23.44     | 23.76       | 23.44          | 0     | 25      |
|             |       | 1                | 5            | 23.44     | 23.77       | 23.44          | 0     | 25      |
|             | QPSK  | 3                | 0            | 23.54     | 23.74       | 23.54          | 0     | 25      |
|             |       | 3                | 1            | 23.51     | 23.75       | 23.51          | 0     | 25      |
|             |       | 3                | 3            | 23.52     | 23.74       | 23.52          | 0     | 25      |
| 1.4 MHz     |       | 6                | 0            | 22.00     | 22.22       | 22.00          | 1     | 24      |
| 1.4 1/11/12 |       | 1                | 0            | 22.39     | 22.59       | 22.39          | 1     | 24      |
|             |       | 1                | 3            | 22.44     | 22.60       | 22.44          | 1     | 24      |
|             |       | 1                | 5            | 22.35     | 22.59       | 22.35          | 1     | 24      |
|             | 16QAM | 3                | 0            | 22.38     | 22.63       | 22.38          | 1     | 24      |
|             |       | 3                | 1            | 22.41     | 22.63       | 22.41          | 1     | 24      |
|             |       | 3                | 3            | 22.35     | 22.62       | 22.35          | 1     | 24      |
|             |       | 6                | 0            | 21.35     | 21.68       | 21.35          | 2     | 23      |

# LTE Band 41 Measured Results

| Mode   Absorbino   offset   39750   40185   40620   31055   311055   41400   MFR   Tune-up   Limit     |           |        | leasure    |        |          | IV         | aximum Aver | age Power (di | 3m)      |     |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|------------|--------|----------|------------|-------------|---------------|----------|-----|---------|
| No.   No.   No.   Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | Mode   |            |        | 39750    |            |             |               |          |     | Tune-un |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (MHz)     | mode   | Allocation | offset |          |            |             |               |          | MPR |         |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        | 1          | 0      |          |            |             |               |          | 0   | 25      |
| OPSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |        |            |        |          |            |             |               |          |     |         |
| OPSK   50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |        |            |        |          |            |             |               |          |     |         |
| 20 MHz    160AM   160A |           | OPSK   |            |        |          | ł          |             | l             |          |     |         |
| 20 MHz    100   0   22.50   22.81   22.77   22.76   22.33   22.58   1   24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | QIOIC  |            |        |          |            |             | l             |          |     |         |
| 20 MHz    100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |        |            |        |          | ł          |             | 1             |          |     |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        |            |        |          |            |             | l             |          |     |         |
| Hart      | 20 MHz    |        |            |        |          |            |             |               |          |     |         |
| 160AM   50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |        |            |        |          |            |             |               |          |     |         |
| HOAM   SO   O   21.63   21.90   21.79   21.43   21.70   C   23   23   25   25   24   21.59   21.84   21.81   21.37   21.65   C   23   23   23   23   23   23   23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        |            |        |          |            |             |               |          |     |         |
| Solition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | 160AM  |            |        |          |            |             |               |          |     |         |
| So   So   So   So   So   So   So   So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | TOQAW  |            |        |          |            |             |               |          |     |         |
| Mode   RB   RB   RB   RB   RB   RB   RB   R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |            |        |          |            |             |               |          |     |         |
| Mode   RB   Allocation   RB   Allocation   September   Allocation      |           |        |            |        |          |            |             |               |          |     |         |
| Mode   Allocation   offset   2506 M+tz   2593 M+tz   2593 M+tz   2580 M+tz   2580 M+tz   2593 M+tz   2580 M+tz     |           |        | 100        | U      | 21.61    |            |             |               |          |     | 23      |
| Allocation   Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BW        |        | RB         | RB     | 00750    |            |             |               |          |     | _       |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (MHz)     | Iviode | Allocation | offset |          |            |             |               |          | MPR | •       |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        | 4          | 0      |          |            |             |               |          |     |         |
| April                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |        |            |        |          | ł          |             | 1             |          |     |         |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        |            |        |          | ł          |             | 1             |          |     |         |
| 15 MHz  16 Mhz  17 Mhz  18 Mhz |           |        |            |        |          | t          |             | 1             |          | -   |         |
| 15 MHz    16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 MHz   16 |           | QPSK   |            |        |          |            |             |               |          |     |         |
| 15 MHz    T5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |        | 36         |        |          |            |             |               |          | 1   |         |
| 15 MHz    1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        |            |        |          |            |             |               |          |     |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 MHz    |        |            |        |          | 22.89      |             |               | 22.62    |     |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        | 1          | 0      | 22.27    | 23.06      | 22.72       | 22.29         | 22.80    | 1   | 24      |
| 16QAM   36   0   21.60   21.96   21.74   21.45   21.72   2   23     36   20   21.59   21.94   21.78   21.41   21.72   2   23     36   39   21.63   21.91   21.75   21.39   21.71   2   23     75   0   21.60   21.92   21.80   21.40   21.64   2   23     8W (MHz)   Mode   RB Allocation   RRB Allocation   RRB Allocation   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        | 1          | 37     | 22.47    | 23.02      | 22.58       | 22.10         | 22.78    | 1   | 24      |
| Second Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        | 1          | 74     | 22.42    | 22.91      | 22.51       | 22.13         | 22.83    | 1   | 24      |
| Mode   RB   RB   RB   RB   RB   RB   RB   R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 16QAM  | 36         | 0      | 21.60    | 21.96      | 21.74       | 21.45         | 21.72    | 2   | 23      |
| Note   RB   RB   RB   RB   RB   RB   RB   R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        | 36         | 20     | 21.59    | 21.94      | 21.78       | 21.41         | 21.72    | 2   | 23      |
| Note      |           |        | 36         | 39     | 21.63    | 21.91      | 21.75       | 21.39         | 21.71    | 2   | 23      |
| Mode      |           |        | 75         | 0      | 21.60    | 21.92      | 21.80       | 21.40         | 21.64    | 2   | 23      |
| Mode   Allocation   Offset   39750   40185   40620   41055   41490   MFR   Tune-up Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B/W       |        | DR         | DR     |          | M          | aximum Aver | age Power (di | 3m)      |     |         |
| 1 0 23.27 23.49 23.45 23.17 23.28 0 25 1 25 23.26 23.43 23.49 23.14 23.27 0 25 1 49 23.25 23.41 23.54 23.11 23.28 0 25 1 49 23.25 23.41 23.54 23.11 23.28 0 25 25 12 22.54 22.81 22.75 22.38 22.60 1 24 25 25 25 22.53 22.79 22.80 22.35 22.59 1 24 25 25 25 22.50 22.79 22.75 22.35 22.57 1 24 26 27 27 22.36 22.57 1 24 27 28 28 22.59 22.34 22.81 22.77 22.36 22.59 1 24 28 25 25 22.53 22.79 22.80 22.35 22.59 1 24 29 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | Mode   |            |        | 39750    | 40185      | 40620       | 41055         | 41490    | MPR |         |
| 1 25 23.26 23.43 23.49 23.14 23.27 0 25 1 49 23.25 23.41 23.54 23.11 23.28 0 25 25 0 22.55 22.84 22.75 22.38 22.60 1 24 25 12 22.54 22.81 22.77 22.36 22.59 1 24 25 25 25 22.53 22.79 22.80 22.35 22.59 1 24 50 0 22.56 22.79 22.75 22.35 22.57 1 24 1 0 22.26 23.05 22.59 22.34 22.86 1 24 1 25 22.23 23.00 22.61 22.32 22.84 1 24 1 49 22.22 22.98 22.65 22.29 22.84 1 24 16QAM 25 0 21.60 21.89 21.77 21.43 21.67 2 23 25 12 21.59 21.85 21.80 21.41 21.65 2 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ` ′       |        |            |        | 2506 MHz | 2549.5 MHz | 2593 MHz    | 2636.5 MHz    | 2680 MHz |     | Limit   |
| 1 49 23.25 23.41 23.54 23.11 23.28 0 25  QPSK 25 0 22.55 22.84 22.75 22.38 22.60 1 24  25 12 22.54 22.81 22.77 22.36 22.59 1 24  25 25 25 22.53 22.79 22.80 22.35 22.59 1 24  50 0 22.50 22.79 22.75 22.35 22.57 1 24  1 0 22.26 23.05 22.59 22.34 22.86 1 24  1 25 22.23 23.00 22.61 22.32 22.84 1 24  1 49 22.22 22.98 22.65 22.29 22.84 1 24  16QAM 25 0 21.60 21.89 21.77 21.43 21.67 2 23  25 12 21.59 21.85 21.80 21.41 21.65 2 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |        | 1          | 0      |          | 23.49      | 23.45       | 23.17         | 23.28    | 0   | 25      |
| QPSK 25 0 22.55 22.84 22.75 22.38 22.60 1 24 25 12 22.54 22.81 22.77 22.36 22.59 1 24 25 25 25 22.53 22.79 22.80 22.35 22.59 1 24 50 0 22.50 22.79 22.75 22.35 22.57 1 24 1 0 22.26 23.05 22.59 22.34 22.86 1 24 1 25 22.23 23.00 22.61 22.32 22.84 1 24 1 49 22.22 22.98 22.65 22.29 22.84 1 24 1 49 22.22 22.98 22.65 22.29 22.84 1 24 1 49 22.22 22.98 22.65 22.29 22.84 1 24 1 25 25 12 21.59 21.85 21.80 21.41 21.65 2 23 25 25 25 25 21.58 21.84 21.81 21.41 21.65 2 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |        | 1          | 25     | 23.26    | 23.43      | 23.49       | 23.14         | 23.27    | 0   | 25      |
| 10 MHz  10 MHz  25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        | 1          | 49     | 23.25    | 23.41      | 23.54       | 23.11         | 23.28    | 0   | 25      |
| 10 MHz  25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | QPSK   | 25         | 0      | 22.55    | 22.84      | 22.75       | 22.38         | 22.60    | 1   | 24      |
| 10 MHz    50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |        | 25         | 12     | 22.54    | 22.81      | 22.77       | 22.36         | 22.59    | 1   | 24      |
| 1 0 22.26 23.05 22.59 22.34 22.86 1 24 1 25 22.23 23.00 22.61 22.32 22.84 1 24 1 49 22.22 22.98 22.65 22.29 22.84 1 24 25 0 21.60 21.89 21.77 21.43 21.67 2 23 25 12 21.59 21.85 21.80 21.41 21.65 2 23 25 25 25 21.58 21.84 21.81 21.41 21.65 2 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |        | 25         | 25     | 22.53    | 22.79      | 22.80       | 22.35         | 22.59    | 1   | 24      |
| 1 0 22.26 23.05 22.59 22.34 22.86 1 24 1 25 22.23 23.00 22.61 22.32 22.84 1 24 1 49 22.22 22.98 22.65 22.29 22.84 1 24 25 0 21.60 21.89 21.77 21.43 21.67 2 23 25 12 21.59 21.85 21.80 21.41 21.65 2 23 25 25 25 21.58 21.84 21.81 21.41 21.65 2 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 MH-    |        | 50         | 0      | 22.50    | 22.79      | 22.75       | 22.35         | 22.57    | 1   | 24      |
| 1 49 22.22 22.98 22.65 22.29 22.84 1 24 25 0 21.60 21.89 21.77 21.43 21.67 2 23 25 12 21.59 21.85 21.80 21.41 21.65 2 23 25 25 25 21.58 21.84 21.81 21.41 21.65 2 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I U IVINZ |        | 1          | 0      | 22.26    | 23.05      | 22.59       | 22.34         | 22.86    | 1   | 24      |
| 16QAM 25 0 21.60 21.89 21.77 21.43 21.67 2 23 25 12 21.59 21.85 21.80 21.41 21.65 2 23 25 25 25 21.58 21.84 21.81 21.41 21.65 2 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        | 1          | 25     | 22.23    | 23.00      | 22.61       | 22.32         | 22.84    | 1   | 24      |
| 25         12         21.59         21.85         21.80         21.41         21.65         2         23           25         25         21.58         21.84         21.81         21.41         21.65         2         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        | 1          | 49     | 22.22    | 22.98      | 22.65       | 22.29         | 22.84    | 1   | 24      |
| 25         25         21.58         21.84         21.81         21.41         21.65         2         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | 16QAM  | 25         | 0      | 21.60    | 21.89      | 21.77       | 21.43         | 21.67    | 2   | 23      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        | 25         | 12     | 21.59    | 21.85      | 21.80       | 21.41         | 21.65    | 2   | 23      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        | 25         | 25     | 21.58    | 21.84      | 21.81       | 21.41         | 21.65    | 2   | 23      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        | 50         | 0      | 21.59    | 21.83      | 21.80       | 21.41         | 21.64    | 2   | 23      |

# LTE Band 41 Measured Results (continued)

| DW          |       | DD               | DD           |          | M          | aximum Aver | age Power (di | 3m)      |       |         |
|-------------|-------|------------------|--------------|----------|------------|-------------|---------------|----------|-------|---------|
| BW<br>(MHz) | Mode  | RB<br>Allocation | RB<br>offset | 39750    | 40185      | 40620       | 41055         | 41490    | MPR   | Tune-up |
| (IVII IZ)   |       | Allocation       | Orract       | 2506 MHz | 2549.5 MHz | 2593 MHz    | 2636.5 MHz    | 2680 MHz | IVIPK | Limit   |
|             |       | 1                | 0            | 23.31    | 23.52      | 23.42       | 23.12         | 23.31    | 0     | 25      |
|             |       | 1                | 12           | 23.30    | 23.50      | 23.43       | 23.09         | 23.30    | 0     | 25      |
|             |       | 1                | 24           | 23.27    | 23.48      | 23.46       | 23.09         | 23.34    | 0     | 25      |
|             | QPSK  | 12               | 0            | 22.57    | 22.83      | 22.75       | 22.36         | 22.58    | 1     | 24      |
|             |       | 12               | 7            | 22.56    | 22.82      | 22.74       | 22.35         | 22.57    | 1     | 24      |
|             |       | 12               | 13           | 22.55    | 22.81      | 22.75       | 22.33         | 22.57    | 1     | 24      |
| 5 MHz       |       | 25               | 0            | 22.55    | 22.80      | 22.74       | 22.34         | 22.57    | 1     | 24      |
| J IVITIZ    |       | 1                | 0            | 22.53    | 22.45      | 22.69       | 22.29         | 22.20    | 1     | 24      |
|             |       | 1                | 12           | 22.50    | 22.44      | 22.70       | 22.29         | 22.20    | 1     | 24      |
|             |       | 1                | 24           | 22.51    | 22.45      | 22.76       | 22.27         | 22.23    | 1     | 24      |
|             | 16QAM | 12               | 0            | 21.52    | 21.74      | 21.80       | 21.30         | 21.55    | 2     | 23      |
|             |       | 12               | 7            | 21.50    | 21.71      | 21.81       | 21.29         | 21.53    | 2     | 23      |
|             |       | 12               | 13           | 21.51    | 21.70      | 21.81       | 21.28         | 21.52    | 2     | 23      |
|             |       | 25               | 0            | 21.58    | 21.81      | 21.83       | 21.37         | 21.62    | 2     | 23      |

# 9.4. LTE Carrier Aggregation

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

For inter-band carrier aggregation with uplink assigned to one E-UTRA band (Table 5.6A-1), the requirements in subclause 6.2.3 apply.

For inter-band carrier aggregation with one component carrier per operating band and the uplink active in two E-UTRA bands, the requirements in subclause 6.2.3 apply for each uplink component carrier.

For intra-band contiguous carrier aggregation the allowed Maximum Power Reduction (MPR) for the maximum output power applicable to the DUT in table below. In case the modulation format is different on different component carriers then the MPR is determined by the rules applied to higher order of those modulations.

| Modulation | Com        | dwidth Class<br>ponent Carr<br>Bandwidth C | ier Transmi<br>configuration | ssion<br>n | MPR<br>(dB) |
|------------|------------|--------------------------------------------|------------------------------|------------|-------------|
|            | 25 RB      | 50 RB                                      | 75 RB                        | 100 RB     |             |
| QPSK       | > 8 and ≤  | > 12 and                                   | > 16 and                     | > 18 and   | ≤ 1         |
|            | 25         | ≤ 50                                       | ≤ 75                         | ≤ 100      |             |
| QPSK       | > 25       | > 50                                       | > 75                         | > 100      | ≤ 2         |
| 16 QAM     | ≤ 8        | ≤ 12                                       | ≤ 16                         | ≤ 18       | ≤ 1         |
| 16 QAM     | > 8 and ≤  | > 12 and                                   | > 16 and                     | > 18 and   | ≤ 2         |
|            | 25         | ≤ 50                                       | ≤ 75                         | ≤ 100      |             |
| 16 QAM     | > 25       | > 50                                       | > 75                         | > 100      | ≤ 3         |
| 64 QAM     | ≤ 8 and    | ≤ 12 and                                   | ≤ 16 and                     | ≤ 18 and   | ≤ 2         |
|            | allocation | allocation                                 | allocation                   | allocation |             |
|            | wholly     | wholly                                     | wholly                       | wholly     |             |
|            | contained  | contained                                  | contained                    | contained  |             |
|            | within a   | within a                                   | within a                     | within a   |             |
|            | single CC  | single CC                                  | single CC                    | single CC  |             |
| 64 QAM     | > 8 or     | > 12 or                                    | > 16 or                      | > 18 or    | ≤ 3         |
|            | allocation | allocation                                 | allocation                   | allocation |             |
|            | extends    | extends                                    | extends                      | extends    |             |
|            | across     | across                                     | across                       | across     |             |
|            | two CC's   | two CC's                                   | two CC's                     | two CC's   |             |

For PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH WPDK modulation for the corresponding transmission bandwidth.

For intra-band contiguous carrier aggregation bandwidth class C with non-contiguous resource allocation, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1 is specified as follows

$$MPR = CEIL \{min(M_A, M_{IM5}), 0.5\}$$

Where MA is defined as follows

$$M_A =$$
 8.2 ;0  $\leq$  A  $<$  0.025  
9.2 - 40A ;0.025  $\leq$  A  $<$  0.05  
8 - 16A ;0.05  $\leq$  A  $<$  0.25  
4.83 - 3.33A ;0.25  $\leq$  A  $\leq$  0.4

Page 34 of 52

$$3.83 - 0.83A$$
 ;  $0.4 \le A \le 1$ 

and MIM5 is defined as follows

$$M_{IM5} = 4.5$$
;  $\Delta_{IM5} < 1.5 * BW Channel_CA$ 

6.0 ; 1.5 \* BW Channel\_CA  $\leq \Delta_{IM5} < BW$  Channel\_CA/2 +  $\Delta f_{oob}$ 

M<sub>A</sub> ;  $\Delta_{\text{IM5}} \ge BW \text{ Channel\_CA/2} + \Delta f_{\text{ooB}}$ 

Where

$$A = N_{RB\_alloc} / N_{RB\_agg}$$

$$\Delta_{\text{IM5}} = \max(\left| F_{\text{C\_agg}} - (3^*F_{\text{agg\_alloc\_low}} - 2^*F_{\text{agg\_alloc\_high}}) \right|, \left| F_{\text{C\_agg}} - (3^*F_{\text{agg\_alloc\_high}} - 2^*F_{\text{agg\_alloc\_low}}) \right|)$$

CEIL{M<sub>A</sub>, 0.5} means rounding upwards to closest 0.5dB, i.e. MPR  $\in$  [3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5]

For intra-band carrier aggregation, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For intra-band non-contiguous carrier aggregation with one uplink carrier on the PCC, the requirements in the subclause 6.2.3 apply. For intra-band non-contiguous aggregation with two uplink carriers the MPR is defined tfor those E-UTRA bands where maximum possible  $W_{GAP} \le 42.2$  MHz as follows

$$MPR = CEIL\{M_{A}, 0.5\}$$

Where M<sub>N</sub> is defined as follows

$$M_N = -0.125N + 18.25$$
 ;  $2 \le N \le 50$ 

$$-0.0333 \text{ N} + 13.67$$
 ;  $50 < \text{N} \le 200$ 

Where  $N = N_{RB}$  alloc is the number of allocated resource blocks.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5A apply.

### **LTE Down-Link Carrier Aggregation**

The tables below show the supported frequency bands of the device for DL Inter-band and DL Intra-band combinations.

Power measurements were performed on the channel with the highest maximum output power from Tune-up Procedure.

When carrier aggregation is limited to downlink only, uplink maximum output power (single carrier) is measured for the supported combinations of downlink carrier aggregation listed in the table below. In applying the power measurement procedures of KDB 941225 D05A for DL CA to qualify for UL SAR test exclusion, power measurement is required only for the subset in each row with the largest combination of frequency bands and CCs (far right most configuration highlighted in the table below).

| Index                     | 2CC      | Restriction | Completely Covered by Measurement Superset |  |  |  |  |  |  |  |  |  |
|---------------------------|----------|-------------|--------------------------------------------|--|--|--|--|--|--|--|--|--|
| Intra-Band Contiguous     |          |             |                                            |  |  |  |  |  |  |  |  |  |
| 2CC# 1                    | CA_5B    | N/A         | No                                         |  |  |  |  |  |  |  |  |  |
| Intra-Band Non-Contiguous |          |             |                                            |  |  |  |  |  |  |  |  |  |
| 2CC# 2                    | CA_5A-5A | N/A         | No                                         |  |  |  |  |  |  |  |  |  |

In applying the power measurement procedures of KDB 941225 D05A for DL CA to qualify for UL SAR test exclusion, power measurement is required only for the CA configuration with the largest aggregated DL CA BW in each frequency band, independently for contiguous and non-contiguous CA; however, if the same frequency band is used for both contiguous and non-contiguous CA, power measurement was performed using the configuration with the largest aggregated BW and maximum

output power among contiguous and non-contiguous CA.

**DL Intra-Band Contiguous Measured Results** 

| Ī | E-UTRA CA              |        |      |                 | CC1 (L  | JL)           |           |                 | CC2 (DL | .)            |                 | CC3 (DL | -)            |                 | CC4 (DL | )             |                 | CC5 (DL | )             | Aggregate |     | CA                | CA              |       |
|---|------------------------|--------|------|-----------------|---------|---------------|-----------|-----------------|---------|---------------|-----------------|---------|---------------|-----------------|---------|---------------|-----------------|---------|---------------|-----------|-----|-------------------|-----------------|-------|
|   | configuration<br>(BCS) | Rel. # | Mode | BW<br>(MHz<br>) | Channel | Freq<br>(MHz) | RB,Offset | BW<br>(MHz<br>) | Channel | Freq<br>(MHz) | d<br>BW   | MPR | Inactive<br>(dBm) | Active<br>(dBm) | Delta |
| ſ | CA_5B                  | 13     | QPSK | 10              | 20476   | 831.6         | 1,0       | 10              | 2575    | 886.5         |                 |         |               |                 |         |               |                 |         |               | 20        | 0   | 25.00             | 25.00           | 0.00  |

**DL Intra-Band Non-Contiguous Measured Results** 

|                            | 3GPP<br>Rel.# | 2600 | 2600        | 2600    | 2600          | 2600      |             |         | CC1 (U        | L)          |         |               | CC2 (DL)    | )       |               | CC3 (DL     | .)      |               | CC4 (DL          | )   |                   | CC5 (DL | )     |  |  | CA |  |  |
|----------------------------|---------------|------|-------------|---------|---------------|-----------|-------------|---------|---------------|-------------|---------|---------------|-------------|---------|---------------|-------------|---------|---------------|------------------|-----|-------------------|---------|-------|--|--|----|--|--|
| E-UTRA CA<br>configuration |               | Mode | BW<br>(MHz) | Channel | Freq<br>(MHz) | RB,Offset | BW<br>(MHz) | Channel | Freq<br>(MHz) | Aggregated<br>BW | MPR | Inactive<br>(dBm) | (dBm)   | Delta |  |  |    |  |  |
| CA_5A-5A                   | 13            | QPSK | 10          | 20450   | 829           | 1,0       | 10          | 2600    | 889           |             |         |               |             |         |               |             |         |               | 20               | 0   | 25.00             | 24.91   | -0.09 |  |  |    |  |  |

## 9.5. Wi-Fi 2.4GHz (DTS Band)

Device is set to operate at its normal maximum output WLAN output power when receiver is off state. While the device has a receiver on state, the maximum power becomes reduced power.

Refer to Operational Description for WLAN power back-off explanation.

## Wi-Fi 2.4GHz Measured Results

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11b/g/n mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is  $\leq 1.2 \text{ W/kg}$ .

|                 |                   |              |     | Freq. | Re       | duced Pow | er                   | Ma       | ximum Pow | /er                  |  |  |      |  |
|-----------------|-------------------|--------------|-----|-------|----------|-----------|----------------------|----------|-----------|----------------------|--|--|------|--|
| Band            | Mode              | Data Rate    | Ch# | (MHz) | Meas Pwr | Tune-up   | SAR Test<br>(Yes/No) | Meas Pwr | Tune-up   | SAR Test<br>(Yes/No) |  |  |      |  |
|                 |                   |              | 1   | 2412  | 11.50    | 12.00     |                      | 18.30    | 19.00     |                      |  |  |      |  |
|                 |                   |              | 6   | 2437  | 11.80    | 12.00     | ]                    | 18.40    | 19.00     |                      |  |  |      |  |
| DSSS<br>2.4 GHz | 802.11b           | 1 Mbps       | 11  | 2462  | 11.60    | 12.00     | Yes                  | 17.80    | 19.00     | Yes                  |  |  |      |  |
| 2.4 01 2        | 2.4 GFZ           |              | 12  | 2467  |          | 8.00      | ]                    |          | 8.00      |                      |  |  |      |  |
|                 |                   |              | 13  | 2472  |          | 8.00      | ]                    |          | 8.00      |                      |  |  |      |  |
|                 |                   |              | 1   | 2412  |          | 12.00     |                      |          | 17.00     |                      |  |  |      |  |
|                 |                   |              | 6   | 2437  |          | 12.00     | No                   |          | 17.00     |                      |  |  |      |  |
|                 | 802.11g           | 6 Mbps       | 11  | 2462  |          | 12.00     |                      |          | 17.00     | No                   |  |  |      |  |
|                 |                   | 2250         | , . |       |          |           | 12                   | 2467     |           | 7.50                 |  |  | 7.50 |  |
| OFDM            |                   |              | 13  | 2472  |          | 7.50      |                      |          | 7.50      |                      |  |  |      |  |
| 2.4 GHz         |                   |              | 1   | 2412  |          | 12.00     |                      |          | 17.00     |                      |  |  |      |  |
|                 | 802.11n<br>(HT20) |              | 6   | 2437  |          | 12.00     |                      |          | 17.00     |                      |  |  |      |  |
|                 |                   | I 6.5 Mbps I | 11  | 2462  |          | 12.00     | 00 No                |          | 17.00     | No                   |  |  |      |  |
|                 | (20)              |              | 12  | 2467  |          | 5.50      |                      |          | 5.50      |                      |  |  |      |  |
|                 |                   |              | 13  | 2472  |          | 5.50      |                      |          | 5.50      |                      |  |  |      |  |

### Note(s)

1. Additionally, SAR is not required for Channels 12 and 13 because the tune-up limit and the measured output power for these two channels are no greater than those for the default test channels.

## 9.6. Wi-Fi 5GHz (U-NII Bands)

Device is set to operate at its normal maximum output WLAN output power when receiver is off state. While the device has a receiver on state, the maximum power becomes reduced power.

Refer to Operational Description for WLAN power back-off explanation.

When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/n/ac/ax modes, the channel in the lower order/sequence 802.11 mode (i.e. a, n, ac then ax) is selected.

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac modes, the channel in the lower order/sequence 802.11 mode (i.e. a, g, n then ac) is selected.

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

### Wi-Fi 5 GHz Measured Results

For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is  $\leq 1.2$  W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.

Wi-Fi Direct is supported in U-NII Band 1. Therefore, Wi-Fi Direct was tested separately for SAR for U-NII Band 1.

|         |                                                                          |                                    |                                                                                  | Freg.                                                                                      | R        | educed Pow                                                                                                              | er                   | Ma                         | aximum Pow                                                                                  | er                                |  |  |
|---------|--------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|--|--|
| Band    | Mode                                                                     | Data Rate                          | Ch#                                                                              | (MHz)                                                                                      | Meas Pwr | Tune-up                                                                                                                 | SAR Test<br>(Yes/No) | Meas Pwr                   | Tune-up                                                                                     | SAR Test<br>(Yes/No)              |  |  |
|         |                                                                          |                                    | 36                                                                               | 5180                                                                                       |          | 12.00                                                                                                                   |                      | 16.00                      | 17.00                                                                                       |                                   |  |  |
|         | 802.11a                                                                  | 6 Mbno                             | 40                                                                               | 5200                                                                                       |          | 12.00                                                                                                                   | No                   | 16.00                      | 17.00                                                                                       | Yes                               |  |  |
|         | 802.11a                                                                  | 6 Mbps                             | 44                                                                               | 5220                                                                                       |          | 12.00                                                                                                                   | INO                  | 16.00                      | 17.00                                                                                       | res                               |  |  |
|         |                                                                          |                                    | 48                                                                               | 5240                                                                                       |          | 12.00                                                                                                                   | 1                    | 16.00                      | 17.00                                                                                       | ]                                 |  |  |
|         |                                                                          |                                    | 36                                                                               | 5180                                                                                       |          | 12.00                                                                                                                   |                      |                            | 16.00                                                                                       |                                   |  |  |
|         | 802.11n                                                                  | 6 E Mana                           | 40                                                                               | 5200                                                                                       |          | 12.00                                                                                                                   | No                   |                            | 16.00                                                                                       | No                                |  |  |
|         | (HT20)                                                                   | 6.5 Mbps                           | 44                                                                               | 5220                                                                                       |          | 12.00                                                                                                                   | INO                  |                            | 16.00                                                                                       | INO                               |  |  |
|         |                                                                          |                                    | 48                                                                               | 5240                                                                                       |          | 12.00                                                                                                                   |                      |                            | 16.00                                                                                       |                                   |  |  |
| UNII-1  |                                                                          |                                    | 36                                                                               | 5180                                                                                       |          | 12.00                                                                                                                   |                      |                            | 16.00                                                                                       |                                   |  |  |
| 5.2 GHz | 802.11ac                                                                 | C.F.Mhno                           | 40                                                                               | 5200                                                                                       |          | 12.00                                                                                                                   | No                   |                            | 16.00                                                                                       | No                                |  |  |
|         | (VHT20)                                                                  | 6.5 Mbps                           | 44                                                                               | 5220                                                                                       |          | 12.00                                                                                                                   | INO                  |                            | 16.00                                                                                       | I NO                              |  |  |
|         |                                                                          |                                    | 48                                                                               | 5240                                                                                       |          | 12.00                                                                                                                   |                      |                            | 16.00                                                                                       | Ĭ                                 |  |  |
|         | 802.11n                                                                  | 40.5 Mana                          | 38                                                                               | 5190                                                                                       |          | 12.00                                                                                                                   | NI-                  |                            | 15.00                                                                                       | NI-                               |  |  |
|         | (HT40)                                                                   | 13.5 Mbps                          | 46                                                                               | 5230                                                                                       |          | 12.00                                                                                                                   | No                   |                            | 15.00                                                                                       | No                                |  |  |
|         | 802.11ac                                                                 | 40.5 Mana                          | 38                                                                               | 5190                                                                                       |          | 12.00                                                                                                                   | NI-                  |                            | 15.00                                                                                       | NI-                               |  |  |
|         | (VHT40)                                                                  | 13.5 Mbps                          | 46                                                                               | 5230                                                                                       |          | 12.00                                                                                                                   | No                   |                            | 15.00                                                                                       | No                                |  |  |
|         | 802.11ac<br>(VHT80)                                                      | 29.3 Mbps                          | 42                                                                               | 5210                                                                                       | 11.00    | 12.00                                                                                                                   | Yes                  |                            | 14.00                                                                                       | No                                |  |  |
|         |                                                                          |                                    | Data Bata                                                                        | Data Pate                                                                                  |          |                                                                                                                         | _                    |                            |                                                                                             |                                   |  |  |
|         |                                                                          |                                    |                                                                                  | Frea.                                                                                      | Re       | educed Pow                                                                                                              |                      | Ma                         | aximum Pow                                                                                  |                                   |  |  |
| Band    | Mode                                                                     | Data Rate                          | Ch#                                                                              | Freq.<br>(MHz)                                                                             | Meas Pwr | Tune-up                                                                                                                 | SAR Test<br>(Yes/No) | Meas Pwr                   | Tune-up                                                                                     | SAR Test<br>(Yes/No)              |  |  |
| Band    | Mode                                                                     | Data Rate                          | Ch #                                                                             |                                                                                            |          |                                                                                                                         | SAR Test             |                            |                                                                                             | SAR Test                          |  |  |
| Band    |                                                                          |                                    |                                                                                  | (MHz)                                                                                      |          | Tune-up                                                                                                                 | SAR Test<br>(Yes/No) | Meas Pwr                   | Tune-up                                                                                     | SAR Test<br>(Yes/No)              |  |  |
| Band    | Mode<br>802.11a                                                          | Data Rate 6 Mbps                   | 52                                                                               | (MHz)<br>5260                                                                              |          | <b>Tune-up</b> 12.00                                                                                                    | SAR Test             | Meas Pwr<br>16.00          | <b>Tune-up</b> 17.00                                                                        | SAR Test                          |  |  |
| Band    |                                                                          |                                    | 52<br>56                                                                         | (MHz)<br>5260<br>5280                                                                      |          | <b>Tune-up</b> 12.00 12.00                                                                                              | SAR Test<br>(Yes/No) | Meas Pwr<br>16.00<br>16.00 | <b>Tune-up</b> 17.00 17.00                                                                  | SAR Test<br>(Yes/No)              |  |  |
| Band    |                                                                          |                                    | 52<br>56<br>60                                                                   | (MHz)<br>5260<br>5280<br>5300                                                              |          | Tune-up 12.00 12.00 12.00                                                                                               | SAR Test<br>(Yes/No) | 16.00<br>16.00<br>16.00    | Tune-up 17.00 17.00 17.00                                                                   | SAR Test<br>(Yes/No)              |  |  |
| Band    |                                                                          | 6 Mbps                             | 52<br>56<br>60<br>64                                                             | 5260<br>5280<br>5300<br>5320                                                               |          | Tune-up  12.00  12.00  12.00  12.00  12.00                                                                              | SAR Test<br>(Yes/No) | 16.00<br>16.00<br>16.00    | 17.00<br>17.00<br>17.00<br>17.00                                                            | SAR Test<br>(Yes/No)              |  |  |
| Band    | 802.11a                                                                  |                                    | 52<br>56<br>60<br>64<br>52                                                       | 5260<br>5280<br>5300<br>5320<br>5260                                                       |          | Tune-up  12.00  12.00  12.00  12.00  12.00                                                                              | SAR Test<br>(Yes/No) | 16.00<br>16.00<br>16.00    | 17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>16.00                                          | SAR Test<br>(Yes/No)              |  |  |
| Band    | 802.11a                                                                  | 6 Mbps                             | 52<br>56<br>60<br>64<br>52<br>56                                                 | (MHz)  5260 5280 5300 5320 5260 5280                                                       |          | 12.00<br>12.00<br>12.00<br>12.00<br>12.00<br>12.00<br>12.00                                                             | SAR Test<br>(Yes/No) | 16.00<br>16.00<br>16.00    | 17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>16.00                                          | SAR Test<br>(Yes/No)              |  |  |
| UNII-2A | 802.11a                                                                  | 6 Mbps                             | 52<br>56<br>60<br>64<br>52<br>56                                                 | (MHz)  5260 5280 5300 5320 5260 5280 5300                                                  |          | Tune-up  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00                                                         | SAR Test<br>(Yes/No) | 16.00<br>16.00<br>16.00    | 17.00<br>17.00<br>17.00<br>17.00<br>17.00<br>16.00<br>16.00                                 | SAR Test<br>(Yes/No)              |  |  |
|         | 802.11a                                                                  | 6 Mbps                             | 52<br>56<br>60<br>64<br>52<br>56<br>60<br>64                                     | (MHz)  5260 5280 5300 5320 5260 5280 5320 5280 5320                                        |          | Tune-up  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00                                                  | SAR Test<br>(Yes/No) | 16.00<br>16.00<br>16.00    | Tune-up 17.00 17.00 17.00 17.00 16.00 16.00 16.00 16.00                                     | SAR Test<br>(Yes/No)              |  |  |
| UNII-2A | 802.11a<br>802.11n<br>(HT20)                                             | 6 Mbps                             | 52<br>56<br>60<br>64<br>52<br>56<br>60<br>64<br>52                               | (MHz)  5260  5280  5300  5320  5260  5280  5320  5260  5280  5300  5320  5320              |          | Tune-up  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00                                           | SAR Test<br>(Yes/No) | 16.00<br>16.00<br>16.00    | Tune-up 17.00 17.00 17.00 17.00 16.00 16.00 16.00 16.00 16.00                               | SAR Test<br>(Yes/No)              |  |  |
| UNII-2A | 802.11a<br>802.11n<br>(HT20)<br>802.11ac                                 | 6 Mbps                             | 52<br>56<br>60<br>64<br>52<br>56<br>60<br>64<br>52<br>56                         | (MHz) 5260 5280 5300 5320 5260 5280 5320 5260 5320 5320 5320 5260 5280                     |          | Tune-up  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00                                    | SAR Test<br>(Yes/No) | 16.00<br>16.00<br>16.00    | Tune-up  17.00  17.00  17.00  17.00  16.00  16.00  16.00  16.00  16.00  16.00               | SAR Test<br>(Yes/No)              |  |  |
| UNII-2A | 802.11a<br>802.11n<br>(HT20)<br>802.11ac                                 | 6 Mbps 6.5 Mbps 6.5 Mbps           | 52<br>56<br>60<br>64<br>52<br>56<br>60<br>64<br>52<br>56<br>60                   | (MHz) 5260 5280 5300 5320 5260 5280 5320 5320 5260 5320 5260 5320 5260 5280 5300           |          | Tune-up  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00                             | No No No             | 16.00<br>16.00<br>16.00    | Tune-up  17.00  17.00  17.00  17.00  16.00  16.00  16.00  16.00  16.00  16.00  16.00        | Yes  No                           |  |  |
| UNII-2A | 802.11a<br>802.11n<br>(HT20)<br>802.11ac<br>(VHT20)                      | 6 Mbps                             | 52<br>56<br>60<br>64<br>52<br>56<br>60<br>64<br>52<br>56<br>60<br>64             | (MHz) 5260 5280 5300 5320 5260 5280 5320 5260 5320 5320 5320 5320 5320 5320 5320           |          | Tune-up  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00                      | SAR Test<br>(Yes/No) | 16.00<br>16.00<br>16.00    | Tune-up 17.00 17.00 17.00 17.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00             | SAR Test<br>(Yes/No)              |  |  |
| UNII-2A | 802.11a<br>802.11n<br>(HT20)<br>802.11ac<br>(VHT20)<br>802.11n           | 6 Mbps 6.5 Mbps 6.5 Mbps 13.5 Mbps | 52<br>56<br>60<br>64<br>52<br>56<br>60<br>64<br>52<br>56<br>60<br>64<br>52       | (MHz) 5260 5280 5300 5320 5260 5280 5320 5320 5320 5320 5320 5320 5260 5280 5300 5320 5320 |          | Tune-up  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00        | No No No No          | 16.00<br>16.00<br>16.00    | Tune-up  17.00  17.00  17.00  17.00  16.00  16.00  16.00  16.00  16.00  16.00  16.00  15.00 | SAR Test<br>(Yes/No)  Yes  No  No |  |  |
| UNII-2A | 802.11a<br>802.11n<br>(HT20)<br>802.11ac<br>(VHT20)<br>802.11n<br>(HT40) | 6 Mbps 6.5 Mbps 6.5 Mbps           | 52<br>56<br>60<br>64<br>52<br>56<br>60<br>64<br>52<br>56<br>60<br>64<br>54<br>62 | (MHz)  5260 5280 5300 5320 5260 5280 5300 5320 5260 5280 5320 5270 5310                    |          | Tune-up  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00  12.00 | No No No             | 16.00<br>16.00<br>16.00    | Tune-up  17.00  17.00  17.00  17.00  16.00  16.00  16.00  16.00  16.00  16.00  15.00  15.00 | Yes  No                           |  |  |

|                    |                     |             |     | Freq. | R        | educed Pow | er                   | Ma       | aximum Pow | er                   |  |
|--------------------|---------------------|-------------|-----|-------|----------|------------|----------------------|----------|------------|----------------------|--|
| Band               | Mode                | Data Rate   | Ch# | (MHz) | Meas Pwr | Tune-up    | SAR Test<br>(Yes/No) | Meas Pwr | Tune-up    | SAR Test<br>(Yes/No) |  |
|                    |                     |             | 100 | 5500  |          | 12.00      |                      | 16.00    | 17.00      |                      |  |
|                    | 802.11a             | 6 Mbps      | 116 | 5580  |          | 12.00      | No                   | 16.00    | 17.00      | Yes                  |  |
|                    | 002.11a             | o ivibps    | 124 | 5620  |          | 12.00      | INO                  | 16.00    | 17.00      | 162                  |  |
|                    |                     |             | 144 | 5720  |          | 12.00      |                      | 15.90    | 17.00      |                      |  |
|                    |                     |             | 100 | 5500  |          | 12.00      |                      |          | 16.00      |                      |  |
|                    | 802.11n             | 6.5 Mbps    | 116 | 5580  |          | 12.00      | No                   |          | 16.00      | No                   |  |
|                    | (HT20)              | 6.5 IVIDPS  | 124 | 5620  |          | 12.00      | INO                  |          | 16.00      | INO                  |  |
|                    |                     |             | 144 | 5720  |          | 12.00      |                      |          | 16.00      |                      |  |
|                    |                     |             | 100 | 5500  |          | 12.00      |                      |          | 16.00      |                      |  |
|                    | 802.11ac            | C.E.Mana    | 116 | 5580  |          | 12.00      | No                   |          | 16.00      | No                   |  |
| 1 IN III 00        | (VHT20)             | 6.5 Mbps    | 124 | 5620  |          | 12.00      | INO                  |          | 16.00      | INO                  |  |
| UNII-2C<br>5.5 GHz |                     |             | 144 | 5720  |          | 12.00      |                      |          | 16.00      |                      |  |
| 0.0 OI L           |                     |             | 102 | 5510  |          | 12.00      |                      |          | 13.00      |                      |  |
|                    | 802.11n             | 40 5 Mb     | 118 | 5590  |          | 12.00      | N <sub>2</sub>       |          | 15.00      | NI-                  |  |
|                    | (HT40) 13.5 N       | 13.5 IVIDPS | 126 | 5630  |          | 12.00      | No                   |          | 15.00      | No                   |  |
|                    |                     |             | 142 | 5710  |          | 12.00      |                      |          | 15.00      |                      |  |
|                    |                     |             | 102 | 5510  |          | 12.00      |                      |          | 13.00      |                      |  |
|                    | 802.11ac            | 40 E M      | 118 | 5590  |          | 12.00      | N <sub>2</sub>       |          | 15.00      | No                   |  |
|                    | (VHT40)             | I 13.5 Mhns | 126 | 5630  |          | 12.00      | No                   |          | 15.00      | No                   |  |
|                    |                     |             | 142 | 5710  |          | 12.00      | 1                    |          | 15.00      |                      |  |
|                    | 222.44              |             | 106 | 5530  | 11.00    | 12.00      |                      |          | 14.00      |                      |  |
|                    | 802.11ac<br>(VHT80) | 29.3 Mbps   | 122 | 5610  | 11.00    | 12.00      | Yes                  |          | 14.00      | No                   |  |
|                    | (٧ΠΙΟυ)             |             | 138 | 5690  | 11.00    | 12.00      |                      |          | 14.00      |                      |  |
|                    |                     |             |     | Freq. | R        | educed Pow | er                   | Ma       | aximum Pow | er                   |  |
| Band               | Mode                | Data Rate   | Ch# | (MHz) | Meas Pwr | Tune-up    | SAR Test<br>(Yes/No) | Meas Pwr | Tune-up    | SAR Test<br>(Yes/No) |  |
|                    |                     |             | 149 | 5745  |          | 12.00      | (                    | 16.00    | 17.00      | ( ::: :,             |  |
|                    | 802.11a             | 6 Mbps      | 157 | 5785  |          | 12.00      | No                   | 15.80    | 17.00      | Yes                  |  |
|                    |                     |             | 165 | 5825  |          | 12.00      |                      | 15.90    | 17.00      |                      |  |
|                    |                     |             | 149 | 5745  |          | 12.00      |                      |          | 16.00      |                      |  |
|                    | 802.11n             | 6.5 Mbps    | 157 | 5785  |          | 12.00      | No                   |          | 16.00      | No                   |  |
|                    | (HT20)              |             | 165 | 5825  |          | 12.00      |                      |          | 16.00      |                      |  |
| 1.15.111.0         |                     |             | 149 | 5745  |          | 12.00      |                      |          | 16.00      |                      |  |
| UNII-3<br>5.8 GHz  | 802.11ac            | 6.5 Mbps    | 157 | 5785  |          | 12.00      | No                   |          | 16.00      | No                   |  |
| 0.0 Oi iz          | (VHT20)             | '           | 165 | 5825  |          | 12.00      | 1                    |          | 16.00      | 1                    |  |
|                    | 802.11n             |             | 151 | 5755  |          | 12.00      |                      |          | 15.00      |                      |  |
|                    | (HT40)              | 13.5 Mbps   | 159 | 5795  |          | 12.00      | No                   |          | 15.00      | No                   |  |
|                    | 802.11ac            |             | 151 | 5755  |          | 12.00      |                      |          | 15.00      |                      |  |
|                    | (VHT40)             | 13.5 Mbps   | 159 | 5795  |          | 12.00      | No                   |          | 15.00      | No                   |  |
|                    | 802.11ac<br>(VHT80) | 29.3 Mbps   | 155 | 5775  | 10.70    | 12.00      | Yes                  |          | 14.00      | No                   |  |

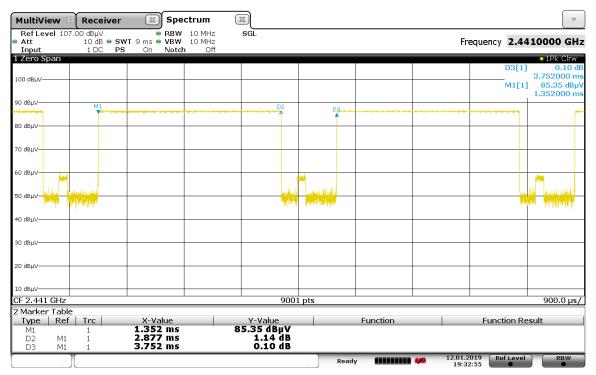
## 9.7. Bluetooth

## **Bluetooth Measured Results**

SAR measurement is not required for the QPSK, 8PSK, and BLE. When the secondary mode is  $\leq \frac{1}{4}$  dB higher than the primary mode.

|      |                                                        |     | Freq. | Chain 0 A | verage Pow | er (dBm)             |      |      |      |     |   |      |      |      |  |
|------|--------------------------------------------------------|-----|-------|-----------|------------|----------------------|------|------|------|-----|---|------|------|------|--|
| Band | Mode                                                   | Ch# | (MHz) | Meas Pwr  | Tune-up    | SAR Test<br>(Yes/No) |      |      |      |     |   |      |      |      |  |
|      |                                                        | 0   | 2402  | 8.95      | 10.00      |                      |      |      |      |     |   |      |      |      |  |
|      | GFSK                                                   | 39  | 2441  | 9.17      | 10.00      | Yes                  |      |      |      |     |   |      |      |      |  |
|      |                                                        | 78  | 2480  | 9.17      | 10.00      |                      |      |      |      |     |   |      |      |      |  |
|      | EDR,                                                   | 0   | 2402  | 5.60      | 10.00      |                      |      |      |      |     |   |      |      |      |  |
|      | EDR,<br>π/4 DQPSK -<br>EDR,<br>8-DPSK -<br>LE,<br>GFSK | 39  | 2441  | 5.80      | 10.00      | No                   |      |      |      |     |   |      |      |      |  |
| 2.4  |                                                        | 78  | 2480  | 5.62      | 10.00      |                      |      |      |      |     |   |      |      |      |  |
| 2.4  |                                                        | 0   | 2402  | 5.58      | 10.00      |                      |      |      |      |     |   |      |      |      |  |
|      |                                                        | 39  | 2441  | 5.38      | 10.00      | No                   |      |      |      |     |   |      |      |      |  |
|      |                                                        | 78  | 2480  | 5.45      | 10.00      |                      |      |      |      |     |   |      |      |      |  |
|      |                                                        |     |       |           | 1 19       | 15                   | 15   | 15   | ıe   | 1.5 | 0 | 2402 | 1.68 | 6.50 |  |
|      |                                                        |     |       |           |            | 19                   | 2440 | 1.96 | 6.50 | No  |   |      |      |      |  |
|      |                                                        | 39  | 2480  | 2.19      | 6.50       |                      |      |      |      |     |   |      |      |      |  |

**Duty Factor Measured Results** 


| Mode | Type | T on<br>(ms) | Period<br>(ms) | Duty Cycle | Crest Factor<br>(1/duty cycle) |
|------|------|--------------|----------------|------------|--------------------------------|
| GFSK | DH5  | 2.877        | 3.752          | 76.68%     | 1.30                           |

Note(s):

Duty Cycle = (T on / period) \* 100%

# **Duty Cycle plots**

**GFSK** 



19:32:56 12.01.2019

## 10. Measured and Reported (Scaled) SAR Results

### SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN = Measured SAR \*Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi and Bluetooth = Measured SAR \* Tune-up scaling factor \* Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

### KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

#### KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

### KDB 648474 D04 Handset SAR (Phablet Only):

For smart phones, with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm.

When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at  $\leq$  25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.

When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

Additional 1-g SAR testing at 5 mm is not required when hotspot mode 10-g extremity SAR is not required for the surfaces and edges; since all 1-g reported SAR < 1.2 W/kg.

## KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is  $\leq \frac{1}{4}$  dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is  $\leq 1.2$  W/kg, SAR measurement is not required for the secondary mode.

### KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset
  and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle
  and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low,
   Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.</li>
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available
  non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth
  configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the
  requirement for H, M and L channels may not fully apply.

Page 43 of 52

### KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). Initial Test Position SAR Test Reduction Procedure is outlined in KDB 248227 D01 §5.1.1. To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

# 10.1. GSM850

| RF Exposure |                      | Pow er   | Dist.  | Test        |       | Freq. | Pow er           | (dBm) | 1-g SAF | R (W/kg) |      |
|-------------|----------------------|----------|--------|-------------|-------|-------|------------------|-------|---------|----------|------|
| Conditions  | Mode                 | Back-off | (mm)   | Position    | Ch #. | (MHz) | Tune-up<br>Limit | Meas. | Meas.   | Scaled   | Plot |
|             |                      |          |        | Left Touch  | 190   | 836.6 | 30.0             | 28.7  | 0.162   | 0.217    |      |
| Hood        | GPRS                 | OFF      | 0      | Left Tilt   | 190   | 836.6 | 30.0             | 28.7  | 0.084   | 0.113    |      |
| Head        | 3 Slots  GPRS        | OFF      | "      | Right Touch | 190   | 836.6 | 30.0             | 28.7  | 0.217   | 0.291    | 1    |
|             |                      |          |        | Right Tilt  | 190   | 836.6 | 30.0             | 28.7  | 0.089   | 0.119    |      |
| Body worn   |                      | 15       | Rear   | 190         | 836.6 | 30.0  | 28.7             | 0.390 | 0.522   | 2        |      |
| Body-w orn  |                      | OFF      | 15     | Front       | 190   | 836.6 | 30.0             | 28.7  | 0.162   | 0.217    |      |
|             |                      |          |        |             | 128   | 826.4 | 30.0             | 28.6  | 0.714   | 0.997    |      |
|             |                      |          |        | Rear        | 190   | 836.6 | 30.0             | 28.7  | 0.839   | 1.124    |      |
|             |                      |          |        |             | 251   | 848.8 | 30.0             | 28.8  | 0.861   | 1.148    | 3    |
| Hotspot     | Hotspot GPRS 3 Slots | OFF      | 10     | Front       | 190   | 836.6 | 30.0             | 28.7  | 0.174   | 0.233    |      |
|             |                      | Slots    |        | Edge 2      | 190   | 836.6 | 30.0             | 28.7  | 0.227   | 0.304    |      |
|             |                      |          | Edge 3 | 190         | 836.6 | 30.0  | 28.7             | 0.289 | 0.387   |          |      |
|             |                      |          |        | Edge 4      | 190   | 836.6 | 30.0             | 28.7  | 0.058   | 0.078    |      |

# 10.2. GSM1900

| RF Exposure |                         | Pow er    | Dist.       | Test       |        | Freq.  | Pow er           | (dBm) | 1-g SAF | R (W/kg) |      |
|-------------|-------------------------|-----------|-------------|------------|--------|--------|------------------|-------|---------|----------|------|
| Conditions  | Mode                    | Back-off  | (mm)        | Position   | Ch #.  | (MHz)  | Tune-up<br>Limit | Meas. | Meas.   | Scaled   | Plot |
|             |                         |           |             | Left Touch | 661    | 1880.0 | 26.6             | 25.1  | 0.151   | 0.213    | 4    |
| Head        | GPRS<br>3 Slots OFF     | OFF       | 0           | Left Tilt  | 661    | 1880.0 | 26.6             | 25.1  | 0.081   | 0.114    |      |
| пеац        |                         | 0         | Right Touch | 661        | 1880.0 | 26.6   | 25.1             | 0.097 | 0.137   |          |      |
|             |                         |           |             | Right Tilt | 661    | 1880.0 | 26.6             | 25.1  | 0.063   | 0.089    |      |
| Body-w orn  | GPRS OFF                | I OFF     | 15          | Rear       | 661    | 1880.0 | 26.6             | 25.1  | 0.132   | 0.186    | 5    |
| Body-worn   | 3 Slots                 | OFF       | 15          | Front      | 661    | 1880.0 | 26.6             | 25.1  | 0.112   | 0.158    |      |
|             |                         |           |             | Rear       | 661    | 1880.0 | 26.6             | 25.1  | 0.368   | 0.519    | 6    |
|             |                         |           | FF 10       | Front      | 661    | 1880.0 | 26.6             | 25.1  | 0.217   | 0.306    |      |
| Hotspot     | Hotspot GPRS<br>3 Slots | · I OFF I |             | Edge 2     | 661    | 1880.0 | 26.6             | 25.1  | 0.072   | 0.101    |      |
|             |                         |           |             | Edge 3     | 661    | 1880.0 | 26.6             | 25.1  | 0.215   | 0.303    |      |
|             |                         |           |             | Edge 4     | 661    | 1880.0 | 26.6             | 25.1  | 0.228   | 0.321    |      |

# 10.3. W-CDMA Band II

| RF Exposure |                                                       | Pwr                            | Dist.  | Test        |      | Freq.  | Pow er           | (dBm)  | 1-g SAF | R (W/kg) |       |       |  |
|-------------|-------------------------------------------------------|--------------------------------|--------|-------------|------|--------|------------------|--------|---------|----------|-------|-------|--|
| Conditions  | Mode                                                  | Back-off                       | (mm)   | I Un #. I   |      | (MHz)  | Tune-up<br>Limit | Meas.  | Meas.   | Scaled   | Plot  |       |  |
|             |                                                       |                                |        | Left Touch  | 9400 | 1880.0 | 25.5             | 25.2   | 0.294   | 0.315    | 7     |       |  |
| Hood        | lead Rel 99 RMC OFF 12.2 kbps  Rel 99 V-w orn RMC OFF | OFF                            |        | Left Tilt   | 9400 | 1880.0 | 25.5             | 25.2   | 0.145   | 0.155    |       |       |  |
| пеац        |                                                       | OFF                            | 0      | Right Touch | 9400 | 1880.0 | 25.5             | 25.2   | 0.181   | 0.194    |       |       |  |
|             |                                                       |                                |        | Right Tilt  | 9400 | 1880.0 | 25.5             | 25.2   | 0.135   | 0.145    |       |       |  |
| Body-w orn  |                                                       | OFF                            | 15     | Rear        | 9400 | 1880.0 | 25.5             | 25.2   | 0.191   | 0.205    |       |       |  |
| Body-worn   | 12.2 kbps                                             | OFF                            | 15     | Front       | 9400 | 1880.0 | 25.5             | 25.2   | 0.192   | 0.206    | 8     |       |  |
|             |                                                       |                                |        | Rear        | 9400 | 1880.0 | 25.5             | 25.2   | 0.533   | 0.571    | 9     |       |  |
|             | Pol 00                                                | Rel 99<br>RMC OFF<br>12.2 kbps |        | Front       | 9400 | 1880.0 | 25.5             | 25.2   | 0.332   | 0.356    |       |       |  |
| Hotspot     | Hotspot RMC                                           |                                | OFF 10 | 10          | 10   | Edge 2 | 9400             | 1880.0 | 25.5    | 25.2     | 0.123 | 0.132 |  |
|             | 12.2 kbps                                             |                                |        | Edge 3      | 9400 | 1880.0 | 25.5             | 25.2   | 0.346   | 0.371    |       |       |  |
|             |                                                       |                                |        | Edge 4      | 9400 | 1880.0 | 25.5             | 25.2   | 0.374   | 0.401    |       |       |  |

## 10.4. W-CDMA Band V

| RF Exposure |                                                                    | Pow er                         | Dist.  | Test        |       | Freq. | Pow er           | (dBm) | 1-g SAF | R (W/kg) |       |  |
|-------------|--------------------------------------------------------------------|--------------------------------|--------|-------------|-------|-------|------------------|-------|---------|----------|-------|--|
| Conditions  | Mode                                                               | Back-off                       | (mm)   | Position    | Ch #. | (MHz) | Tune-up<br>Limit | Meas. | Meas.   | Scaled   | Plot  |  |
|             |                                                                    |                                |        | Left Touch  | 4183  | 836.6 | 25.5             | 24.5  | 0.091   | 0.114    |       |  |
| Hood        | Head Rel 99 RMC OFI 12.2 kbps  Rel 99 Rel 99 Rel 99 Rel 99 RMC OFI | OFF                            | 0      | Left Tilt   | 4183  | 836.6 | 25.5             | 24.5  | 0.048   | 0.060    |       |  |
| пеац        |                                                                    | bps                            | 0      | Right Touch | 4183  | 836.6 | 25.5             | 24.5  | 0.128   | 0.160    | 10    |  |
|             |                                                                    |                                |        | Right Tilt  | 4183  | 836.6 | 25.5             | 24.5  | 0.054   | 0.068    |       |  |
| Body worn   |                                                                    | OFF                            | 15     | Rear        | 4183  | 836.6 | 25.5             | 24.5  | 0.227   | 0.284    | 11    |  |
| Body-w orn  | 12.2 kbps                                                          |                                |        | Front       | 4183  | 836.6 | 25.5             | 24.5  | 0.104   | 0.130    |       |  |
|             |                                                                    |                                |        | Rear        | 4183  | 836.6 | 25.5             | 24.5  | 0.487   | 0.610    | 12    |  |
|             | Pol 00                                                             | Rel 99<br>RMC OFF<br>12.2 kbps |        |             | Front | 4183  | 836.6            | 25.5  | 24.5    | 0.102    | 0.128 |  |
| Hotspot     | Hotspot RMC                                                        |                                | DFF 10 | Edge 2      | 4183  | 836.6 | 25.5             | 24.5  | 0.159   | 0.199    |       |  |
|             | 12.2 kbps                                                          |                                |        | Edge 3      | 4183  | 836.6 | 25.5             | 24.5  | 0.198   | 0.248    |       |  |
|             |                                                                    |                                |        | Edge 4      | 4183  | 836.6 | 25.5             | 24.5  | 0.042   | 0.053    |       |  |

# 10.5. LTE Band 5 (10MHz Bandwidth)

| RF Exposure        |      | Pow er   | Dist.      |               |       | Freq.       | RB         | RB     | Pow er           | (dBm) | 1-g SAI | R (W/kg) |      |
|--------------------|------|----------|------------|---------------|-------|-------------|------------|--------|------------------|-------|---------|----------|------|
| Conditions         | Mode | back-off | (mm)       | Test Position | Ch #. | (MHz)       | Allocation | offest | Tune-up<br>Limit | Meas. | Meas.   | Scaled   | Plot |
|                    |      |          |            | Left          | 20525 | 836.5       | 1          | 0      | 25.0             | 24.5  | 0.098   | 0.110    |      |
|                    |      |          |            | Touch         | 20525 | 836.5       | 25         | 25     | 24.0             | 23.1  | 0.061   | 0.076    |      |
|                    |      |          |            | Left Tilt     | 20525 | 836.5       | 1          | 0      | 25.0             | 24.5  | 0.055   | 0.062    |      |
| Head               | QPSK | OFF      | 0          | (15°)         | 20323 | 630.3       | 25         | 25     | 24.0             | 23.1  | 0.033   | 0.041    |      |
| neau               | QPSK | OFF      |            | Right         | 20525 | 836.5       | 1          | 0      | 25.0             | 24.5  | 0.131   | 0.147    | 13   |
|                    |      |          |            | Touch         | 20323 | 630.3       | 25         | 25     | 24.0             | 23.1  | 0.076   | 0.094    |      |
|                    |      |          | Right Tilt | 20525         | 836.5 | 1           | 0          | 25.0   | 24.5             | 0.061 | 0.068   |          |      |
|                    |      |          | (15°)      | 20323         | 630.5 | 25          | 25         | 24.0   | 23.1             | 0.034 | 0.042   |          |      |
|                    |      |          | Rear       | 20525         | 836.5 | 1           | 0          | 25.0   | 24.5             | 0.223 | 0.250   | 14       |      |
| Body-worn QPSK OFF | 15   | Real     | 20323      | 630.3         | 25    | 25          | 24.0       | 23.1   | 0.153            | 0.190 |         |          |      |
| Body-worn          | QFSK | OFF      | 15         | Front         | 20525 | 525 836.5   | 1          | 0      | 25.0             | 24.5  | 0.086   | 0.096    |      |
|                    |      |          |            | TTOIL         | 20323 | 030.3       | 25         | 25     | 24.0             | 23.1  | 0.050   | 0.062    |      |
|                    |      |          |            | Rear          | 20525 | 836.5       | 1          | 0      | 25.0             | 24.5  | 0.388   | 0.435    | 15   |
|                    |      |          |            | iteai         | 20323 | 030.3       | 25         | 25     | 24.0             | 23.1  | 0.264   | 0.328    |      |
|                    |      |          |            | Front         | 20525 | 836.5       | 1          | 0      | 25.0             | 24.5  | 0.087   | 0.098    |      |
|                    |      |          |            | FIOR          | 20323 | 630.3       | 25         | 25     | 24.0             | 23.1  | 0.054   | 0.067    |      |
| Hotspot            | QPSK | OFF      | 10         | Edge 2        | 20525 | 836.5       | 1          | 0      | 25.0             | 24.5  | 0.156   | 0.175    |      |
| Hotspot            | QFSK | OFF      | 10         | Euge 2        | 20323 | 630.3       | 25         | 25     | 24.0             | 23.1  | 0.092   | 0.114    |      |
|                    |      |          |            | Edge 3        | 20525 | 836.5       | 1          | 0      | 25.0             | 24.5  | 0.172   | 0.193    |      |
|                    |      |          |            | Luge 3        | 20325 | 030.5       | 25         | 25     | 24.0             | 23.1  | 0.125   | 0.155    |      |
|                    |      |          |            | Edge 4 2052   | 20525 | 20525 836.5 | 1          | 0      | 25.0             | 24.5  | 0.042   | 0.047    |      |
|                    |      |          |            | Luge 4        | 20020 | 030.3       | 25         | 25     | 24.0             | 23.1  | 0.022   | 0.027    |      |

# 10.6. LTE Band 41 (20MHz Bandwidth)

| RF Exposure |      | Pow er   | Dist.  |               |        | Freg.        | RB         | RB     | Pow er           | (dBm) | 1-g SAF | R (W/kg) |      |
|-------------|------|----------|--------|---------------|--------|--------------|------------|--------|------------------|-------|---------|----------|------|
| Conditions  | Mode | back-off | (mm)   | Test Position | Ch #.  | (MHz)        | Allocation | offest | Tune-up<br>Limit | Meas. | Meas.   | Scaled   | Plot |
|             |      |          |        | Left          | 40620  | 2593.0       | 1          | 99     | 25.0             | 23.5  | 0.124   | 0.174    |      |
|             |      |          |        | Touch         | 40620  | 2593.0       | 50         | 50     | 24.0             | 22.8  | 0.099   | 0.132    |      |
|             |      |          |        | Left Tilt     | 40620  | 2593.0       | 1          | 99     | 25.0             | 23.5  | 0.105   | 0.147    |      |
| Head        | QPSK | OFF      | 0      | (15°)         | 40020  | 2595.0       | 50         | 50     | 24.0             | 22.8  | 0.087   | 0.116    |      |
| пеац        | QPSK | OFF      | 0      | Right         | 40620  | 2593.0       | 1          | 99     | 25.0             | 23.5  | 0.170   | 0.238    | 16   |
|             |      |          |        | Touch         | 40620  | 2593.0       | 50         | 50     | 24.0             | 22.8  | 0.138   | 0.184    |      |
| İ           |      |          |        | Right Tilt    | 40620  | 2502.0       | 1          | 99     | 25.0             | 23.5  | 0.057   | 0.080    |      |
|             |      |          |        | (15°)         | 40620  | 2593.0       | 50         | 50     | 24.0             | 22.8  | 0.045   | 0.060    |      |
|             |      |          | Rear   | 40620         | 2593.0 | 1            | 99         | 25.0   | 23.5             | 0.166 | 0.233   | 17       |      |
| Body-w orn  | QPSK | OFF      | 15     | Real          | 40620  | 2593.0       | 50         | 50     | 24.0             | 22.8  | 0.109   | 0.145    |      |
| Body-worn   | QPSK | OFF      | 15     | Front         | 40620  | 2502.0       | 1          | 99     | 25.0             | 23.5  | 0.139   | 0.195    |      |
|             |      |          |        | FIOR          | 40020  | 40620 2593.0 |            | 50     | 24.0             | 22.8  | 0.115   | 0.153    |      |
|             |      |          |        | Rear          | 40620  | 2593.0       | 1          | 99     | 25.0             | 23.5  | 0.323   | 0.453    | 18   |
|             |      |          |        | Real          | 40620  | 2593.0       | 50         | 50     | 24.0             | 22.8  | 0.217   | 0.289    |      |
|             |      |          |        | Front         | 40620  | 2593.0       | 1          | 99     | 25.0             | 23.5  | 0.240   | 0.337    |      |
| Hotopot     | ODSK | OFF      | 10     | FIOR          | 40020  | 2595.0       | 50         | 50     | 24.0             | 22.8  | 0.218   | 0.290    |      |
| Поізроі     |      | 10       | Edge 2 | 40620         | 2593.0 | 1            | 99         | 25.0   | 23.5             | 0.217 | 0.304   |          |      |
|             |      | Edge 2   | 40020  | 2593.0        | 50     | 50           | 24.0       | 22.8   | 0.177            | 0.235 |         |          |      |
|             |      |          |        | Edma 2        | 40620  | 620 2593.0 - | 1          | 99     | 25.0             | 23.5  | 0.143   | 0.201    |      |
|             |      | Edge 3   | 40020  | 2593.0        | 50     | 50           | 24.0       | 22.8   | 0.116            | 0.154 |         |          |      |

# 10.7. Wi-Fi (DTS Band)

When the 802.11b reported SAR of the highest measured maximum output power channel is  $\leq 0.8$  W/kg, no further SAR testing is required. If SAR is > 0.8 W/kg and  $\leq 1.2$  W/kg, SAR is required for the next highest measured output power channel. Finally, if SAR is > 1.2 W/kg, SAR is required for the third channel.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is  $\leq 1.2 \text{ W/kg}$ .

| RF                     |         |            | Pw r-Back | Dist. | Test        |       |             |            | Area Scan          | Pow er           | (dBm) | 1-g SAF | R (W/kg) |      |
|------------------------|---------|------------|-----------|-------|-------------|-------|-------------|------------|--------------------|------------------|-------|---------|----------|------|
| Exposure<br>Conditions | Mode    | Antenna    | off       | (mm)  | Position    | Ch #. | Freq. (MHz) | Duty Cycle | Max. SAR<br>(W/kg) | Tune-up<br>Limit | Meas. | Meas.   | Scaled   | Plot |
|                        |         |            |           |       | Left Touch  | 6     | 2437        | 100.00%    | 0.246              | 12.0             | 11.8  | 0.101   | 0.106    | 19   |
| Head                   | 802.11b | Wi-Fi      | ON        | 0     | Left Tilt   | 6     | 2437        | 100.00%    | 0.149              | 12.0             | 11.8  |         |          |      |
| rieau                  | 1 Mbps  | Antenna #1 | ON        | U     | Right Touch | 6     | 2437        | 100.00%    | 0.015              | 12.0             | 11.8  |         |          |      |
|                        |         |            |           |       | Right Tilt  | 6     | 2437        | 100.00%    | 0.020              | 12.0             | 11.8  |         |          |      |
| Body-w orn             | 802.11b | Wi-Fi      | OFF       | 15    | Rear        | 6     | 2437        | 100.00%    | 0.151              | 19.0             | 18.4  | 0.102   | 0.117    | 20   |
| Body-w offi            | 1 Mbps  | Antenna #1 | OFF       | 15    | Front       | 6     | 2437        | 100.00%    | 0.028              | 19.0             | 18.4  |         |          |      |
|                        |         |            |           |       | Rear        | 6     | 2437        | 100.00%    | 0.421              | 19.0             | 18.4  | 0.244   | 0.280    | 21   |
| Hotspot                | 802.11b | Wi-Fi      | OFF       | 10    | Front       | 6     | 2437        | 100.00%    | 0.058              | 19.0             | 18.4  |         |          |      |
| riotapot               | 1 Mbps  | Antenna #1 | Oil       | 10    | Edge 1      | 6     | 2437        | 100.00%    | 0.074              | 19.0             | 18.4  |         |          |      |
|                        |         |            |           |       | Edge 2      | 6     | 2437        | 100.00%    | 0.088              | 19.0             | 18.4  |         |          |      |

## 10.8. Wi-Fi (U-NII Band)

When the specified maximum output power is the same for both UNII band I and UNII band 2A, begin SAR measurement in UNII band 2A; and if the highest <u>reported</u> SAR for UNII band 2A is

- o ≤ 1.2 W/kg, SAR is not required for UNII band I
- > 1.2 W/kg, both bands should be tested independently for SAR.

## **UNII-2A**

| RF                     |          |            | Pw r Back- | Dist.         | Test        |       |             |            | Area Scan          | Pow er           | (dBm) | 1-g SAF         | R (W/kg) |      |
|------------------------|----------|------------|------------|---------------|-------------|-------|-------------|------------|--------------------|------------------|-------|-----------------|----------|------|
| Exposure<br>Conditions | Mode     | Antenna    | off        | (mm)          | Position    | Ch #. | Freq. (MHz) | Duty Cycle | Max. SAR<br>(W/kg) | Tune-up<br>Limit | Meas. | Meas.           | Scaled   | Plot |
| 802.11ac               |          | Wi-Fi      |            | 0             | Left Touch  | 58    | 5290        | 74.26%     | 0.133              | 12.0             | 11.0  |                 |          |      |
|                        | 802.11ac |            | ON         |               | Left Tilt   | 58    | 5290        | 74.26%     | 0.156              | 12.0             | 11.0  | 0.084           | 0.142    | 22   |
| Head                   | VHT80    | Antenna #1 | ON         |               | Right Touch | 58    | 5290        | 74.26%     | 0.126              | 12.0             | 11.0  |                 |          |      |
|                        |          |            |            |               | Right Tilt  | 58    | 5290        | 74.26%     | 0.136              | 12.0             | 11.0  |                 |          |      |
| 5 . 8                  | 802.11a  | Wi-Fi      | OFF        | F 15          | Rear        | 64    | 5320        | 93.97%     | 0.203              | 17.0             | 16.0  | 0.089           | 0.119    | 23   |
| Body-w orn             | 6 Mbps   | Antenna #1 | 1          |               | Front       | 64    | 5320        | 93.97%     | 0.053              | 17.0             | 16.0  |                 |          |      |
| RF                     |          |            | Pw r Back- | r Back- Dist. | Test        |       |             |            | Area Scan          | Pow er (dBm)     |       | 10-g SAR (W/kg) |          |      |
| Exposure Conditions    | Mode     | Antenna    | off        | (mm)          | Position    | Ch #. | Freq. (MHz) | Duty Cycle | Max. SAR<br>(W/kg) | Tune-up<br>Limit | Meas. | Meas.           | Scaled   | Plot |
|                        |          |            |            |               | Rear        | 64    | 5320        | 93.97%     | 3.250              | 17.0             | 16.0  |                 |          |      |
| Product<br>Specific    | 802.11a  | Wi-Fi      | OFF        | 0             | Front       | 64    | 5320        | 93.97%     | 1.110              | 17.0             | 16.0  |                 |          |      |
| 10q                    | 6 Mbps   | Antenna #1 | 1 000      |               | Edge 1      | 64    | 5320        | 93.97%     | 6.690              | 17.0             | 16.0  | 0.435           | 0.583    | 24   |
|                        |          |            |            |               | Edge 2      | 64    | 5320        | 93.97%     | 0.069              | 17.0             | 16.0  |                 |          |      |

## **UNII-2C**

| RF                       |          |            | Pw r Back-       | Dist.         | Test             |       |             |            | Area Scan                       | Pow er           | (dBm) | 1-g SAF         | R (W/kg) |      |
|--------------------------|----------|------------|------------------|---------------|------------------|-------|-------------|------------|---------------------------------|------------------|-------|-----------------|----------|------|
| Exposure M<br>Conditions | Mode     | Antenna    | off              | (mm)          | Position         | Ch #. | Freq. (MHz) | Duty Cycle | Max. SAR<br>(W/kg)              | Tune-up<br>Limit | Meas. | Meas.           | Scaled   | Plot |
|                          |          |            |                  |               | Left Touch       | 122   | 5610        | 74.26%     | 0.125                           | 12.0             | 11.0  |                 |          |      |
| Head                     | 802.11ac | Wi-Fi      | ON               | 0             | Left Tilt        | 122   | 5610        | 74.26%     | 0.134                           | 12.0             | 11.0  |                 |          |      |
| Head                     | VHT80    | Antenna #1 | ON               | 0             | Right Touch      | 122   | 5610        | 74.26%     | 0.110                           | 12.0             | 11.0  |                 |          |      |
|                          |          |            |                  |               | Right Tilt       | 122   | 5610        | 74.26%     | 0.140                           | 12.0             | 11.0  | 0.064           | 0.108    | 25   |
| 5 .                      | 802.11a  | Wi-Fi      | #1 OFF           | 15            | Rear             | 124   | 5620        | 93.97%     | 0.284                           | 17.0             | 16.0  | 0.125           | 0.167    | 26   |
| Body-w orn               | 6 Mbps   | Antenna #1 |                  | )FF 15        | Front            | 124   | 5620        | 93.97%     | 0.053                           | 17.0             | 16.0  |                 |          |      |
| RF                       |          |            | Pwr Back-<br>off | Dist.<br>(mm) | Test<br>Position | Ch #. | Freq. (MHz) | Duty Cycle | Area Scan<br>Max. SAR<br>(W/kg) | Pow er (dBm)     |       | 10-g SAR (W/kg) |          |      |
| Exposure<br>Conditions   | Mode     | Antenna    |                  |               |                  |       |             |            |                                 | Tune-up<br>Limit | Meas. | Meas.           | Scaled   | Plot |
|                          |          |            |                  |               | Rear             | 124   | 5620        | 93.97%     | 3.300                           | 17.0             | 16.0  |                 |          |      |
| Product<br>Specific      | 802.11a  | Wi-Fi      | OFF              | 10            | Front            | 124   | 5620        | 93.97%     | 0.743                           | 17.0             | 16.0  |                 |          |      |
| 10g                      | 6 Mbps   | Antenna #1 | OFF              | 10            | Edge 1           | 124   | 5620        | 93.97%     | 5.650                           | 17.0             | 16.0  | 0.361           | 0.484    | 27   |
|                          |          |            |                  |               | Edge 2           | 124   | 5620        | 93.97%     | 0.023                           | 17.0             | 16.0  |                 |          |      |

## UNII-3

| RF                        |               |                     | Pw r Back- | Dist. | Test        |       |             |            | Area Scan          | Pow er           | (dBm) | 1-g SAF | R (W/kg) |      |      |       |       |    |
|---------------------------|---------------|---------------------|------------|-------|-------------|-------|-------------|------------|--------------------|------------------|-------|---------|----------|------|------|-------|-------|----|
| Exposure Mo<br>Conditions | Mode          | Antenna             | off        | (mm)  | Position    | Ch #. | Freq. (MHz) | Duty Cycle | Max. SAR<br>(W/kg) | Tune-up<br>Limit | Meas. | Meas.   | Scaled   | Plot |      |       |       |    |
|                           |               |                     |            | 0     | Left Touch  | 155   | 5775        | 74.26%     | 0.085              | 12.0             | 10.7  |         |          |      |      |       |       |    |
| Head                      | ., , 802.11ac | Wi-Fi<br>Antenna #1 | ON         |       | Left Tilt   | 155   | 5775        | 74.26%     | 0.121              | 12.0             | 10.7  | 0.038   | 0.069    | 28   |      |       |       |    |
| rieau                     | VHT80         |                     | ON         |       | Right Touch | 155   | 5775        | 74.26%     | 0.039              | 12.0             | 10.7  |         |          |      |      |       |       |    |
|                           |               |                     |            |       | Right Tilt  | 155   | 5775        | 74.26%     | 0.049              | 12.0             | 10.7  |         |          |      |      |       |       |    |
| Body-w orn                | 802.11a       | Wi-Fi<br>Antenna #1 | Wi-Fi      | Wi-Fi | Wi-Fi       | Wi-Fi | OFF         | 15         | Rear               | 149              | 5745  | 93.97%  | 0.137    | 17.0 | 16.0 | 0.108 | 0.145 | 29 |
| Body-World                | 6 Mbps        |                     | 1          | 15    | Front       | 149   | 5745        | 93.97%     | 0.036              | 17.0             | 16.0  |         |          |      |      |       |       |    |
|                           |               |                     |            |       | Rear        | 149   | 5745        | 93.97%     | 0.218              | 17.0             | 16.0  |         |          |      |      |       |       |    |
| Hotspot                   | 802.11a       | Wi-Fi               | OFF        | 10    | Front       | 149   | 5745        | 93.97%     | 0.048              | 17.0             | 16.0  |         |          |      |      |       |       |    |
| riotapot                  | 6 Mbps        | Antenna #1          | .#1        | 10    | Edge 1      | 149   | 5745        | 93.97%     | 0.263              | 17.0             | 16.0  | 0.114   | 0.153    | 30   |      |       |       |    |
|                           |               |                     |            |       | Edge 2      | 149   | 5745        | 93.97%     | 0.029              | 17.0             | 16.0  |         |          |      |      |       |       |    |

## 10.9. Bluetooth

| RF                       |       |            | Dist.<br>(mm) | Test        |       | _ (1.11)    | Pow er           | (dBm) | 1-g SAF | R (W/kg) | Diet |
|--------------------------|-------|------------|---------------|-------------|-------|-------------|------------------|-------|---------|----------|------|
| Exposure M<br>Conditions | Mode  | Antenna    |               | Position    | Ch #. | Freq. (MHz) | Tune-up<br>Limit | Meas. | Meas.   | Scaled   | Plot |
| Head GFSK                |       |            | 0             | Left Touch  | 39    | 2441        | 10.0             | 9.2   | 0.033   | 0.040    |      |
|                          | CESK  | Antenna #1 |               | Left Tilt   | 39    | 2441        | 10.0             | 9.2   | 0.042   | 0.051    | 31   |
|                          | GFSK  | Antenna #1 |               | Right Touch | 39    | 2441        | 10.0             | 9.2   | 0.023   | 0.028    |      |
|                          |       |            |               | Right Tilt  | 39    | 2441        | 10.0             | 9.2   | 0.029   | 0.035    |      |
| Body-w orn               | GFSK  | Antenna #1 | 15            | Rear        | 39    | 2441        | 10.0             | 9.2   | 0.003   | 0.004    | 32   |
| Body-World               | OI OI |            |               | Front       | 39    | 2441        | 10.0             | 9.2   | 0.003   | 0.003    |      |
|                          |       |            |               | Rear        | 39    | 2441        | 10.0             | 9.2   | 0.015   | 0.018    | 33   |
| ВТ                       | GFSK  | Antenna #1 | 10            | Front       | 39    | 2441        | 10.0             | 9.2   | 0.006   | 0.007    |      |
| Tethering                | OI SK | Antenna #1 |               | Edge 1      | 39    | 2441        | 10.0             | 9.2   | 0.004   | 0.005    |      |
|                          |       |            |               | Edge 2      | 39    | 2441        | 10.0             | 9.2   | 0.002   | 0.002    |      |

# 11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

| Frequency     |                    |                        |               | Repeated        | Highest                | First<br>Repeated                                        |                                     |  |
|---------------|--------------------|------------------------|---------------|-----------------|------------------------|----------------------------------------------------------|-------------------------------------|--|
| Band<br>(MHz) | Air Interface      | RF Exposure Conditions | Test Position | SAR<br>(Yes/No) | Measured<br>SAR (W/kg) | Measured<br>SAR<br>(W/kg)                                | Largest to<br>Smallest<br>SAR Ratio |  |
|               | GSM 850            | Hotspot                | Rear          | Yes             | 0.861                  | 0.777                                                    | 1.11                                |  |
| 850           | WCDMA Band V       | Hotspot                | Rear          | No              | 0.487                  | N/A                                                      | N/A                                 |  |
|               | LTE Band 5         | Hotspot                | Rear          | No              | 0.388                  | N/A                                                      | N/A                                 |  |
| 1900          | GSM 1900           | Hotspot                | Rear          | No              | 0.368                  | N/A                                                      | N/A                                 |  |
| 1900          | WCDMA Band II      | Hotspot                | Rear          | No              | 0.533                  | Repo<br>Measured<br>SAR<br>(W/kg)<br>0.777<br>N/A<br>N/A | N/A                                 |  |
| 2400          | Wi-Fi 802.11b/g/n  | Hotspot                | Rear          | No              | 0.244                  | N/A                                                      | N/A                                 |  |
| 2400          | BT                 | Head                   | Left Tilt     | No              | 0.042                  | N/A                                                      | N/A                                 |  |
| 2600          | LTE Band 41        | Hotspot                | Rear          | No              | 0.323                  | N/A                                                      | N/A                                 |  |
| 5200          | Wi-Fi 802.11a/n/ac | Hotspot                | Edge 1        | No              | 0.149                  | N/A                                                      | N/A                                 |  |
| 5300          | Wi-Fi 802.11a/n/ac | Body                   | Rear          | No              | 0.089                  | N/A                                                      | N/A                                 |  |
| 5500          | Wi-Fi 802.11a/n/ac | Body                   | Rear          | No              | 0.125                  | N/A                                                      | N/A                                 |  |
| 5800          | Wi-Fi 802.11a/n/ac | Hotspot                | Edge 1        | No              | 0.114                  | N/A                                                      | N/A                                 |  |

| Frequency     |                    |                        |               | Repeated        | Highest                | First<br>Repeated         |                                     |  |
|---------------|--------------------|------------------------|---------------|-----------------|------------------------|---------------------------|-------------------------------------|--|
| Band<br>(MHz) | Air Interface      | RF Exposure Conditions | Test Position | SAR<br>(Yes/No) | Measured<br>SAR (W/kg) | Measured<br>SAR<br>(W/kg) | Largest to<br>Smallest<br>SAR Ratio |  |
| 5300          | Wi-Fi 802.11a/n/ac | Product Specific 10g   | Edge 1        | No              | 0.435                  | N/A                       | N/A                                 |  |
| 5500          | Wi-Fi 802.11a/n/ac | Product Specific 10g   | Edge 1        | No              | 0.361                  | N/A                       | N/A                                 |  |

### Note(s)

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is < 1.20.

## 12. Simultaneous Transmission Conditions

| Item | Capable Trans                                   | smit Co                                                                                                                            | nfigurations                                                                                                                                             |
|------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | GSM(Voice)                                      | +                                                                                                                                  | DTS                                                                                                                                                      |
| 2    | GSM(Voice)                                      | +                                                                                                                                  | U-NII                                                                                                                                                    |
| 3    | GSM(Voice)                                      | +                                                                                                                                  | BT                                                                                                                                                       |
| 4    | GSM(GPRS/EDGE)                                  | +                                                                                                                                  | DTS                                                                                                                                                      |
| 5    | GSM(GPRS/EDGE)                                  | +                                                                                                                                  | U-NII                                                                                                                                                    |
| 6    | GSM(GPRS/EDGE)                                  | +                                                                                                                                  | BT                                                                                                                                                       |
| 7    | W-CDMA                                          | +                                                                                                                                  | DTS                                                                                                                                                      |
| 8    | W-CDMA                                          | +                                                                                                                                  | U-NII                                                                                                                                                    |
| 9    | W-CDMA                                          | +                                                                                                                                  | BT                                                                                                                                                       |
| 10   | LTE                                             | +                                                                                                                                  | DTS                                                                                                                                                      |
| 11   | LTE                                             | +                                                                                                                                  | U-NII                                                                                                                                                    |
| 12   | LTE                                             | +                                                                                                                                  | BT                                                                                                                                                       |
|      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 1 GSM(Voice) 2 GSM(Voice) 3 GSM(Voice) 4 GSM(GPRS/EDGE) 5 GSM(GPRS/EDGE) 6 GSM(GPRS/EDGE) 7 W-CDMA 8 W-CDMA 9 W-CDMA 10 LTE 11 LTE | 1 GSM(Voice) + 2 GSM(Voice) + 3 GSM(Voice) + 4 GSM(GPRS/EDGE) + 5 GSM(GPRS/EDGE) + 6 GSM(GPRS/EDGE) + 7 W-CDMA + 8 W-CDMA + 9 W-CDMA + 10 LTE + 11 LTE + |

#### Notes:

- 1. DTS & UNII (ch 149 only) supports Hotspot.
- 2. VoIP is supported in GPRS/EDGE, W-CDMA, and LTE.
- 3. DTS Radio cannot transmit simultaneously with Bluetooth Radio.
- 4. U-NII Radio cannot transmit simultaneously with Bluetooth Radio.

## Note(s):

Product Specific 10 SAR is not required simultaneous transmission.

## 12.1. Simultaneous transmission SAR test exclusion considerations

KDB 447498 D01 General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

### 12.1.1. Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

## 12.2. Sum of the SAR for WWAN & Wi-Fi & BT

| RF<br>Exposure<br>conditions |       | Standalone | SAR (W/kg) | ∑ 1-g SAR (W/kg) |       |       |       |  |
|------------------------------|-------|------------|------------|------------------|-------|-------|-------|--|
|                              | 1     | 2          | 3          | 4                | 1+2   | 1+3   | 1+4   |  |
| Conditions                   | WWAN  | Wi-Fi 2.4G | Wi-Fi 5G   | BT               |       |       |       |  |
| Head                         | 0.315 | 0.106      | 0.142      | 0.051            | 0.421 | 0.457 | 0.366 |  |
| Body-worn                    | 0.522 | 0.117      | 0.167      | 0.004            | 0.639 | 0.689 | 0.526 |  |
| Hotspot                      | 1.148 | 0.280      | 0.153      | 0.018            | 1.428 | 1.301 | 1.166 |  |

### **Conclusion:**

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is  $\le 0.04$  for all circumstances that require SPLSR calculation.

# **Appendixes**

Refer to separated files for the following appendixes.

**Appendix A: SAR Setup Photos** 

**Appendix B: SAR System Check Plots** 

**Appendix C: SAR Highest Test Plots** 

**Appendix D: SAR Tissue Ingredients** 

**Appendix E: SAR Probe Certificates** 

**Appendix F: SAR Dipole Certificates** 

**END OF REPORT**