

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401

FCC BT LE REPORT

Certification

Application Name:Date of Issue:SAMSUNG Electronics Co., Ltd.17 April 2020Address:Test Site/Location:129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do,
16677, Rep. of KoreaHCT CO., LTD., 74, Seoicheon-ro 578beon-gil, Majang-myeon,
Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA
Report No.: HCT-RF-2004-FC022

FCC ID: A3LSMA217F

APPLICANT: SAMSUNG Electronics Co., Ltd.

According to the Evaluation report, all of the data contained herein is reused from the reference FCC ID : A3LSMA217M report.

Model(s): EUT Type: Average Output Power: Frequency Range: Modulation type: FCC Classification: FCC Rule Part(s): SM-A217F/DSN Mobile Phone 9.41 dBm (8.73 mW) 2 402 MHz - 2 480 MHz GFSK Digital Transmission System(DTS) Part 15.247

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

Report prepared by : Jung Ki Lim Engineer of Telecommunication Testing Center Report approved by : Jong Seok Lee Manager of Telecommunication Testing Center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
HCT-RF-2004-FC022	April 17, 2020	- First Approval Report

This test results were applied only to the test methods required by the standard.

This laboratory is not accredited for the test results marked *.

The above Test Report is the accredited test result by KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA. (HCT Accreditation No.: KT197)

Table of Contents

1. EUT DESCRIPTION
2. TEST METHODOLOGY
EUT CONFIGURATION
EUT EXERCISE
GENERAL TEST PROCEDURES
DESCRIPTION OF TEST MODES6
3. INSTRUMENT CALIBRATION
4. FACILITIES AND ACCREDITATIONS
FACILITIES
EQUIPMENT
5. ANTENNA REQUIREMENTS
6. MEASUREMENT UNCERTAINTY7
7. DESCRIPTION OF TESTS
8. SUMMARY TEST OF RESULTS
9. TEST RESULT
9.1 DUTY CYCLE
9.2 6dB BANDWIDTH
9.3 OUTPUT POWER
9.4 POWER SPECTRAL DENSITY
9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS
9.6 RADIATED SPURIOUS EMISSIONS
9.7 RADIATED RESTRICTED BAND EDGES
9.8 POWERLINE CONDUCTED EMISSIONS
10. LIST OF TEST EQUIPMENT
11. ANNEX A_ TEST SETUP PHOTO76

1. EUT DESCRIPTION

Model	SM-A217F/DSN					
Additional Model	-					
ЕИТ Туре	Mobile Phone					
Power Supply	DC 3.85 V					
Battery Information	Model: EB-BA217ABY Type: Li-ion Battery					
Travel Adapter Information	Model : EP-TA200 Manufacture: SOLUM					
Data Cable Information	Model : EP-DR140ABE Manufacture: RFTech					
Ear-jack Information	Model : EHS61ASFBE Manufacture: Almus					
Frequency Range	2402 MHz ~ 2480 MHz					
		125k Bit/s : 6.305 dBm (4.27 mW)				
	Peak	500k Bit/s : 6.321 dBm (4.29 mW)				
	(For information only)	1M Bit/s : 6.366 dBm (4.33 mW)				
Max. RF Output Power		2M Bit/s : 10.078 dBm (10.18 mW)				
Max. NF Output Fower		125k Bit/s : 5.83 dBm (3.83 mW)				
	Average	500k Bit/s : 5.77 dBm (3.78 mW)				
	Average	1M Bit/s : 5.87 dBm (3.86 mW)				
		2M Bit/s : 9.41 dBm (8.73 mW)				
Modulation Type	GFSK					
Bluetooth Version	5.0					
Number of Channels	40 Channels					
Antenna Specification	Antenna type: MFA Peak Gain : -5.04 dBi					
Date(s) of Tests	March 05, 2020~ April 07, 20	020				

2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpse of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test

Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of §15.203

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05

7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

EUT .	Coax cable	Spectrum Analyzer

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

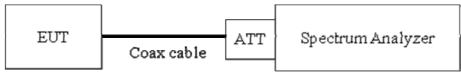
We tested according to the zero-span measurement method, 6.0)b) in KDB 558074 v05r02.

The largest availble value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (≥ RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/ T_{total} and Duty Cycle Factor = 10log(1/Duty Cycle)



7.2. 6dB Bandwidth

<u>Limit</u>

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Test Procedure

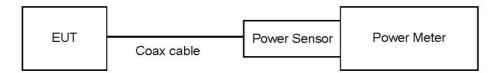
The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 8.2 in KDB 558074 v05r02,

Procedure 11.8.1 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \ge 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Note : We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.



7.3. Output Power

<u>Limit</u>

The maximum permissible conducted output power is 1 Watt.

Test Configuration

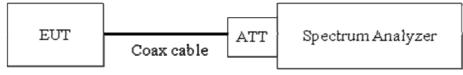
Test Procedure

The transmitter output is connected to the Power Meter.

- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.
- Average Power (Procedure 8.3.2.3 in KDB 558074 v05r02, Procedure 11.9.2.3 in ANSI 63.10-2013)
 - 1) Measure the duty cycle.
 - 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

- Conducted Output Power(Peak) = Reading Value + ATT loss + Cable loss
- Conducted Output Power(Average) = Reading Value + ATT loss + Cable loss + Duty Cycle Factor



7.4. Power Spectral Density

<u>Limit</u>

The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3 kHz BW.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

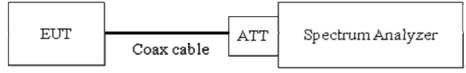
We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10 in ANSI 63.10-2013.

The spectrum analyzer is set to :

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set span to at least 1.5 times the OBW.
- 3) RBW = 3 kHz \leq RBW \leq 100 kHz.
- 4) VBW \geq 3 x RBW.
- 5) Sweep = auto couple
- 6) Detector = power averaging (rms) or sample detector (when rms not available).
- 7) Ensure that the number of measurement points in the sweep \geq [2 × span / RBW].
- 8) Employ trace averaging (rms) modeover a minimum of 100 traces
- 9) Use the peak marker function to determine the maximum amplitude level.
- 10) Use the peak marker function to determine the maximum amplitude level within the RBW. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11) if then duty factor shall be added to adjust the result if the duty cycle is less than 98%

Sample Calculation

Power Spectral Density = Reading Value + ATT loss + Cable loss


7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions

<u>Limit</u>

The maximum conducted (average) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

[Conducted > 30 dBc]

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer.

(Procedure 8.5 in KDB 558074 v05r02, Procedure 11.11 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \ge 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = auto couple
- 7) Ensure that the number of measurement points $\ge 2 \times \text{Span/VBW}$
- 8) Allow trace to fully stabilize.
- 9) Use peak marker function to determine the maximum amplitude level.

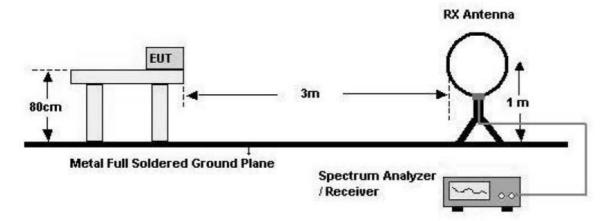
Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

Factors for frequency

Freq(MHz)	Factor(dB)
30	10.04
100	10.07
200	10.12
300	10.17
400	10.20
500	10.21
600	10.21
700	10.23
800	10.24
900	10.26
1000	10.27
2000	10.41
2400	10.45
2500	10.47
3000	10.52
4000	10.60
5000	10.71
6000	10.73
7000	10.80
8000	10.85
9000	10.91
10000	10.97
11000	11.02
12000	11.10
13000	11.19
14000	11.16
15000	11.21
16000	11.22
17000	11.25
18000	11.30
19000	11.32
20000	11.36
21000	11.48
22000	11.55
23000	11.55
24000	11.59
25000	11.68
26000	11.69

Note : 1. 2 400 ~ 2 500 MHz is fundamental frequency range.

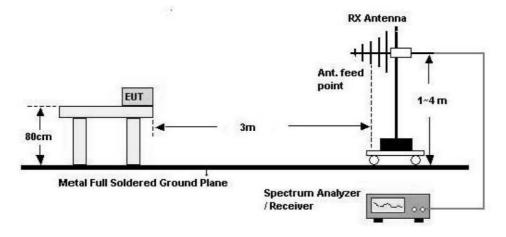
2. Factor = Attenuator loss(10 dB) + Cable loss(1ea)

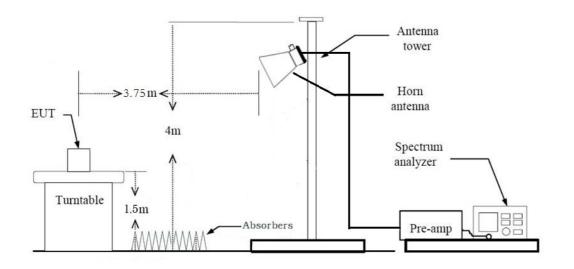

7.6. Radiated Test

<u>Limit</u>

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Configuration


Below 30 MHz



Report No.: HCT-RF-2004-FC022

30 MHz - 1 GHz

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB

```
Measurement Distance : 3 m
```

- 7. Distance Correction Factor(0.490 MHz 30 MHz) = 40log(3 m/30 m) = 40 dB
 - Measurement Distance : 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \ge 3 x RBW
- 9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - In general, (1) is used mainly
- 6. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

7. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 - Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013)
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Average):
 - Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

11. Total (Measurement Type : Peak)

= Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance Factor(D.F)

Total (Measurement Type : Average)

- = Average Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G)
 - + Distance Factor(D.F) + Duty Cycle Factor

Test Procedure of Radiated Restricted Band Edge

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 - Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Average):
 - Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$
 - Measured Frequency Range : 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.

- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.

- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 11. Total(Measurement Type : Peak

= Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

Total(Measurement Type : Average)

= Average Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

+ Duty Cycle Factor

7.7. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

Frequency Pango (MHz)	Limits (dBµV)				
Frequency Range (MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)			
0.50 to 5	56	46			
5 to 30	60	50			

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

7.8. Worst case configuration and mode

Radiated Test

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone, Stand alone + External accessories(Earphone, etc)
 - Worstcase : Stand alone
- 2. EUT Axis:
 - Radiated Spurious Emissions : Y
 - Radiated Restricted Band Edge : X
- 3. All packet length of operation were investigated and the test results are worst case in lowest packet length. (Worst case : 255 Byte)
- 4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.
 - Position : Horizontal, Vertical, Parallel to the ground plane

AC Power line Conducted Emissions

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone + External accessories(Earphone, etc)+Travel Adapter

Stand alone + Travel Adapter

- Worstcase : Stand alone + Travel Adapter

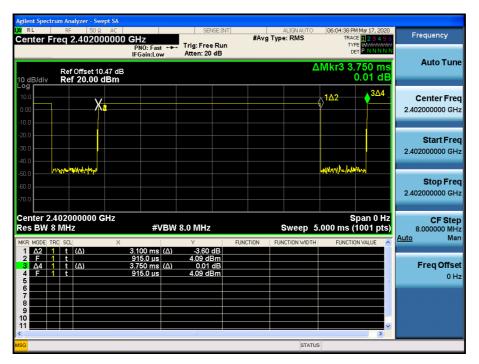
Conducted test

1. The EUT was configured with packet length of highest power.

(Worst case : 255 Byte)

8. SUMMARY TEST OF RESULTS

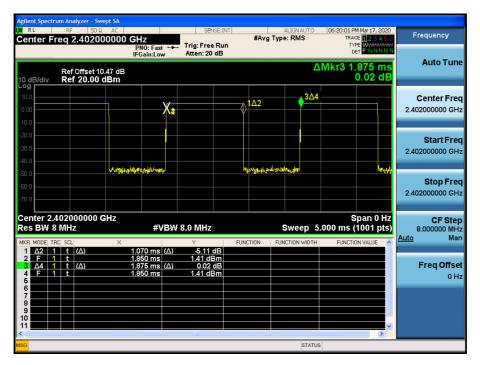
Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Output Power	§15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§15.247(e)	< 8 dBm / 3 kHz Band	Conducted	PASS
Band Edge (Out of Band Emissions)	§15.247(d)	Conducted > 30 dBc		PASS
AC Power line Conducted Emissions	§15.207	cf. Section 7.7		PASS
Radiated Spurious Emissions	§15.247(d), 15.205, 15.209	cf. Section 7.6	Dedicted	PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS


9. TEST RESULT

9.1 DUTY CYCLE

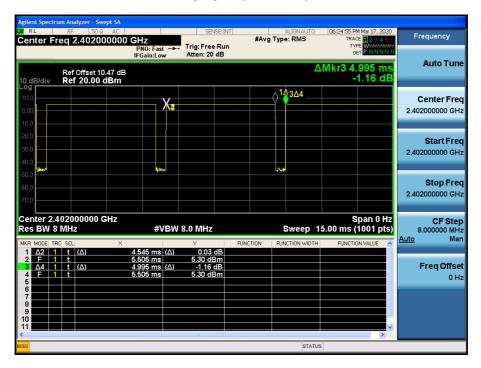
Data rate	Packet length	Ton	T _{total}	Duty Cycle	Duty Cycle Factor
(Bit/s)	(Byte)	(ms)	(ms)		(dB)
125k	37	3.1000	3.7500	0.8267	0.83
TZUK	255	17.0400	17.4900	0.9743	0.11
500k	37	1.0700	1.8750	0.5707	2.44
	255	4.5450	4.9950	0.9099	0.41
1M	37	0.3889	0.6245	0.6227	2.06
	255	2.1300	2.5000	0.8520	0.70
2M	37	0.2027	0.6245	0.3245	4.89
	255	1.0750	1.8750	0.5733	2.42

125k Bit/s(37 Byte) Test Plots

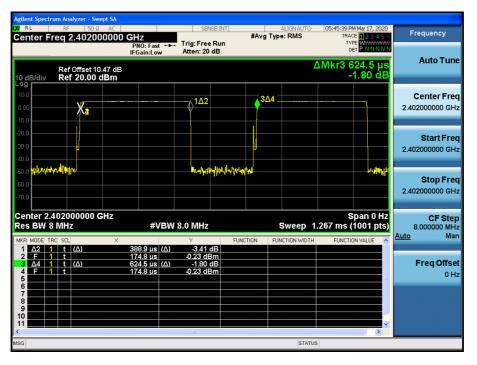

Duty Cycle (Low-CH 0)

125k Bit/s(255 Byte) Test Plots

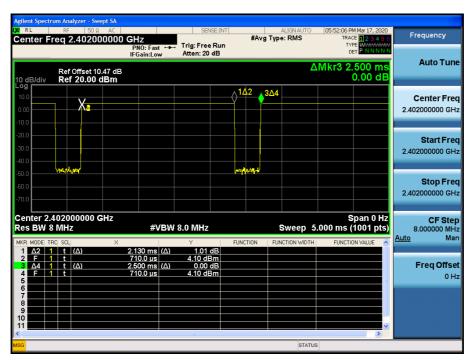
gilent Spectr	um Analyzer -	Swept SA iD Ω AC			SENSE:1	NT		ALIGNAUT	0	06:13:51 P	M Mar 17, 2020	_	
Center Fr	req 2.402		GHz PNO: Fast IFGain:Lov		g: Free Ru ten: 20 dB		#Avg 1	Гуре: RMS		TRA	CE 1 2 3 4 5 6 PE WAAAAAAA ET P N N N N N	Fr	equency
10 dB/div	Ref Offset Ref 20.0								ΔN		7.49 ms 0.10 dB		Auto Tune
10.0 0.00		X							-X	3∆4			Center Fred 2000000 GH:
20.0 30.0 40.0												2.40	Start Fre 2000000 GH
50.0 60.0 70.0												2.40	Stop Fre 2000000 GH
Center 2.4 Res BW 8	RC SCL	0 GHz ×			Y	FUNCT	ION	Sweep		00 ms (pan 0 Hz 1001 pts) ^{DN VALUE}	Auto	CF Ste 000000 M⊦ Ma
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t (Δ) t t (Δ) t		17.04 ms 7.050 ms 17.49 ms 7.050 ms	ξ (Δ)	-0.03 dB 5.36 dBm -0.10 dB 5.36 dBm								FreqOffso 0⊦
7 8 9 9 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
sg								STA	TUS				



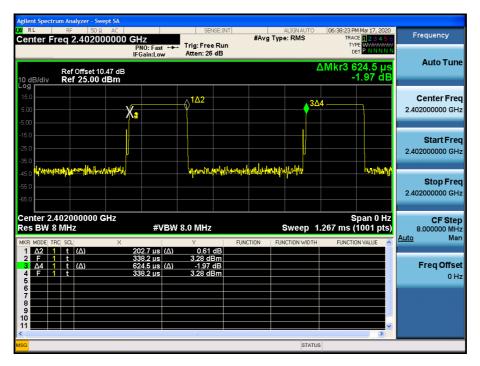
500k Bit/s(37 Byte) Test Plots


Duty Cycle (Low-CH 0)

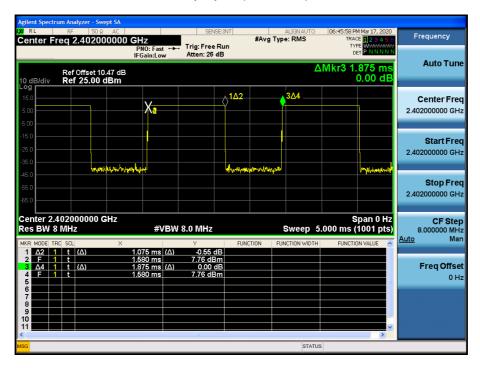
■ 500k Bit/s(255 Byte) Test Plots



IM Bit/s (37 Byte) Test Plots


Duty Cycle (Low-CH 0)

IM Bit/s (255 Byte) Test Plots

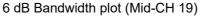


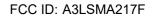
2M Bit/s (37 Byte) Test Plots

Duty Cycle (Low-CH 0)

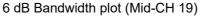
2M Bit/s (255 Byte) Test Plots

9.2 6dB BANDWIDTH


Mode	Channel	6 dB Bandwidth	Limit		
(Bit/s)	Channer	(kHz)	(kHz)		
	0	674.1			
125k	19	669.0	> 500		
	39	678.0			
	0	696.8			
500k	19	707.5	> 500		
	39	700.4			
	0	702.6			
1M	19	709.2	> 500		
	39	708.6			
	0	1272.0			
2M	19	1274.0	> 500		
	39	1280.0			


■ 125k Bit/s(255 Byte) Test Plots

6 dB Bandwidth plot (Low-CH 0)


6 dB Bandwidth plot (High-CH 39)

■ 500k Bit/s(255 Byte) Test Plots

6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (High-CH 39)

IM Bit/s (255 Byte) Test Plots

6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

6 dB Bandwidth plot (High-CH 39)


2M Bit/s (255 Byte) Test Plots

6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

Agilent Spectrum Analyzer - Occupied B	w				
ແມ່ RL RF 50 Ω AC Center Freq 2.440000000	RF S0.9: AC SSINSE:INT ALL eq 2.440000000 GHz Center Freq: 2.44000000 GHz Center Freq: 2.44000000 GHz Trig: Free Run Avg Hold: 1/ #/IFGain:Low #Atten: 10 dB Hereit Avg Hold: 1/			06:49:04 PM Mar 17, 2020 Radio Std: None Radio Device: BTS	Frequency
Ref Offset 10.47 (10 dB/div Ref 25.00 dBn Log					
5.00					Center Freq 2.440000000 GHz
-5.00				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-35.0					
-65.0					
Center 2.44 GHz #Res BW 100 kHz	#	#VBW 300 kHz		Span 5 MHz Sweep 2.533 ms	500.000 kHz
Occupied Bandwidt			16.9	dBm	<u>Auto</u> Man
دک Transmit Freq Error	2.1483 MHz Error 12.339 kHz OBW Power		99	.00 %	Freq Offset 0 Hz
x dB Bandwidth	1.274 MHz	1.274 MHz x dB		00 dB	
<mark>//SG</mark>			STATUS		

Center Freq 2.480000000	Trig: F	sense:INT r Freq: 2.480000000 GHz Free Run Avg Ho n: 10 dB		06:51:13 PM Mar 17, 2020 Radio Std: None Radio Device: BTS	Frequency
Ref Offset 10.47 o 10 dB/div Ref 20.00 dBn -og					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Center Fre 2.480000000 G⊦
30.0					
50.0					
70.0					
Center 2.48 GHz Res BW 100 kHz	#	VBW 300 kHz		Span 5 MHz Sweep   2.533 ms	CF Ste
Occupied Bandwidt		Total Power	15.3	dBm	<u>Auto</u> Ma
2.	1444 MHz				Freq Offse
Transmit Freq Error	794 Hz	OBW Power	99	.00 %	0 H
x dB Bandwidth	1.280 MHz	x dB	-6.	00 dB	
			STATUS		

# 6 dB Bandwidth plot (High-CH 39)



### 9.3 OUTPUT POWER

### Peak Power

Data rate	Packet length	LEN	lode	Measured	Limit
(Bit/s)	(Byte)	Frequency [MHz]	Channel	Power(dBm)	(dBm)
		2402	0	5.155	
	37	2440	19	6.168	
4051		2480	39	4.931	_
125k		2402	0	5.216	
	255	2440	19	6.305	_
		2480	39	5.110	
		2402	0	5.061	_
	37	2440	19	6.301	
5001		2480	39	4.979	
500k		2402	0	5.193	_
	255	2440	19	6.321	_
		2480	39	5.103	20
		2402	0	5.005	- 30
	37	2440	19	6.112	_
114		2480	39	4.889	_
1M		2402	0	5.225	_
	255	2440	19	6.366	-
		2480	39	5.154	_
		2402	0	9.235	-
	37	2440	19	10.076	_
214		2480	39	8.429	
2M		2402	0	9.184	
	255	2440	19	10.078	
		2480	39	8.487	



# Average Power

Data rate	Packet length	LE M	LE Mode		Duty Cycle Factor	Result	Limit
(Bit/s)	(Byte)	Frequency [MHz]	Channel	(dBm)	(dB)	(dBm)	(dBm)
		2402	0	3.74	0.83	4.57	
	37	2440	19	4.92	0.83	5.75	
1054		2480	39	3.70	0.83	4.53	
125k		2402	0	4.52	0.11	4.63	
	255	2440	19	5.72	0.11	5.83	
		2480	39	4.53	0.11	4.64	
		2402	0	2.09	2.44	4.53	
	37	2440	19	3.32	2.44	5.76	
5001		2480	39	2.07	2.44	4.51	
500k		2402	0	4.19	0.41	4.60	
	255	2440	19	5.36	0.41	5.77	
		2480	39	4.31	0.41	4.72	30
		2402	0	2.42	2.06	4.48	30
	37	2440	19	3.58	2.06	5.64	
1M		2480	39	2.36	2.06	4.42	
I IVI		2402	0	3.95	0.70	4.65	
	255	2440	19	5.17	0.70	5.87	
		2480	39	3.98	0.70	4.68	
		2402	0	3.60	4.89	8.49	
	37	2440	19	4.43	4.89	9.32	
2M		2480	39	2.88	4.89	7.77	1
∠IVI		2402	0 6.11 2.42 8.53				
	255	2440	19	6.99	2.42	9.41	
		2480	39	5.36	2.42	7.78	

# Note :

1. Power meter offset = Attenuator loss + Cable loss

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

So, 10.47 dB is offset for 2.4 GHz Band.



#### 9.4 POWER SPECTRAL DENSITY

				Test Res	sult	
Frequency (MHz)	Channel No.	Mode (Bit/s)	Measured Power(dBm)	Duty Cycle Factor(dB)	Measured Power(dBm) + Duty Cycle Factor(dB)	Limit (dBm)
2402	0	1054	-1.354	0.11	-1.244	
2440	19	125k 255 Byte	-0.087	0.11	0.023	
2480	39	200 Dyte	-1.140	0.11	-1.030	
2402	0	5001	-2.957	0.41	-2.547	
2440	19	500k 255 Byte	-1.701	0.41	-1.291	
2480	39	200 Dyte	-2.809	0.41	-2.399	8
2402	0		-2.773	0.70	-2.073	ð
2440	19	1M 255 Byte	-1.649	0.70	-0.949	
2480	39	200 Dyte	-2.976	0.70	-2.276	
2402	0	014	-3.164	2.42	-0.744	
2440	19	2M 255 Byte	-1.669	2.42	0.751	
2480	39	200 Dyte	-4.284	2.42	-1.864	

#### Note :


1. Spectrum reading values are not plot data.

The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.

- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.47 dB is offset for 2.4 GHz Band.
- 4. Worst case test Plot Only : 2M Bit/s (255 Byte)



#### 2M Bit/s (255 Byte) Test Plots



Power Spectral Density (Low-CH 0)

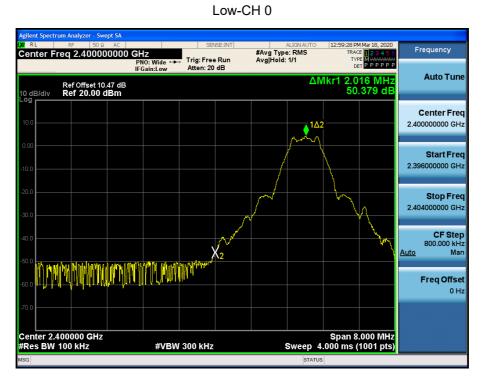
# Power Spectral Density (Mid-CH 19)



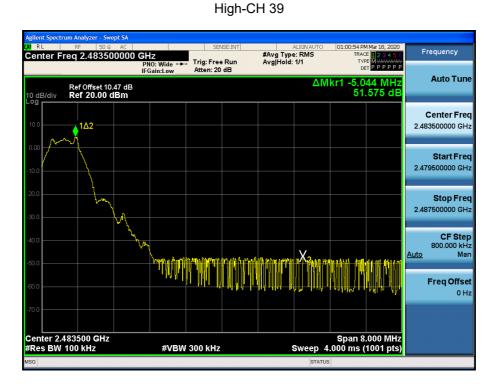




#### Power Spectral Density (High-CH 39)


### 9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS

Test Result : please refer to the plot below.


In order to simplify the report, attached plots were only the worst case channel and data rate.



# 1M Bit/s (255 Byte) Test Plots -BandEdge

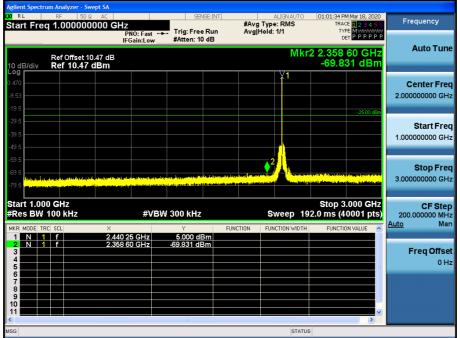


#### ....





# IM Bit/s (255 Byte) Test Plots -Conducted Spurious Emission


30 MHz ~ 1 GHz

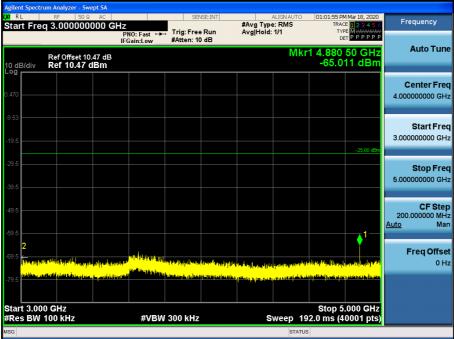
Frequency #Avg Type: RMS Avg|Hold: 1/1 Start Freq 30.000000 MHz Trig: Free Run #Atten: 10 dB PNO: Fast IFGain:Low Auto Tune Mkr1 852.31 MHz -71.761 dBm Ref Offset 10.47 dB Ref 10.47 dBm **Center Freq** 515.000000 MHz Start Fred 30.000000 MHz Stop Freq 1.00000000 GHz **CF Step** 97.000000 MHz <u>o</u> Man Auto 2 ▲1 Freq Offset 0 Hz Start 30.0 MHz #Res BW 100 kHz Stop 1.0000 GHz Sweep 93.33 ms (20000 pts) #VBW 300 kHz

#### Conducted Spurious Emission (Middle-CH 19)

#### 1 GHz ~ 3 GHz

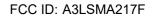









#### Report No.: HCT-RF-2004-FC022


#### 3 GHz ~ 5 GHz

Conducted Spurious Emission (Middle-CH 19)



5 GHz ~ 7 GHz

#### ctrum Analyzer - Swept SA 00 RL BE ISO 9 AC Start Freq 5.000000000 GHz PN0: Fast ↔ Trig: Free Run IFGain:Low #Atten: 10 dB ALIGN AU #Avg Type: RMS Avg|Hold: 1/1 Frequency DET PPPP Auto Tune Mkr1 6.056 00 GHz -69.142 dBm Ref Offset 10.47 dB Ref 10.47 dBm 10 dB/d Center Freq 6.000000000 GHz Start Freq 5.00000000 GHz Stop Freq 7.00000000 GHz CF Step 200.000000 MHz uto Man Auto **♦**¹ **Freq Offset** 0 Hz Stop 7.000 GHz Sweep 192.0 ms (40001 pts) Start 5.000 GHz #Res BW 100 kHz #VBW 300 kHz File <AAA.PNG> saved

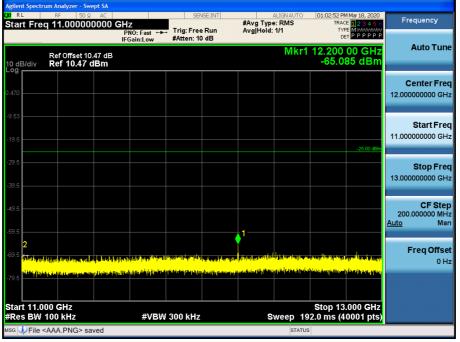




#### Report No.: HCT-RF-2004-FC022

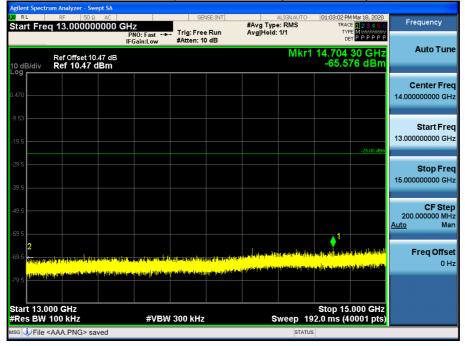
#### 7 GHz ~ 9 GHz




# Conducted Spurious Emission (Middle-CH 19)

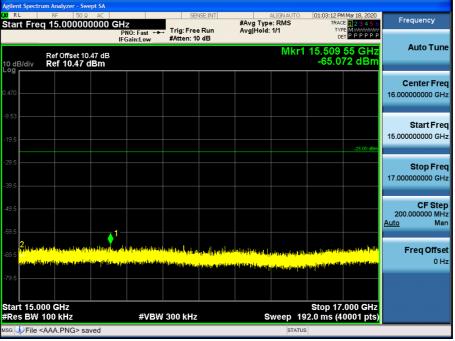
9 GHz ~ 11 GHz

#### trum Analyzer - Swept SA 00 RL BE ISO 9 AC Start Freq 9.0000000000 GHz PN0: Fast ↔ Trig: Free Run IFGain:Low #Atten: 10 dB ALIGN AU #Avg Type: RMS Avg|Hold: 1/1 Mar 18, 41 PM Frequency TYPE MWARAAAAA DET P P P P P P Auto Tune Mkr1 9.760 00 GHz -52.361 dBm Ref Offset 10.47 dB Ref 10.47 dBm 10 dB/d Center Freq 10.00000000 GHz Start Freq 9.000000000 GHz Stop Freq 11.00000000 GHz CF Step 200.000000 MHz uto Man Auto **Freq Offset** 0 Hz Stop 11.000 GHz Sweep 192.0 ms (40001 pts) Start 9.000 GHz #Res BW 100 kHz #VBW 300 kHz File <AAA.PNG> saved



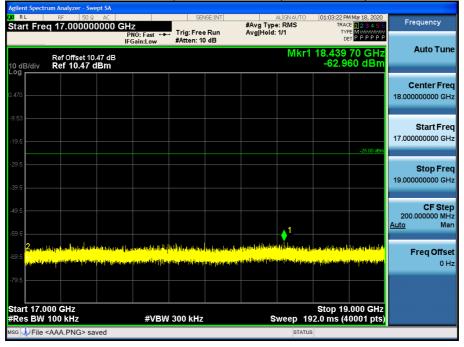

#### 11 GHz ~ 13 GHz




Conducted Spurious Emission (Middle-CH 19)

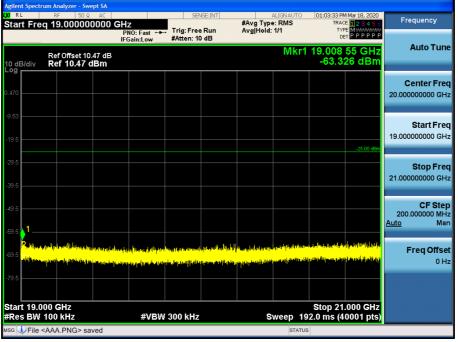
#### 13 GHz ~ 15 GHz





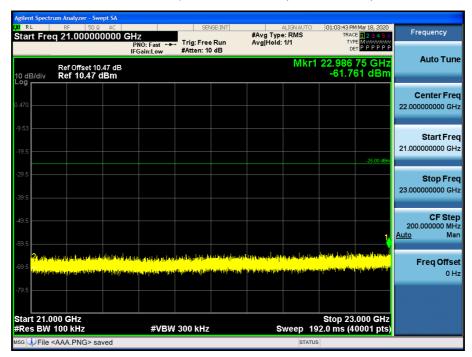

#### 15 GHz ~ 17 GHz




Conducted Spurious Emission (Middle-CH 19)

#### 17 GHz ~ 19 GHz






#### 19 GHz ~ 21 GHz



Conducted Spurious Emission (Middle-CH 19)

#### 21 GHz ~ 23 GHz





FCC ID: A3LSMA217F

# 23 GHz ~ 25 GHz


Agustant Freq 23.000000000 GHz Freq 23.000000000 GHz PN0: Fast →→ IFGain:Low #Atten: 10 dB Frequency #Avg Type: RMS Avg|Hold: 1/1 TYPE MULTINE DET PPPPPP Mkr1 24.117 20 GHz -57.638 dBm Auto Tune Ref Offset 10.47 dB Ref 10.47 dBm 10 dB/di **Center Freq** 24.00000000 GHz Start Freq 23.00000000 GHz Stop Freq 25.00000000 GHz **CF Step** 200.000000 MHz <u>Auto</u>Man V Freq Offset 0 Hz Stop 25.000 GHz Sweep 192.0 ms (40001 pts) Start 23.000 GHz #Res BW 100 kHz #VBW 300 kHz File <AAA.PNG> saved



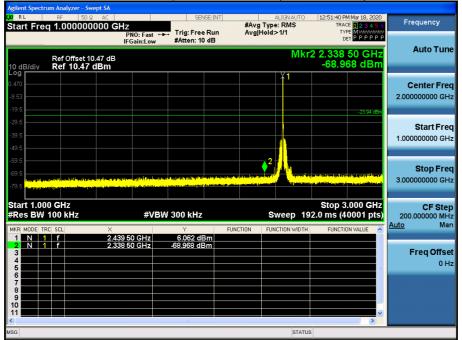
#### Low-CH 0 Center Freq 2.400000000 GHz #Avg Type: RMS Avg|Hold: 1/1 Frequency GHz PNO: Wide ↔ Trig: Free Run IFGain:Low Atten: 26 dB DET P P P P P 2.048 MHz 30.157 dE Auto Tune ΔMkr Ref Offset 10.47 dB Ref 25.00 dBm IQ dB **Center Freq** 142 2.40000000 GHz Start Freq 2.396000000 GHz Stop Freq h. Xym 2.404000000 GHz **CF Step** 800.000 kHz Man Munnerth Auto Freq Offset 0 Hz Center 2.400000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 4.000 ms (1001 pts) #VBW 300 kHz

### 2M Bit/s (255 Byte) Test Plots -BandEdge

#### High-CH 39






# Image: 2M Bit/s (37 Byte) Test Plots -Conducted Spurious Emission

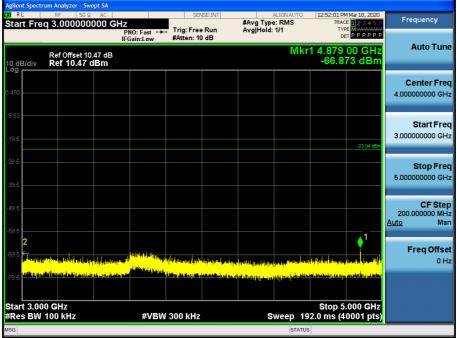
30 MHz ~ 1 GHz

Frequency #Avg Type: RMS Avg|Hold: 1/1 Start Freq 30.000000 MHz Trig: Free Run #Atten: 10 dB PNO: Fast IFGain:Low Auto Tune Mkr1 854.35 MHz -71.177 dBm Ref Offset 10.47 dB Ref 10.47 dBm 10 dB/div **Center Freq** 515.000000 MHz Start Fred 30.000000 MHz -23.94 d Stop Freq 1.00000000 GHz **CF Step** 97.000000 MHz <u>o</u> Man Auto **≜**¹ Freq Offset 0 Hz Start 30.0 MHz #Res BW 100 kHz Stop 1.0000 GHz Sweep 93.33 ms (20000 pts) #VBW 300 kHz

#### Conducted Spurious Emission (Middle-CH 19)

1 GHz ~ 3 GHz








#### Report No.: HCT-RF-2004-FC022

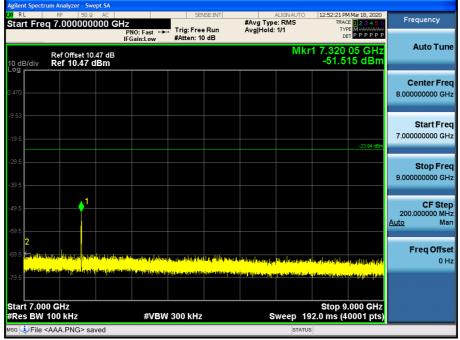

#### 3 GHz ~ 5 GHz

Conducted Spurious Emission (Middle-CH 19)

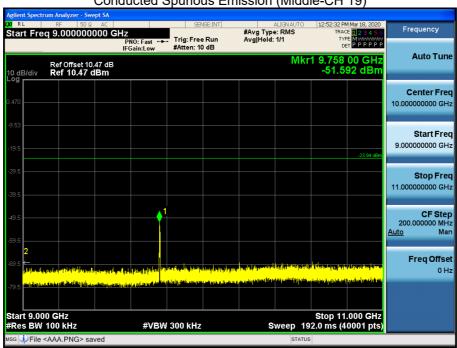


5 GHz ~ 7 GHz

#### ctrum Analyzer - Swept SA 00 RL BE ISO 9 AC Start Freq 5.000000000 GHz PN0: Fast ↔ Trig: Free Run IFGain:Low #Atten: 10 dB ALIGN AU #Avg Type: RMS Avg|Hold: 1/1 Mar 18, 2 11 PM Frequency DET PPPP Auto Tune Mkr1 6.784 60 GHz -69.149 dBm Ref Offset 10.47 dB Ref 10.47 dBm 10 dB/d Center Freq 6.000000000 GHz Start Freq 5.00000000 GHz Stop Freq 7.00000000 GHz CF Step 200.000000 MHz uto Man Auto 1 **Freq Offset** 0 Hz Stop 7.000 GHz Sweep 192.0 ms (40001 pts) Start 5.000 GHz #Res BW 100 kHz #VBW 300 kHz File <AAA.PNG> saved

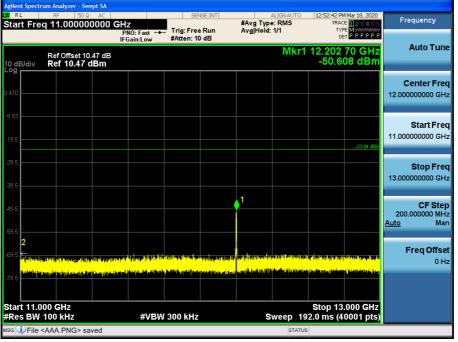






#### Report No.: HCT-RF-2004-FC022

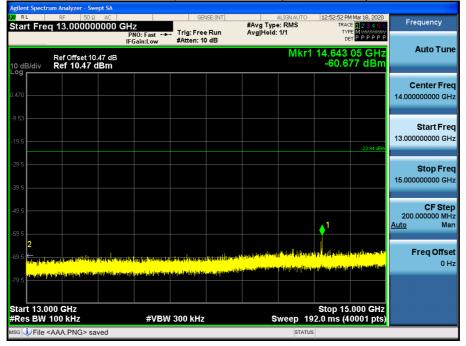
#### 7 GHz ~ 9 GHz

Conducted Spurious Emission (Middle-CH 19)



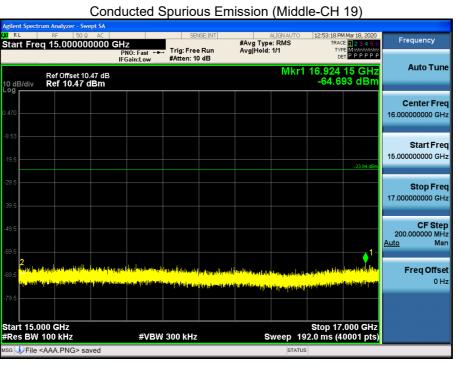

9 GHz ~ 11 GHz



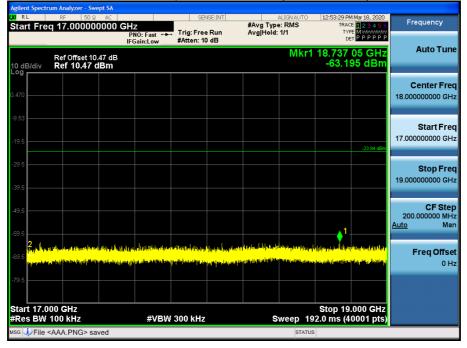



#### 11 GHz ~ 13 GHz



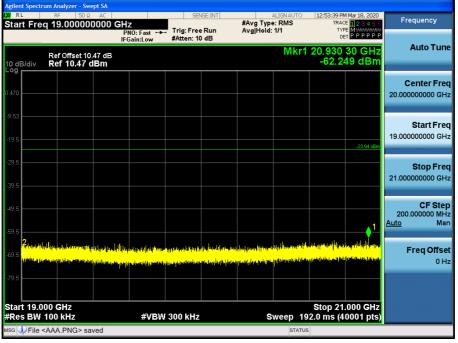

Conducted Spurious Emission (Middle-CH 19)

#### 13 GHz ~ 15 GHz



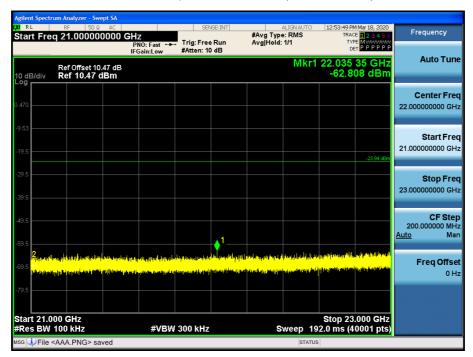



#### 15 GHz ~ 17 GHz




# 17 GHz ~ 19 GHz






#### 19 GHz ~ 21 GHz



Conducted Spurious Emission (Middle-CH 19)

#### 21 GHz ~ 23 GHz





FCC ID: A3LSMA217F

# 23 GHz ~ 25 GHz





#### 9.6 RADIATED SPURIOUS EMISSIONS

#### Frequency Range : 9 kHz – 30MHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBuV/m	V/m dBm/m dBm (H/V) dBuV/m		dBuV/m	dB			
No Critical peaks found								

#### Note:

1. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. Radiated test is performed with hopping off.

#### Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBuV/m	dBm/m	dBm/m dBm (H/V) dBuV/m		dBuV/m	dB		
No Critical peaks found								

#### Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode.



### Mode : 1M Bit/s (255 Byte)

Operation Mode: CH Low

Frequency	Reading	Duty Cycle Correction	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	40.66	0.00	2.30	V	42.96	73.98	31.02	PK
4804	29.65	0.70	2.30	V	32.65	53.98	21.33	AV
7206	38.81	0.00	12.07	V	50.88	73.98	23.10	PK
7206	27.10	0.70	12.07	V	39.87	53.98	14.11	AV
4804	41.94	0.00	2.30	Н	44.24	73.98	29.74	PK
4804	29.83	0.70	2.30	Н	32.83	53.98	21.15	AV
7206	39.28	0.00	12.07	Н	51.35	73.98	22.63	PK
7206	27.22	0.70	12.07	Н	39.99	53.98	13.99	AV

#### Operation Mode: CH Mid

Frequency	Reading	Duty Cycle Correction	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4880	41.96	0.00	1.83	V	43.79	73.98	30.19	PK
4880	30.05	0.70	1.83	V	32.58	53.98	21.40	AV
7320	39.12	0.00	10.83	V	49.95	73.98	24.03	PK
7320	27.50	0.70	10.83	V	39.03	53.98	14.95	AV
4880	42.07	0.00	1.83	Н	43.90	73.98	30.08	PK
4880	30.13	0.70	1.83	Н	32.66	53.98	21.32	AV
7320	39.48	0.00	10.83	Н	50.31	73.98	23.67	PK
7320	27.70	0.70	10.83	Н	39.23	53.98	14.75	AV



### FCC ID: A3LSMA217F

# Operation Mode: CH High

Frequency	Reading	Duty Cycle Correction	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4960	41.58	0.00	2.59	V	44.17	73.98	29.81	PK
4960	29.65	0.70	2.59	V	32.94	53.98	21.04	AV
7440	37.48	0.00	11.91	V	49.39	73.98	24.59	PK
7440	26.18	0.70	11.91	V	38.79	53.98	15.19	AV
4960	41.00	0.00	2.59	Н	43.59	73.98	30.39	PK
4960	29.55	0.70	2.59	Н	32.84	53.98	21.14	AV
7440	38.15	0.00	11.91	Н	50.06	73.98	23.92	PK
7440	26.25	0.70	11.91	Н	38.86	53.98	15.12	AV



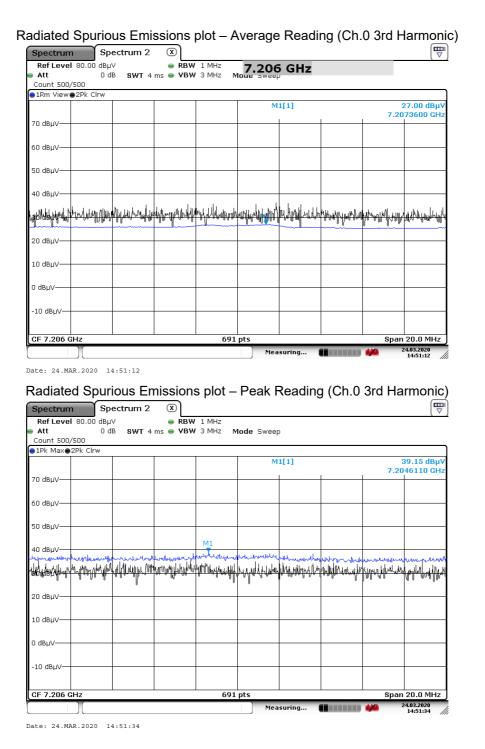
Mode : 2M Bit/s (255 Byte)

#### **Duty Cycle** Frequency Reading A.F + C.L - A.G + D.F Pol. Total Limit Margin Measurement Correction Туре [dBuV] [H/V] [dBuV/m][dBuV/m] [dB] [MHz] [dB] [dB] 73.98 4804 41.16 0.00 2.30 V 43.46 30.52 ΡK 53.98 4804 29.79 2.42 2.30 V 34.51 19.47 AV 7206 38.23 0.00 12.07 V 50.30 73.98 23.68 ΡK 26.89 41.38 7206 2.42 12.07 V 53.98 12.60 AV 73.98 ΡK 4804 41.31 0.00 2.30 Н 43.61 30.37 Н 4804 29.80 2.42 2.30 34.52 53.98 AV 19.46 7206 0.00 12.07 Н 51.22 73.98 22.76 ΡK 39.15 12.07 7206 27.00 2.42 Н 41.49 53.98 12.49 AV

Operation Mode: CH Low

#### Operation Mode: CH Mid

Frequency	Reading	Duty Cycle Correction	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4880	41.85	0.00	1.83	V	43.68	73.98	30.30	PK
4880	29.89	2.42	1.83	V	34.14	53.98	19.84	AV
7320	38.98	0.00	10.83	V	49.81	73.98	24.17	PK
7320	27.41	2.42	10.83	V	40.66	53.98	13.32	AV
4880	42.14	0.00	1.83	Н	43.97	73.98	30.01	PK
4880	30.05	2.42	1.83	Н	34.30	53.98	19.68	AV
7320	39.11	0.00	10.83	Н	49.94	73.98	24.04	PK
7320	27.68	2.42	10.83	Н	40.93	53.98	13.05	AV




### FCC ID: A3LSMA217F

# Operation Mode: CH High

Frequency	Reading	Duty Cycle Correction	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4960	41.38	0.00	2.59	V	43.97	73.98	30.01	PK
4960	29.61	2.42	2.59	V	34.62	53.98	19.36	AV
7440	37.33	0.00	11.91	V	49.24	73.98	24.74	PK
7440	26.29	2.42	11.91	V	40.62	53.98	13.36	AV
4960	41.56	0.00	2.59	Н	44.15	73.98	29.83	PK
4960	29.48	2.42	2.59	Н	34.49	53.98	19.49	AV
7440	37.69	0.00	11.91	Н	49.60	73.98	24.38	PK
7440	26.11	2.42	11.91	Н	40.44	53.98	13.54	AV

### 2M Bit/s 37 Byte Test Plots (Worst case : Y-H)



#### Note:

Plot of worst case are only reported.



# 9.7 RADIATED RESTRICTED BAND EDGES

### Mode : 1M Bit/s (255 Byte)

Operating Frequency

2402 MHz

0

Channel No.

Frequency	Reading	Duty Cycle Factor	A.F.+C.L.+D.F	Ant. Pol.	Total	Limit	Margin	Measurement Type
[MHz]	[dBuV/m]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2390.0	18.51	0.00	34.77	Н	53.28	73.98	20.70	PK
2390.0	7.09	0.70	34.77	Н	42.56	53.98	11.42	AV
2390.0	17.86	0.00	34.77	V	52.63	73.98	21.35	PK
2390.0	6.98	0.70	34.77	V	42.45	53.98	11.53	AV

Operating Frequency

2480 MHz

Channel No.

39

Frequency	Reading	Duty Cycle Factor	A.F.+C.L.+D.F	Ant. Pol.	Total	Limit	Margin	Measurement Type
[MHz]	[dBuV/m]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2483.5	18.29	0.00	34.25	Н	52.54	73.98	21.44	PK
2483.5	7.58	0.70	34.25	Н	42.53	53.98	11.45	AV
2483.5	17.82	0.00	34.25	V	52.07	73.98	21.91	PK
2483.5	7.42	0.70	34.25	V	42.37	53.98	11.61	AV



# Mode : 2M Bit/s (255 Byte)

Operating Frequency	
Channel No.	

2402 MHz

0

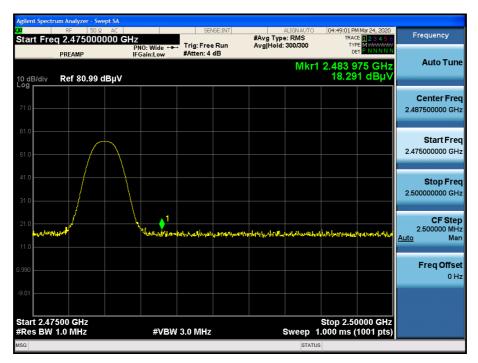
Frequency	Reading	Duty Cycle Factor	A.F.+C.L.+D.F					Measurement Type
[MHz]	[dBuV/m]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2390.0	22.02	0.00	34.77	Н	56.79	73.98	17.19	PK
2390.0	7.17	2.42	34.77	Н	44.36	53.98	9.62	AV
2390.0	20.07	0.00	34.77	V	54.84	73.98	19.14	PK
2390.0	7.00	2.42	34.77	V	44.19	53.98	9.79	AV

Operating Frequency Channel No.

39

Frequency	Reading	Duty Cycle Factor	A.F.+C.L.+D.F		Total			Measurement Type
[MHz]	[dBuV/m]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2483.5	21.92	0.00	34.25	Н	56.17	73.98	17.81	PK
2483.5	11.87	2.42	34.25	Н	48.54	53.98	5.44	AV
2483.5	21.26	0.00	34.25	V	55.51	73.98	18.47	PK
2483.5	11.41	2.42	34.25	V	48.08	53.98	5.90	AV

**<u>Note:</u>** All data Worst case Duty Cycle Correction Factor applied.



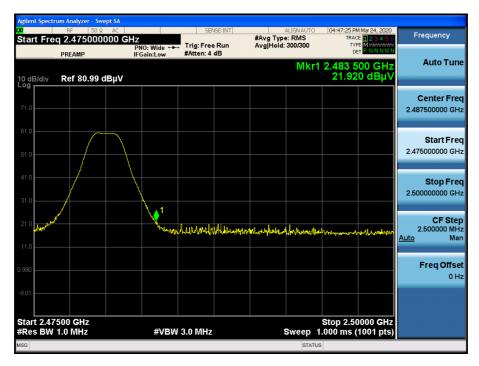

#### Mode : 1M Bit/s (255 Byte) Test Plots (Worst case : X-H)

ectrum Analyzer - Swept SA OF SD 0 AC Start Freq 2.475000000 GHz PRO: Wide → Trig: Free Run PREAMP IFGain:Low #Atten: 4 dB #Avg Type: RMS Avg|Hold: 300/300 Frequency DET A N N N Auto Tune Mkr1 2.483 500 GHz 7.583 dBµV IQ dB/o Ref 80.99 dBµV Center Freq 2.487500000 GHz Start Freq 2.475000000 GHz Stop Freq 2.500000000 GHz **CF Step** 2.500000 MHz Man Auto **1** Freq Offset 0 Hz Start 2.47500 GHz #Res BW 1.0 MHz Stop 2.50000 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz*

Radiated Restricted Band Edges plot – Average Reading (Ch.39)

Radiated Restricted Band Edges plot - Peak Reading (Ch.39)






#### Mode : 2M Bit/s (255 Byte) Test Plots (Worst case : X-H)

nt Spectrum Analyzer - Swept SA ON RE 1500 AC Start Freq 2.475000000 GHz PREAMP PN0: Wide →→ PREAMP IFGain:Low #Atten: 4 dB #Avg Type: RMS Avg[Hold: 300/300 Frequency DET A NN N Auto Tune Mkr1 2.483 500 GHz 11.869 dBµV 10 dB/di Ref 80.99 dBµV Center Freq 2.487500000 GHz Start Freq 2.475000000 GHz Stop Freq 2.500000000 GHz CF Step 2.500000 MHz Man 01 Auto Freq Offset 0 Hz Start 2.47500 GHz #Res BW 1.0 MHz Stop 2.50000 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz*

Radiated Restricted Band Edges plot – Average Reading (Ch.39)

Radiated Restricted Band Edges plot - Peak Reading (Ch.39)



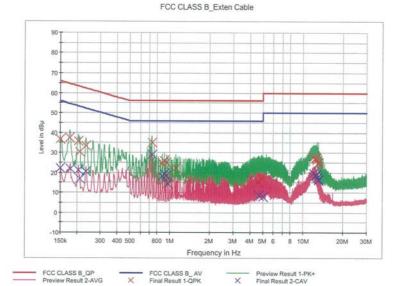
## Note:

Plot of worst case are only reported.



1/2

#### 9.8 POWERLINE CONDUCTED EMISSIONS


#### **Conducted Emissions (Line 1)**

BTLE MODE L1

# **HCT TEST Report**



EUT: Manufacturer: Test Site: Operating Conditions: SM-A217M/DS SAMSUNG SHIELD ROOM BTLE MODE L1



#### **Final Result 1**

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	36.7	9.000	Off	L1	9.8	29.3	66.0
0.176000	37.3	9.000	Off	L1	9.8	27.4	64.7
0.206000	35.7	9.000	Off	L1	9.8	27.7	63.4
0.210000	30.3	9.000	Off	L1	9.8	32.9	63.2
0.234000	33.5	9.000	Off	L1	9.8	28.8	62.3
0.732000	34.9	9.000	Off	L1	9.8	21.1	56.0
0.880000	24.5	9.000	Off	L1	9.8	31.5	56.0
0.910000	25.9	9.000	Off	L1	9.8	30.1	56.0
0.938000	24.9	9.000	Off	L1	9.8	31.1	56.0
1.114000	22.3	9.000	Off	L1	9.8	33.7	56.0
4.630000	15.1	9.000	Off	L1	10.0	40.9	56.0
4.870000	17.4	9.000	Off	L1	10.0	38.6	56.0
12.028000	27.8	9.000	Off	L1	10.3	32.2	60.0
12.528000	27.3	9.000	Off	L1	10.3	32.7	60.0
12.568000	27.1	9.000	Off	L1	10.3	32.9	60.0
12.722000	26.3	9.000	Off	L1	10.3	33.7	60.0
13.054000	24.5	9.000	Off	L1	10.3	35.5	60.0
13.058000	24.9	9.000	Off	L1	10.3	35.1	60.0

2020-03-26

오전 11:17:39



#### FCC ID: A3LSMA217F

2/2

#### BTLE MODE L1

#### **Final Result 2**

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	22.3	9.000	Off	L1	9.8	33.7	56.0
0.178000	22.0	9.000	Off	L1	9.8	32.5	54.6
0.206000	21.2	9.000	Off	L1	9.8	32.2	53.4
0.210000	16.9	9.000	Off	L1	9.8	36.3	53.2
0.234000	20.5	9.000	Off	L1	9.8	31.8	52.3
0.732000	28.9	9.000	Off	L1	9.8	17.1	46.0
0.880000	18.3	9.000	Off	L1	9.8	27.7	46.0
0.910000	19.6	9.000	Off	L1	9.8	26.4	46.0
0.938000	18.5	9.000	Off	L1	9.8	27.5	46.0
0.966000	14.4	9.000	Off	L1	9.8	31.6	46.0
4.692000	8.6	9.000	Off	L1	10.0	37.4	46.0
5.012000	8.1	9.000	Off	L1	10.0	41.9	50.0
12.028000	19.7	9.000	Off	L1	10.3	30.3	50.0
12.528000	19.0	9.000	Off	L1	10.3	31.0	50.0
12.568000	18.7	9.000	Off	L1	10.3	31.3	50.0
12.722000	17.4	9.000	Off	L1	10.3	32.6	50.0
13.054000	16.5	9.000	Off	L1	10.3	33.5	50.0
13.064000	16.2	9.000	Off	L1	10.3	33.8	50.0

2020-03-26

오전 11:17:39

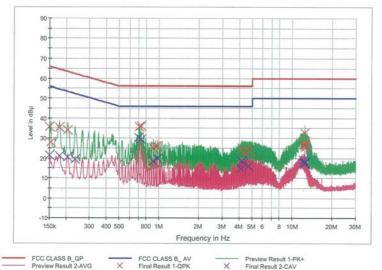
F-TP22-03 (Rev.00)

HCT CO.,LTD.



# **Conducted Emissions (Line 2)**

BTLE MODE N


1/2

# **HCT TEST Report**

#### **Common Information**

EUT: Manufacturer: Test Site: Operating Conditions: SM-A217M/DS SAMSUNG SHIELD ROOM BTLE MODE N





# Final Result 1

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	35.6	9.000	Off	N	9.8	30.4	66.0
0.154000	27.9	9.000	Off	N	9.8	37.9	65.8
0.178000	35.4	9.000	Off	N	9.8	29.2	64.6
0.206000	34.0	9.000	Off	N	9.8	29.4	63.4
0.708000	35.8	9.000	Off	N	9.8	20.2	56.0
0.736000	36.1	9.000	Off	N	9.8	19.9	56.0
0.910000	25.0	9.000	Off	N	9.8	31.0	56.0
0.944000	25.9	9.000	Off	N	9.8	30.1	56.0
0.972000	26.0	9.000	Off	N	9.8	30.0	56.0
4.184000	24.4	9.000	Off	N	10.0	31.6	56.0
4.414000	23.2	9.000	Off	N	10.0	32.8	56.0
4.828000	23.9	9.000	Off	N	10.0	32.1	56.0
12.260000	27.1	9.000	Off	N	10.3	32.9	60.0
12.522000	26.4	9.000	Off	N	10.4	33.6	60.0
12.526000	26.6	9.000	Off	N	10.4	33.4	60.0
12.530000	32.8	9.000	Off	N	10.4	27.2	60.0
12.534000	26.9	9.000	Off	N	10.4	33.1	60.0
12.646000	25.7	9.000	Off	N	10.4	34.3	60.0

2020-03-26

오전 11:25:43



#### BTLE MODE N

2/2

#### Final Result 2

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	21.4	9.000	Off	N	9.8	34.6	56.0
0.178000	21.2	9.000	Off	N	9.8	33.4	54.6
0.206000	20.7	9.000	Off	N	9.8	32.7	53.4
0.234000	19.6	9.000	Off	N	9.8	32.7	52.3
0.706000	30.3	9.000	Off	N	9.8	15.7	46.0
0.738000	29.3	9.000	Off	N	9.8	16.7	46.0
0.910000	18.5	9.000	Off	N	9.8	27.5	46.0
0.972000	19.7	9.000	Off	N	9.8	26.3	46.0
4.176000	14.8	9.000	Off	N	10.0	31.2	46.0
4.184000	18.5	9.000	Off	N	10.0	27.5	46.0
4.298000	17.7	9.000	Off	N	10.0	28.3	46.0
4.708000	16.2	9.000	Off	N	10.0	29.8	46.0
12.234000	17.7	9.000	Off	N	10.3	32.3	50.0
12.260000	19.0	9.000	Off	N	10.3	31.0	50.0
12.292000	18.2	9.000	Off	N	10.3	31.8	50.0
12.500000	17.6	9.000	Off	N	10.4	32.4	50.0
12.526000	18.0	9.000	Off	N	10.4	32.0	50.0
12.530000	17.8	9,000	Off	N	10.4	32.2	50.0

2020-03-26

오전 11:25:43



# **10. LIST OF TEST EQUIPMENT**

#### **Conducted Test**

Manufacturer	Model / Equipment	Calibration	Calibration	Serial No.
Manufacturer	Model / Equipment	Date	Interval	Serial No.
Rohde & Schwarz	ENV216 / LISN	09/11/2019	Annual	102245
Rohde & Schwarz	ESCI / Test Receiver	06/18/2019	Annual	100033
ESPAC	SU-642 /Temperature Chamber	03/18/2020	Annual	0093008124
Agilent	N9030A / Signal Analyzer	01/13/2020	Annual	MY49431210
Rohde & Schwarz	OSP 120 / Power Measurement Set	07/24/2019	Annual	101231
Agilent	N1911A / Power Meter	09/10/2019	Annual	MY45101406
Agilent	N1921A / Power Sensor	09/06/2019	Annual	MY55220026
Agilent	87300B / Directional Coupler	11/11/2019	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	05/24/2019	Annual	05001
Hewlett Packard	E3632A / DC Power Supply	06/18/2019	Annual	KR75303960
Agilent	8493C / Attenuator(10 dB)	07/02/2019	Annual	07560
Rohde & Schwarz	EMC32 / Software	N/A	N/A	N/A
	FCC WLAN&BT&BLE Conducted Test	N/A	N/A	N/A
HCT CO., LTD.	Software v3.0	IN/A		IN/A

#### Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.



## Radiated Test

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Audix	Turn Table	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	04/26/2019	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	03/22/2019	Biennial	760
Schwarzbeck	VULB 9160 / TRILOG Antenna	08/09/2018	Biennial	9160-3368
Schwarzbeck	BBHA 9120D / Horn Antenna	04/29/2019	Biennial	9120D-937
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	11/29/2019	Biennial	BBHA9170541
Rohde & Schwarz	FSV40-N / Spectrum Analyzer	07/31/2019	Annual	102168
Agilent	N9030A / Signal Analyzer	01/13/2020	Annual	MY49431210
Wainwright Instruments	WRCJV2400/2483.5-2370/2520-60/12SS / Band Reject Filter	06/19/2019	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	02/10/2020	Annual	1
Api tech.	18B-03 / Attenuator (3 dB)	03/02/2020	Annual	1
Agilent	8493C-10 / Attenuator(10 dB)	03/02/2020	Annual	08285
CERNEX	CBLU1183540 / Power Amplifier	03/02/2020	Annual	22964
CERNEX	CBL06185030 / Power Amplifier	03/02/2020	Annual	22965
Wainwright Instruments	WHK3.0/18G-10EF / High Pass Filter	03/02/2020	Annual	8
Wainwright Instruments	WHKX7.0/18G-8SS / High Pass Filter	03/02/2020	Annual	25
CERNEX	CBL18265035 / Power Amplifier	12/26/2019	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	06/18/2019	Annual	25956

### Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).



# 11. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2004-FC022-P