SM-A236B Ant Specification

Main Ant A/B, Sub Ant C/D/E/F/G

- Antenna Type : MFA
- Antenna Manufacturer : Galtronics
- Antenna test date : 2022.06.16

Gain value is measured by Galtronics Gain Value is measured in active call & Antenna selection.

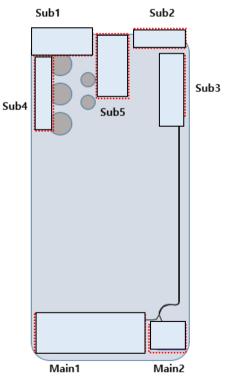
Antenna gain is measured in MTG Chamber.

* MTG Chamber

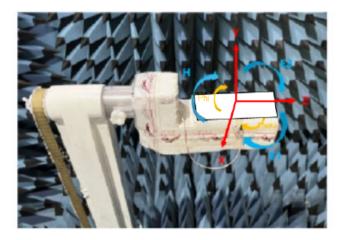
Anechoic chamber is available for Over The Air Test per CTIA, WiFi and LTE Test. Also it is available for antenna pattern measurement for design and development. It's important to RF shielding, absorbing material, absorber layout, precision mechanical alignment and positioner accuracy, when anechoic chamber is designed and installed. MTG can provide the design and construction of anechoic chamber for customer requirements. MTG has a series of positioners, microwave transmit and receive instruments and measurement data acquisition and analysis software. We have the experience to offer anechoic chamber of any size; from the smallest unit for simple RF test to the largest and most complex custom-build for a research and development laboratory.

*Test Equipment list

Description	Manufacturer	Model	S/N	Cal Due
Network Analyzer	Agilent Technologies	E5071B	MY4230186	2023.02.11.


• Return Loss & VSWR Test

The VSWR measurement of antennas assembled into a fully operating SM-A236B phone handset is measured on the Network Analyzer. The handset is set up with a 50 Ohm coaxial cable connected to the 50 Ohm point. Calibration is done at the end of the 50 Ohm coaxial cable connection. The other end of the 50 Ohm coaxial cable is connected to a network analyzer. The handset is positioned on a non-conductive table for free space measurements.


• Return Loss & VSWR Test

Galtronics has a system that can measure VSWR using MTG chamber and E5071B network analyzer for passive measurement. In order to measure the VSWR of each antenna, the lab connects the coaxial cable to the point in contact with the antenna on the main board. The VSWR is measured through the coaxial cable connected in the set. At this time, SM-A236B is assembled in the same state as the user environment

• Radiation Pattern Test

Antennas tested for Gain and Efficiency must be assembled into the enclosure and tested in the fully assembled and operating SM-A236B handset. The antenna is tested in free space in the anechoic chamber in the H, E1 and, E2 planes. The radiation patterns are measured at the center of transmit and receive bands.

• Test Method (Manufacturing)

All measurements are done with SM-A236B fully assembled. Measure in consideration of the Customer's usage environment. Use a fully shielded chamber environment to prevent any noise -induced errors. Typically. The electrical properties of antenna are measured using a jig that Can hold the set.

SM-A236B

RF Antenna Gain

Antenna A(Main1)

-MFA

-Manufacturer : Galtronics.

	Band	B12/N12	B17	B28/N28	B13	B26	B5/N5	B20/N20
	Peak gain (dBi)	-3.98	-4.83	-3.85	-3.92	-4.31	-4.05	-4.41
Antenna	Ave. gain (dBi)	-7.62	-8.65	-7.71	-7.13	-7.42	-7.26	-7.58
А	Band	B8/N8						
	Peak gain (dBi)	-3.46						
	Ave. gain (dBi)	-7.06						

Antenna B(Main2)

-MFA

-Manufacturer : Galtronics.

	Band	B4	B66/N66	B3/N3	B2	B1/N1	B40/N40	B7/N7
	Peak gain (dBi)	-0.83	-0.55	-0.64	0.55	0.54	-0.57	0.03
Antenna	Ave. gain (dBi)	-5.12	-5.07	-5.16	-4.44	-5.28	-5.97	-4.07
В	Band	B41/N41	B38/N38	B78	B77	N79		
_	Peak gain (dBi)	0.12	0.11	-3.61	-4.78	-1.03		
	Ave. gain (dBi)	-3.98	-4.01	-8.67	-9.79	-5.33		

Antenna C(Sub1)

-MFA

	Band	B1/N1	B2	B3/N3	B4	B5/N5	B7/N7
	Peak gain (dBi)	-0.27	-2.11	-1.79	-0.09	-5.34	-3.33
	Ave. gain (dBi)	-6.18	-5.64	-5.25	-5.84	-8.16	-6.29
	Band	B8	B12	B13	B17	B20/N20	B26
Antenna	Peak gain (dBi)	-4.19	-5.23	-5.91	-5.31	-8.69	-5.30
С	Ave. gain (dBi)	-7.79	-8.56	-9.07	-8.61	-6.09	-8.11
	Band	B28/N28	B32	B38/N38	B40/N40	B41/N41	B66/N66
	Peak gain (dBi)	-6.73	-2.64	-1.18	-3.39	-1.11	-1.35
	Ave. gain (dBi)	-9.51	-7.53	-4.73	-7.21	-4.71	-6.92

-Manufacturer : Galtronics.

Antenna D(Sub2)

-MFA

-Manufacturer : Galtronics.

	Band	B1/N1	B3/N3	B2	B4	B25	B48
	Peak gain (dBi)	-4.29	-3.76	-3.47	-3.1	-3.24	-1.09
Antenn	Ave. gain (dBi)	-10.98	-9.21	-9.96	-8.34	-9.78	-7.24
D	Band	N70	N77	N78	GPS		
	Peak gain (dBi)	-2.66	-0.06	-1.27	-0.32		
	Ave. gain (dBi)	-7.45	-5.96	-7.63	-4.85		

Antenna E(Sub3)

-MFA

-Manufacturer : Galtronics.

	Band	B1/N1	B3/N3	B66/N66	N77	N78	N79
Antenna	Peak gain (dBi)	-2.5	-3.14	-3.16	-1.71	-0.51	4.27
E	Ave. gain (dBi)	-5.99	-8.34	-6.39	-5.08	-4.49	-2.1

Antenna F(Sub4)

-MFA

-Manufacturer : Galtronics.

	Band	B7/N7	B38/N38	B41/N41	N79
Antenna	Peak gain (dBi)	-3.09	-1.93	-1.97	0.54
	Ave. gain (dBi)	-8.53	-7.56	-7.52	-6.41

Antenna G(Sub5)

-MFA

-Manufacturer : Galtronics.

	Band	B7	B38	B41	N77	N78	N79
	Peak gain (dBi)	-5.81	-6.13	-6.04	-7.46	-7.63	-4.01
Antenna	Ave. gain (dBi)	-11.23	-11.54	-11.58	-12.71	-11.71	-10.91
G	Band	Wifi 2G	Wifi 5G				
	Peak gain (dBi)	-4.7	-3.9				
	Ave. gain (dBi)	-6.7	-4.6				

• Radiation Pattern

There is Radiation Pattern due to passive measurement with MTG chamber.

Antenna A	(1010111)					
주파수 대역	Main1					
(Frequency Band)	B12/N12		B17			
3D Radiation Pattern	707.500MHz	601 301 - 259 - 259 - 259 - 259 - 259 - 259 - 259	710.000MHz	100 250 250 250 250 250 250 250 250 250 2		
Efficiency[%]	17.28		13.64			
Avg Gain [dBi]	-7.62		-8.65			
Peak Gain [dBi]	-3.98		-4.83			

Antenna A(Main1)

주파수 대역		Ma	ain1	
(Frequency Band)	B28/N28		B13	
3D Radiation Pattern	725.500MHz	(81) 20 20 20 20 20 20 20 20 20 20	782.000MHz	(44) 100 100 100 100 100 100 100 10
Efficiency[%]	16.93		19.38	
Avg Gain [dBi]	-7.71		-7.13	
Peak Gain [dBi]	-3.85		-3.92	

주파수 대역		/lain1
(Frequency Band)	B26	B5/N5
3D Radiation Pattern	831.500MHz	2 00 3 0 3 0 3 0 3 0 4 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5
Efficiency[%]	18.12	18.8
Avg Gain [dBi]	-7.42	-7.26
Peak Gain [dBi]	-4.31	-4.05

주파수 대역		Ma	ain1	
(Frequency Band)	B20/N20		B8/N8	
3D Radiation Pattern	847.000MHz	(20) 1000 100 1000 1	897.500MHz	100 100 23 -12 -12 -12 -12 -12 -12 -12 -12
Efficiency[%]	17.44		19.69	
Avg Gain [dBi]	-7.58		-7.06	
Peak Gain [dBi]	-4.41		-3.46	

Antenna B(Main2)

주파수 대역		Ma	lin2	
(Frequency Band)	B4		B66/N66	
3D Radiation Pattern	1732.500MHz	1000 1000 1000 1484 1000 1250	1745.000MHz	(四) 日日 日日 日日 日日 日日 日日 日日 日日 日日 日
Efficiency[%]	30.77		31.14	
Avg Gain [dBi]	-5.12		-5.07	
Peak Gain [dBi]	-0.83		-0.55	

주파수 대역		Ma	ain2	
(Frequency Band)	B3/N3		В2	
3D Radiation Pattern	1747.500MHz	(45) <u>nac</u> (46) -142 -123 -239 -239 -239 -239 -239 -239 -239 -239	1880.000MHz	100 10 17 17 18 10 17 18 10 10 10 10 10 10 10 10 10 10
Efficiency[%]	30.47		36.01	
Avg Gain [dBi]	-5.16		-4.44	
Peak Gain [dBi]	-0.64		0.55	

주파수 대역		Ma	iin2	
(Frequency Band)	B1/N1		B40/N40	
3D Radiation Pattern	1950.000MHz	(61) 150 -1312 -3312 -3312 -23 -23 -23 -23 -23 -23 -23 -2	2350.000MHz	191 197 197 197 197 197 197 197 197 197
Efficiency[%]	29.64		25.29	
Avg Gain [dBi]	-5.28		-5.97	
Peak Gain [dBi]	0.54		-0.57	

주파수 대역		Ma	iin2	
(Frequency Band)	B7/N7		B41/N41	
3D Radiation Pattern	2535.000MHz	(20) 100 100 100 100 100 100 100 1	2593.000MHz	(81) 1911 1911 1911 1911 1911 1917
Efficiency[%]	39.15		40	
Avg Gain [dBi]	-4.07		-3.98	
Peak Gain [dBi]	0.03		0.12	

주파수 대역		Ma	ain2	
(Frequency Band)	B38/N38		N78	
3D Radiation Pattern	2595.000MHz	(20) 10 15 15 15 15 15 15 15 15 15 15	3550.000MHz	(0) 100 20 20 20 20 20 20 20 20 20 20 20 20 2
Efficiency[%]	39.74		13.6	
Avg Gain [dBi]	-4.01		-8.67	
Peak Gain [dBi]	0.11		-3.61	

주파수 대역		Ma	iin2
(Frequency Band)	N77		N79
3D Radiation Pattern		- 259 - 259	4700.000MHz
Efficiency[%]	10.5		29.31
Avg Gain [dBi]	-9.79		-5.33
Peak Gain [dBi]	-4.78		-1.03

Antenna C(Sub1)

주파수 대역	Su	ıb1
(Frequency Band)	B1/N1	B2
3D Radiation Pattern	2140.000MHz	1960.000MHz
Avg Gain [dBi]	-6.18	-5.64
Efficiency[%]	24.1	27.28
Peak Gain [dBi]	-0.27	-2.11
주파수 대역		ıb1
(Frequency Band)	B3/N3	B4 2132.000MHz
3D Radiation Pattern	1842.000МН2	
Avg Gain [dBi]	-5.25	-5.84
Efficiency[%]	29.85	26.05
Peak Gain [dBi]	-1.79	0.09
주파수 대역		b1
(Frequency Band)	B5/N5	B7/N7
3D Radiation Pattern	881.000MHz	2655.000MHz
Avg Gain [dBi]	-8.16	-6.29
Efficiency[%]	15.28	23.49
Peak Gain [dBi]	-5.34	-3.33

주파수 대역	Su	b1
(Frequency Band)	B8	B12
3D Radiation Pattern	942.000MHz	737.000MHz
Avg Gain [dBi]	-7.79	-8.56
Efficiency[%]	16.64	13.94
Peak Gain [dBi]	-4.19	-5.23
주파수 대역		b1
(Frequency Band)	B13	B17
3D Radiation Pattern	751.000MHz	740.000MHz
Avg Gain [dBi]	-9.07	-8.61
Efficiency[%]	12.38	13.77
Peak Gain [dBi]	-5.91	-5.31
주파수 대역		b1
(Frequency Band)	B20/N20	B26
3D Radiation Pattern	806.000MHz	876.000MHz
Avg Gain [dBi]	-8.69	-8.11
Efficiency[%]	13.51	15.44
Peak Gain [dBi]	-6.09	-5.3

주파수 대역	Su	b1
(Frequency Band)	B28/N28	B32
3D Radiation Pattern	780.000MHz	1474.000MHz
Avg Gain [dBi]	-9.51	-7.53
Efficiency[%]	11.2	17.64
Peak Gain [dBi]	-6.73	-2.64

주파수 대역	Su	b1
(Frequency Band)	B38/N38	B40/N40
3D Radiation Pattern	2595.000MHz	2350.000MHz
Avg Gain [dBi]	-4.73	-7.21
Efficiency[%]	33.68	19.03
Peak Gain [dBi]	-1.18	-3.39

주파수 대역	Sub1	
(Frequency Band)	B41/N41	B66/N66
3D Radiation Pattern	2593.000MHz	2155.000MHz
Avg Gain [dBi]	-4.71	-6.92
Efficiency[%]	33.77	20.32
Peak Gain [dBi]	-1.11	-1.35

Antenna D(Sub2)

주파수 대역	Sub2	
(Frequency Band)	B1/N1	B3/N3
3D Radiation Pattern	2140.000MHz	1842.500MHz
Avg Gain [dBi]	-10.98	-9.21
Efficiency[%]	7.99	12
Peak Gain [dBi]	-4.29	-3.76
주파수 대역		ıb2
(Frequency Band)	B2	B4
3D Radiation Pattern	1880.000MHz	
Efficiency[%]	10.1	14.67
Avg Gain [dBi]	-9.96	-8.34
Peak Gain [dBi]	-3.47	-3.1
주파수 대역	Su	ıb2
(Frequency Band)	B25	B48
3D Radiation Pattern	1882.500MHz	3625.000МНz
Efficiency[%]	10.52	18.86
Avg Gain [dBi]	-9.78	-7.24
Peak Gain [dBi]	-3.24	-1.09

주파수 대역	Su	b2
(Frequency Band)	N70	N77
3D Radiation Pattern	1702.500MHz	3750.000MHz
Efficiency[%]	18.01	25.33
Avg Gain [dBi]	-7.45	-5.96
Peak Gain [dBi]	-2.66	-0.06
주파수 대역	Su	b2
(Frequency Band)	N78	GPS
3D Radiation Pattern	3550.000MHz	1575.000MHz
Efficiency[%]	17.26	32.74
Avg Gain [dBi]	-7.63	-4.85
Peak Gain [dBi]	-1.27	-0.32

Antenna E(Sub3)

주파수 대역		ub3
(Frequency Band)	B1/N1	B3/N3
3D Radiation Pattern	2140.000MHz	1842.500MHz
Avg Gain [dBi]	-5.99	-8.34
Efficiency[%]	25.16	14.66
Peak Gain [dBi]	-2.5	-3.14
주파수 대역		ub3
(Frequency Band)	B66/N66	N77
3D Radiation Pattern	2155.000MHz	3750.000MHz
Avg Gain [dBi]	-6.39	-5.08
Efficiency[%]	22.97	31.04
Peak Gain [dBi]	-3.16	-1.71
주파수 대역		ub3
(Frequency Band)	N78	N79
3D Radiation Pattern	3550.000MHz	4700.000MHz
Avg Gain [dBi]	-4.49	-2.1
Efficiency[%]	35.55	61.61
Peak Gain [dBi]	-0.51	4.27

Antenna F(Sub4)

주파수 대역	Sub4	
(Frequency Band)	B7/N7	B38/N38
3D Radiation Pattern	2655.000MHz	2595.000MHz
Avg Gain [dBi]	-8.53	-7.56
Efficiency[%]	14.01	17.52
Peak Gain [dBi]	-3.09	-1.93
주파수 대역		b4
(Frequency Band)	B41/N41	N79
3D Radiation Pattern	2593.000MHz	4850.000MHz
Avg Gain [dBi]	-7.52	-6.41
Efficiency[%]	17.69	22.85
Peak Gain [dBi]	-1.97	0.54

Antenna G(Sub5)

주파수 대역		b5
(Frequency Band)	В7	B38
3D Radiation Pattern	2655.000MHz	2595.000MHz
Avg Gain [dBi]	-11.23	-11.54
Efficiency[%]	7.54	7.01
Peak Gain [dBi]	-5.81	-6.13
주파수 대역		b5
(Frequency Band)	B41	N77
3D Radiation Pattern	2593.000MHz	3750.000MHz
Avg Gain [dBi]	-11.58	-12.71
Efficiency[%]	6.95	5.35
Peak Gain [dBi]	-6.04	-7.46
주파수 대역		b5
(Frequency Band)	N78	N79
3D Radiation Pattern	3550.000MHz	4700.000MHz
Avg Gain [dBi]	-11.71	-10.91
Efficiency[%]	6.74	8.11
Peak Gain [dBi]	-7.63	-4.01

주파수 대역	Sub5	
(Frequency Band)	WiFi 2G	WiFi 5G
3D Radiation Pattern	2436.000MHz	5500.000MHz
Efficiency[%]	21.52	34.48
Avg Gain [dBi]	-6.7	-4.6
Peak Gain [dBi]	-4.7	-3.9