

EMI TEST REPORT FCC CERTIFICATION

Applicant:

SAMSUNG Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea Date of Issue: April 10, 2020 Test Report No. HCT-EM-2004-FC003 Test Site: HCT CO., LTD.

FCC ID :

A3LSMA217M

Rule Part(s) / Standard(s)	:	47 CFR PART 15 Subpart B Class B ANSI C63.4-2014
Product Name	:	Mobile Phone
Model Name	:	SM-A217M/DS
Series Model Name	:	SM-A217M
Date of Test	:	March 30, 2020 to April 06, 2020

The device bearing the trade name and model specified above, has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2014. (See Test Report if any modifications were made for compliance) I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my

supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

HCT certifies that no party to application has been denial the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C 862

Tested By

Ki-Min Lee Test Engineer EMC Team Certification Division

Reviewed

Jeong-Hyun Choi Technical Manager EMC Team Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

REVISION HISTORY

The revision history for this document is shown in table.

Report No.	Issue Date	Information About Changes
0	April 10, 2020	Initial Release

This Test Report is not related to the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS (Korea Laboratory Accreditation Scheme) / A2LA (American Association for Laboratory Accreditation), which signed the ILAC-MRA. This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

TABLE OF CONTENTS

PAGE

1. GENERAL INFORMATION
1.1 Description of EUT
1.2 Tested System Details
1.3 Cable Description
1.4 Noise Suppression Parts on Cable. (I/O Cable)
1.5 Test Facility
1.6 Calibration of Measuring Instrument
1.7 Measurement Uncertainty
2. LIST OF TEST EQUIPMENT
3. DESCRIPTION OF TEST
3.1 Measurement of Conducted Emission
3.2 Measurement of Radiated Emission
4. PRELIMINARY TEST11
4.1 Conducted Emission11
4.2 Rediated Emission11
5. CONDUCTED AND RADIATED EMISSION TEST SUMMARY 12
5.1 Conducted Emission
5.2 Radiated Emission
6. CONCLUSION
7. APPENDIX A. TEST SETUP PHOTO

1. GENERAL INFORMATION

1.1 Description of EUT

FCC ID A3LSMA217M		A3LSMA217M
Model Name		SM-A217M/DS
Series Mo	del Name	SM-A217M
Product N	ame	Mobile Phone
Frequency Band		GSM 850/1900, WCDMA B2/4/5, LTE B2/66(4)/5/12(17)/41 Bluetooth, WLAN a/b/g/n/ac (SISO)
TA		Input: AC (100 to 240) V, (50 to 60) Hz, 0.5 A Output: DC 9.0 V, 1.67 A or DC 5.0 V, 2.0 A
Supply Battery		Li-ion Battery Low: 3.6 V / Normal: 3.85 V / High: 4.4 V

1.2 Tested System Details

All equipment descriptions used in the tested system (including inserted cards) are:

Device Type	Model Name	Serial Number	Manufacturer
EUT	SM-A217M/DS	-	SAMSUNG
ТА	EP-TA200	-	Solum
Data Cable	EP-DR140ABE	-	RFTech
Earphone	EHS61ASFBE	-	Almus
Micro SD Card	-	-	SAMSUNG

1.3 Cable Description

Product Name	Port	Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (m)
FUT	USB Type C	Y	N/A	(P) 1.0
EUT	Earphone	N/A	N	(D) 1.3

* The marked "(D)" means the data cable and "(P)" means the power cable.

1.4 Noise Suppression Parts on Cable. (I/O Cable)

Product Name	Port	Ferrite Bead (Y/N)	Location	Metal Hood (Y/N)	Location
	USB Type C	Ν	N/A	Y	Both End
EUT	Earphone	Ν	N/A	Y	EUT End

1.5 Test Facility

Test site is located at 74, SEOICHEON-RO, 578BEON-GIL, MAJANG-MYEON, ICHEON-SI, GYEONGGI-DO, SOUTH KOREA. Those measurement facilities are constructed in conformance with the requirements of ANSI C63.4-2014. The Normalized site attenuations (30 MHz to 1 GHz) and Site validation (1 GHz to 18 GHz) were performed in accordance with the standard in ANSI C63.4-2014

Measurement Facilities	Registration Number
Radiated Field strength measurement facility 3 m Semi Anechoic chamber	
Radiated Field strength measurement facility 10 m Semi Anechoic chamber #1	KR0032
Radiated Field strength measurement facility 10 m Semi Anechoic chamber #2	

1.6 Calibration of Measuring Instrument

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturers recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5:2017

1.7 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (dB)
Conducted Emission (0.15 MHz to 30 MHz)	1.8 dB
Radiated Emissions (30 MHz to 1 GHz)	4.8 dB
Radiated Emissions (1 GHz to 18 GHz)	5.4 dB
Radiated Emissions (18 GHz to 40 GHz)	5.7 dB

2. LIST OF TEST EQUIPMENT

	Type	Model Name	<u>Manufacturer</u>	<u>Serial Number</u>	<u>Calibration</u> <u>Cycle</u>	<u>Calibration</u> <u>Date</u>
Con	ducted Emission (No	ot applicable)				
	EMI Test Receiver LISN LISN	ESCI ENV216 ENV216	Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	100584 102245 100073	1 year 1 year 1 year	06.18.2019 09.11.2019 04.30.2019
	Radio communication analyzer	MT8820C	ANRITSU	6201138643	1 year	08.20.2019
	Antenna (for Communication)	USLP9142	Schwarzbeck	VSLP 9142-200	-	-
	Software	EMC32	Rohde & Schwarz	-	-	-
<u>Radi</u>	ated Emission					
-For	measurement below	1 GHz				
\boxtimes	EMI Test Receiver Bi-Log Antenna Antenna master	ESU40 VULB 9168 MA4640-XP-ET	Rohde & Schwarz Schwarzbeck INNCO Systems	100524 255 -	1 year 2 year N/A	05.17.2019 03.26.2019 -
\boxtimes	Antenna master controller	CO3000	INNCO Systems	CO3000/870/ 35990515/L	N/A	-
\boxtimes	Turn Table	1060	INNCO Systems	-	N/A	-
\boxtimes	Turn Table controller	CO2000	INNCO Systems	CO2000/095/ 7590304/L	N/A	-
\boxtimes	Radio communication analyzer	MT8820C	ANRITSU	6201138643	1 year	08.20.2019
\boxtimes	Antenna (for Communication)	USLP9142	Schwarzbeck	VSLP 9142-200	-	-
\boxtimes	Software	EMC32	Rohde & Schwarz	-	-	-
-For	measurement above	1 GHz				
\boxtimes	EMI Test Receiver Antenna master	ESU40 MA4640-XP-ET	Rohde & Schwarz INNCO Systems	100524	1 year N/A	05.17.2019 -
\boxtimes	Antenna master controller	CO3000	INNCO Systems	CO3000/870/ 35990515/L	N/A	-
\boxtimes	Turn Table	1060	INNCO Systems	-	N/A	-
\boxtimes	Turn Table controller	CO2000	INNCO Systems	CO2000/095/ 7590304/L	N/A	-
\mathbb{X}	Horn Antenna Low Noise Amplifier Low Noise Amplifier Horn Antenna	BBHA 9120D TK-PA18H TK-PA1840H BBHA 9170	Schwarzbeck TESTEK TESTEK Schwarzbeck	01836 170034-L 170030-L BBHA 9170#786	1 year 1 year 1 year 1 year	07.19.2019 03.03.2020 02.13.2020 12.03.2019
\boxtimes	Radio communication analyzer	MT8820C	ANRITSU	6201138643	1 year	08.20.2019
\boxtimes	Antenna (for Communication)	USLP9142	Schwarzbeck	VSLP 9142-200	-	-
\boxtimes	Software	EMC32	Rohde & Schwarz	-	-	-

3. DESCRIPTION OF TEST

3.1 Measurement of Conducted Emission

The test procedure was in accordance with ANSI C63.4-2014, Clause 7.3

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN).
 If the EUT is connected to the PC through USB, the AC power-line adapter of the PC is directly connected to a line impedance stabilization network (LISN).
 Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
 b. Both conducted lines are measured in Quesi Beels and Average mode, including the worst case.
- b. Both conducted lines are measured in Quasi-Peak and Average mode, including the worst-case data points for each tested configuration.
- c. The frequency range from 150 kHz to 30 MHz was searched.

[Conducted Emission Limits]

Frequency (MHz)	Resolution Bandwidth (kHz)	Quasi-Peak (dB(µV))	Average (dB(µV))
0.15 to 0.5	9	66 to 56*	56 to 46*
0.5 to 5	9	56	46
5 to 30	9	60	50

*Decreases with the logarithm of the frequency.

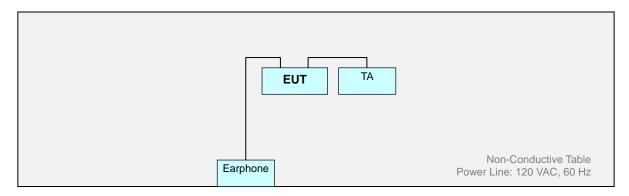
3.2 Measurement of Radiated Emission

The test procedure was in accordance with ANSI C63.4-2014, Clause 8.3

- a. The EUT was placed on the top of a turn table 0.8 meters above the ground at a semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 m away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from 1 m to 4 m above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 m to 4 m and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to Peak and Average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- g. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.(1 GHz to 40 GHz)

Frequency (MHz)	Antenna Distance (m)	Field Strength (µV/m)	Quasi-Peak (dB(µV)/m)
30 to 88	3	100	40.0
88 to 216	3	150	43.5
216 to 960	3	200	46.0
Above 960	3	500	54.0
Frequency (MHz)	Antenna Distance (m)	Peak (dB(µV)/m)	Average (dB(µV)/m)
Above 1 000	3	74	54

[Radiated Emission Limits]



3.2.1 Frequency Range of Radiated Measurements

An unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a Radiated Emission limit is specified, up to the frequency shown in the following table

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705 to 108	1 000
108 to 500	2 000
500 to 1 000	5 000
Above 1 000	5^{th} harmonic of the highest frequency or 40 GHz, whichever is lower

3.3 Configuration of Tested System

4. PRELIMINARY TEST

During preliminary tests, the following operating mode was investigated.

Receiver mode (GSM 850 Low/Middle/High CH Idle) Receiver mode (WCDMA B5 Low/Middle/High CH Idle) Receiver mode (LTE B5 Low/Middle/High CH Idle) Receiver mode (LTE B12 Low/Middle/High CH Idle) Receiver mode (LTE B17 Low/Middle/High CH Idle)

NOTE. The worst band is tested.

4.1 Conducted Emission (Not applicable)

It was tested the following operating mode, after connecting all peripheral devices.

Operating Mode: Not applicable

4.2 Radiated Emission

It was tested the following operating mode, after connecting all peripheral devices.

Operating Mode:

```
Receiver mode (LTE B5 Low CH Idle) *
Receiver mode (LTE B5 Middle CH Idle)
Receiver mode (LTE B5 High CH Idle)
Receiver mode (LTE B12+B17 Low CH Idle) *
Receiver mode (LTE B12+B17 Middle CH Idle)
Receiver mode (LTE B12+B17 High CH Idle)
```

NOTE.

2. The worst case of operating mode is reported. [*].

^{1.} Three orientations have been investigated and the worst case orientation (x-axis: The display of EUT placed on the table is facing upwards) is reported.

5. CONDUCTED AND RADIATED EMISSION TEST SUMMARY

5.1 Conducted Emission(Not applicable)

The test results of conducted emission at mains ports provide the following information:

Rule Part / Standard	47 CFR PART 15 Subpart B Class B ANSI C63.4-2014
Detector	Quasi-Peak, CISPR-Average
Bandwidth	9 kHz (6 dB)
Operating Mode	Not applicable
Kind of Test Site	Shielded Room
Temperature	- °C
Relative Humidity	- %
Test Date	-

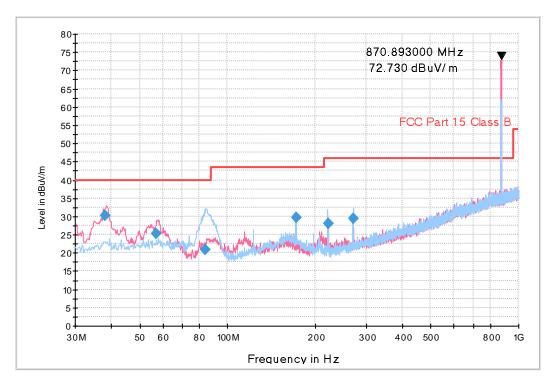
- Calculation Formula:

- 1. Conductor L1 = Hot, Conductor N = Neutral
- 2. Corr. = LISN Factor + Cable Loss
- 3. QuasiPeak or CAverage= Receiver Reading + Corr.
- 4. Margin = Limit QuasiPeak or CAverage

5.2 Radiated Emission

5.2.1 For Measurement Below 1 GHz

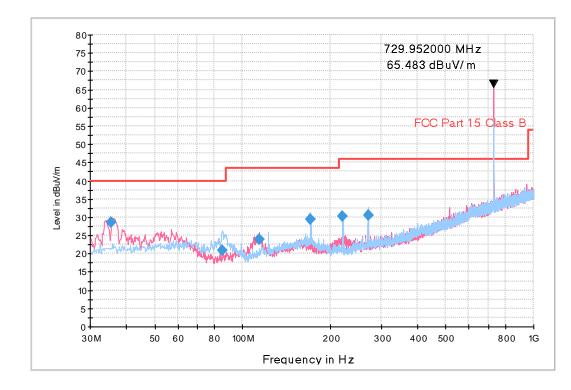
The test results of radiated emission provide the following information:


Applicable Standards	47 CFR PART 15 Subpart B Class B ANSI C63.4-2014
Detector	Quasi-Peak
Bandwidth	120 kHz (6 dB)
Worst Case of Operating Mode	Receiver mode (LTE B5 Low CH Idle) * Receiver mode (LTE B12+B17 Low CH Idle) *
Kind of Test Site	3 m semi anechoic chamber
Temperature	25.7 °C
Relative Humidity	46.8 %
Test Date	March 30, 2020

- Calculation Formula:

- 1. POL. H = Horizontal, POL. V = Vertical
- 2. QuasiPeak = Reading (Receiver Reading) + Corr.
- 3. Corr. (Correction Factor) = Antenna Factor + Cable Loss
- 4. Margin = Limit QuasiPeak

Figure 1: Radiated Emission (30 MHz to 1 GHz), Receiver mode (LTE B5 Low CH Idle)



FCC PART 15 CLASS B

NOTE. 1. Carrier Frequency: RX 870.893 MHz2. These are signals for fundamental frequency from the base station

Frequency (MHz)	Quasi Peak (dBµV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
38.107600	30.2	100.0	v	84.0	18.9	9.8	40.0
56.968800	25.3	100.0	v	86.0	19.5	14.7	40.0
84.051000	21.0	221.9	Н	130.0	15.2	19.0	40.0
171.913600	29.6	174.9	Н	18.0	19.0	13.9	43.5
221.723800	28.0	100.0	Н	16.0	17.6	18.0	46.0
270.652000	29.5	100.0	Н	92.0	19.5	16.5	46.0

Figure 2: Radiated Emission (30 MHz to 1 GHz), Receiver mode (LTE B12+B17 Low CH Idle)

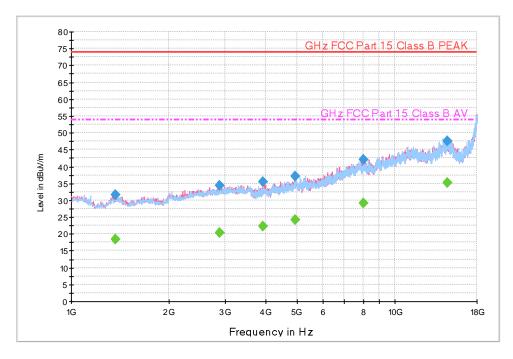
FCC PART 15 CLASS B

NOTE. 1. Carrier Frequency: RX 729.952 MHz2. These are signals for fundamental frequency from the base station

Frequency (MHz)	Quasi Peak (dBµV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
35.406000	28.6	100.0	v	69.0	18.7	11.4	40.0
85.173400	21.0	174.9	Н	131.0	15.0	19.0	40.0
114.572800	24.0	117.0	v	247.0	16.8	19.5	43.5
171.827600	29.5	174.9	Н	105.0	19.0	14.0	43.5
220.971000	30.1	125.2	Н	17.0	17.6	15.9	46.0
270.554800	30.6	100.0	Н	105.0	19.5	15.4	46.0

5.2.2 For Measurement Above 1 GHz

The test results of radiated emission provide the following information:


Applicable Standards	47 CFR PART 15 Subpart B Class B ANSI C63.4-2014
Detector	Peak mode: Peak (RBW: 1 MHz, VBW: 3 MHz) CISPR-Average mode: Peak (RBW: 1 MHz, VBW: 10 Hz)
Highest Frequency	5 825 MHz
Tested Frequency Range	1 GHz to 30 GHz
Worst Case of Operating Mode	Receiver mode (LTE B5 Low CH Idle) * Receiver mode (LTE B12+B17 Low CH Idle) *
Kind of Test Site	3 m semi anechoic chamber
Temperature	26.1 / 26.2 °C
Relative Humidity	48.2 / 47.5 %
Test Date	April 02 / April 06, 2020

- Calculation Formula:

- 1. POL. H = Horizontal, POL. V = Vertical
- 2. Peak or CAverage = Reading (Receiver Reading) + Corr.
- 3. Corr. (Correction Factor) = Antenna Factor+ Cable Loss Amplifier Gain
- 4. Margin = Limit Peak or CAverage

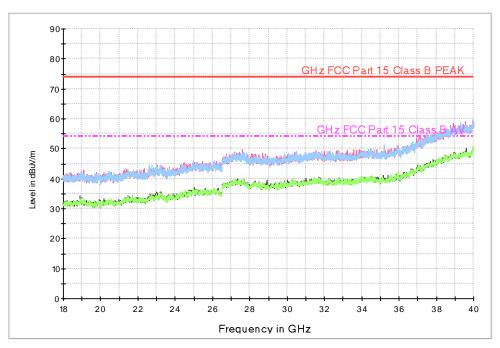
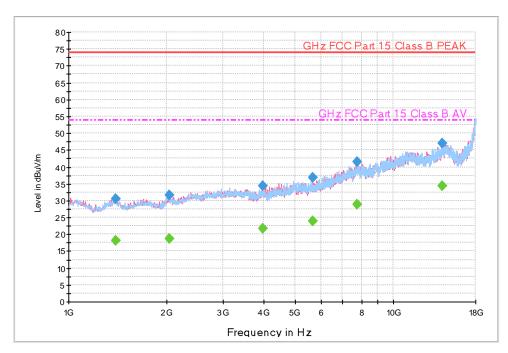


Figure 3: Radiated Emission (1 GHz to 30 GHz), Receiver mode (LTE B5 Low CH Idle)

Tilting of GHz FCC PART 15 CLASS B



Frequency (MHz)	Peak (dBµV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1371.140000	31.6	150.1	V	325.0	-28.4	42.4	74.0
2883.605000	34.3	100.0	V	341.0	-23.1	39.7	74.0
3933.820000	35.3	116.9	V	74.0	-20.7	38.7	74.0
4938.730000	37.0	116.7	Н	226.0	-18.0	37.0	74.0
8004.220000	42.1	100.0	Н	45.0	-11.7	31.9	74.0
14543.980000	47.6	150.2	V	278.0	-1.1	26.4	74.0

Frequency (MHz)	CAverage (dBµV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1371.140000	18.4	150.1	V	325.0	-28.4	35.6	54.0
2883.605000	20.3	100.0	V	341.0	-23.1	33.7	54.0
3933.820000	22.2	116.9	V	74.0	-20.7	31.8	54.0
4938.730000	24.2	116.7	Н	226.0	-18.0	29.8	54.0
8004.220000	29.2	100.0	Н	45.0	-11.7	24.8	54.0
14543.980000	35.1	150.2	V	278.0	-1.1	18.9	54.0

Figure 4: Radiated Emission (1 GHz to 30 GHz), Receiver mode (LTE B12+B17 Low CH Idle)

Tilting of GHz FCC PART 15 CLASS B

Frequency (MHz)	Peak (dBµV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1402.275000	30.5	150.0	Н	205.0	-28.3	43.5	74.0
2040.855000	31.7	100.0	Н	205.0	-26.4	42.3	74.0
3977.470000	34.2	150.0	Н	12.0	-20.5	39.8	74.0
5663.085000	37.0	150.0	V	143.0	-17.0	37.0	74.0
7741.560000	41.6	100.0	V	124.0	-11.9	32.4	74.0
14201.790000	47.1	137.8	Н	234.0	-1.7	26.9	74.0

Frequency (MHz)	CAverage (dBµV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1402.275000	18.0	150.0	Н	205.0	-28.3	36.0	54.0
2040.855000	18.6	100.0	Н	205.0	-26.4	35.4	54.0
3977.470000	21.7	150.0	Н	12.0	-20.5	32.3	54.0
5663.085000	23.8	150.0	V	143.0	-17.0	30.2	54.0
7741.560000	28.9	100.0	V	124.0	-11.9	25.1	54.0
14201.790000	34.3	137.8	Н	234.0	-1.7	19.7	54.0

6. CONCLUSION

The data collected shows that the **Product Name: Mobile Phone and Model Name: SM-A217M/DS** complies with §15.107 and §15.109 of the FCC rules.

7. APPENDIX A. TEST SETUP PHOTO

Please refer to EMI Test Setup Photo and test setup photo file no. as follows;

Rev. No.	Issue Date	File No.
0	April 10, 2020	HCT-EM-2004-FC003-P

End of report