

TEST REPORT

65, Sin	KCTL Inc. won-ro, Yeongtong-gu, Gyeonggi-do, 16677, Korea -0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>	Report No.: KR21-SRF0069-B Page (1) of (45)	KCTL				
1. Client							
∘ Name	: Samsung Electr	onics Co., Ltd.					
∘ Addres	s : 129, Samsung-ro Rep. of Korea	, Yeongtong-gu, Suwon	-si, Gyeonggi-do, 16677,				
∘ Date of	Receipt : 2021-03-31						
2. Use of Re	port : Certification						
3. Name of P	roduct / Model : Mo	bile Phone / SM-A225F	/DSN				
4. Manufactu	Irer / Country of Origin : Sa	msuna Electronics Co.	. Ltd. / Vietnam				
5. FCC ID		LSMA225F	,				
6. Date of Te							
7. Location of	of Test · (Address:65,Sinwo		esting si,Gyeonggi-do,16677, Korea)				
8. Test meth	od used : FCC Part 15 Su	bpart C, 15.247					
9. Test Resu	It : Refer to the test	result in the test repor	t				
	Tested by	Technical Ma	anager				
Affirmation	,	24					
	Name : Taeyoung Kim	Name : Seun	gyong Kim (Stonatura)				
2021-05-18							
	KC	TL Inc.					
antee the wh	sult of the sample which was nole product quality. This test ment by KCTL Inc.						

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0069-B Page (2) of (45)

REPORT REVISION HISTORY

Date	Revision	Page No
2021-05-13	Originally issued	-
2021-05-17	Updated	1, 10
2021-05-18	Updated	10

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

Note. The report No. KR21-SRF0069-A is superseded by the report No. KR21-SRF0069-B.

General remarks for test reports

Statement concerning the uncertainty of the measurement systems used for the tests (may be required by the product standard or client)

☐ Internal procedure used for type testing through which traceability of the measuring uncertainty has been established:

Procedure number, issue date and title:

Calculations leading to the reported values are on file with the testing laboratory that conducted the testing.

Statement not required by the standard or client used for type testing

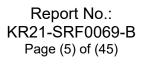
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (3) of (45)

CONTENTS

1.	General information	General information4						
2.	Device information	evice information4						
2.1	1. Frequency/channel operations	6						
2.2	2. Duty Cycle Factor	7						
3.	Antenna requirement							
4.	Introduction	9						
4.1	1 Difference	9						
4.2	2 Spot check verification data (Band	edge & Spurious emission)9						
4.3	3 Reference Detail	10						
5.	Summary of tests							
6.	Measurement uncertainty	12						
7.	Measurement results explanation ex	ample13						
8.	Test results	14						
8.1	1. Maximum peak output power	14						
8.2	2. Peak Power Spectral Density	17						
8.3	3. 6 dB Bandwidth(DTS Channel Ba	6 dB Bandwidth(DTS Channel Bandwidth)20						
8.4	8. Spurious Emission, Band Edge and Restricted bands23							
8.5	5. Conducted Spurious Emission40							
8.6	6. AC Conducted emission							
9.	Measurement equipment45							

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

1. General information


Client	: Samsung Electronics Co., Ltd.
Address	: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Manufacturer	: Samsung Electronics Co., Ltd.
Address	: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Factory	SAMSUNG ELECTRONICS VIETNAM CO., LTD.
Address	: Yenphong 1 -I.P Yentrung Commune, Yenphong Dist., Bac Ninh Province, Vietnam
Laboratory	: KCTL Inc.
Address	: 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
Accreditations	: FCC Site Designation No: KR0040, FCC Site Registration No: 687132
	VCCI Registration No. : R-20080, G-20078, C-20059, T-20056
	Industry Canada Registration No. : 8035A
	KOLAS No.: KT231

2. Device information

Equipment under test	:	Mobile Phone
Model	:	SM-A225F/DSN
Derivative model	:	SM-A225F/N
Modulation technique	:	Bluetooth(BDR/EDR)_GFSK, π/4DQPSK, 8DPSK
		Bluetooth(BLE)_GFSK
		WIFI(802.11a/b/g/n/ac)_DSSS, OFDM
		LTE_QPSK, 16QAM, 64QAM
		WCDMA_QPSK
		GSM_GMSK, 8-PSK
		NFC_ASK
Number of channels	:	Bluetooth(BDR/EDR)_79 ch / Bluetooth(BLE)_40 ch
		802.11b/g/n_HT20 : 13 ch
		UNII-1: 4 ch (20 Mb), 2 ch (40 Mb), 1 ch (80 Mb)
		UNII-2A: 4 ch (20 Mb), 2 ch (40 Mb), 1 ch (80 Mb)
		UNII-2C: 12 ch (20 Mz), 6 ch (40 Mz), 3 ch (80 Mz)
		UNII-3: 5 ch (20 Mb), 2 ch (40 Mb), 1 ch (80 Mb)
		NFC: 1 ch
Power source	:	DC 3.86 V
Antenna specification	:	LTE/WCDMA/GSM_FPCB Antenna
		WIFI/Bluetooth(BDR/EDR/BLE)_FPCB Antenna
		NFC_FPCB Antenna

КСТ	LI	nc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

Antenna gain	:	WIFI/Bluetooth(BDR/EDR/BLE)2.10 dBi UNII-1 : -2.80 dBi UNII-2A : -3.60 dBi UNII-2C : -2.70 dBi UNII-3 : -2.70 dBi
Frequency range	:	Bluetooth(BDR/EDR/BLE)_2 402 M½ ~ 2 480 M½ 2 412 M½ ~ 2 472 M½ (802.11b/g/n_HT20) UNII-1: 5 180 M½ ~ 5 240 M½ (802.11a/n/ac_HT20/VHT20) UNII-1: 5 190 M½ ~ 5 230 M½ (802.11n/ac_HT40/VHT40) UNII-1: 5 210 M½ (802.11ac_VHT80) UNII-2A: 5 260 M½ ~ 5 320 M½ (802.11a/n/ac_HT20/VHT20) UNII-2A: 5 270 M½ ~ 5 310 M½ (802.11a/n/ac_HT40/VHT40) UNII-2A: 5 290 M½ (802.11ac_VHT80) UNII-2C: 5 500 M½ ~ 5 720 M½ (802.11a/n/ac_HT20/VHT20) UNII-2C: 5 510 M½ ~ 5 710 M½ (802.11a/n/ac_HT20/VHT20) UNII-2C: 5 530 M½ ~ 5 690 M½ (802.11a/n/ac_HT40/VHT40) UNII-2C: 5 530 M½ ~ 5 690 M½ (802.11a/n/ac_HT20/VHT20) UNII-3: 5 745 M½ ~ 5 825 M½ (802.11a/n/ac_HT20/VHT20) UNII-3: 5 745 M½ ~ 5 795 M½ (802.11a/n/ac_HT20/VHT20) UNII-3: 5 775 M½ (802.11ac_VHT80) LTE Band 5_824.7 M½ ~ 848.3 M½ LTE Band 41_2 498.5 M½ ~ 2 687.5 M½ GSM 850_824.2 M½ ~ 848.8 M½ GSM 1900_1 850.2 M½ ~ 1 909.8 M½ WCDMA 850_826.4 M½ ~ 846.6 M½ NFC 13.56 M½
Software version		A225F.001
		REV1.0
Test device serial No.		Conducted(R38R302E90Y, R38R302E8PW) Radiated(R38R302E8JK)
Operation temperature	:	-30 °C ~ 50 °C

Note. The Product equality letter includes detailed information about the differences between basic and derivative model.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (6) of (45)

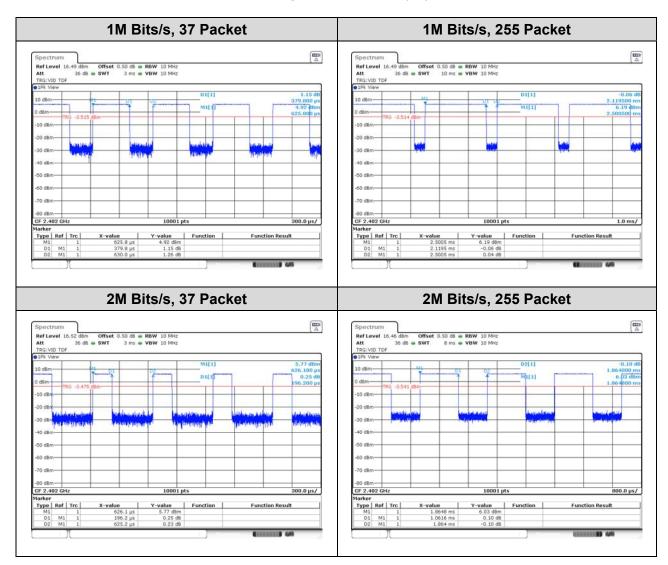
2.1. Frequency/channel operations

This device contains the following capabilities: WiFi (802.11a/b/g/n/ac), Bluetooth (BDR/EDR/BLE), NFC LTE Band 5, LTE Band 41, GSM 850, GSM 1900, WCDMA 850

Ch.	Frequency (Mb)
00	2 402
19	2 440
-	-
39	2 480

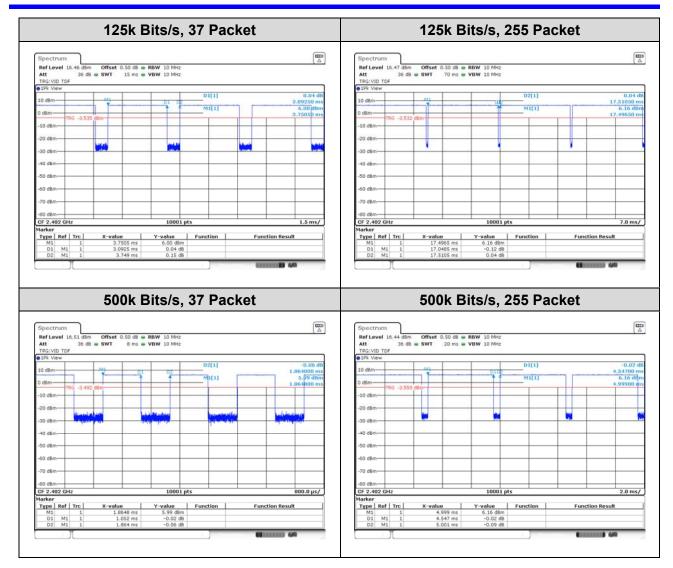
Table 2.1.1. Bluetooth Low Energy

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (7) of (45)



2.2. Duty Cycle Factor

Test mode	Period	On time	Duty o	cycle	Duty Cycle Factor
lest mode	(ms)	(ms)	(Linear)	(%)	(dB)
1M Bits/s, 37 Packet	0.630 0	0.379 8	0.602 9	60.29	2.20
1M Bits/s, 255 Packet	2.500 5	2.119 5	0.847 6	84.76	0.72
2M Bits/s, 37 Packet	0.625 2	0.196 2	0.313 8	31.38	5.03
2M Bits/s, 255 Packet	1.864 0	1.061 6	0.569 5	56.95	2.44
125K Bits/s, 37 Packet	3.749 0	3.092 5	0.824 9	82.49	0.84
125K Bits/s, 255 Packet	17.510 5	17.048 5	0.973 6	97.36	0.12
500K Bits/s, 37 Packet	1.864 0	1.052 0	0.564 4	56.44	2.48
500K Bits/s, 255 Packet	5.001 0	4.547 0	0.909 2	90.92	0.41


Notes.

- 1. Duty cycle (Linear) = Ton time / Period
- 2. DCF(Duty cycle factor) = 10log(1/duty cycle)
- 3. DCF is not compensated to average result if the duty cycle is more than 98%

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (8) of (45)

3. Antenna requirement

Requirement of FCC part section 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

- The transmitter has permanently attached FPCB Antenna (Internal antenna) on board.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

4. Introduction

This report referenced from the FCC ID : A3LSMA225M

Based on their similarity, the FCC Part 15C (equipment class: DTS) reuses the original model's result and do spot-check, following the FCC KDB 484596 D01 v01.

And the applicant takes full responsibility that the test data as referenced in this report represent compliance for this FCC ID.

4.1 Difference

The FCC ID: A3LSMA225F shares the same enclosure and circuit board as FCC ID: A3LSMA225M. The WIFI/BT/BLE/NFC/WCDMA/GSM/LTE antenna and surrounding circuitry and layout are identical between these two units.

As for all bands, they have been verified and the parent model test results under FCC ID : A3LSMA225M shall remain representative of FCC ID : A3LSMA225F.

4.2 Spot check verification data (Band-edge & Spurious emission)

		Test mode	Channel	Channel Measured frequency		SM-A225M/DSN (dBµV)		SM-A225F/DSN (dBµV)		ation B)
band	item	mode		(MHz)	Avg.	Peak	Avg.	Peak	Avg.	Peak
	Band edge	114 27	39	2 483.5 ~ 2 500	-	44.45	-	43.89	-	0.56
BLE	RSE	1M_37	0	7 206	-	54.23	-	54.16	-	0.07
	Band edge	204 27	39	2 483.5 ~ 2 500	-	45.18	-	44.42	-	0.76
	RSE	2M_37	0	7 206	-	52.92	-	54.86	-	-1.94

Notes:

1. For FCC ID: A3LSMA225F has been verified the performance as for Bluetooth LE identical with the FCC ID: A3LSMA225M.

2. Comparison of two models, upper deviation is within 3 $\,\mathrm{dB}\,$ range and all test results are under FCC technical limits.

3. The test procedure(s) in this report were performed in accordance as following.

KDB 484596 D01 v01

Note. The Product equality letter includes detailed information about the differences between FCC ID: A3LSMA225M and FCC ID: A3LSMA225F.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (10) of (45)

4.3 Reference Detail

Reference application that contains the reused reference data in the individual test reports

Equipment Class	Reference FCC ID	Application Type	Reference Test report Number	Exhibit Type	Variant Test Report Number	Date Re-used					
			KR21-SRF0057	Test	KR21-	All					
DTS	A3LSMA225M	Original	(802.11b/g/n)	report	SRF0070-B	7.11					
DIG		Oliginal	KR21-SRF0056	Test	KR21-	All					
			(Bluetooth LE)	report	SRF0069-B						
DSS	A3LSMA225M	Original	KR21-SRF0055	Test	KR21-	All					
033	ASLOWAZZOW	ASLSIVIAZZSIVI	ASLSIVIAZZSIVI	ASLSIVIAZZSIVI	ASLSIVIAZZSIVI	ASLSIVIAZZSIVI		(Bluetooth)	report	SRF0068-B	All
	A3LSMA225M		KP21-SRF0058-A	Test	KR21-	All					
NII		A3LSMA225M	A3LSMA225M	MA225M Original	(802.11a/n/ac)	report	SRF0071-B	All			
INII				AJLJIVIAZZJIVI	Onginai	KR21-SRF0059	Test	KR21-	All		
			(DFS)	report	SRF0075-A	All					
		Original	KP21-SRF0063	Test	KR21-	All					
DXX	A3LSMA225M	Original	(NFC)	report	SRF0074-B	All					
					KR21-SRF0062-A	Test	KR21-	Dortial			
DCE	A 21 SMA 225M		(2G, 3G)	report	SRF0073-B	Partial					
FUE	PCE A3LSMA225M Original		KR21-SRF0060	Test	KR21-	Dortial					
			(LTE)	report	SRF0072-B	Partial					

For this application the data reuse is summarized below for each equipment class

Equipment Class	Reference FCC ID	Application Type	Test Item	Data Re-used
DTS	A3LSMA225M	Original	WLAN (802.11b/g/n)	All
		5	Bluetooth LE	All
DSS	A3LSMA225M	Original	Bluetooth	All
NII	A3LSMA225M	Original	WLAN (802.11a/n/ac)	All
		- G	DFS	All
DXX	A3LSMA225M	Original	NFC	All
DOF	PCE A3LSMA225M	Original	2G, 3G	GSM 850, GSM 1900, WCDMA 850
PUE		Original	LTE	Band 5, Band 41

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

5. Summary of tests

FCC Part section(s)	Parameter	Test Condition	Test results
15.247(b)(3)	Maximum Peak Output Power		Pass
15.247(e)	Peak Power Spectral Density		Pass
15.247(a)(2)	6 dB Channel Bandwidth	Conducted	Pass
15.207(a)	AC Conducted Emissions		Pass
15.247(d)	Conducted Spurious Emissions		Pass
15.205(a),	Spurious emission	Dediated	Pass
15.209(a)	Band-edge, restricted band	Radiated	Pass

Notes:

- 1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2. According to exploratory test no any obvious emission were detected from 9 klz to 30 Mlz. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 3. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that **X** orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in **X** orientation
- All the radiated tests have been performed several case. (Stand-alone, with TA, with Earphone) Worst case: Stand-alone
- 5. The worst-case data rate were: 1M Bits/s, Packet length 37 Bytes 2M Bits/s, Packet length 37 Bytes
- 6. The test procedure(s) in this report were performed in accordance as following.
 - ANSI C63.10-2013
 - KDB 558074 D01 v05r02

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

6. Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicated a 95 % level of confidence. The measurement data shown herein meets of exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.

Parameter	Ехра	nded uncertainty (\pm)	
Conducted RF power		0.9 dB	
Conducted spurious emissions	1.6 dB		
	9 kHz ~ 30 MHz:	2.3 dB	
Radiated spurious emissions	30 MHz ~ 300 MHz	2.2 dB	
Naulateu spunous emissions	300 MHz ~ 1 000 MHz	5.6 dB	
	Above 1 GHz	5.7 dB	
Conducted emissions	9 kHz ~ 150 kHz	3.7 dB	
	150 kHz ~30 MHz	3.3 dB	

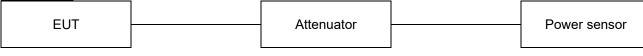
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

7. Measurement results explanation example

The offset level is set in the spectrum analyzer to compensate the RF cable loss factor between EUT conducted output port and spectrum analyzer.

With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Frequency (Mb)	Factor(dB)	Frequency (Mb)	Factor(dB)
30	9.87	9 000	10.87
50	9.89	10 000	10.93
100	9.92	11 000	10.92
200	9.97	12 000	11.21
300	10.01	13 000	11.17
400	10.04	14 000	11.26
500	10.07	15 000	11.27
600	10.08	16 000	10.97
700	10.11	17 000	11.26
800	10.15	18 000	11.08
900	10.17	19 000	10.81
1 000	10.19	20 000	11.05
2 000	10.74	21 000	11.50
3 000	10.34	22 000	11.22
4 000	10.30	23 000	11.43
5 000	10.33	24 000	11.34
6 000	10.46	25 000	11.42
7 000	10.50	26 000	11.73
8 000	10.80	26 500	12.07


Note :

Offset(dB) = RF cable loss(dB) + Attenuator(dB)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0069-B Page (14) of (45)

8. Test results 8.1. Maximum peak output power Test setup

<u>Limit</u>

According to §15.247(b)(3), For systems using digital modulation in the 902-928 Mb, 2 400-2 483.5 Mb, and 5 725-5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to \$15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test procedure

ANSI C63.10 - Section 11.9 Used test method is section 11.9.1.3 and 11.9.2.3.1

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (15) of (45)

Test settings

General

Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth (see ANSI C63.10 for measurement guidance).

When using a spectrum analyzer or EMI receiver to perform these measurements, it shall be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW to set a bin-to-bin spacing of \leq RBW/2 so that narrowband signals are not lost between frequency bins.

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level. The intent is to test at 100 % duty cycle; however a small reduction in duty cycle (to no lower than 98 %) is permitted, if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

If continuous transmission (or at least 98 % duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level, with the transmit duration as long as possible, and the duty cycle as high as possible during which sweep triggering/signal gating techniques may be used to perform the measurement over the transmission duration.

11.9.1. Maximum peak conducted output power

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

11.9.1.1. RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW \geq DTS bandwidth.
- b) Set $VBW \ge [3 \times RBW]$.
- c) Set span \geq [3 \times RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

11.9.1.3. PKPM1 Peak power meter method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth an shall use a fast-responding diode detector.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

11.9.2.3.1. Measurement using a power meter (PM)

Method AVGPM is a measurement using an RF average power meter, as follows:

- a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied:
 - 1) The EUT is configured to transmit continuously, or to transmit with a constant duty cycle.
 - 2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
 - 3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- b) If the transmitter does not transmit continuously, measure the duty cycle, D, of the transmitter output signal as described in 11.6.
- c) Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.
- d) Adjust the measurement in dBm by adding [10 log(1/D)], where D is the duty cycle Notes:

A peak responding power sensor is used, where the power sensor system video bandwidth is greater than the occupied bandwidth of the EUT.

<u>Test results</u>

	Data rate	Packet length	Measured outp	out power (dBm)	
Frequency(Mb)	(Bits/s)	(Bytes)	Peak	Average	Limit(dBm)
	1M	37	5.97	5.84	
	1 171	255	5.94	5.76	
	2M	37	6.00	5.81	
2 402	2101	255	5.99	5.77	
2 402	125k	37	5.93	5.73	
	TZUK	255	5.92	5.69	
	500k	37	5.96	5.74	
	SUUK	255	5.93	5.70	
	1M	37	6.12	5.99	
		255	6.11	5.91	30
	2M	37	6.15	5.99	
2 440		255	6.13	5.93	
2 440	125k	37	6.07	5.88	
		255	6.06	5.84	
	5001	37	6.12	5.91	
	500k	255	6.06	5.85	
	1M	37	6.10	5.93	
	1 171	255	6.06	5.86	
	214	37	6.19	5.95	
2 480	2171	2M 255	6.13	5.86	
	4051	37	6.05	5.81	
	125k	255	6.00	5.76	
	500k	37	6.08	5.84	
	SUUK	255	6.00	5.75	

<u>Note</u>

Measured output power(Average) = reading value of average power + D.C.F

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

8.2. Peak Power Spectral Density

<u>Test setup</u>

FUT	Attenuator	Spectrum analyzer
201	Allendaloi	opectrum analyzer

<u>Limit</u>

According to \$15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kt/z band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

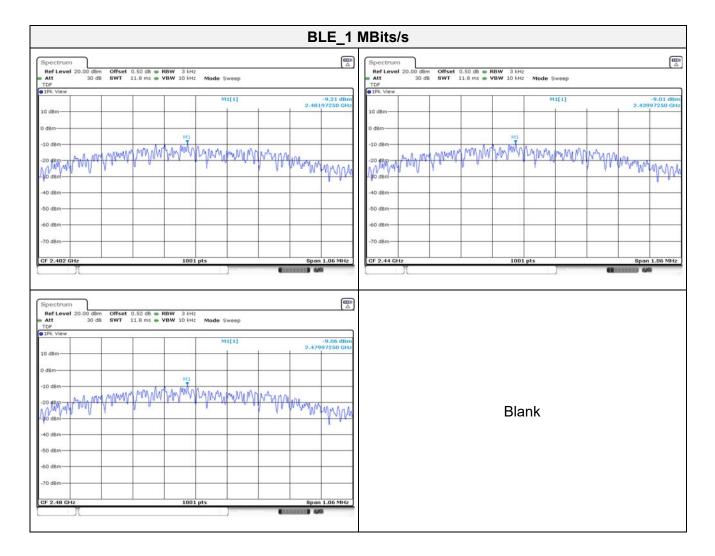
Test procedure

ANSI C63.10 - Section 11.10.2

Test settings

Method PKPSD (peak PSD)

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:


- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set the span to 1.5 times the DTS bandwidth.
- 3) Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- 4) Set the VBW \ge 3 x RBW.
- 5) Detector = peak.
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10) If measured value exceeds limit, reduce RBW (no less than 3 km) and repeat.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (18) of (45)

Test results

Test Tesuits				
	Data rate	Packet length		
Frequency(Mb)	(Bits/s)	(Bytes) PSD(dBm/3 ₩z) Li		Limit(dBm/3 kt/z)
2 402			-9.21	
2 440	1M	37	-9.01	
2 480			-9.06	8
2 402			-11.73	0
2 440	2M	37	-11.56	
2 480			-11.57	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (19) of (45)

	MBitolo
BLE_2	WIDITS/S
Spectrum 🛱	Spectrum 🛱
RefLevel 20.00 dBm Offset 0.50 dB	RefLevel 20.00 dBm Offset 0.50 dB RBW 3 kHz Att 30 dB SWT 19.8 ms VBW 10 kHz Mode Sweep TOF
00F @19k View	OF OF View M1[1] -11.56 dBm
10 dBm	10 dBm
0 d8m-	0 dBm
-10 dBm	-10 dBm
-20 dam - mer underhans will a fill an mindle Antonia to the fait to be ware a set	-20 dams that an attale the will a part to any MAM A stand and a low both only and a start
March Matter Manual Street and Assages and all states of a data the distribution of the March March March March	President and the state of the
-40 d8m	-40 dBm
-50 dBm	-50 dBm
-60 dBm	
-70 dBm-	-70 dBm
CF 2.402 GHz 1001 pts Span 1.77 MHz	CF 2.44 GHz 1001 pts Span 1.78 MHz
Spectrum A	
Ref Level 20.00 dBm Offset 0.50 dB RBW 3 kHz Att 30 dB SWT 19.7 ms ▼ VBW 10 kHz Mode Sweep	
TDF 1Pk View	
10 dBm	
0 dBm	
-10 dBm	
-50 GET AN WANTER AND AND AND AND AN AND AN	Blank
tag dekt A A A A A A A A A A A A A A A A A A A	
-40 d8m-	
-50 d8m	
-60 dBm	
-70 dBm-	
CF 2.48 GHz 1001 pts Span 1.77 MHz	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0069-B Page (20) of (45)

8.3. 6 dB Bandwidth(DTS Channel Bandwidth)

<u>Test setup</u>

<u>Limit</u>

According to \$15.247(a)(2), For Systems using digital modulation techniques may operate in the 902–928 Mb, 2 400–2 483.5 Mb, and 5 725–5 850 Mb bands. The minimum 6 dB bandwidth shall be at least 500 kb.

Test procedure

ANSI C63.10 – Section 11.8.2

Test settings

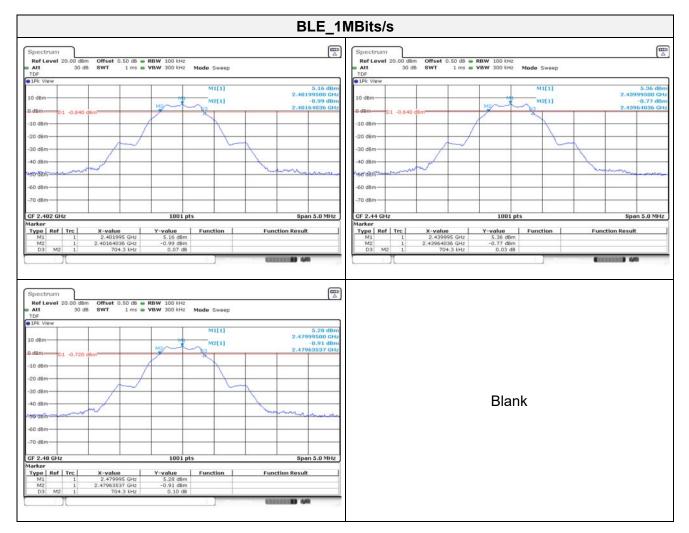
DTS bandwidth

One of the following procedures may be used to determine the modulated DTS bandwidth.

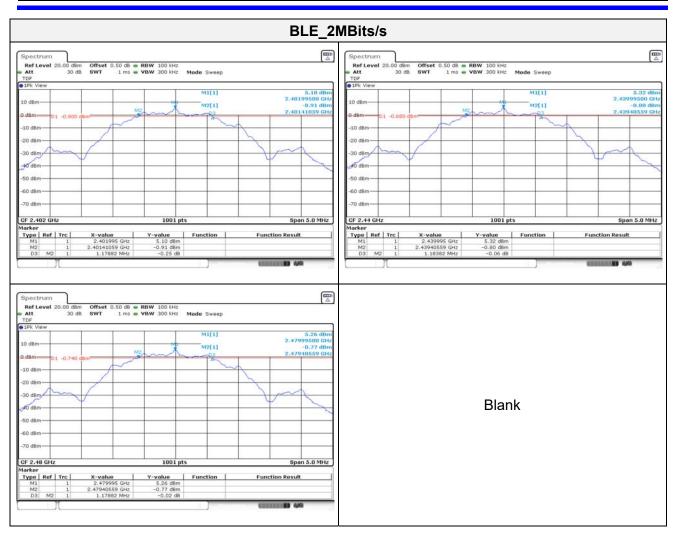
Option 1

- 1) Set RBW = 100 kHz.
- 2) Set the video bandwidth (VBW) \ge 3 x RBW.
- 3) Detector = Peak.
- 4) Trace mode = max hold.
- 5) Sweep = auto couple.
- 6) Allow the trace to stabilize.
- 7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Option 2

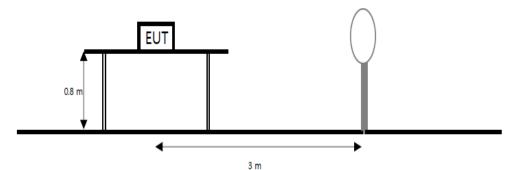

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

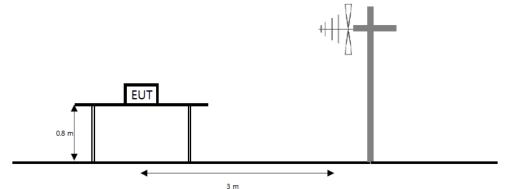
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (21) of (45)


Test results

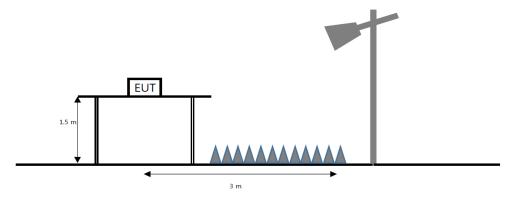
Frequency(Mb)	Data rate (Bits/s)	Packet length (Bytes)	6 dB bandwidth(Mb)
2 402			0.70
2 440	1M	37	0.70
2 480			0.70
2 402			1.18
2 440	2M	37	1.18
2 480			1.18

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (22) of (45)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (23) of (45)


8.4. Spurious Emission, Band Edge and Restricted bands

<u>Test setup</u>


The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}_{\mathbb{Z}}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}_{\mathbb{Z}}$ emissions, whichever is lower.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

<u>Limit</u>

According to section 15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (Mb)	Field strength (µN/m)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 - 1.705	24 000/F(kHz)	30
1.705 - 30	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., Section 15.231 and 15.241.

According to section 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 – 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 – 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 – 1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	2 200 – 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 – 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525	2 483.5 – 2 500	17.7 - 21.4
8.376 25 - 8.386 75	25	2 690 – 2 900	22.01 - 23.12
8.414 25 - 8.414 75	156.7 - 156.9	3 260 – 3 267	23.6 - 24.0
12.29 - 12.293	162.012 5 - 167.17	3 332 – 3 339	31.2 - 31.8
12.519 75 - 12.520 25	167.72 - 173.2	3 345.8 – 3 358	36.43 - 36.5
12.576 75 - 12.577 25	240 - 285	3 600 – 4 400	Above 38.6
13.36 - 13.41	322 - 335.4		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in section 15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1 000 Mb, compliance with the emission limits in section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in section 15.35 apply to these measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Test procedure

ANSI C63.10-2013

Test settings

Peak field strength measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = as specified in table
- 3. VBW \geq (3×RBW)
- 4. Detector = peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Allow sweeps to continue until the trace stabilizes

Table: NEW as a function of frequency				
Frequency	RBW			
9 kHz to 150 kHz	200 Hz to 300 Hz			
0.15 Mt to 30 Mt	9 kHz to 10 kHz			
30 MHz to 1 000 MHz	100 kHz to 120 kHz			
> 1 000 MHz	1 MHz			

Table. RBW as a function of frequency

Average field strength measurements

Trace averaging with continuous EUT transmission at full power

If the EUT can be configured or modified to transmit continuously ($D \ge 98\%$), then the average emission levels shall be measured using the following method (with EUT transmitting continuously):

- 1. RBW = 1 $M_{\mathbb{Z}}$ (unless otherwise specified).
- 2. VBW \geq (3×RBW).
- 3. Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
- 4. Averaging type = power (i.e., rms):
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.

Trace averaging across ON and OFF times of the EUT transmissions followed by duty cycle correction

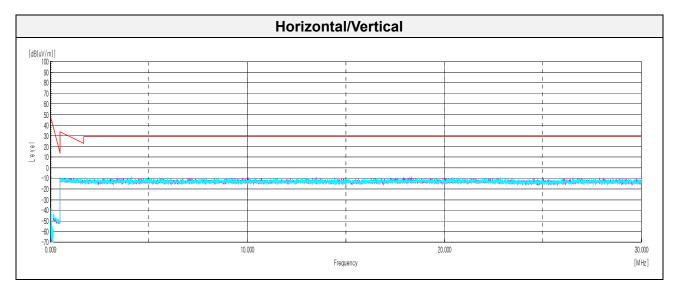
If continuous transmission of the EUT ($D \ge 98\%$) cannot be achieved and the duty cycle is constant (duty cycle variations are less than ±2%), then the following procedure shall be used:

- 1. The EUT shall be configured to operate at the maximum achievable duty cycle.
- 2. Measure the duty cycle D of the transmitter output signal as described in 11.6.
- 3. RBW = 1 $M_{\mathbb{Z}}$ (unless otherwise specified).
- 4. VBW \geq [3 \times RBW].
- 5. Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
- 6. Averaging type = power (i.e., rms):

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR21-SRF0069-B Page (26) of (45)

- 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
- 2) Some instruments require linear display mode to use linear voltage averaging. Log or $\,\mathrm{dB}\,$ averaging shall not be used.
- 7. Sweep time = auto.
- 8. Perform a trace average of at least 100 traces.
- 9. A correction factor shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (rms) mode was used in step f), then the applicable correction factor is [10 log (1 / D)], where D is the duty cycle.
 - 2) If linear voltage averaging mode was used in step f), then the applicable correction factor is [20 log (1 / D)], where D is the duty cycle.
 - If a specific emission is demonstrated to be continuous (D ≥ 98%) rather than turning ON and OFF with with the transmit cycle, then no duty cycle correction is required for that emission.

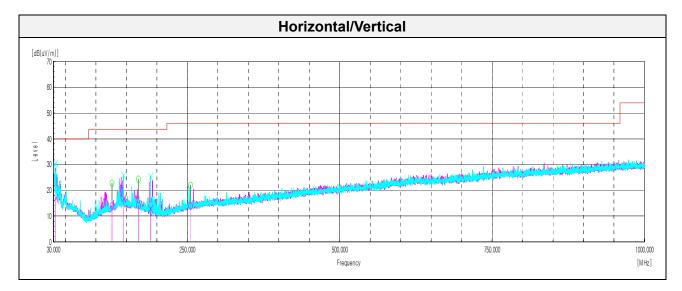
Notes:


- 1. f < 30 Mz, extrapolation factor of 40 dB/decade of distance. $F_d = 40 \log(D_m/Ds)$
 - f≥30 Mz, extrapolation factor of 20 dB/decade of distance. F_d = 20log(D_m/Ds) Where:
 - F_d = Distance factor in dB
 - D_m= Measurement distance in meters
 - D_s= Specification distance in meters
- 2. Factors(dB) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or $F_d(dB)$
- 3. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 4. Average test would be performed if the peak result were greater than the average limit.
- 5.¹⁾ means restricted band.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (27) of (45)

Test results (Below 30 Mb) –Worst case: 2 MBits/s(37 Bytes) 2 480 Mb

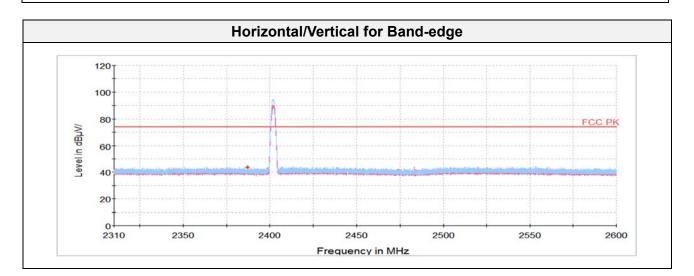
Frequency	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	DCF	Result	Limit	Margin
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
No spurious emissions were detected within 20 dB of the limit.									



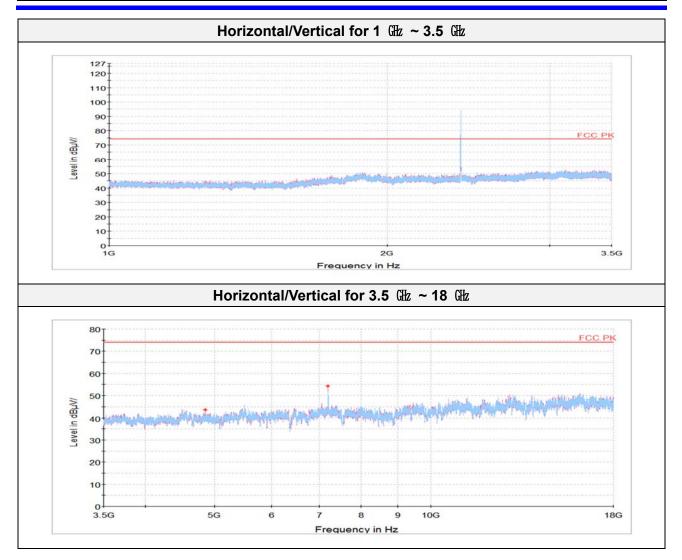
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (28) of (45)

Test results (Below 1 000 Mb) –Worst case: 2 MBits/s(37 Bytes) 2 480 Mb

Frequency	Pol.	Reading	Factor	Amp. + Cable	DCF	Result	Limit	Margin
(MHz)	(V/H)	(dB(µV))	(dB)	(dB)	(dB)	(dB(<i>µ</i> V/ m))	(dB(<i>µ</i> V/ m))	(dB)
Quasi peak data								
33.76	V	30.50	17.13	-30.41	-	17.22	40.00	22.78
126.39 ¹⁾	Н	25.20	17.54	-28.65	-	14.09	43.50	29.41
145.31	V	26.40	19.03	-28.43	-	17.00	43.50	26.50
169.32 ¹⁾	Н	23.90	18.37	-28.14	-	14.13	43.50	29.37
189.32	V	24.60	16.17	-27.86	-	12.91	43.50	30.59
255.28 ¹⁾	Н	23.30	17.82	-27.05	-	14.07	46.00	31.93

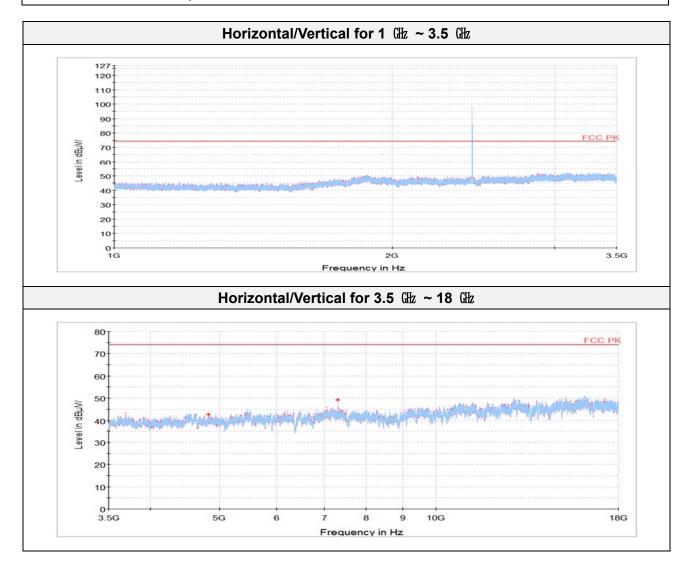


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (29) of (45)


Test results (Above 1 000 №)_1 MBits/s(37 Bytes) Low Channel

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin	
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]	
Peak data									
2 387.11 ¹⁾	Н	39.46	32.00	-27.89	-	43.57	74.00	30.43	
4 854.84 ¹⁾	V	63.00	33.81	-53.18	-	43.63	74.00	30.37	
7 206.11	V	69.72	35.30	-50.79	-	54.23	74.00	19.77	
	•		•	Average Da	ta		•		
		No spuriou	us emissions	were detecte	d within 20	dB of the lim	iit.		

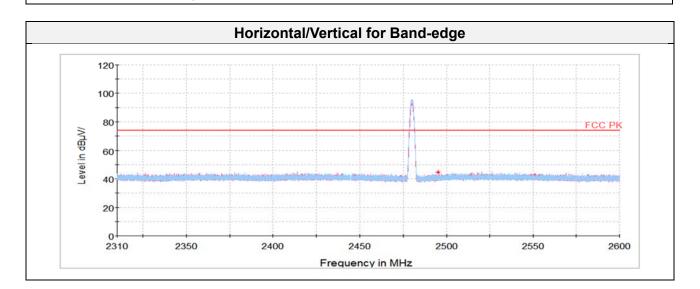
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (30) of (45)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (31) of (45)

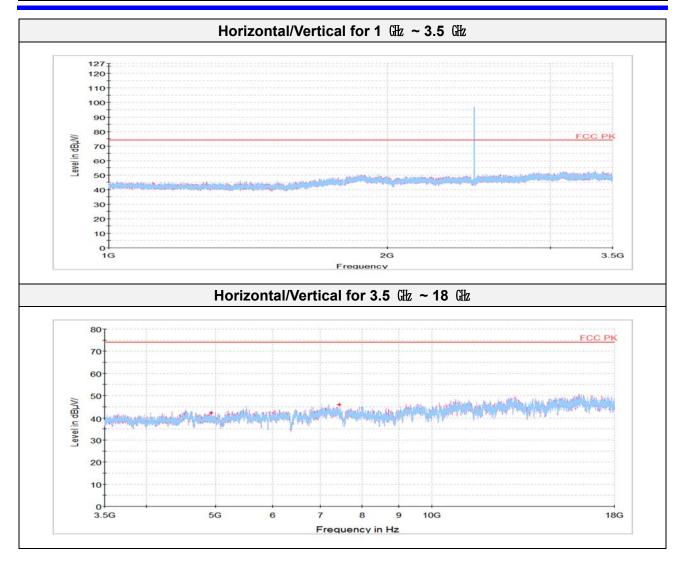
Middle Channel

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin	
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB] [dB(µV/m)] [dB(µV		[dB]	
Peak data									
4 824.94 ¹⁾	V	61.99	33.79	-53.23	-	42.55	74.00	31.45	
7 319.39 ¹⁾	Н	64.69	35.30	-50.76	-	49.23	74.00	24.77	
Average Data									

No spurious emissions were detected within 20 $\,\mathrm{dB}\,$ of the limit.



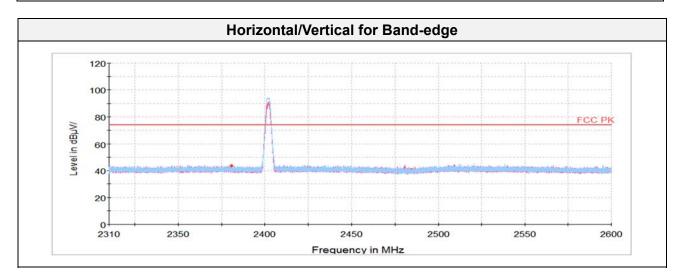
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (32) of (45)


High Channel

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin	
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]	
Peak data									
2 495.21 ¹⁾	V	40.23	32.19	-27.97	-	44.45	74.00	29.55	
4 932.33 ¹⁾	Н	61.59	33.86	-53.26	-	42.19	74.00	31.81	
7 440.38 ¹⁾	Н	61.39	35.30	-50.74	-	45.95	74.00	28.05	
Average Data									
		No spuriou	s emissions	were detecte	d within 20	dB of the lim	it.		

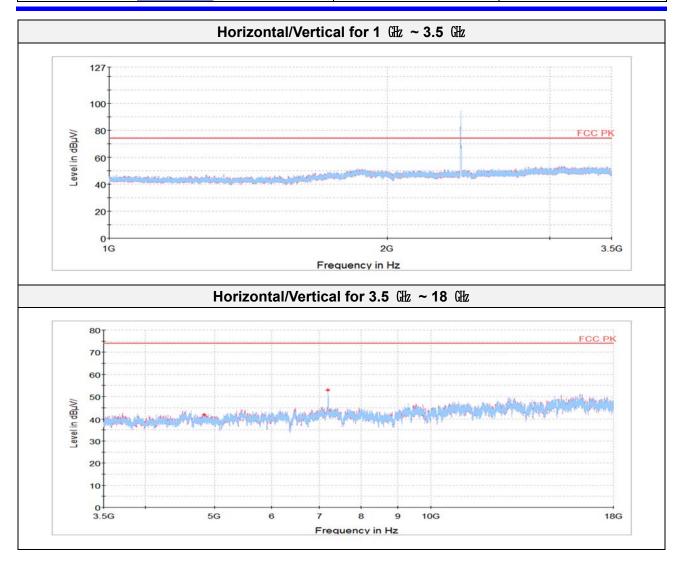
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (33) of (45)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (34) of (45)



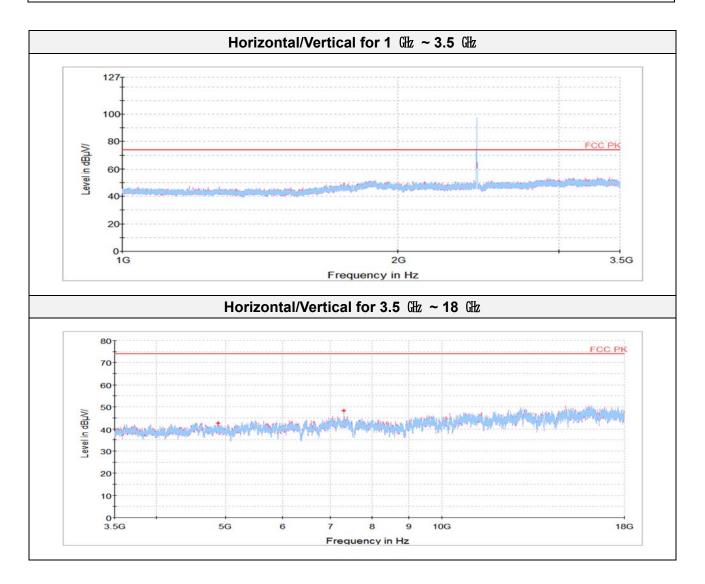
2 MBits/s(37 Bytes)

Low Channel


Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
Peak data								
2 380.85 ¹⁾	Н	39.42	31.99	-27.92	-	43.49	74.00	30.51
4 832.64 ¹⁾	Н	61.36	33.80	-53.22	-	41.94	74.00	32.06
7 206.11	Н	68.41	35.30	-50.79	-	52.92	74.00	21.08
Average Data								

No spurious emissions were detected within 20 $\,\mathrm{dB}\,$ of the limit.

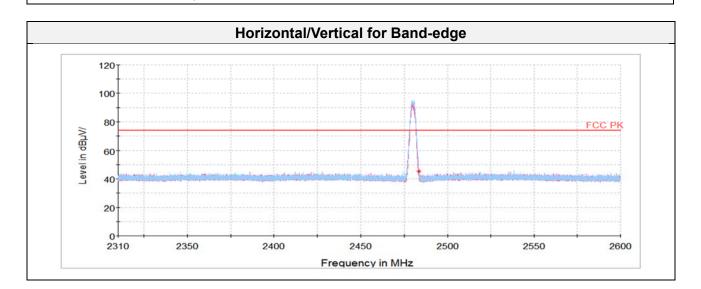
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (35) of (45)



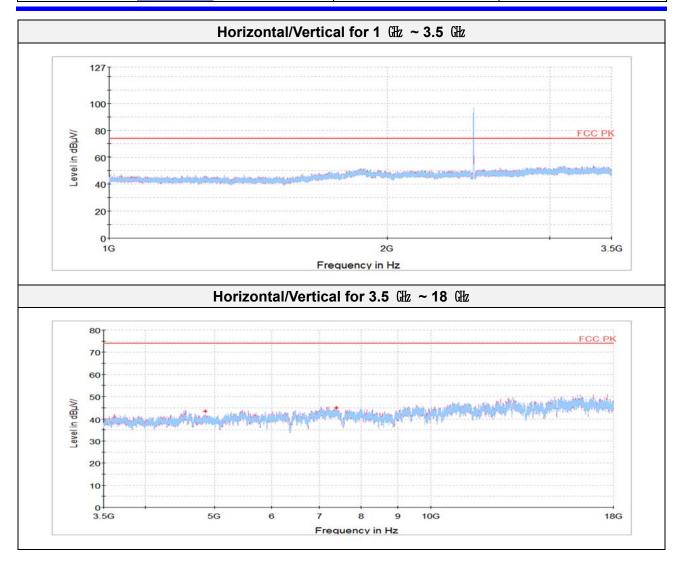
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (36) of (45)

Middle Channel

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin	
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]	
Peak data									
4 880.67 ¹⁾	V	61.85	33.83	-53.14	-	42.54	74.00	31.46	
7 320.30 ¹⁾	V	63.81	35.30	-50.76	-	48.35	74.00	25.65	
Average Data									
	No spurious emissions were detected within 20 dB of the limit.								

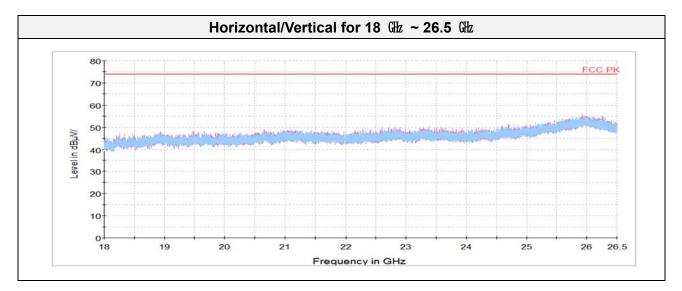


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (37) of (45)


High Channel

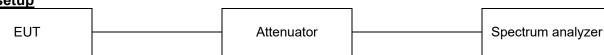
Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin	
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]	
Peak data									
2 483.53 ¹⁾	Н	40.96	32.17	-27.95	-	45.18	74.00	28.82	
4 856.20 ¹⁾	Н	62.73	33.81	-53.18	-	43.36	74.00	30.64	
7 403.671)	V	60.37	35.30	-50.74	-	44.93	74.00	29.07	
Average Data									
		No spuriou	s emissions	were detecte	d within 20	dB of the lim	it.		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (38) of (45)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

Test results (Above 18 (2) – Worst case: 1 MBits/s(37 Bytes) 2 402 №


<u>Note:</u> The Worst case was based on the lowest margin condition considering Harmonic and Spurious Emission

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

8.5. Conducted Spurious Emission

<u>Limit</u>

According to \$15.247(d), In any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operation, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation specified in \$15.209(a) is not required. In addition, radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

 $Limit:20~{\rm dBc}$

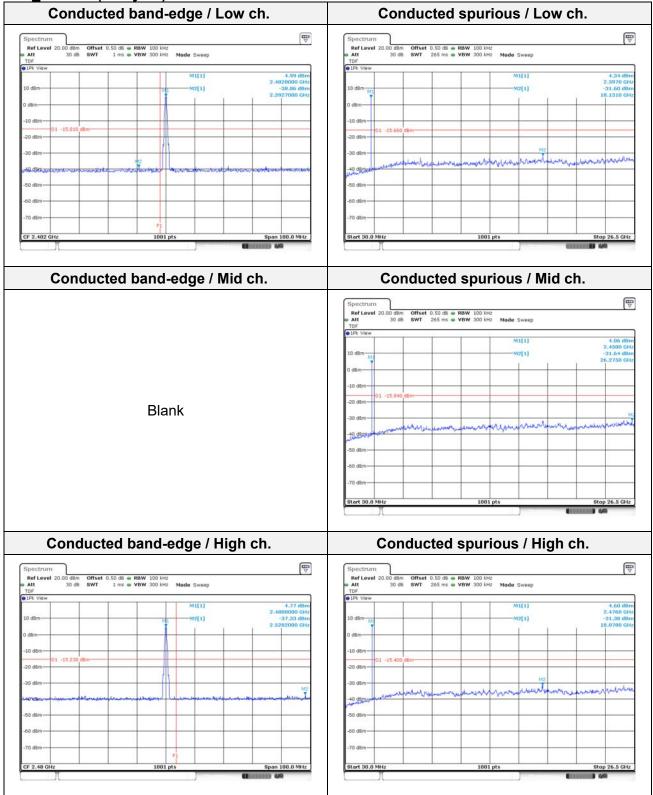
Test procedure

ANSI C63.10-2013 - Section 11.11.3 KDB 558074 D01 v05 - Section 8.5 KDB 662911 D01 v02r01 - section (E)(3)(b)

Test settings

Establish an emission level by using the following procedure:

- 1) Set the center frequency and span to encompass frequency range to be measured.
- 2) Set the RBW = 100 kHz
- 3) Set the VBW \geq [3 x RBW]
- 4) Detector = peak
- 5) Sweep time = auto couple
- 6) Trace mode = max hold
- 7) Allow trace to fully stabilize.
- 8) Use the peak marker function to determine the maximum amplitude level.


Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (41) of (45)

Test results

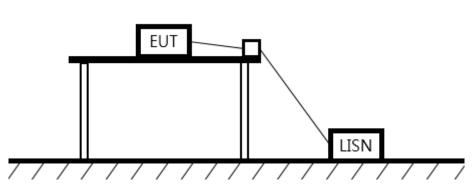
BLE_1 MBit/s(37 Bytes)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

BLE_2 MBit/s(37 Bytes)

www.kctl.co.kr

Report No.: KR21-SRF0069-B Page (42) of (45)



Conducted band-edge / Low ch. Conducted spurious / Low ch. Ref Level 20.0 Offset SWT Ref Level 20. Offset SWT 0.50 dB - RBW 100 kHz 1 ms - VBW 300 kHz 0.50 dB - RBW 100 kHz 265 ms - VBW 300 kHz 30 dBm 30 dB Mode Sweet 30 d8 Mode Sweet TDF 1Pk 4.57 d 4.72 2.40 11120 M2[1] 0.72 d 2.3 8210 G -15 15.4 20 dF 20 dB 0.0 Conducted band-edge / Mid ch. Conducted spurious / Mid ch. Ref Level 20.00 dBm Att 30 dB Offset 0.50 dB • RBW 100 kHz SWT 265 ms • VBW 300 kHz Mode Sweep M1[1] 4.54 d 31.00 dB 12[1] -15.4 Blank monument ama. 1001 pt 26.5 GHz Contraction of the Conducted band-edge / High ch. Conducted spurious / High ch. RefLevel 20.00 dBm Offset 0.50 dB ⊕ RBW 100 kHz Att 30 dB SWT 1 ms ⊕ VBW 300 kHz Mode Sweep RefLevel 20.00 dBm Offset 0.50 dB ⊕ RBW 100 kHz Att 30 dB SWT 265 ms ⊕ VBW 300 kHz Mode Sweep TDF 1Pk M1[1] 4.87 d8 M1[1] 4.84 d8 2.40 2.47 -37,42 d 2.5146000 12[1] 2[1] 1 -15.1 -15.1 M2 T 0.0 MHz 26.5 CH2 F 2.48 art 30.

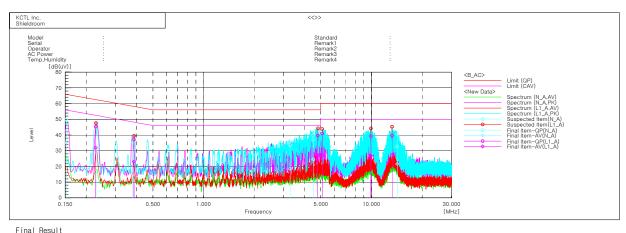
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

8.6. AC Conducted emission Test setup

<u>Limit</u>

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Fraguanay of Emission (Mr)	Conducted limit (dBµN/m)					
Frequency of Emission (Mb)	Quasi-peak	Average				
0.15 – 0.50	66 - 56*	56 - 46*				
0.50 - 5.00	56	46				
5.00 - 30.0	60	50				


Measurement procedure

- 1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu$ H LISN, which is an input transducer to a spectrum analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 Mb to 30 Mb.
- 5. The measurements were made with the detector set to peak amplitude within a bandwidth of 10 klb or to quasi-peak and average within a bandwidth of 9 klb. The EUT was in transmitting mode during the measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (44) of (45)

Test results-Worst case: 2 MBits/s(37 Bytes) 2 480 ₩

Final Re	esult									
N_A No. Fre	Phase - equency	Reading	Reading CAV	c.f	Result QP	Result CAV	Limit QP	Limit AV	Margin QP	Margin CAV
1 2 0 3 0 4 3 5 4	MHz] 0.1517 0.22855 0.37784 3.27612 4.50705 4.23214	[dB(uV)] 39.9 35.5 25.5 23.5 27.1 22.4	[dB(uV)] 25.2 20.5 6.0 8.6 14.5 11.3	[dB] 9.9 9.8 9.9 9.9 10.0 10.3	[dB(uV)] 49.8 45.3 35.4 33.4 37.1 32.7	[dB(uV)] 35.1 30.3 15.9 18.5 24.5 21.6	[dB(uV)] 65.9 62.5 58.3 56.0 56.0 60.0	[dB(uV)] 55.9 52.5 48.3 46.0 46.0 50.0	[dB] 16.1 17.2 22.9 22.6 18.9 27.3	[dB] 20.8 22.2 32.4 27.5 21.5 28.4
L1_A			Oradian	- 4	Desult	Deput	1	1	Magaia	Manaia
	equency	Reading	Reading CAV	c.f	Result QP	Result CAV	Limit QP	Limit AV	Margin QP	Margin CAV
1 2 3 4 4 5 5 9	MHz] 0.2278 0.3852 4.79631 5.09012 9.92647 3.26516	[dB(uV)] 35.6 27.2 29.8 30.9 29.0 29.2	[dB(uV)] 22.1 13.2 17.1 17.1 16.3 16.9	[dB] 9.8 9.9 10.0 10.0 10.2 10.4	[dB(uV)] 45.4 37.1 39.8 40.9 39.2 39.6	[dB(uV)] 31.9 23.1 27.1 27.1 27.1 26.5 27.3	[dB(uV)] 62.5 58.2 56.0 60.0 60.0 60.0	[dB(uV)] 52.5 48.2 46.0 50.0 50.0 50.0	[dB] 17.1 21.1 16.2 19.1 20.8 20.4	[dB] 20.6 25.1 18.9 22.9 23.5 22.7

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR21-SRF0069-B Page (45) of (45)

9. Measurement equipment

9. Measureme Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
Spectrum Analyzer	R&S	FSV30	100807	21.07.29
Attenuator	Weinschel ENGINEERING	56-10	51395	22.01.22
Signal Generator	R&S	SMB100A	176206	22.01.20
Vector Signal Generator	R&S	SMBV100A	257566	21.07.13
Power Sensor	R&S	NRP-Z81	1137.9009.02- 106224-tg	21.05.25
Attenuator	R&S	DNF Dämpfungsglied 10 ^{dB} in N-50 Ohm	31210	21.05.11
DC Power Supply	AGILENT	E3632A	MY40001543	21.05.11
Spectrum Analyzer	R&S	FSV40	100989	21.12.23
EMI TEST RECEIVER	R&S	ESCI3	101408	21.08.20
Bi-Log Antenna	SCHWARZBECK	VULB9168	583	22.04.23
Amplifier	SONOMA INSTRUMENT	310N	284608	21.08.20
COAXIAL FIXED ATTENUATOR	Agilent	8491B-003	2708A18758	22.04.23*
Horn antenna	ETS.lindgren	3117	00155787	21.10.28
Horn antenna	ETS.lindgren	3116	00086632	22.01.29
Attenuator	API Inmet	40AH2W-10	12	21.05.12
Broadband Pre-Amplifier	SCHWARZBECK	BBV9718	216	21.07.28
AMPLIFIER	L-3 Narda-MITEQ	AMF-7D-01001800 -22-10P	2003683	21.08.28
AMPLIFIER	L-3 Narda-MITEQ	JS44-18004000-33-8P	2000996	22.01.21
LOOP Antenna	R&S	HFH2-Z2	100355	22.08.21
Antenna Mast	Innco Systems	MA4640-XP-ET	-	-
Turn Table	Innco Systems	DT2000	79	-
Antenna Mast	Innco Systems	MA4000-EP	303	-
Turn Table	Innco Systems	DT2000	79	-
High pass Filter	WT	WT-A1698-HS	WT160411001	21.05.11
TWO-LINE V - NETWORK	R&S	ENV216	101358	21.09.29
EMI TEST RECEIVER	R&S	ESCI	100001	21.08.20

* Tests related to this equipment were progressed after the calibration was completed.

End of test report