

FCC CFR47 PART 22 SUBPART H
FCC CFR47 PART 24 SUBPART E
FCC CFR47 PART 27 SUBPART F
FCC CFR47 PART 27 SUBPART H
FCC CFR47 PART 27 SUBPART L
FCC CFR47 PART 27 SUBPART M

WWAN

CERTIFICATION TEST REPORT

FOR

GSM/WCDMA/LTE Phone + BT/BLE, DTS b/g/n and NFC

MODEL NUMBER: SM-A205GN/DS, SM-A205GN

FCC ID: A3LSMA205GN

REPORT NUMBER: 4788869685-E1V2

ISSUE DATE: FEB 26, 2019

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

> TEL: (031) 337-9902 FAX: (031) 213-5433

TL-637

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	02/20/19	Initial issue	Junwhan Lee
V2	02/26/19	Updated to address about TCB's question	Junwhan Lee

TABLE OF CONTENTS

1.	A	TTESTATION OF TEST RESULTS	5
2.	TE	EST METHODOLOGY	6
3.	F	ACILITIES AND ACCREDITATION	6
4.	C	ALIBRATION AND UNCERTAINTY	7
4	1.1.	MEASURING INSTRUMENT CALIBRATION	7
4	1.2.	SAMPLE CALCULATION	7
4	1.3.	MEASUREMENT UNCERTAINTY	7
5.	E	QUIPMENT UNDER TEST	8
5	5.1.	DESCRIPTION OF EUT	ε
5	5.2.	MAXIMUM OUTPUT POWER	ε
5	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	12
5	5.4.	WORST-CASE ORIENTATION	13
5	5.5.	DESCRIPTION OF TEST SETUP	15
6.	TE	EST AND MEASUREMENT EQUIPMENT	17
7. \$	SUN	MMARY TABLE	18
8. F	PEA	AK TO AVERAGE RATIO	19
8	3.1.	CONDUCTED PEAK TO AVERAGE RESULT	20
9.	LI	IMITS AND CONDUCTED RESULTS	31
ç		OCCUPIED BANDWIDTH	
		1.1. OCCUPIED BANDWIDTH RESULTS	
g		BAND EDGE EMISSIONS	
		2.1. BAND EDGE RESULT	
ç	9.3.	OUT OF BAND EMISSIONS	99
	9.	3.1. OUT OF BAND EMISSIONS RESULT	101
ξ	9.4.	FREQUENCY STABILITY4.1. FREQUENCY STABILITY RESULTS	112 113
10.		RADIATED TEST RESULTS	
_			_
7		1. RADIATED POWER (ERP & EIRP)	
		0.1.2. ERP/EIRP DATA	
1		2. FIELD STRENGTH OF SPURIOUS RADIATION	
	IC		159
		Page 3 of 179	

UL Korea, Ltd. Suwon Laboratory

FORM ID: FCC_22/24/27

11. Appendix A: SETUP PHOTOS170

Appendix B: Cellular receiver Part 15B test results

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SAMSUNG ELECTRONICS CO., LTD.

EUT DESCRIPTION: GSM/WCDMA/LTE Phone + BT/BLE, DTS b/g/n and NFC

MODEL NUMBER: SM-A205GN/DS, SM-A205GN

SERIAL NUMBER: 5200499653afb50d, 52004b804665b5cf (CONDUCTED)

R38M10DABYP, R38M10DAJ7K (RADIATED);

DATE TESTED: FEB 01, 2018 – FEB 26, 2019;

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 22H, 24E, 27H, 27L, 27F and 27M Pass

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Korea, Ltd. By:

Tested By:

SungGil Park Suwon Lab Engineer UL Korea, Ltd. Junwhan Lee Suwon Lab Engineer UL Korea, Ltd.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with following methods.

- 1. FCC CFR 47 Part 2.
- 2. FCC CFR 47 Part 22.
- 3. FCC CFR 47 Part 24.
- 4. FCC CFR 47 Part 27.
- 5. ANSI TIA-603-E, 2016
- 6. KDB 971168 D01 Power Meas License Digital Systems v03r01

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do,16675, Korea. Line conducted emissions are measured only at the 218 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

218 Maeyeong-ro					
☐ Chamber 1					
☐ Chamber 2					
☐ Chamber 3					

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf.

DATE: FEB 26, 2019

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

EIRP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna) + Substitution Antenna Factor (dBi)

ERP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna)

(Path loss = Signal generator output – PSA reading with substitution antenna)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	2.32 dB
Radiated Disturbance, Below 1GHz	3.86 dB
Radiated Disturbance, Above 1 GHz	5.97 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: FEB 26, 2019

5. EQUIPMENT UNDER TEST

5.1. **DESCRIPTION OF EUT**

The EUT is a GSM/WCDMA/LTE Phone + BT/BLE, DTS b/g/n and NFC This test report addresses the WWAN operational mode.

5.2. **MAXIMUM OUTPUT POWER**

The transmitter has a maximum average radiated ERP / EIRP output powers as follows:

GSM

50111						
FCC Part 22/24						
Band	Frequency Range	Modulation	odulation Radiated			
	[MHz]		Avg [dBm]	Avg [mW]		
GSM850	824~849	GPRS	26.38	434.51		
GSIVIOSO		EGPRS	21.16	130.62		
GSM1900	1050 1010	GPRS	27.50	562.34		
	1850~1910	EGPRS	25.24	334.20		

WCDMA

FCC Part 22/24/27					
Band	Frequency Range	Modulation	Radi	ated	
	[MHz]		Avg [dBm]	Avg [mW]	
Band 5	824~849	REL99	17.71	59.02	
Band 5	024~049	HSDPA	16.57	45.39	
Band 4	1710~1755	REL99	21.88	154.17	
Ballu 4	1710~1755	HSDPA	21.93	155.96	
Band 2	1850~1910	REL99	22.11	162.55	
Dailu 2	1050~1910	HSDPA	22.11	162.55	

FCC Part 24						
Band	Frequency Range	BandWidth	Modulation	Rad	Radiated	
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	
		20	QPSK	22.96	197.70	
		20	16QAM	22.58	181.13	
	1850 ~ 1910	15	QPSK	23.31	214.29	
			16QAM	22.19	165.58	
		10	QPSK	22.79	190.11	
Band 2			16QAM	21.71	148.25	
Danu Z		5	QPSK	23.40	218.78	
			16QAM	22.41	174.18	
		3	QPSK	23.61	229.61	
		3	16QAM	22.58	181.13	
		1.4	QPSK	23.55	226.46	
		1.4	16QAM	22.57	180.72	

FCC Part 22						
Band	Frequency Range	BandWidth	Modulation	Radi	ated	
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	
	824 ~ 849	10	QPSK	19.52	89.54	
			16QAM	18.11	64.71	
		5	QPSK	19.61	91.41	
Band 5			16QAM	18.35	68.39	
Danu 3		3	QPSK	18.71	74.30	
			16QAM	17.19	52.36	
		1.4	QPSK	18.88	77.27	
		1.4	16QAM	17.65	58.21	

FCC Part 27						
Band	Frequency Range	BandWidth	Modulation	Radiated		
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	
	699 ~ 716	10	QPSK	17.26	53.21	
			16QAM	16.11	40.83	
		5	QPSK	17.17	52.12	
Band 12			16QAM	15.87	38.64	
Danu 12		3	QPSK	16.58	45.50	
			16QAM	15.81	38.11	
		1.4	QPSK	16.77	47.53	
		1.4	16QAM	15.70	37.15	

LTE Band 17

LTE Band 17 (Frequency range: 704-716 MHz) is covered by LTE Band 12 (Frequency range: 699-716 MHz) due to overlapping frequency range, same maximum tune-up limit and same channel bandwidth.

FCC Part 27						
Frequency Band Range		BandWidth	Modulation Radiated		iated	
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	
		10	QPSK	14.69	29.44	
Band 13	777 ~ 787	10	16QAM	13.20	20.89	
טמוט וט	111~101	5	QPSK	14.51	28.25	
			16QAM	13.89	24.49	

FCC Part 27					
Band	Frequency Range	BandWidth	Modulation	Rad	iated
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]
	2496 ~ 2690	20	QPSK	22.08	161.44
			16QAM	21.42	138.68
		15	QPSK	22.18	165.20
Band 41			16QAM	22.30	169.82
Band 41		10	QPSK	22.39	173.38
			16QAM	21.68	147.23
		5	QPSK	22.00	158.49
		7	16QAM	21.25	133.35

LTE Band 66

FCC Part 27						
Band	Frequency Range	BandWidth	Modulation	Radiated		
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	
		20	QPSK	23.94	247.74	
		20	16QAM	22.69	185.78	
	1710 ~ 1780	15	QPSK	23.96	248.89	
			16QAM	22.68	185.35	
		10	QPSK	24.02	252.35	
Band 66			16QAM	22.71	186.64	
Danu 00		5	QPSK	24.18	261.82	
			16QAM	22.51	178.24	
		3	QPSK	23.88	244.34	
		3	16QAM	22.56	180.30	
		1.4	QPSK	23.98	250.03	
		1.4	16QAM	23.59	228.56	

LTE Band 4

LTE Band 4 (Frequency range: 1710-1755 MHz) is covered by LTE Band 66 (Frequency range: 1710-1780 MHz) due to overlapping frequency range, same maximum tune-up limit and same channel bandwidth.

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a internal antenna for the [List the bands supported] with a maximum peak gain as follow:

Frequency (MHz)	Peak Gain (dBi)		
GSM1900 / WCDMA Band 2 / LTE Band 2 1850 ~ 1910 MHz	-1.11		
WCDMA Band 4 / LTE Band 4 / LTE Band 66 1710 ~ 1780 MHz	-1.55		
GSM 850 / WCDMA Band 5 / LTE Band 5 824 ~ 849 MHz	-6.64		
LTE Band 12 / LTE Band 17 699 ~ 716 MHz	-7.81		
LTE Band 41 2496 ~ 2690 MHz	-0.11		
LTE Band 13 777 ~ 787 MHz	-4.82		

DATE: FEB 26, 2019

WORST-CASE ORIENTATION 5.4.

Following modes should be considered as worst-case scenario for all other measurements.

- GSM GPRS/EGPRS
- UMTS REL 99/HSDPA

For all LTE Bands, the worst-case scenario for all measurements is based on the average conducted output power measurement investigation. The out of band emissions and spurious radiation were only performed on bandwidth and RB offset(with RB size 1) with the highest power in QPSK.

Highest power setting for each bands					
LTE Band	Frequency (MHz)	Bandwidth (MHz)	RB size	RB offset	
	1860.0		1	99	
2	1880.0	20	1	0	
	1900.0		1	0	
	826.5		1	0	
5	836.5	5	1	0	
	846.5		1	12	
	704.0	10	1	0	
12	707.5		1	0	
	711.0		1	0	
	779.5	5	1	0	
13	782.0		1	0	
	784.5		1	0	
	2501.0		1	49	
41	2593.0	10	1	49	
	2685.0		1	49	
66	1720.0		1	0	
	1745.0	20	1	0	
	1770.0		1	0	

DATE: FEB 26, 2019

- ERP/EIRP

For GSM850 / GSM1900 / WCDMA B4 / WCDMA B2 / LTE B2 / LTE B5 / LTE B12 / LTE B13 / LTE B41 / LTE B66, the fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation.

For WCDMA B5, the fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Z orientation was worst-case orientation.

- Radiated spurious emissions

For WCDMA B5 / WCDMA B4 / WCDMA B2 / LTE B2 / LTE B12 / LTE B41, the spurious emissions was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation.

For LTE B13 / LTE B66, the spurious emissions was investigated in three orthogonal orientations X, Y and Z it was determined that Y orientation was worst-case orientation.

For GSM850 / GSM1900 / LTE B5, the spurious emissions was investigated in three orthogonal orientations X, Y and Z it was determined that Z orientation was worst-case orientation.

Note: All radiated spurious tests were performed connected with earphone and charger for evaluation of worst case mode. (For erp/eirp tests, the EUT didn't connected with earphone and charger)

For check the Part15B receiver mode(Appendix B):

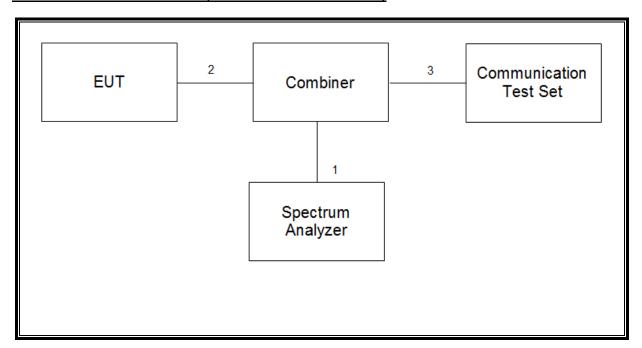
For GSM850 / LTE B5 / LTE B12 / LTE B13, the emissions was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation.

For WCDMA B5, the emissions was investigated in three orthogonal orientations X, Y and Z it was determined that Z orientation was worst-case orientation.

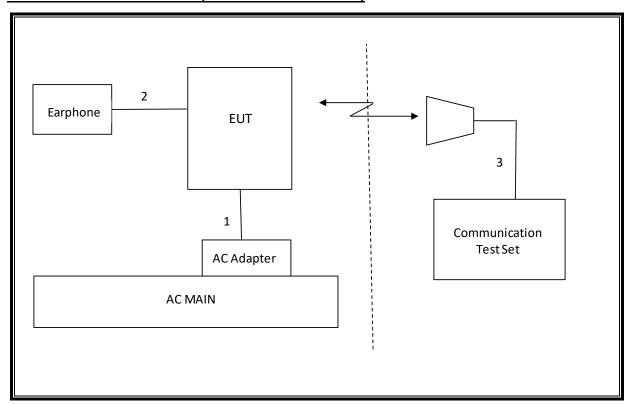
5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List				
Description	Description Manufacturer Model Serial Number			
Charger	SAMSUNG	EP-TA200	R37M15H5WM1SE3	N/A
Data Cable	SAMSUNG	EP-DR140AWE	N/A	N/A
Earphone	SAMSUNG	EHS61ASFWE	N/A	N/A


I/O CABLE

I/O Cable List						
Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks
No		ports	Туре		Length (m)	
1	DC Power	1	С Туре	Shielded	1.1m	N/A
2	Audio	2	Mini-Jack	Unshielded	1.2m	N/A


TEST SETUP

The EUT is continuously communicated to the call box during the tests.

SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List					
Description Manufacturer Model S/N Cal Due					
Antenna, Tuned Dipole 400~1000 MHz	ETS	3121D DB4	00164753	06-30-19	
Antenna, Horn, 40 GHz	ETS	3116C	00166155	12-04-19	
Preamplifier	ETS	3116C-PA	00168841	08-09-19	
Antenna, Horn, 40 GHz	ETS	3116C	00168645	12-04-19	
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	750	08-04-20	
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	845	08-04-20	
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	749	08-04-20	
Antenna, Horn, 18 GHz	ETS	3115	00167211	08-04-20	
Antenna, Horn, 18 GHz	ETS	3115	00161451	08-04-20	
Antenna, Horn, 18 GHz	ETS	3117	00168724	08-04-20	
Antenna, Horn, 18 GHz	ETS	3117	00205959	08-04-20	
Antenna, Horn, 18 GHz	ETS	3117	00168717	08-04-20	
Combiner	WEINSCHEL	1575	2152	08-08-19	
Communications Test Set	R&S	CMW500	115331	08-07-19	
DC Power Supply	Agilent / HP	E3640A	MY54226395	08-06-19	
Preamplifier, 1000 MHz	Sonoma	310N	341282	08-07-19	
Preamplifier, 1000 MHz	Sonoma	310N	370599	08-06-19	
Preamplifier, 1000 MHz	Sonoma	310N	351741	08-07-19	
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1876511	08-07-19	
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	2029169	08-07-19	
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1896138	08-07-19	
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54490312	08-06-19	
EMI Test Receive, 40 GHz	R&S	ESU40	100439	08-06-19	
EMI Test Receive, 40 GHz	R&S	ESU40	100457	08-06-19	
EMI Test Receive, 44 GHz	R&S	ESW40	101590	08-06-19	
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G005	08-08-19	
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G006	08-08-19	
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	010	08-08-19	
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	011	08-08-19	
High Pass Filter 4GHz	Micro-Tronics	HPM50118-02	G001	08-08-19	
High Pass Filter 4GHz	Micro-Tronics	HPM50118-02	G002	08-08-19	
Attenuator	PASTERNACK	PE7087-10	A009	08-08-19	
Attenuator	PASTERNACK	PE7087-10	A001	08-08-19	
Attenuator	PASTERNACK	PE7087-10	A008	08-08-19	
Attenuator	PASTERNACK	PE7087-10	2	08-07-19	
Attenuator	PASTERNACK	PE7395-10	A011	08-08-19	
Antenna, Loop, 9kHz-30MHz	R&S	HFH2-Z2	100418	10-26-19	
Temperature Chamber	ESPEC	SH-642	93001109	08-06-19	
UL Software					
Description	Manufacturer	Model		Version	
Antenna port test software	UL	CLT		Ver 2.5	

Page 17 of 179

7. SUMMARY TABLE

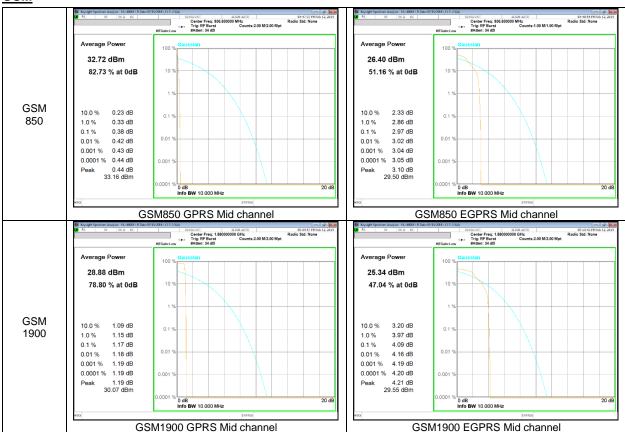
FCC Part Section	Test Description	Test Limit	Test Condition	Test Result
2.1049	Occupied Band width (99%)	N/A		Pass
22.917(a) 24.238(a) 27.53(c),(g),(h)	Band Edge / Conducted Spurious Emission	-13dBm		Pass
27.53(m)	Conducted Spurious Emission	-25 dBm		Pass
27.53(m)	Emission mask	Section 9.2.2	Conducted	Pass
2.1046	Conducted output power	N/A		See the RF exposure test report. (4788869685-S1 FCC Report SAR)
22.355 24.235 27.54	Frequency Stability	2.5PPM		Pass
22.913(a)(5)		38.5 dBm	Radiated	Pass
27.50(c)(10) 27.50(b)(10)	Effective Radiated Power	34.77 dBm		Pass
24.232(c) 27.50(h)(2)	Equivalent Isotropic Radiated	33dBm		Pass
27.50(d)(4)	Power	30dBm		Pass
22.917(a) 24.238(a) 27.53 (c),(g),(h)	Radiated Spurious Emission	-13dBm		Pass
27.53 (m)		-25dBm		Pass

8. PEAK TO AVERAGE RATIO

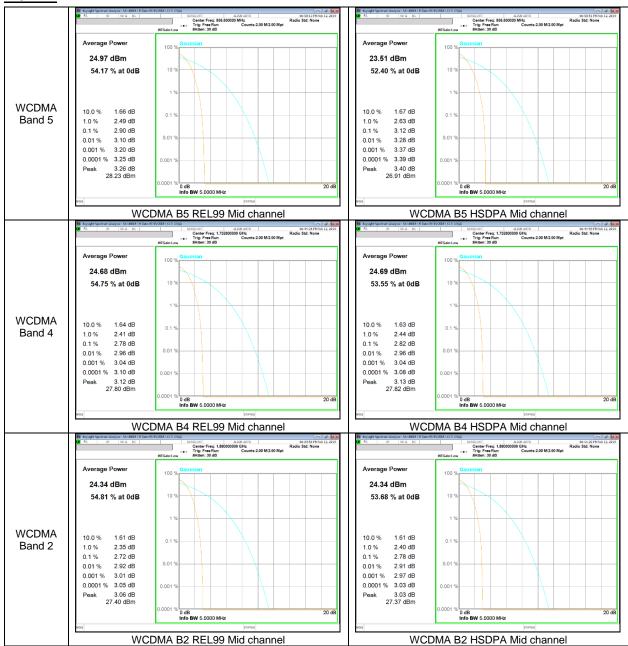
Test Procedure

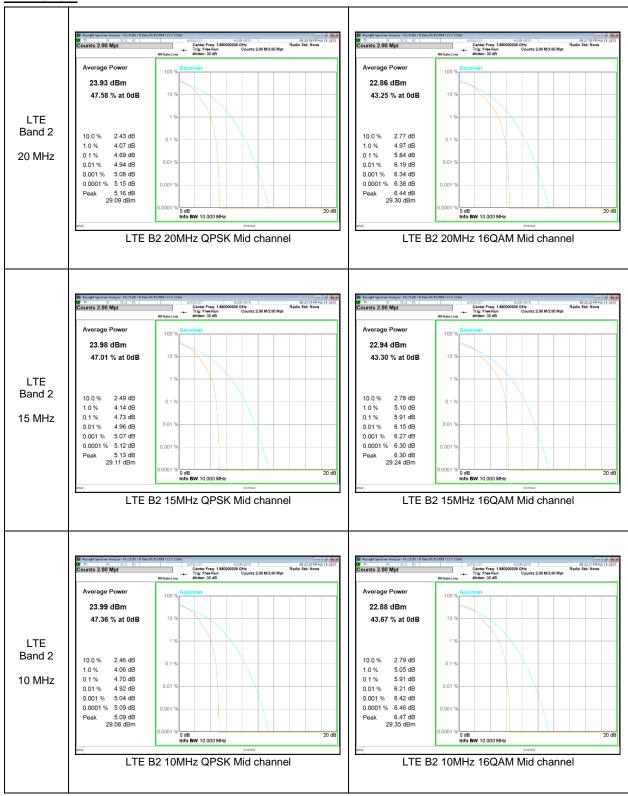
Per KDB 971168 D01 Power Meas License Digital Systems v03r01;

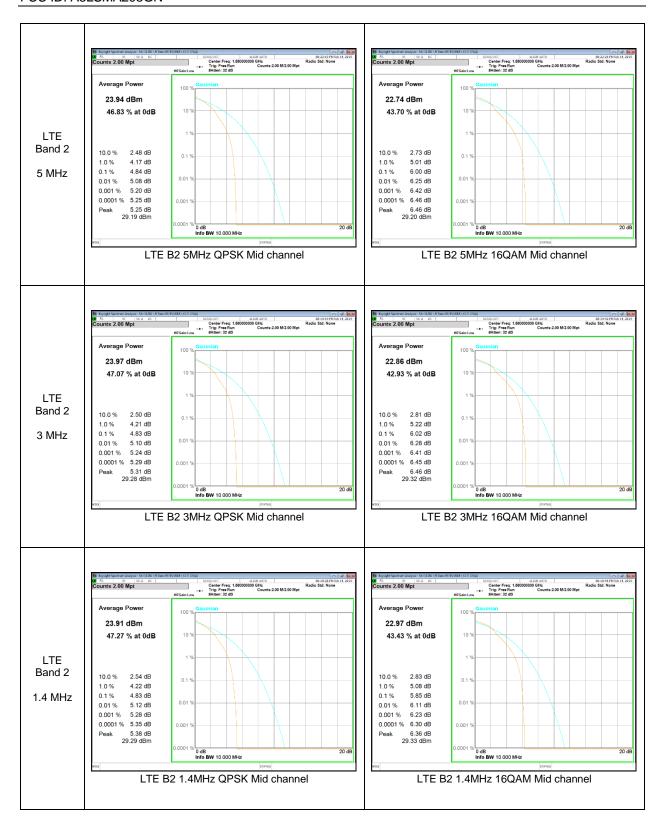
The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The PAR were measured on the Spectrum Analyzer.

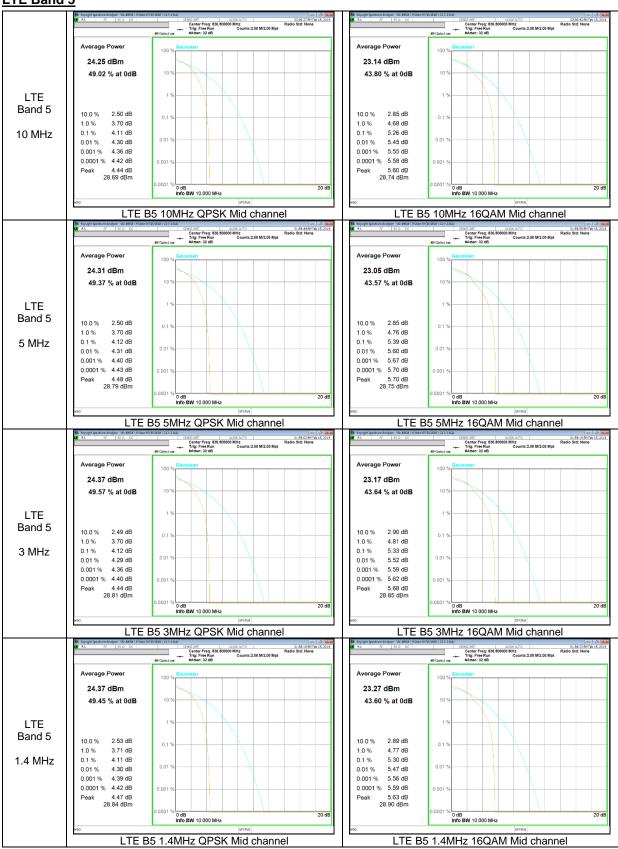

Test Spec

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

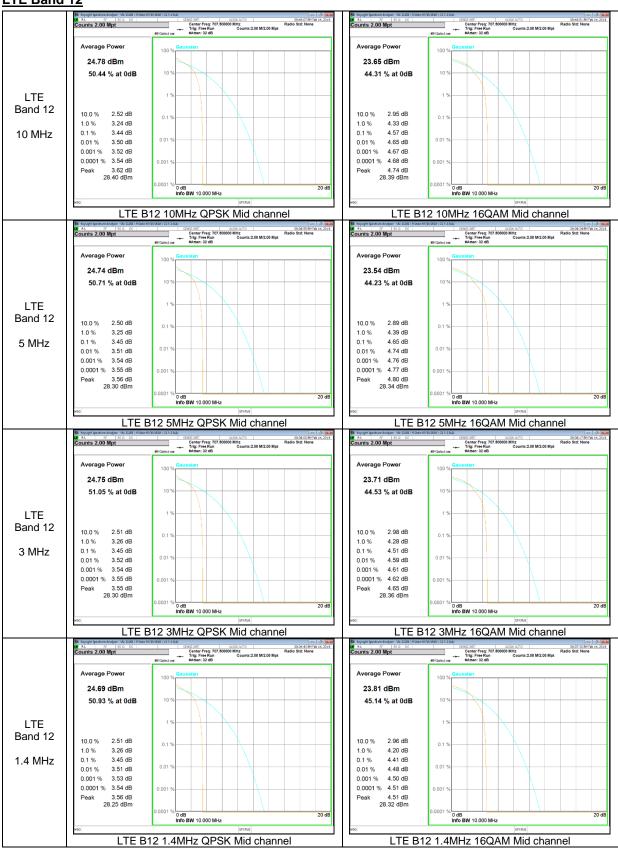

RESULTS

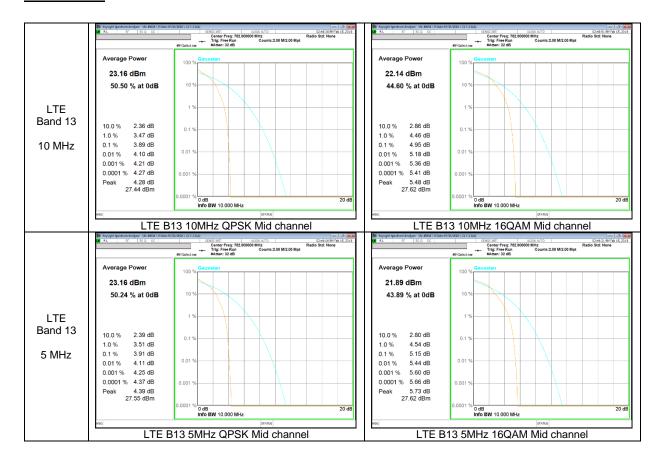

CONDUCTED PEAK TO AVERAGE RESULT 8.1.

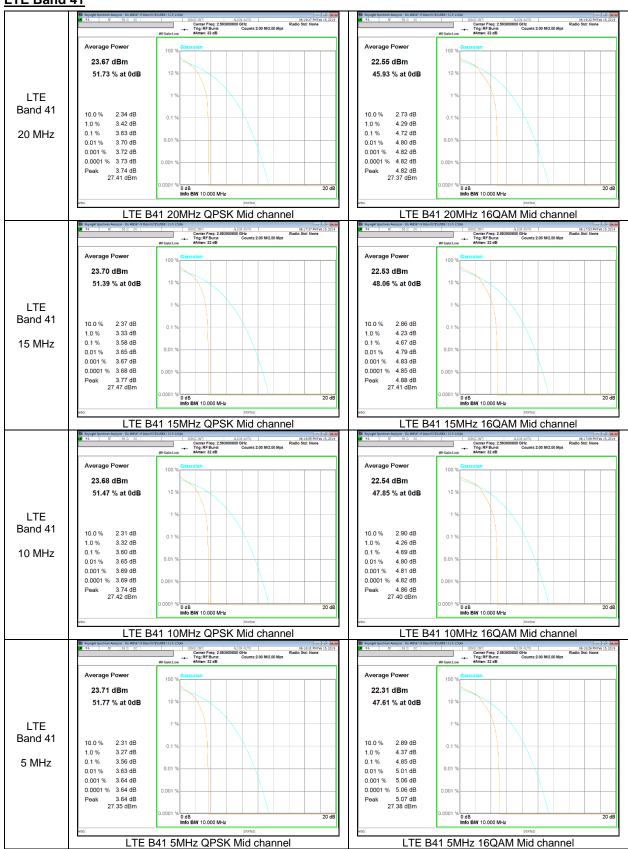

GSM



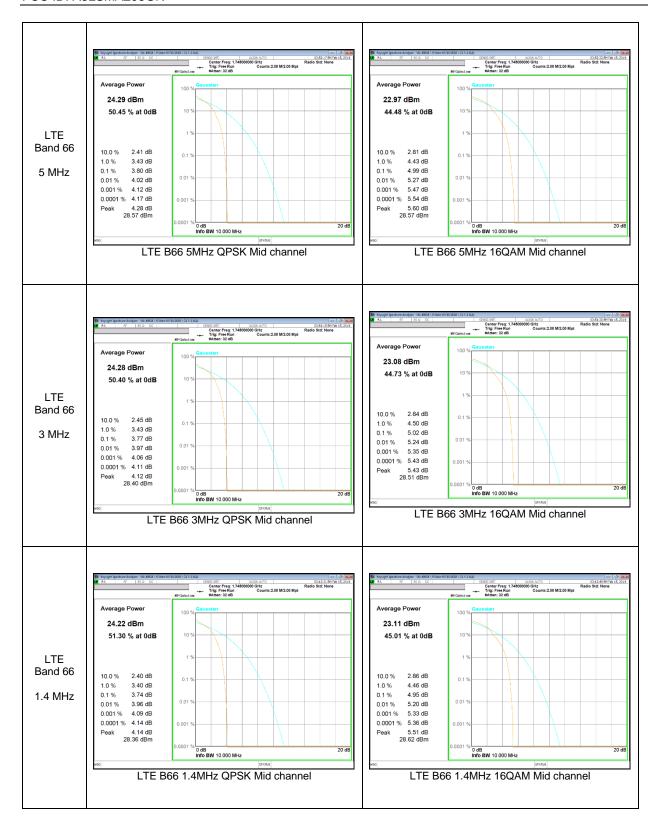
WCDMA







Page 24 of 179



Page 27 of 179

DATE: FEB 26, 2019

LTE Band 17

LTE Band 17 (Frequency range: 704-716 MHz) is covered by LTE Band 12 (Frequency range: 699-716 MHz) due to overlapping frequency range, same maximum tune-up limit and same channel bandwidth.

LTE Band 4

LTE Band 4 (Frequency range: 1710-1755 MHz) is covered by LTE Band 66 (Frequency range: 1710-1780 MHz) due to overlapping frequency range, same maximum tune-up limit and same channel bandwidth.

9. LIMITS AND CONDUCTED RESULTS

9.1. OCCUPIED BANDWIDTH

RULE PART(S)

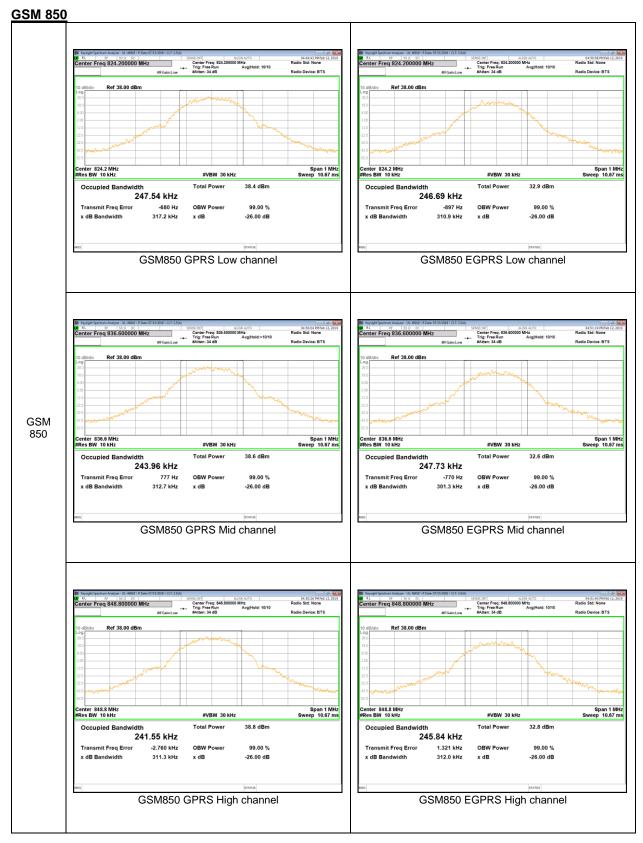
FCC: §2.1049

LIMITS

For reporting purposes only

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The -26dB bandwidth was also measured and recorded.


(KDB 971168 D01 Power Meas License Digital Systems v03r01)

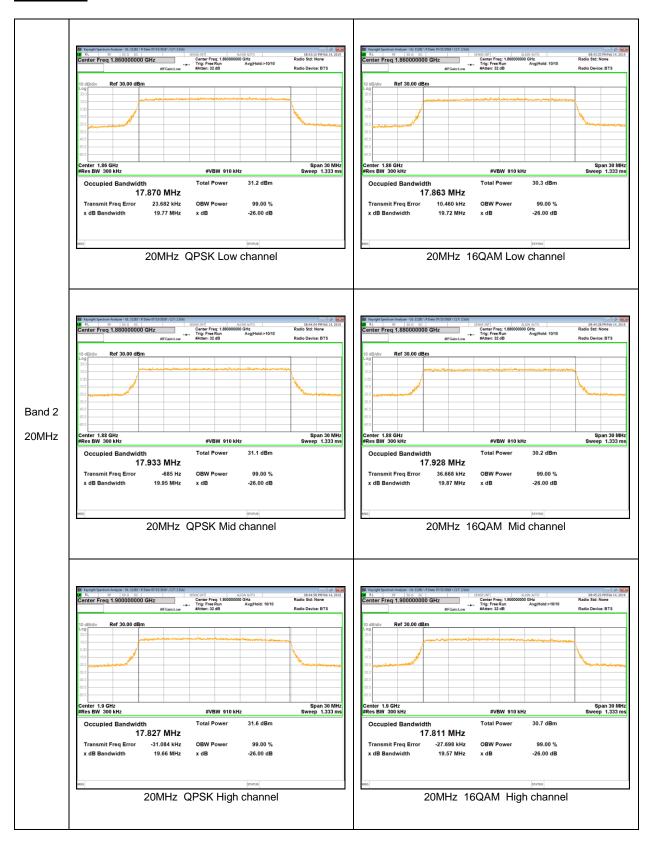
RESULTS

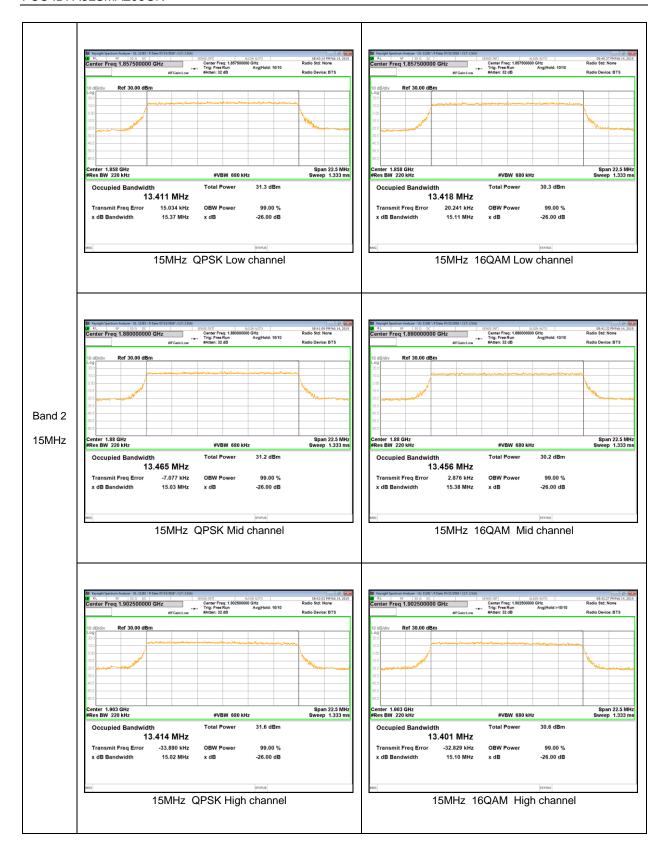
See the following pages.

DATE: FEB 26, 2019

9.1.1. OCCUPIED BANDWIDTH RESULTS

GSM 1900




WCDMA Band 5 07:00:05 PM Feb 12, 20: Radio Std: None 07:01:58 PM F Radio Std: None enter Freq 826.400000 MHz enter Freq 826.400000 MHz Ref 38.00 dBn Occupied Bandwidth Occupied Bandwidth 31.9 dBm 4.1221 MHz 4.1347 MHz 1.772 kHz -3.543 kHz 4.704 MHz -26.00 dB 4.692 MHz -26.00 dB **REL99 Low channel HSDPA** Low channel Band 5 31.8 dBm Occupied Bandwidth 4.1451 MHz 4.1277 MHz 11.065 kHz 3.950 kHz 4.692 MHz -26.00 dB x dB Bandwidth 4.684 MHz x dB -26.00 dB HSDPA Mid channel REL99 Mid channel 07:01:02 PM Feb 12, 20 Radio Std: None 4.1486 MHz 4.1455 MHz Transmit Freg Error 2.945 kHz 99.00 % Transmit Freq Error -4.310 kHz OBW Powe 99.00 % 4.711 MHz -26.00 dB x dB Bandwidth 4.700 MHz x dB -26.00 dB REL99 High channel HSDPA High channel

WCDMA Band 4 06:46:13 PM Feb 12, 20: Radio Std: None enter Freq 1.712400000 GHz enter Freq 1.712400000 GHz Ref 38.00 dBn Occupied Bandwidth 32.2 dBm Occupied Bandwidth 32.2 dBm 4.1494 MHz 4.1509 MHz 5.485 kHz 1.667 kHz Transmit Freq Error Transmit Freq Error 4.697 MHz -26.00 dB 4.703 MHz -26.00 dB **REL99 Low channel HSDPA** Low channel enter Freq 1.732600000 GHz nter Freq 1.732600000 GHz Band 4 33.1 dBm Occupied Bandwidth 4.1371 MHz 4.1301 MHz 5.311 kHz 4.696 MHz -26.00 dB x dB Bandwidth 4.699 MHz x dB -26.00 dB HSDPA Mid channel REL99 Mid channel 06:47:10 PM Feb 12, 20 Radio Std: None 06:49:04 PMF Span 10 MH Sweep 5.333 m 4.1462 MHz 4.1644 MHz Transmit Freg Error 2.740 kHz 99.00 % Transmit Freq Error -1.137 kHz OBW Power 99.00 % 4.697 MHz -26.00 dB x dB Bandwidth 4.712 MHz x dB -26.00 dB REL99 High channel HSDPA High channel

WCDMA Band 2

