

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401

FCC BT REPORT Certification

Applicant Name: SAMSUNG Electronics Co., Ltd.

Address:

129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea

Date of Issue: July 18, 2022

Test Site/Location: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA

	Report No.: HCT-RF-2207-FC024		
FCC ID:	A3LSMA233JPN		
APPLICANT:	SAMSUNG Electronics Co., Ltd.		
Model:	SC-56C		
Additional Model:	SCG18, SM-A233C		
EUT Type:	Mobile Phone		
Max. RF Output Power:	10.260 dBm (10.62 mW)		
Frequency Range:	2402 MHz– 2480 MHz (Bluetooth)		
Modulation type	GFSK(Normal), π/4DQPSK and 8DPSK(EDR)		
FCC Classification:	FCC Part 15 Spread Spectrum Transmitter (DSS)		
FCC Rule Part(s):	Part 15 subpart C 15.247		

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

REVIEWED BY

Report prepared by : Woong Jin Kim Engineer of Telecommunication Testing Center Report approved by : Se Wook Park Manager of Telecommunication Testing Center

This test results were applied only to the test methods required by the standard.

This laboratory is not accredited for the test results marked *. The above Test Report is the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA. (HCT Accreditation No.: KT197)

* The report shall not be reproduced except in full(only partly) without approval of the laboratory.

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
HCT-RF-2207-FC024	July 18, 2022	- First Approval Report

Table of Contents

REVIEWED BY	2
1. EUT DESCRIPTION	5
2. Requirements for Bluetooth transmitter(15.247)	6
3. TEST METHODOLOGY	6
EUT CONFIGURATION	6
EUT EXERCISE	7
GENERAL TEST PROCEDURES	7
DESCRIPTION OF TEST MODES	7
4. INSTRUMENT CALIBRATION	8
5. FACILITIES AND ACCREDITATIONS	8
FACILITIES	8
EQUIPMENT	8
6. ANTENNA REQUIREMENTS	8
7. MEASUREMENT UNCERTAINTY	9
8. DESCRIPTION OF TESTS	0
9. SUMMARY OF TEST RESULTS	8
10. TEST RESULT	9
10.1 PEAK POWER	9
10.2 BAND EDGES	5
10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)	2
10.4 NUMBER OF HOPPING FREQUENCY	0
10.5 TIME OF OCCUPANCY (DWELL TIME)	4
10.6 SPURIOUS EMISSIONS	0
10.6.1 CONDUCTED SPURIOUS EMISSIONS6	0
10.6.2 RADIATED SPURIOUS EMISSIONS6	8
10.6.3 RADIATED RESTRICTED BAND EDGES7	3
10.7 POWERLINE CONDUCTED EMISSIONS	6
11. LIST OF TEST EQUIPMENT	0
12. ANNEX A_ TEST SETUP PHOTO	2

1. EUT DESCRIPTION

Model	SC-56C	
Additional Model	SCG18, SM-A233C	
ЕИТ Туре	Mobile Phone	
Power Supply	DC 4.20 V	
Frequency Range	2 402 MHz ~ 2 480 MHz	
Max. RF Output Power	10.260 dBm (10.62 mW)	
BT Operating Mode	Normal, EDR, AFH	
Modulation Type	GFSK(Normal), π/4DQPSK and 8DPSK(EDR)	
Modulation Technique	FHSS	
Number of Channels	79 Channels, Minimum 20 Channels(AFH)	
Date(s) of Tests	June 23, 2022 ~ July 18, 2022	
Serial number	Radiated : R3CT50MQLRL Conducted : R3CT50MQEKV	

2. Requirements for Bluetooth transmitter(15.247)

This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.

• 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.

• 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device (ANSI C63.10-2013, KDB 558074) is used in the measurement of the test device.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHzwith 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHzor 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the analyzer was set to peak detector and add the DCCF calsulations.

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of §15.203

7. MEASUREMENT UNCERTAINTY

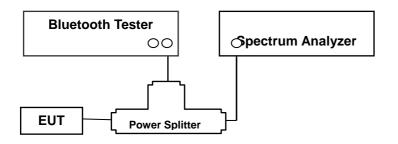
The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	2.00 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.40 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.74 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.51 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.92 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.48 (Confidence level about 95 %, <i>k</i> =2)

8. DESCRIPTION OF TESTS


8.1. Conducted Maximum Peak Output Power

<u>Limit</u>

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 W. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 W.
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Configuration

Test Procedure

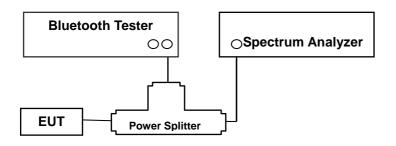
The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.5 in ANSI 63.10-2013& Procedure 10(b)(6)(i) in KDB 558074 v05r02)

- 1) Span: approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- 2) RBW > the 20 dB bandwidth of the emission being measured
- 3) VBW ≥ RBW
- 4) Sweep = Auto
- 5) Detector = Peak
- 6) Trace = Max hold

Sample Calculation

Output Power = Spectrum Measured Power + Power Splitter loss + Cable loss(2 ea)


= 10 dBm + 6 dB + 1.5 dB = 17.5 dBm

8.2. Conducted Band Edge(Out of Band Emissions)

<u>Limit</u>

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

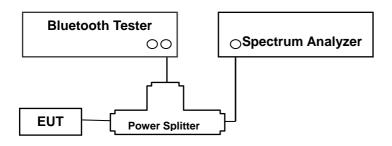
Test Configuration

Test Procedure

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (6.10.4 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) RBW: 100 kHz
- 6) VBW: 300 kHz
- 7) Detector: Peak
- 8) Trace: Max hold



8.3. Frequency Separation & 20 dB Bandwidth

<u>Limit</u>

According to §15.247(a)(1), Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

Test Procedure(Frequency Separation)

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.2 in ANSI 63.10-2013 & Procedure 10(b)(6)(iii) in KDB 558074 v05r02)

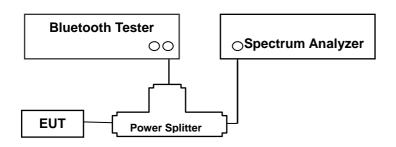
- 1) Span: Wide enough to capture the peaks of two adjacent channels
- 2) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.
- 8) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Test Procedure (20 dB Bandwidth)

And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (6.9.2 in ANSI 63.10-2013)

- 1) Span: Set between two times and five times the OBW
- 2) RBW: 1 % to 5 % of the OBW.
- 3) VBW \ge 3 x RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.



8.4. Number of Hopping Frequencies

<u>Limit</u>

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

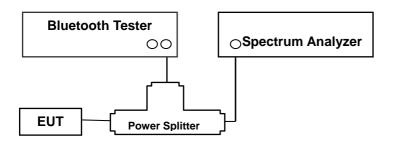
Test Configuration

Test Procedure

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (7.8.3 in ANSI 63.10-2013& Procedure 10(b)(4) in KDB 558074 v05r02)

- 1) Span: the frequency band of operation
- 2) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) Allow the trace to stabilize.



8.5. Time of Occupancy

<u>Limit</u>

According to \$15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within aperiod 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

Test Procedure

This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.4 in ANSI 63.10-2013& Procedure 10(b)(6)(iv) in KDB 558074 v05r02)

- 1) Span: Zero span, centered on a hopping channel
- RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3) Sweep = as necessary to capture the entire dwell time per hopping channel
- 4) Detector: Peak
- 5) Trace: Max hold

The marker-delta function was used to determine the dwell time.

Sample Calculation

The following calculation process is not relevant to our measurement results. It is just an example.

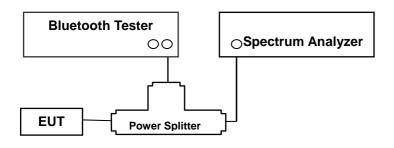
- (1) Non-AFH Mode
- DH 5 (GFSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- (2) AFH Mode
- DH 5 (GFSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)

Note :

DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving.

Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.667 times of appearance. Each tx-time per appearance of DH5 is 2.890 ms.

Dwell time = Tx-time x 106.667 = 308.27 (ms)



8.6. Conducted Spurious Emissions

<u>Limit</u>

Conducted > 20 dBc

Test Configuration

Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (7.8.8 in ANSI 63.10-2013& Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span:30 MHz to 10 times the operating frequency in GHz.
- 2) RBW: 100 kHz
- 3) VBW: 300 kHz
- 4) Sweep: Coupled
- 5) Detector: Peak

Measurements are made over the 30 MHz to 25 GHzrange with the transmitter set to the lowest, middle, and highest channels.

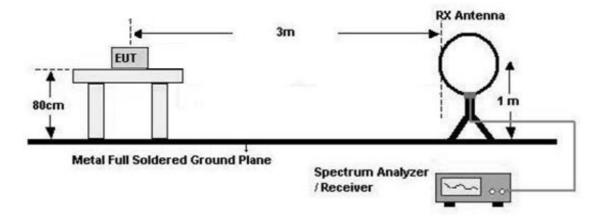
This test is performed with hopping off.

Factors for frequency

Freq(MHz)	Factor(dB)
30	6.09
100	6.13
200	6.21
300	6.34
400	6.41
500	6.46
600	6.49
700	6.47
800	6.51
900	6.54
1000	6.59
2000	6.85
2400	6.96
2480	6.97
2500	7.00
3000	7.07
4000	7.26
5000	7.47
5150	7.51
5850	7.59
6000	7.59
7000	7.71
8000	7.87
9000	8.02
10000	8.08
11000	8.24
12000	8.42
13000	8.43
14000	8.52
15000	8.55
16000	8.62
17000	8.72
18000	8.94
19000	9.04
20000	8.96
21000	9.16
22000	9.19
23000	9.58
24000	9.37
25000	9.42
26000	9.46

Note : 1. 2400 ~ 2500 MHz is fundamental frequency range.

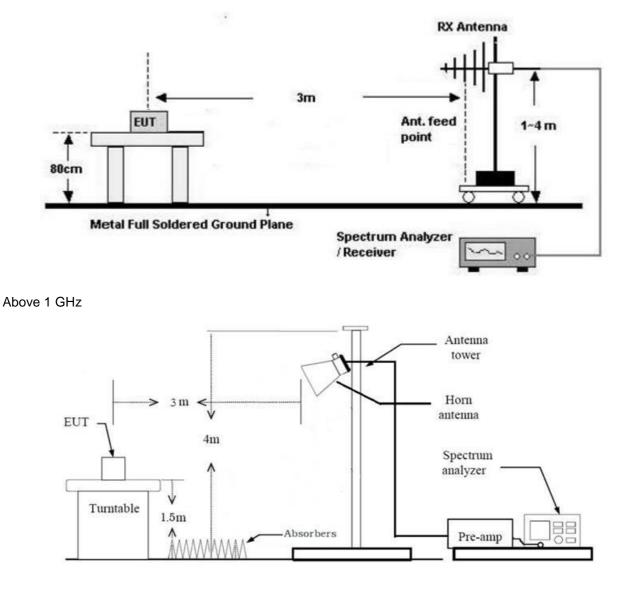
2. Factor = Cable loss(2 EA) + Splitter loss(6 dB) + EUT Cable Loss(0.2 dB)


8.7. Radiated Test

<u>Limit</u>

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Configuration


Below 30 MHz

FCC ID: A3LSMA233JPN

30 MHz - 1 GHz

Test Procedure of Radiated spurious emissions(Below30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- Distance Correction Factor(0.009 MHz 0.490 MHz) =40log(3 m/300 m)= 80 dB Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) =40log(3 m/30 m)= 40 dB

Measurement Distance : 3 m

- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \ge 3 x RBW

9.Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1 GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - * In general, (1) is used mainly
- 7.Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions

from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Average):
 - Average value of pulsed emissions
 - Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall determined from the peak field strength after correcting for the worst-case duty cycle as described in Number.14 (On Page. 23)
 - ◆ Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 11. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 12.Total
 - (1)Measurement(Peak)

```
Measured Value(Peak) + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F)
(2)Measurement(Avg)
```

Measured Value(Peak) + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F) + DCCF(AFH)

```
F-TP22-03 (Rev.00)
```

- 13. Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 229.100 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H ' =1
 - c. Worst Case Dwell Time = T [ms] x H ' = 2.9 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 14. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 20 channels = 58.00 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H ' = 2
 - c. Worst Case Dwell Time = T [ms] x H ' = 5.800 ms
 - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB

Test Procedure of Radiated Restricted Band Edge

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Average):
 - Average value of pulsed emissions
 - Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall determined from the peak field strength after correcting for the worst-case duty cycle as described in Number.14 (On Page. 23)
 - Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)

11.Total

(1)Measurement(Peak)

Measured Value(Peak) + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F) (2)Measurement(Avg)

Measured Value(Peak) + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F)

+ DCCF(AFH)

8.8. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)	
0.50 to 5	56	46	
5 to 30	60	50	

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.
- 5. The EUT is the device operating below 30 MHz.
 - For unterminated the Antenna, the AC line conducted tests are performed with the antenna connected
 - For terminated the Antenna, the AC line conducted tests are performed with a dummy load connected to the EUT antenna output terminal.

Sample Calculation

Quasi-peak(Final Result) = Measured Value + Correction Factor

8.9. Worst case configuration and mode

Radiated test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone, Stand alone + External accessories(Earphone, etc)
- Worstcase : Stand alone
- 2. EUT Axis
 - Radiated Spurious Emissions : Y
 - Radiated Restricted Band Edge : X

3. All data rate of operation were investigated and the test results are worst case in highest datarate of each mode.

- GFSK : DH5
- π/4DQPSK : 2-DH5
- 8DPSK : 3-DH5
- 4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.Position : Horizontal, Vertical, Parallel to the ground plane
- 6. SC-56C, SCG18, SM-A233C were tested and the worst case results are reported.

(Worst case : SC-56C)

AC Power line Conducted Emissions

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone + External accessories(Earphone, etc) + Travel Adapter
 - Stand alone + Travel Adapter
 - Worstcase : Stand alone + Travel Adapter
- 2. SC-56C, SCG18, SM-A233C were tested and the worst case results are reported.
 - (Worst case : SC-56C)

Conducted test

- 1. The EUT was configured with data rate of highest power.
 - GFSK : DH5
 - $\pi/4DQPSK$: 2-DH5
 - 8DPSK : 3-DH5
- 2. AFH & Non-AFH were tested and the worst case results are reported. (Worst case : Non-AFH)
- 3. SC-56C, SCG18, SM-A233C were tested and the worst case results are reported.

(Worst case : SC-56C)

9. SUMMARY OF TEST RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§15.247(a)(1)	N/A		PASS
Occupied Bandwidth	N/A	N/A		N/A
Conducted Maximum Peak Output Power	§15.247(b)(1)	<0.125 W	-	PASS
Carrier Frequency Separation	§15.247(a)(1)	>25 kHz or >2/3 of the 20dB BW	-	PASS
Number of Hopping Frequencies	§15.247(a)(1)(iii) ≥ 15		Conducted	PASS
Time of Occupancy	§15.247(a)(1)(iii) <400 ms			PASS
Conducted Spurious Emissions	§15.247(d) > 20 dB for all out-of band emissions			PASS
Band Edge (Out of Band Emissions)	§15.247(d)	> 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	§15.207(a)	cf. Section 8.8		PASS
Radiated Spurious Emissions	§15.247(d), 15.205, 15.209	cf. Section 8.7		PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 8.7	Radiated	PASS

Note: Average Power data refer to SAR report

10. TEST RESULT

10.1 PEAK POWER

Channel	Frequency (MHz)	-	t Power FSK)	Limit
		(dBm)	(mW)	(mW)
Low	2402	9.539	8.99	
Mid	2441	10.260	10.62	125
High	2480	10.048	10.11	

Channel	Frequency	Output Power (8DPSK)		Limit
	(MHz)	(dBm)	(mW)	(mW)
Low	2402	9.572	9.06	
Mid	2441	9.558	9.03	125
High	2480	9.451	8.81	

Channel	Frequency (MHz)	-	t Power QPSK)	Limit
		(dBm)	(mW)	(mW)
Low	2402	9.580	9.08	
Mid	2441	9.564	9.04	125
High	2480	9.392	8.69	

Note:

1. Spectrum measured values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

2. Actual value of loss for the splitter and cable combination is 6.96 dB at 2400 MHz and is 6.97 dB at 2500 MHz.So, 6.97 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Test Plots (GFSK)

Peak Power (CH.0)

Agilent Spectr	um Analyzer - Swept SA RF 50 Ω AC		SENSE:	INT	ALIGNAUTO	01:39:33 PM Jur	24,2022	
Center Fr	req 2.402000000	GHz PNO: Fast ↔ IFGain:Low	Trig: Free Ru Atten: 34 dB	ın Avg∐r	Type: RMS Hold: 1/1	TYPE M	23456 	Frequency
10 dB/div Log	Ref Offset 6.97 dB Ref 29.00 dBm				Mkr	2.401 987 9.539		Auto Tuno
19.0			1					Center Fre 2.402000000 GH
9.00								Start Fre 2.399806674 GH
21.0								Stop Fre 2.404193326 G⊦
31.0								CF Ste 438.665 k⊦ Auto Ma
51.0								Freq Offs 0 ⊦
Center 2.4	402000 GHz 3 0 MHz	#\/B\A	(50 MHz		Sween	Span 4.38 1.000 ms (10	7 MHz	
ISG					STATL		er pæj	

Test Plots (GFSK) Peak Power (CH.39)

Test Plots (GFSK)

Peak Power (CH.78)

Agilent Spectrum Analyzer - Swept S					
XX RL RF 50Ω A0 Center Freq 2.4800000	00 GHz PN0: Fast Trig:	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold: 1/1	01:39:56 PM Jun 24, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P	Frequency
Ref Offset 6.97 dl 10 dB/div Ref 29.00 dBn	8	n: 34 dB	Mkr	1 2.479 953 GHz 10.048 dBm	Auto Tune
19.0		▲1			Center Fred 2.480000000 GHz
9.00					Start Free 2.477880254 GH:
-11.0					Stop Fre 2.482119746 GH
-31.0					CF Stej 423.949 kH <u>Auto</u> Ma
-51.0					Freq Offse 0 H
-61.0 Center 2.480000 GHz #Res BW 3.0 MHz	#VBW 50 MI	Hz	Sweep	Span 4.239 MHz 1.000 ms (1001 pts)	
MSG			STAT		

Test Plots (8DPSK) Peak Power (CH.0)

Test Plots (8DPSK)

Peak Power (CH.39)

Test Plots (8DPSK) Peak Power (CH.78)

Test Plots (π/4DQPSK)

Peak Power (CH.0)

Agilent Spectr	r <mark>um Analyzer - Swept SA</mark> RF 50 Ω AC		SENSE:INT	ALIGNAUTO	01:40:08 PM Jun 24, 2022	
	req 2.40200000	GHz PNO: Fast ↔		#Avg Type: RMS Avg Hold: 1/1	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P P P P P P	Frequency
10 dB/div	Ref Offset 6.97 dB Ref 29.00 dBm			Mkr	1 2.401 968 GHz 9.580 dBm	Auto Tune
19.0			1			Center Fred 2.402000000 GH
-1.00			* * * * 7 * * * *			Start Fre 2.398817500 GH
-11.0						Stop Fre 2.405182500 GH
31.0						CF Ste 636.500 kH <u>Auto</u> Ma
51.0						Freq Offs 0 F
Center 2.4	402000 GHz	#\/B\A	50 MHz	Swaap	Span 6.365 MHz 1.000 ms (1001 pts)	
SG	002111112			SWEEP		

Test Plots (π/4DQPSK) Peak Power (CH.39)

Test Plots (π /4DQPSK)

Peak Power (CH.78)

Agilent Spectr	rum Analyzer - Swept SA RF 50 Ω AC		SENSE:INT	ALIGNAUTO	01:40:31 PM Jun 24, 2022	
	req 2.480000000	GHz	ree Run 34 dB	#Avg Type: RMS Avg Hold: 1/1	TRACE 1 2 3 4 5 6 TYPE M	Frequency
10 dB/div	Ref Offset 6.97 dB Ref 29.00 dBm			Mkr1 2.	479 805 01 GHz 9.392 dBm	Auto Tun
19.0			1			Center Fre 2.480000000 GH
9.00						Start Fre 2.476855000 GH
21.0						Stop Fr 2.483145000 G
41.0						CF St e 629.000 k <u>Auto</u> M
51.0						Freq Offs 01
61.0	480000 GHz				Span 6.290 MHz	
Res BW	3.0 MHz	#VBW 50 MH	z	Sweep	1.000 ms (1001 pts) s	

10.2 BAND EDGES

Without hopping

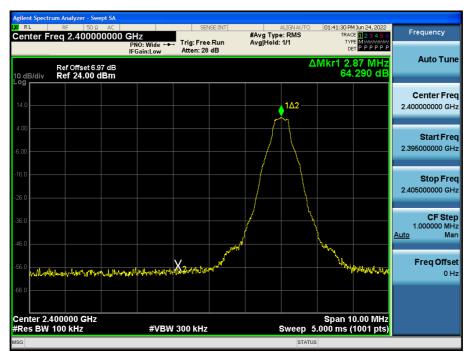
Outside Frequency Pand	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	64.290	47.949	49.797	00
Upper	65.287	65.069	64.695	20

With hopping

Outside Fragmenou Dand	GFSK	8DPSK	π/4DQPSK	Limit	
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)	
Lower	63.939	49.375	51.475	00	
Upper	65.696	64.907	62.032	20	

Note :

1. Spectrum measured levels are not plot data.


The power results in plot is already including the actual values of loss for the splitter and cable combination.

2. . Actual value of loss for the splitter and cable combination is 6.96 dB at 2400 MHz

and is 6.97 dB at 2500 MHz.So, 6.97 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.



Test Plots without hopping (GFSK) Band Edges (CH.0)

Test Plots without hopping (GFSK)

Band Edges (CH.78)



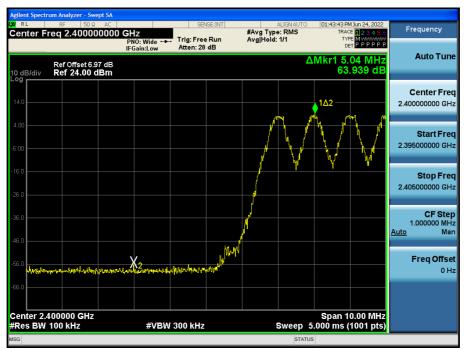
Test Plots without hopping (8DPSK)

Band Edges (CH.0)

Test Plots without hopping (8DPSK) Band Edges (CH.78)

Test Plots without hopping (π /4DQPSK)

Band Edges (CH.0)


Test Plots without hopping (π /4DQPSK) Band Edges (CH.78)

Test Plots with hopping (GFSK)

Band Edges (CH.0)

Test Plots with hopping (GFSK) Band Edges (CH.78)

Test Plots with hopping (8DPSK)

Band Edges (CH.0)

Test Plots with hopping (8DPSK) Band Edges (CH.78)

Test Plots with hopping (π /4DQPSK)

Band Edges (CH.0)

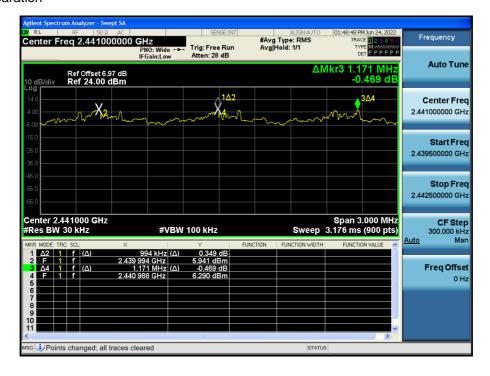
Test Plots with hopping (π /4DQPSK) Band Edges (CH.78)

10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)

99% BW (kHz)									
Channel	Channel GFSK 8DPSK π/4DQPSK								
CH.0	766.46	1167.2	1158.3						
CH.39	759.75	1159.1	1149.0						
CH.78	753.25	1147.8	1145.6						

20dB BW (kHz)									
Channel	Channel GFSK 8DPSK π/4DQPSK								
CH.0	877.3	1288	1273						
CH.39	846.8	1285	1273						
CH.78	847.9	1270	1258						

	Channel Separation(kHz)							
GFSK	8DPSK	(kHz)						
			>25 kHz					
998	994	1008	or					
			>2/3 of the 20 dB BW					

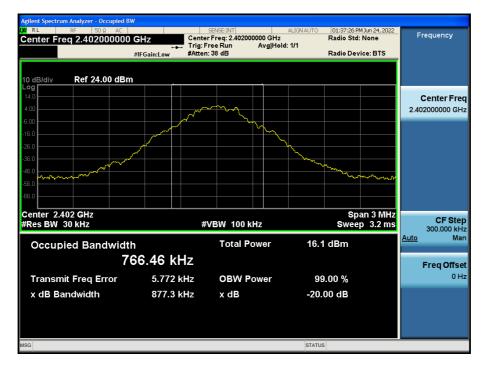


Test Plots (GFSK)

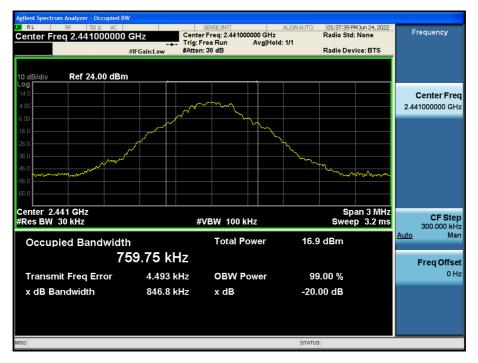
Channel Separation

Test Plots (8DPSK) Channel Separation

Test Plots (π/4DQPSK)


Channel Separation

	um Analyzer -									1	
Center F		0Ω AC 000000 GH	lz	SENSE		#Avg Typ		TRA	M Jun 24, 2022 E 123456	Frequency	
	-	Ph	IO: Wide ↔ Gain:Low	Trig: Free R Atten: 28 di		Avg Hold:	: 1/1	TY D	PE MWWWWW ET P P P P P P		
	Ref Offset						ΔN		61 MHz	Auto Tui	ne
10 dB/div Log	Ref 24.0							-0	.910 dB		
14.0					Δ2				3∆4 ——	Center Fre	ea
4.00	Х	2		-And			0.0	Nun		2.441000000 GI	· · I
-6.00	~~~~~~	when have	\sim	~~~~ "	Nº Lond	m	\sim	1 VOVA	m		
-16.0										Start Fre	ea
-26.0										2.439500000 GI	Hz
-36.0											
-46.0										Stop Fre	eq
-56.0										2.442500000 GI	Hz
Center 2.4 #Res BW	441000 GH	lz	#\/B\M	100 kHz			Sween		.000 MHz (900 pts)	CF Ste 300.000 kl	
MKR MODE TH		×	WAVE-11	Y Y	FUNCT						an
1 <u>A2</u> 1	f (Δ)	1.00	8 MHz (Δ)	-1.038 dE	3		CHOIC WIDTH	PONCH	DIV VALUE		
2 F 1 3 Δ4 1	f (Δ)		1 MHz (Δ)	6.517 dBn -0.910 dE	3					Freq Offs	et
4 F 1 5	f	2.440 99	5 GHz	5.479 dBn	<u>ו</u>				=	01	Hz
6											
8											
10									~		
<									> ×		
мsg 🧼 Point	ts changed;	all traces clear	ed				STATUS				


Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (GFSK)

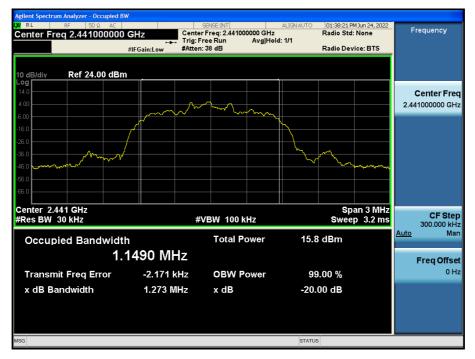
20 dB Bandwidth & Occupied Bandwidth (CH.78)

Test Plots (8DPSK) 20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (8DPSK) 20 dB Bandwidth & Occupied Bandwidth (CH.78)


Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (π/4DQPSK)

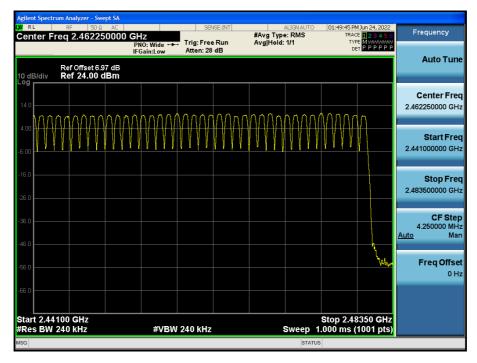
20 dB Bandwidth & Occupied Bandwidth (CH.78)

10.4 NUMBER OF HOPPING FREQUENCY

	Limit					
GFSK	GFSK 8DPSK π/4DQPSK					
79	79	79	>15			


Note :

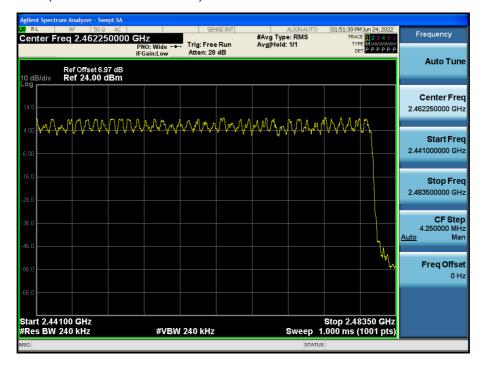
In case of AFH mode, minimum number of hopping channels is 20.


Test Plots (GFSK)

Number of Channels (2.4 GHz- 2.441 GHz)

Test Plots (GFSK)

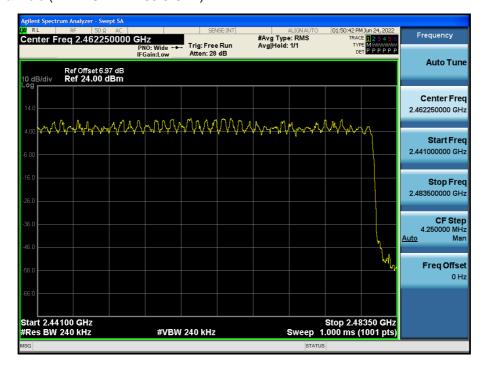

Number of Channels (2.441 GHz- 2.483.5 GHz)



Test Plots (8DPSK)

Number of Channels (2.4 GHz- 2.441 GHz)


Test Plots (8DPSK) Number of Channels (2.441 GHz- 2.483.5 GHz)



Test Plots (π/4DQPSK)

Number of Channels (2.4 GHz- 2.441 GHz)

Test Plots (π/4DQPSK) Number of Channels (2.441 GHz- 2.483.5 GHz)

10.5 TIME OF OCCUPANCY (DWELL TIME)

	Channel	GFSK	8DPSK	π/4DQPSK	
Pulse Time	Low	2.880	2.885	2.885	
(ms)	Mid	2.880	2.885	2.885	
	High	2.880	2.885	2.885	

Non-AFH Mode

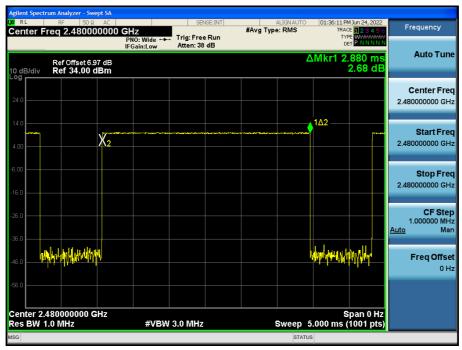
	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	307.20	307.73	307.73	31.6	
(ms)	Mid	307.20	307.73	307.73	31.6	400
	High	307.20	307.73	307.73	31.6	

AFH Mode

	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	153.60	153.87	153.87	8.0	
(ms)	Mid	153.60	153.87	153.87	8.0	400
	High	153.60	153.87	153.87	8.0	

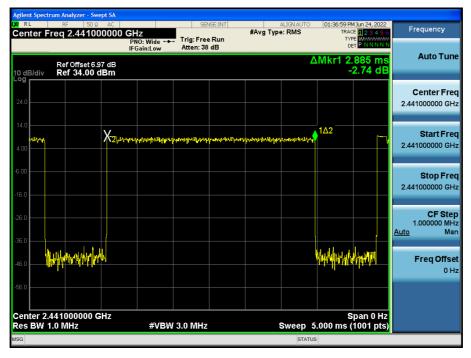
Test Plots (GFSK)

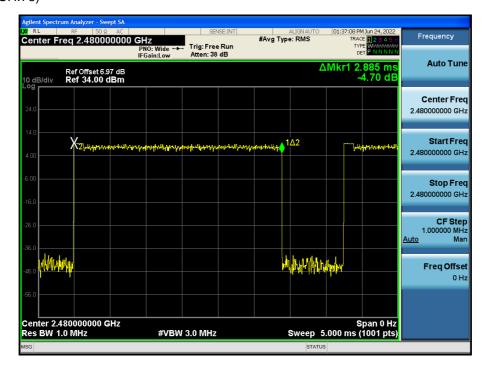
Dwell Time (CH.0)


Test Plots (GFSK) Dwell Time (CH.39)

Test Plots (GFSK)

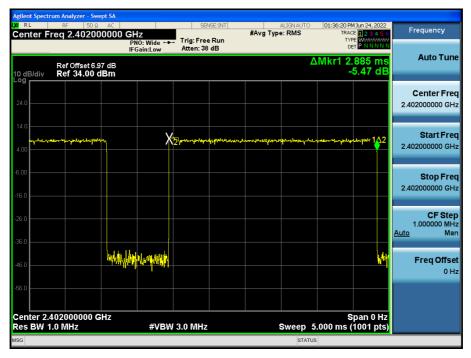
Dwell Time (CH.78)


Test Plots (8DPSK) Dwell Time (CH.0)



Test Plots (8DPSK)

Dwell Time (CH.39)


Test Plots (8DPSK) Dwell Time (CH.78)



Test Plots (π/4DQPSK)

Dwell Time (CH.0)

Test Plots (π /4DQPSK)

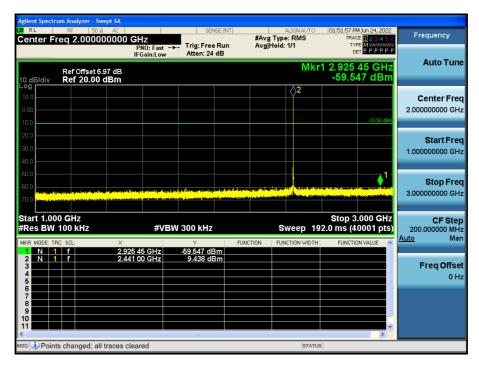
Test Plots (π /4DQPSK)

Dwell Time (CH.78)

10.6 SPURIOUS EMISSIONS 10.6.1 CONDUCTED SPURIOUS EMISSIONS

Test Result : please refer to the plot below.

In order to simplify the report, attached plots were only the worst case channel and data rate.

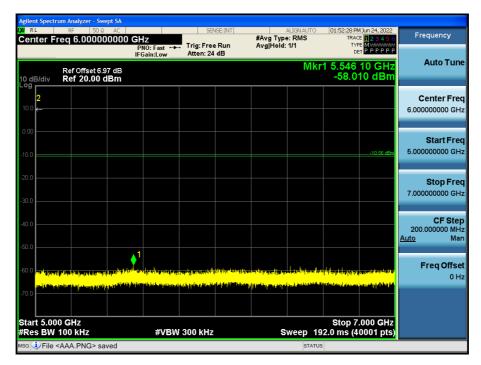


Test Plots (GFSK)- 30 MHz - 1 GHz

Spurious Emission (CH.39)

Agilent Spectrum Analyzer - Swe X/ RL RF 50 Ω		SENSE:INT	ALIGNAUTO	01:52:08 PM Jun 24, 2022	_
Center Freq 515.000		🛏 Trig: Free Run	#Avg Type: RMS Avg Hold: 1/1	TRACE 1 2 3 4 5 6 TYPE M	Frequency
Ref Offset 6.9 10 dB/div Ref 20.00 d		Atten: 24 dB	М	ьет Р Р Р Р Р Р kr1 596.51 MHz -61.173 dBm	Auto Tune
10.0				2 →	Center Freq 515.000000 MHz
•10.0				-10.56 dBm	Start Freq 30.000000 MHz
-20.0					Stop Freq 1.000000000 GHz
-40.0					CF Step 97.000000 MHz <u>Auto</u> Man
-60.0	, og laterationska (set replet Vick	op a de a la state de	1 1. al an ann an	s, pour la fait la fact de la constant de la fact	Freq Offset 0 Hz
-70.0 2010 2010 2010 2010 2010 2010 2010 2				Stop 1.0000 GHz	
#Res BW 100 kHz		V 300 kHz	Sweep 93 STATUS	8.33 ms (20000 pts) s	

Test Plots (GFSK)- 1 GHz- 3 GHz

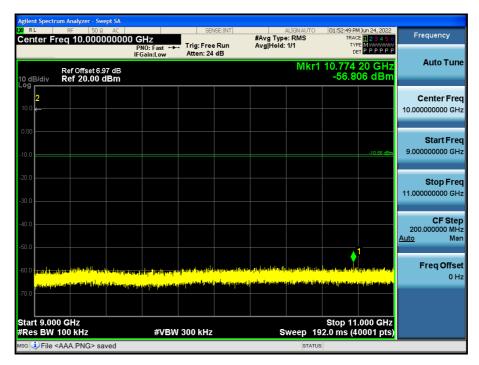


Test Plots(GFSK)- 3 GHz- 5 GHz

Spurious Emission (CH.39)

Center Freq 4.00	50 Ω AC			ISE:INT		ALIGNAUTO	01/E0/10 DM	Jun 24, 2022	
		IZ NO: Fast ↔			#Avg Type Avg Hold:	: RMS	TRACE	123456 Matanana	Frequency
	IF	Gain:Low	Atten: 24		51			PPPPP	Auto Tune
Ref Offse 10 dB/div Ref 20.0						MKr	1 4.881 -49.67	70 GHz 72 dBm	Auto Tune
2									Center Freq
10.0									4.000000000 GHz
0.00									Start Freq
-10.0								-10.56 dBm	3.000000000 GHz
-20.0									Stop Freq
-30.0									5.000000000 GHz
-40.0									CF Step
								1	200.000000 MHz <u>Auto</u> Man
-50.0									
-60.0 Tricklaward wipping an p	,		and <mark>a head and and and and and and and and and a</mark>	an di servet setti tre	ill Boundate and	a shell such sheet in sheet	a na ministra da sua sua sua sua sua sua sua sua sua su	<mark>la le tra cher la give</mark>	Freq Offset 0 Hz
the second s	usi pina kana injana ka ini di	aletti problemente	<mark>line manalal patis</mark> a	una a para a para para para para para par	and the state of the	National data	terioral tuble legity	n an filme the	
Start 3.000 GHz #Res BW 100 kHz		#\/B\M	300 kHz			woon 10	Stop 5. 2.0 ms (40	000 GHz	
MSG DO Points changed:	all traces clear		JUU KHZ		5	status	2.0 ms (4)	oo r pisj	

Test Plots (GFSK)- 5 GHz- 7 GHz

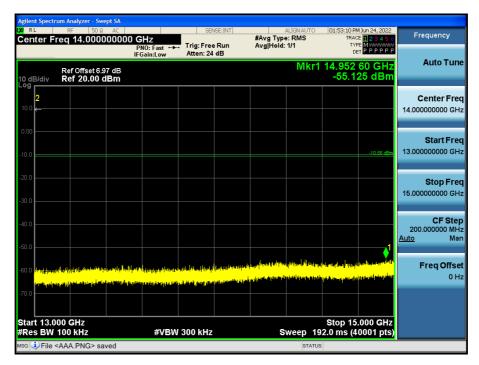


Test Plots(GFSK)- 7 GHz- 9 GHz

Spurious Emission (CH.39)

Agilent Spectr	um Analyzer - Swe RF 50 Ω									
	req 8.00000	0000 GH				#Avg Type Avg Hold:		TRAC	1 Jun 24, 2022 E 1 2 3 4 5 6 E M 4444444	Frequency
10 dB/div	Ref Offset 6.9 Ref 20.00 d	IFC 7 dB	NO: Fast ↔ Gain:Low	Atten: 24		Avginola.		1 8.166	ТРРРРР	Auto Tune
Log 2 10.0 ←										Center Freq 8.000000000 GHz
0.00 -10.0									-10.56 dBm	Start Freq 7.000000000 GHz
-20.0										Stop Freq 9.000000000 GHz
-40.0					,					CF Step 200.000000 MHz <u>Auto</u> Man
-60.0 m.datad gatetaa	in the strain south and	in land a Direktori Mangalapinanak Sir	n di ten di tenten duri ya ¹⁹ 19-19 Anna Anna Anna ya		andra da Data da Mariana Manana da Maria da Ma	and a state of the second s		ing the first open in the second s		Freq Offset 0 Hz
-70.0 Start 7.00									.000 GHz	
#Res BW			#VBW	300 kHz		S		2.0 ms (4		
MSG VFile <	<aaa.png> sav</aaa.png>	/ed					STATUS	5		

Test Plots(GFSK)- 9 GHz- 11 GHz

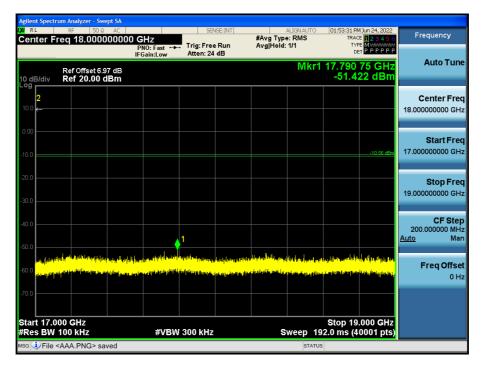


Test Plots(GFSK) 11 GHz- 13 GHz

Spurious Emission (CH.39)

RF 50 Ω	pt SA AC		SEN	VSE:INT		ALIGNAUTO	01:52:59 PM	1 Jun 24, 2022	
	00000 G	NO: Fast 🔸	Trig: Free	e Run	#Avg Type	e: RMS	TRAC		Frequency
	IFO	Gain:Low	Atten: 24	dB		Mkr1			Auto Tune
							-55.9	95 dBm	
									Center Freq
									12.000000000 GHz
									Otort From
								-10.56 dBm	Start Freq 11.000000000 GHz
									Stop Freq
									13.000000000 GHz
									CF Step
									200.000000 MHz <u>Auto</u> Man
						↓ ¹			
na da se de la de la se de la secte de	and the second second	and the shake	entral Withours	in the strategy	<mark>h hal an an att</mark>		den et retet la de	<mark>ta banantana</mark> t	Freq Offset 0 Hz
1 Martine Party State	<mark>ishingking a</mark> t	1 Contraction of the local data	unatikon piano	watay alka spanic	Although the Astronomy	and the state of the	ADDINE AND A COMPANY	uni lingeratore by	0 H2
0 GHz							Stop 13	.000 GHz	
	(od	#VBW	300 kHz		S			0001 pts)	
	eq 12.0000	eq 12.000000000 G	eq 12.000000000 GHz PNO: Fast IFGain:Low Ref Offset 6.97 dB Ref 20.00 dBm 	Eq 12.000000000 GHz Trig: Free Atten: 24 PN0: Fast	eq 12.000000000 GHz PRO: Fast PRO: Fast Trig: Free Run Atten: 24 dB Ref Offset 6.97 dB Ref 20.00 dBm 	PNO: Fast →→ IFGain:Low Trig: Free Run Atten: 24 dB #Avg Hold: Ref Offset 6.97 dB Ref 20.00 dBm Image: State of the	eq 12.000000000 GHz Ph0: Fast ++++ Trig: Free Run Atten: 24 dB Ref Offset 6.97 dB Ref 20.00 dBm Mkr1 Ref 20.00 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Eq 12.000000000 GHz Trig: Free Run #Avg Type: RMS Trace PN0: Fast Trig: Free Run AvgHold: 1/1 Trace Ref Offset 6.97 dB Mkr1 12.465 Ref Offset 6.97 dB Mkr1 12.465 Ref Offset 6.97 dB	eq 12.000000000 GHz Trig: Free Run Atten: 24 dB #Avg Type: RMS AvgHold: 1/1 Trid: 2 & 8 dB Ref Offset 6.97 dB Mkr1 12.465 15 GHz 55.995 dBm

Test Plots (GFSK)- 13 GHz- 15 GHz



Test Plots(GFSK)- 15 GHz- 17 GHz

Spurious Emission (CH.39)

Agilent Spectrum Analyzer - Swept SA ΔØ RL RF 50 Ω AC SENSE:INT ALIGN AUTO 01:53:20 PM Jun 24,2022									
Center Fi	RF 50 Ω AC req 16.0000000	00 GHz		ISE:INT	#Avg Type		TRAC	E 1 2 3 4 5 6	Frequency
		PNO: Fast ↔ IFGain:Low	Trig: Free Atten: 24		Avg Hold:	1/1	DI	Е М илииии ТРРРРРР	
10 dB/div Log	Ref Offset 6.97 dB Ref 20.00 dBm					Mkr1	15.608 -53.8	05 GHz 52 dBm	Auto Tune
2									Center Freq
10.0 🖵 ———									16.000000000 GHz
0.00									
									Start Freq 15.00000000 GHz
-10.0								-10.56 dBm	15.00000000 GHz
-20.0									Stop Freq
									17.000000000 GHz
-30.0									
-40.0									CF Step 200.000000 MHz
-50.0		1							<u>Auto</u> Man
	in international internations	store U.S. the distant	difference and a second	1.1.1.1			المتلافية أفر	nen tähdä antik	
-60.0	and descent the second seco	un papata di secola d	ingeneration and the state	i katala sa ta disa malik.	a ger ger syn syn syn ar i sam. An de beschiefte de be	alanana salada	and the second se		Freq Offset 0 Hz
-70.0									
Start 15.0							Stop 17	.000 GHz	
#Res BW		#VBN	/ 300 kHz		S		2.0 ms (4	0001 pts)	
MSG 🥹 File <	<aaa.png> saved</aaa.png>					STATUS	5		

Test Plots(GFSK)- 17 GHz- 19 GHz

Test Plots (GFSK)- 19 GHz- 21 GHz

Spurious Emission (CH.39)

Agilent Spectrum Analyzer - Swept SA									
Center F	RF 50 Ω req 20.00000			ENSE:INT	#Avg Typ		TRAC	1 Jun 24, 2022 E <mark>1 2 3 4 5</mark> 6	Frequency
	•		ast ↔ Trig:Fr ow Atten::		Avg[Hold:	: 1/1	TYF	EMWWWWW TPPPPP	
	Ref Offset 6.97	40				Mkr1	20.868	45 GHz	Auto Tune
10 dB/div Log	Ref 20.00 dB						-51.9	31 dBm	
2									Center Freq
10.0									20.000000000 GHz
0.00									Start Freq
-10.0								-10.56 dBm	19.000000000 GHz
-20.0									Stop Freq
									21.00000000 GHz
-30.0									
-40.0									CF Step
								. 1	200.000000 MHz <u>Auto</u> Man
-50.0									
	da ha shi ku							en se su se su Se su se s	Freq Offset
-coro <mark>vanibr</mark> i	an an ini ing ing mang si déglementen.	a and a start of the local data of the	(Little Alter Little contraction	an - paraisina da ma		a an this paint in the			0 Hz
-70.0									
Start 19.	000 GHz						Stop 21	.000 GHz	
#Res BW	100 kHz		#VBW 300 kH	z	s	weep 19	2.0 ms (4		
мsg 🧼 File	<aaa.png> save</aaa.png>	d				STATUS	5		

Test Plots (GFSK)- 21 GHz- 23 GHz

		um Analyze										
LXI R Cen	-	RF 100 22.0	50 Q	AC 00000	Hz		ISE:INT	#Avg Typ		TRA	M Jun 24, 2022 CE 1 2 3 4 5 6	Frequency
				P	NO: Fast 🔸 Gain:Low	Trig: Free Atten: 24		Avg Hold:	1/1	TY	PE MWWWWWW ET P P P P P P	
		Ref Offs	-46.07		Gam.Eow				Mk	r1 22.317	15 GHz	Auto Tune
10 dl	B/div	Ref 20								-51.0	81 dBm	
Log	2											Center Freq
10.0	∠											22.000000000 GHz
0.00	<u> </u>											Start Freq
-10.0											-10.56 dBm	21.000000000 GHz
-10.0												
-20.0												Stop Freq
												23.000000000 GHz
-30.0												
-40.0												CF Step
								×1				200.000000 MHz <u>Auto</u> Man
-50.0										tikin anika adama	d in alledations to	
								enden denkende.	11 C 11			Freq Offset
-60.0	and the later	in air ta tha th	filten di 1	Pp:philippi	a di pisti di bisti d Bisti di bisti		a a state and sectors.	19.2001 ALM 16 AL 19.20	and a sector of the sector of	<mark>a yakata kakata kata kata kata kata kata</mark>		0 Hz
-70.0												
Star	L	00 GHz								Stop 23	.000 GHz	
		100 kHz	:		#VBW	300 kHz		S	weep	192.0 ms (4		
MSG 🤇	🎝 File <	AAA.PNG	G> sav	ed					STA	TUS		

Test Plots (GFSK)- 23 GHz- 25 GHz

Agilent Spectr	r <mark>um Analyzer - Swept S</mark> RF 50 Ω AC					
	RF 50 Ω AC req 24.000000	000 GHz PNO: Fast ++	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold: 1/1	01:54:01 PM Jun 24, 2022 TRACE 12 3 4 5 6 TYPE MWWWW DET P P P P P P	Frequency
10 dB/div	Ref Offset 6.97 dl Ref 20.00 dBn		Atten: 24 dB	Mkr1	24.972 80 GHz -46.588 dBm	Auto Tune
2 10.0 ←						Center Freq 24.000000000 GHz
-10.0					-10.56 dBm	Start Freq 23.000000000 GHz
-20.0						Stop Freq 25.000000000 GHz
-40.0	T the desidence of the desidence	n tinal 1911, di 18 atliniora	a the first series and proventions in	je <mark>l volusien v</mark> oor dat der je de viter de kree	Jan settlepunper of Proster a table	CF Step 200.000000 MHz <u>Auto</u> Man
-60.0 -8140.4)	eneral de la contra a la contra de la contra Eneral de la contra d		vet Byelik Sheladi jala _{Kate} rna bere Alekind	el y senterpol (n. b. and an analysis beaution of parts	n for an	Freq Offset 0 Hz
-70.0 Start 23.0			200 111-		Stop 25.000 GHz	
#Res BW	<pre>AAA.PNG> saved</pre>	#VBW	300 kHz	Sweep 19	2.0 ms (40001 pts)	

10.6.2 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30MHz

Frequency	Measured Value	A.F+C.L+D.F	POL	Total	Limit	Margin			
[MHz]	[dBµV] [dB/m]		[H/V]	[dBµV/m]	[dBµV/m]	[dB]			
	No Critical peaks found								

Note:

1. The Measured of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dB μ V) + Distance extrapolation factor
- 4. Radiated test is performed with hopping off.

Frequency Range : Below 1 GHz

Frequency	Measured Value	A.F+C.L	POL	Total	Limit	Margin				
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]				
	No Critical peaks found									

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode.

2. Radiated test is performed with hopping off.

Frequency Range : Above 1 GHz Operation Mode: CH Low(GFSK)

Frequency		A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4804	46.55	3.98	V	0	50.53	73.98	23.45	PK
4804	46.55	3.98	V	-24.73	25.80	53.98	28.18	AV
7206	39.99	12.53	V	0	52.52	73.98	21.47	PK
7206	39.99	12.53	V	-24.73	27.78	53.98	26.20	AV
4804	46.23	3.98	Н	0	50.21	73.98	23.77	PK
4804	46.23	3.98	Н	-24.73	25.48	53.98	28.50	AV
7206	40.07	12.53	Н	0	52.60	73.98	21.39	PK
7206	40.07	12.53	Н	-24.73	27.86	53.98	26.12	AV
Operation N	/lode: CH N	/lid(GFSK)						
Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4882	47.12	4.07	V	0	51.19	73.98	22.79	PK
4882	47.12	4.07	V	-24.73	26.46	53.98	07 50	
7323		4.07	v	24.75	20.40	55.96	27.52	AV
1323	41.05	4.07 11.57	V	0	52.62	73.98	21.52	AV PK
7323	41.05 41.05							
		11.57	V	0	52.62	73.98	21.36	PK
7323	41.05	11.57 11.57	V V	0 -24.73	52.62 27.89	73.98 53.98	21.36 26.09	PK AV
7323 4882	41.05 47.22	11.57 11.57 4.07	V V H	0 -24.73 0	52.62 27.89 51.29	73.98 53.98 73.98	21.36 26.09 22.69	PK AV PK
7323 4882 4882	41.05 47.22 47.22	11.57 11.57 4.07 4.07	V V H H	0 -24.73 0 -24.73	52.62 27.89 51.29 26.56	73.98 53.98 73.98 53.98	21.36 26.09 22.69 27.42	PK AV PK AV
7323 4882 4882 7323	41.05 47.22 47.22 40.98 40.98	11.57 11.57 4.07 4.07 11.57 11.57	V V H H	0 -24.73 0 -24.73 0 -24.73	52.62 27.89 51.29 26.56 52.55	73.98 53.98 73.98 53.98 73.98	21.36 26.09 22.69 27.42 21.43	PK AV PK AV PK
7323 4882 4882 7323 7323 Operation N	41.05 47.22 47.22 40.98 40.98 Aode: CH H	11.57 11.57 4.07 4.07 11.57 11.57	V V H H H	0 -24.73 0 -24.73 0	52.62 27.89 51.29 26.56 52.55	73.98 53.98 53.98 73.98 53.98 53.98	21.36 26.09 22.69 27.42 21.43 26.16	PK AV PK AV PK

[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	,,
4960	45.88	4.77	V	0	50.65	73.98	23.33	PK
4960	45.88	4.77	V	-24.73	25.92	53.98	28.06	AV
7440	39.96	11.99	V	0	51.95	73.98	22.03	PK
7440	39.96	11.99	V	-24.73	27.21	53.98	26.77	AV
4960	45.99	4.77	н	0	50.76	73.98	23.22	PK
4960	45.99	4.77	Н	-24.73	26.03	53.98	27.95	AV
7440	39.88	11.99	Н	0	51.87	73.98	22.11	PK
7440	39.88	11.99	Н	-24.73	27.13	53.98	26.85	AV

Operation Mode: CH Low(π/4DQPSK)

Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4804	46.63	3.98	V	0	50.61	73.98	23.37	PK
4804	46.63	3.98	V	-24.73	25.88	53.98	28.10	AV
7206	40.02	12.53	V	0	52.55	73.98	21.44	PK
7206	40.02	12.53	V	-24.73	27.81	53.98	26.17	AV
4804	46.55	3.98	н	0	50.53	73.98	23.45	PK
4804	46.55	3.98	Н	-24.73	25.80	53.98	28.18	AV
7206	40.12	12.53	Н	0	52.65	73.98	21.34	PK
7206	40.12	12.53	н	-24.73	27.91	53.98	26.07	AV
Operation N	/lode: CH N	/lid(π/4DQPSK)						
				Duty				

Frequency	Measured Value	A.F+C.L-A.G+D.F		Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4882	46.88	4.07	V	0	50.95	73.98	23.03	PK
4882	46.88	4.07	V	-24.73	26.22	53.98	27.76	AV
7323	41.03	11.57	V	0	52.60	73.98	21.38	PK
7323	41.03	11.57	V	-24.73	27.87	53.98	26.11	AV
4882	46.96	4.07	Н	0	51.03	73.98	22.95	PK
4882	46.96	4.07	Н	-24.73	26.30	53.98	27.68	AV
7323	40.95	11.57	Н	0	52.52	73.98	21.46	PK
7323	40.95	11.57	Н	-24.73	27.79	53.98	26.19	AV

Operation Mode: CH High(π/4DQPSK)

Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4960	44.58	4.77	V	0	49.35	73.98	24.63	PK
4960	44.58	4.77	V	-24.73	24.62	53.98	29.36	AV
7440	39.55	11.99	V	0	51.54	73.98	22.44	PK
7440	39.55	11.99	V	-24.73	26.80	53.98	27.18	AV
4960	44.88	4.77	Н	0	49.65	73.98	24.33	PK
4960	44.88	4.77	Н	-24.73	24.92	53.98	29.06	AV
7440	39.44	11.99	Н	0	51.43	73.98	22.55	PK
7440	39.44	11.99	Н	-24.73	26.69	53.98	27.29	AV

Report No.: HCT-RF-2207-FC024

Operation Mode: CH Low(8DPSK)

		A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4804	46.57	3.98	V	0	50.55	73.98	23.43	PK
4804	46.57	3.98	V	-24.73	25.82	53.98	28.16	AV
7206	40.12	12.53	V	0	52.65	73.98	21.34	PK
7206	40.12	12.53	V	-24.73	27.91	53.98	26.07	AV
4804	46.48	3.98	Н	0	50.46	73.98	23.52	PK
4804	46.48	3.98	Н	-24.73	25.73	53.98	28.25	AV
7206	40.22	12.53	Н	0	52.75	73.98	21.24	PK
7206	40.22	12.53	Н	-24.73	28.01	53.98	25.97	AV
Operation N	/lode: CH N	lid(8DPSK)						
Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4882	46.88	4.07	V	0	50.95	73.98	23.03	PK
4882	46.88	4.07	V	-24.73	26.22	53.98	27.76	AV
7323	41.01	11.57	V	0	52.58	73.98	21.40	PK
7323	41.01	11.57	V	-24.73	27.85	53.98	26.13	AV
4882	46.95	4.07	Н	0	51.02	73.98	22.96	PK
4882	46.95	4.07	Н	-24.73	26.29	53.98	27.69	AV
7323	40.97	11.57	Н	0	52.54	73.98	21.44	PK

40.97 Operation Mode: CH High(8DPSK)

7323

Frequency	Measured Value	A.F+C.L-A.G+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
4960	44.22	4.77	V	0	48.99	73.98	24.99	PK
4960	44.22	4.77	V	-24.73	24.26	53.98	29.72	AV
7440	39.71	11.99	V	0	51.70	73.98	22.28	PK
7440	39.71	11.99	V	-24.73	26.96	53.98	27.02	AV
4960	44.38	4.77	Н	0	49.15	73.98	24.83	PK
4960	44.38	4.77	Н	-24.73	24.42	53.98	29.56	AV
7440	39.65	11.99	Н	0	51.64	73.98	22.34	PK
7440	39.65	11.99	Н	-24.73	26.90	53.98	27.08	AV

-24.73

27.81

Н

11.57

26.17

53.98

AV

PLOTS

Radiated Spurious Emissions plot –Peak & Average Result (8DPSK, Ch.0 3rd Harmonic, Y-H)

Spectrun	n Sp	ectrum 2	X SI	ectrum 3	X		-		
Ref Leve Att	1 97.00 dBµ' о d		e RBW	1 MHz	lode Sweep				
Count 100		D 5WI 4	ms 🖝 ¥BW	3101112 19	iode Sweep	,			
●1Pk Max●	2Pk Clrw								
					M	1[1]			₩0.22 dBμ
90 dBµV—						I	I	7.19	93647 GHz
80 dBµV—									
70 dBµV—									
60 dBµV—									
50 dBµV									
40 deux/			M1 ▼						
in white in the	mulandel	Mundula	unananan	mound	with your a		placentelen	when the second	about the second
14-1444 30 481-1	PHUR HAND	LAN MALAN	hury ryrhyd	ակուղափ	whateway	146001-066	0156414746	hri, yri, hidd	A HARAN AND AN
30 GDH4		0		• • •		v ∥.	,	0 0 0	0.0 0000
20 dBµV									
10 dBµV									
0 dвµV									
CF 7.206 (GHz	1		691	pts	1	1	Span	35.0 MHz

Note:

Plot of worst case are only reported.

10.6.3 RADIATED RESTRICTED BAND EDGES

Operation Mode	Normal(GFSK)		
Operating Frequency	2402 MHz, 2480 MHz		
Channel No	CH 0, CH 78		

Frequency	Measured Level	A.F+C.L+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
2390.0	48.36	2.20	Н	0	50.56	73.98	23.42	PK
2390.0	48.36	2.20	Н	-24.73	25.83	53.98	28.15	AV
2390.0	48.22	2.20	V	0	50.42	73.98	23.56	PK
2390.0	48.22	2.20	V	-24.73	25.69	53.98	28.29	AV
2483.5	48.89	2.45	Н	0	51.34	73.98	22.64	PK
2483.5	48.89	2.45	Н	-24.73	26.61	53.98	27.37	AV
2483.5	48.78	2.45	V	0	51.23	73.98	22.75	PK
2483.5	48.78	2.45	V	-24.73	26.50	53.98	27.48	AV

Operation Mode

EDR(π/4DQPSK)

Operating Frequency

Channel No

2402 MHz, 2480 MHz

CH 0, CH 78

Frequency	Level	A.F+C.L+D.F		Duty Cycle Correction [dB]		Limit	-	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[ub]	[αΒμν/m]	[dBµV/m]	[dB]	
2390.0	48.84	2.20	Н	0	51.04	73.98	22.94	PK
2390.0	48.84	2.20	Н	-24.73	26.31	53.98	27.67	AV
2390.0	48.78	2.20	V	0	50.98	73.98	23.00	PK
2390.0	48.78	2.20	V	-24.73	26.25	53.98	27.73	AV
2483.5	49.04	2.45	Н	0	51.49	73.98	22.49	PK
2483.5	49.04	2.45	Н	-24.73	26.76	53.98	27.22	AV
2483.5	48.98	2.45	V	0	51.43	73.98	22.55	PK
2483.5	48.98	2.45	V	-24.73	26.70	53.98	27.28	AV

Operation Mode	EDR(8DPSK)
Operating Frequency	2402 MHz, 2480 MHz
Channel No	CH 0, CH 78

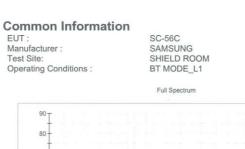
Frequency	Measured Level	A.F+C.L+D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB/m]	[H/V]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	
2390.0	48.69	2.20	Н	0	50.89	73.98	23.09	PK
2390.0	48.69	2.20	Н	-24.73	26.16	53.98	27.82	AV
2390.0	48.55	2.20	V	0	50.75	73.98	23.23	PK
2390.0	48.55	2.20	V	-24.73	26.02	53.98	27.96	AV
2483.5	48.15	2.45	н	0	50.60	73.98	23.38	PK
2483.5	48.15	2.45	н	-24.73	25.87	53.98	28.11	AV
2483.5	48.01	2.45	V	0	50.46	73.98	23.52	PK
2483.5	48.01	2.45	V	-24.73	25.73	53.98	28.25	AV

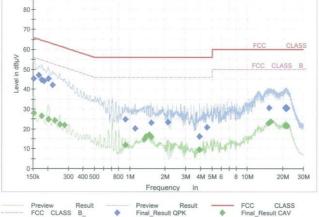
RESULT PLOTS

Radiated Restricted Band Edges plot – Average & Peak Result(π/4DQPSK, Ch.78, X-H) [₩ Spectrum 2 X ctrum Ref Level 107.00 dBµV RBW 1 MHz • Att 10 dB 👄 SWT 50 ms 👄 VBW 3 MHz Mode Sweep Count 100/100 ●1Pk Max●2Pk Clrw M1[1] 49.04 dBµV 2.4840030 GHz 100 dBµV-90 dBµ∨ 80 dBµV 70 dBµV 60 dBµV 50 dBµV h I, 1 when they w 40 dBµV 30 dBµV 20 dBµV∙ SI 10 dBµV-Span 25.0 MHz CF 2.4875 GHz 1001 pts

Note:

Plot of worst case are only reported.




1/2

10.7 POWERLINE CONDUCTED EMISSIONS

Conducted Emissions (Line 1)

BT MODE_L1

Final_Result_QPK

Frequency (MHz)	(dBµV)	(dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1523	45.36	65.88	20.52	9.000	L1	OFF	9.6
0.1680	47.11	65.06	17.95	9.000	L1	OFF	9.6
0.1770	44.74	64.63	19.89	9.000	L1	OFF	9.6
0.1860	43.99	64.21	20.22	9.000	L1	OFF	9.6
0.2040	45.17	63.45	18.27	9.000	L1	OFF	9.6
0.2198	42.22	62.83	20.61	9.000	L1	OFF	9.6
0.9163	24.80	56.00	31.20	9.000	L1	OFF	9.7
1.1053	20.29	56.00	35.71	9.000	L1	OFF	9.7
1.5170	23.21	56.00	32.79	9.000	L1	OFF	9.7
2.1178	23.25	56.00	32.75	9.000	L1	OFF	9.7
3.9178	16.22	56.00	39.78	9.000	L1	OFF	9.8
4.5163	20.68	56.00	35.32	9.000	L1	OFF	9.8
15.2893	30.70	60.00	29.30	9.000	L1	OFF	10.2
20.9908	30.59	60.00	29.41	9.000	L1	OFF	10.4
21.2563	30.37	60.00	29.63	9.000	L1	OFF	10.4
21.3170	30.82	60.00	29.18	9.000	L1	OFF	10.4
21.6410	30.47	60.00	29.53	9.000	L1	OFF	10.4
21.6478	30.32	60.00	29.68	9.000	L1	OFF	10.4

2022-07-01

오후 10:33:14

Test Report

FCC ID: A3LSMA233JPN

BT MODE_L1

2/2

Final_Result_CAV

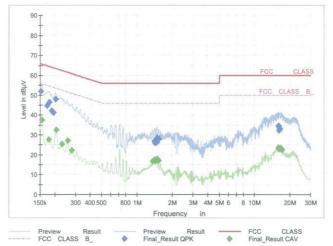
Frequency (MHz)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1523	27.91	55.88	27.96	9.000	L1	OFF	9.6
0.1770	26.56	54.63	28.06	9.000	L1	OFF	9.6
0.2040	24.93	53.45	28.51	9.000	L1	OFF	9.6
0.2288	24.22	52.50	28.27	9.000	L1	OFF	9.6
0.2535	22.10	51.64	29.54	9.000	L1	OFF	9.6
0.2783	21.90	50.87	28.97	9.000	L1	OFF	9.6
0.9140	11.77	46.00	34.23	9.000	L1	OFF	9.7
1.3280	14.84	46.00	31.16	9.000	L1	OFF	9.7
1.3753	16.12	46.00	29.88	9.000	L1	OFF	9.7
1.4675	17.02	46.00	28.98	9.000	L1	OFF	9.7
1.5170	15.94	46.00	30.06	9.000	L1	OFF	9.7
3.9200	9.51	46.00	36.49	9.000	L1	OFF	9.8
15.0733	22.81	50.00	27.19	9.000	L1	OFF	10.2
15.8315	23.58	50.00	26.42	9.000	L1	OFF	10.2
20.9908	21.59	50.00	28.41	9.000	L1	OFF	10.4
21.0448	21.56	50.00	28.44	9.000	L1	OFF	10.4
21.5713	21.61	50.00	28.39	9.000	L1	OFF	10.4
21.7513	21.49	50.00	28.51	9.000	L1	OFF	10.4

2022-07-01

오후 10:33:14

1/2

Conducted Emissions (Line 2)


BT MODE_N

Test Report

Common Information

EUT : Manufacturer : Test Site: Operating Conditions : SC-56C SAMSUNG SHIELD ROOM BT MODE_N

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1523	52.04	65.88	13.84	9.000	N	OFF	9.6
0.1725	44.67	64.84	20.17	9.000	N	OFF	9.6
0.1793	46.32	64.52	18.20	9.000	N	OFF	9.6
0.1883	41.98	64.11	22.13	9.000	N	OFF	9.6
0.1950	41.17	63.82	22.65	9.000	N	OFF	9.6
0.2040	47.77	63.45	15.67	9.000	N	OFF	9.6
1.4135	26.92	56.00	29.08	9.000	N	OFF	9.7
1.4203	26.09	56.00	29.91	9.000	N	OFF	9.7
1.4698	26.30	56.00	29.70	9.000	N	OFF	9.7
1.4743	26.97	56.00	29.03	9.000	N	OFF	9.7
1.4810	28.56	56.00	27.44	9.000	N	OFF	9.7
1.5328	28.04	56.00	27.96	9.000	N	OFF	9.7
15.9395	34.36	60.00	25.64	9.000	N	OFF	10.3
16.0048	34.66	60.00	25.34	9.000	N	OFF	10.3
16.0543	34.61	60.00	25.39	9.000	N	OFF	10.3
16.2455	32.20	60.00	27.80	9.000	N	OFF	10.3
16.3400	32.90	60.00	27.10	9.000	N	OFF	10.3
16.3445	33.07	60.00	26.93	9.000	N	OFF	10.3

2022-07-01

오후 10:27:56

FCC ID: A3LSMA233JPN

BT MODE_N

2/2

Final_Result_CAV

Frequency (MHz)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	37.55	55.75	18.20	9.000	N	OFF	9.6
0.1770	27.77	54.63	26.86	9.000	N	OFF	9.6
0.2063	32.58	53.36	20.78	9.000	N	OFF	9.6
0.2288	25.40	52.50	27.10	9.000	N	OFF	9.6
0.2580	27.02	51.50	24.47	9.000	N	OFF	9.6
0.2783	22.11	50.87	28.76	9.000	N	OFF	9.6
1.3618	16.61	46.00	29.39	9.000	N	OFF	9.7
1.4225	17.46	46.00	28.54	9.000	N	OFF	9.7
1.4315	17.10	46.00	28.90	9.000	N	OFF	9.7
1.4720	17.41	46.00	28.59	9.000	N	OFF	9.7
1.4810	17.80	46.00	28.20	9.000	N	OFF	9.7
1.5305	17.04	46.00	28.96	9.000	N	OFF	9.7
15.9980	23.68	50.00	26.32	9.000	N	OFF	10.3
16.0520	23.56	50.00	26.44	9.000	N	OFF	10.3
16.2388	22.71	50.00	27.29	9.000	N	OFF	10.3
16.3490	23.14	50.00	26.86	9.000	N	OFF	10.3
16.7585	23.40	50.00	26.60	9.000	N	OFF	10.3
17.1028	22.36	50.00	27.64	9.000	N	OFF	10.3

2022-07-01

오후 10:27:56

11. LIST OF TEST EQUIPMENT

Conducted Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
LISN	ENV216	Rohde & Schwarz	102245	08/23/2022	Annual
EMI Test Receiver	ESR	Rohde & Schwarz	101910	06/07/2023	Annual
Temperature Chamber	SU-642	ESPEC	0093008124	03/04/2023	Annual
Signal Analyzer	N9030A	Agilent	MY49432108	03/08/2023	Annual
Power Measurement Set	OSP 120	Rohde & Schwarz	101231	06/14/2023	Annual
Power Meter	N1911A	Agilent	MY45100523	03/24/2023	Annual
Power Sensor	N1921A	Keysight	MY57820067	03/24/2023	Annual
Directional Coupler	87300B	Agilent	3116A03621	11/02/2022	Annual
Power Splitter	11667B	Hewlett Packard	10545	02/03/2023	Annual
DC Power Supply	E3646A	Agilent	MY40002937	12/14/2022	Annual
Attenuator(10 dB)	8493C	Hewlett Packard	07560	06/14/2023	Annual
Attenuator(20 dB)	18N-20dB	Rohde & Schwarz	8	03/07/2023	Annual
Software	EMC32	Rohde & Schwarz	N/A	N/A	N/A
Bluetooth Tester	СВТ	Rohde & Schwarz	100808	02/22/2023	Annual
FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	HCT CO., LTD.	N/A	N/A	N/A

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Report No.: HCT-RF-2207-FC024

Radiated Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
Controller(Antenna mast)	CO3000	Innco system	CO3000-4p	N/A	N/A
Antenna Position Tower	MA4640/800-XP-EP	Innco system	N/A	N/A	N/A
Controller	EM1000	Audix	060520	N/A	N/A
Turn Table	N/A	Audix	N/A	N/A	N/A
Loop Antenna	FMZB 1513	Rohde & Schwarz	1513-333	03/17/2024	Biennial
Hybrid Antenna	VULB 9168	Schwarzbeck	760	02/22/2023	Biennial
Horn Antenna	BBHA 9120D	Schwarzbeck	02299	03/24/2024	Biennial
Horn Antenna (15GHz ~ 40 GHz)	BBHA9170	Schwarzbeck	BBHA9170541	11/16/2023	Biennial
Spectrum Analyzer	FSV40-N	Rohde & Schwarz	102168	07/04/2023	Annual
Signal Analyzer	N9030A	Agilent	MY49431210	01/11/2023	Annual
Band Reject Filter	WRCJV12-4900-5100-5900- 6100-50SS	Wainwright Instruments	5	06/13/2023	Annual
Band Reject Filter	WRCJV12-4900-5100-5900- 6100-50SS	Wainwright Instruments	6	06/13/2023	Annual
Band Reject Filter	WRCJV2400/2483.5- 2370/2520-60/12SS	Wainwright Instruments	2	01/06/2023	Annual
Band Reject Filter	WRCJV5100/5850-40/50- 8EEK	Wainwright Instruments	1	02/072023	Annual
High Pass Filter	WHK3.0/18G-10EF	Wainwright Instruments	8	01/21/2023	Annual
High Pass Filter	WHKX8-6090-7000-18000- 40SS	Wainwright Instruments	25	01/21/2023	Annual
Attenuator (3 dB)	18B-03	Api tech.	1	01/21/2023	Annual
Attenuator(10 dB)	8493C-10	Agilent	08285	01/21/2023	Annual
Power Amplifier	CBLU1183540	CERNEX	22964	01/21/2023	Annual
Power Amplifier	CBL06185030	CERNEX	22965	01/21/2023	Annual
Power Amplifier	CBL18265035	CERNEX	22966	12/02/2022	Annual
Power Amplifier	CBL26405040	CERNEX	25956	03/11/2023	Annual

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

12. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2207-FC024-P