

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

SAR EVALUATION REPORT

FOR

GSM/WCDMA/LTE Phone + BT/BLE, DTS b/g/n and NFC

MODEL NUMBER: SM-A205FN/DS

FCC ID: A3LSMA205FN

REPORT NUMBER: 4788852501-S1V3

ISSUE DATE: 2/28/2019

Prepared for SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433

TL-637

Revision History

Rev.	Date	Revisions	Revised By
V1	2/20/2019	Initial Issue	Eunji Choi
V2	2/25/2019	Sec.1, Sec.6.6.1, Sec. 8.2, Sec.10, Sec.11, Sec.13, and Appendix B&C	Eunji Choi
V3	2/28/2019	Sec.6.6.1, Sec 6.6.4 - Revised typo in table	Sanghwa Lee

Table of Contents

1.	Α	Attestation of Test Results	5
2.	т	Test Specification, Methods and Procedures	6
3.	F	Facilities and Accreditation	6
4.	S	SAR Measurement System & Test Equipment	7
4.1		SAR Measurement System	7
4.2		SAR Scan Procedures	8
4.3	8.	Test Equipment	10
5.	N	Measurement Uncertainty	11
6.	D	Device Under Test (DUT) Information	11
6.1	-	DUT Description	11
6.2		Wireless Technologies	12
6.3	8.	Nominal and Maximum Output Power	13
6.4	l <u>.</u>	General LTE SAR Test and Reporting Considerations	15
6.5	5.	LTE (TDD) Considerations	16
6.6	<i>.</i>	Proximity sensor feature	17
6	6.6.	6.1. Proximity Sensor Triggering Distance (KDB 616217 §6.2)	18
6	6.6.	6.2. Proximity Sensor Coverage (KDB 616217 §6.3)	20
6	6.6.	6.3. Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4)	20
6	6.6.	6.4. Resulting test positions for SAR measurements	20
7.	R	RF Exposure Conditions (Test Configurations)	21
8.	D	Dielectric Property Measurements & System Check	22
8.1		Dielectric Property Measurements	22
8.2		System Check	25
9.	С	Conducted Output Power Measurements	28
9.1		GSM	28
9.2		W-CDMA	30
9.3	8.	LTE	34
9.4	l <u>.</u>	Wi-Fi 2.4 GHz (DTS Band)	41
9.5	ō.	Bluetooth	42
10.	N	Measured and Reported (Scaled) SAR Results	43
10.	1.	1. GSM 850	45
10.	2.	2. GSM 1900	45
10.	3.	3. W-CDMA Band II	45

Page 3 of 53

10).4.	W-CDMA Band V	46
10).5.	LTE Band 5 (10MHz Bandwidth)	46
10).6.	LTE Band 41 (20MHz Bandwidth)	47
10).7.	Wi-Fi (DTS Band)	47
10).8.	Bluetooth	48
11.	SAF	R Measurement Variability	49
12.	DUT	۲ Holder Perturbations	50
13.	Sim	ultaneous Transmission SAR Analysis	50
13	3.1.	Sum of the SAR for WWAN & Wi-Fi & BT	52
Арр	endixe	es	53
47	788852	501-S1V3 FCC Report SAR_App A_Photos & Ant. Locations	53
47	788852	501-S1V3 FCC Report SAR_App B_Highest SAR Test Plots	53
47	788852	501-S1V3 FCC Report SAR_App C_System Check Plots	53
47	788852	501-S1V3 FCC Report SAR_App D_SAR Tissue Ingredients	53
47	788852	501-S1V3 FCC Report SAR_App E_Probe Cal. Certificates	53
47	788852	501-S1V3 FCC Report SAR_App F_Dipole Cal. Certificates	53

Page 4 of 53

1. Attestation of Test Results

Applicant Nam	е	SAMSUNG ELECTRONICS CO.,LTD.					
FCC ID		A3LSMA205FN	A3LSMA205FN				
Model Number	r	SM-A205FN/DS					
Applicable Standards		FCC 47 CFR § 2.1093	FCC 47 CFR § 2.1093				
		Published RF exposure K	DB procedure	S			
		IEEE Std 1528-2013					
SAR Limits (V	V/Kg)						
Exposure Category		Peak spatial-average(1g of tissue) Pha		Phat	ablet (10g of tissue)		
General population / Uncontrolled exposure		1.6		4.0			
The Highest F	Reported SAR (N/kg)					
RF Exposure Conditions		Equipment Class					
		Licensed	D	тѕ	DSS(BT)		
Head		0.37	0.23		0.16		
Body-worn		0.43	< 0.10				
Hotspot		0.78	0.21		N/A		
	Head	0.60		0.53			
Standalone Tx	Body-worn	0.9	51		N/A		
	Hotspot	0.9	0.99				
Date Tested		2/7/2019 to 2/20/2019					
Test Results		Pass					

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released By:	Prepared By:
flex	zver
Justin Park	Eunji Choi
Lead Test Engineer	Associate Test Engineer
UL Korea, Ltd. Suwon Laboratory	UL Korea, Ltd. Suwon Laboratory

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- o 648474 D04 Handset SAR v01r03
- o 690783 D01 SAR Listings on Grants v01r03
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- o 865664 D02 RF Exposure Reporting v01r02
- o 941225 D01 3G SAR Procedures v03r01
- o 941225 D05 SAR for LTE Devices v02r05
- o 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02
- o 941225 D06 Hotspot Mode v02r01
- o 941225 D07 UMPC Mini Tablet v01r02

In addition to the above, the following information was used:

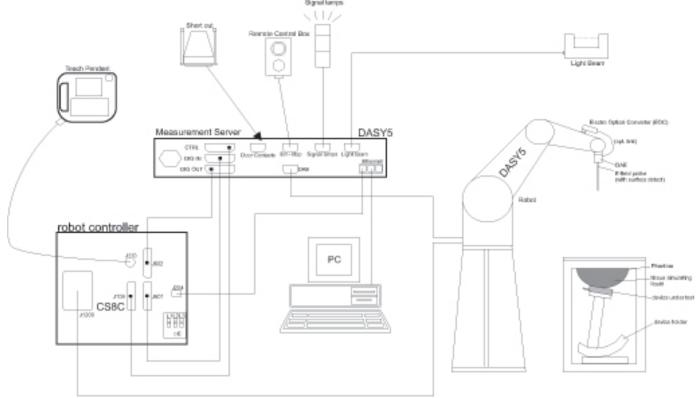
- o <u>TCB workshop</u> October, 2014; Page 37, RF Exposure Procedures Update (Other LTE Considerations)
- <u>TCB workshop</u> October, 2016; Page 7, RF Exposure Procedures (Bluetooth Duty Factor)
- o <u>TCB workshop</u> October, 2016; Page 18, RF Exposure Procedures (DUT Holder Perturbations)

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

Suwon
SAR 1 Room
SAR 2 Room
SAR 3 Room
SAR 4 Room

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637.


The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf.

Page 6 of 53

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 7 of 53

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$	
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Page 8 of 53

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 De	001 SAR Measurement 100 MHz to 6 GHz
---	--------------------------------------

		\leq 3 GHz	> 3 GHz		
Maximum zoom scan spatial resolution Δx_{Zoom} , Δy_{Zoom}			$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]	
	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	∆z _{Zoom} (1): between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·∆z	Zoom(n-1)	
Minimum zoom scan volume x, y, z		≥ 30 mm	$\begin{array}{l} 3-4 \text{ GHz} \ge 28 \text{ mm} \\ 4-5 \text{ GHz} \ge 25 \text{ mm} \\ 5-6 \text{ GHz} \ge 22 \text{ mm} \end{array}$		
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.					

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

Page 9 of 53

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Netw ork Analyzer	Agilent	E5071C	MY 46522054	8-7-2019
Dielectric Assessment Kit	SPEAG	DAK-3.5	1196	6-26-2019
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	LKM	DTM3000	3424	8-9-2019
System Check	•			
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
MXG Analog Signal Generator	Agilent	N5181A	MY 50145882	8-7-2019
Pow er Sensor	Agilent	U2000A	MY 54260010	8-7-2019
Pow er Sensor	Agilent	U2000A	MY 54260007	8-7-2019
Pow er Amplifier	EXODUS	1410025-AMP2027-10003	10003	8-8-2019
Directional Coupler	Agilent	772D	MY 52180193	8-7-2019
Directional Coupler	Agilent	778D	MY 52180432	8-7-2019
Low Pass Filter	MICROLAB	LA-15N	03943	8-7-2019
Low Pass Filter	FILTRON	L14012FL	1410003S	8-7-2019
Attenuator	Agilent	8491B/003	MY 39269292	8-7-2019
Attenuator	Agilent	8491B/010	MY 39269315	8-7-2019
Attenuator	Agilent	8491B/020	MY 39269298	8-7-2019
E-Field Probe (SAR1)	SPEAG	EX3DV4	7376	9-26-2019
E-Field Probe (SAR2)	SPEAG	EX3DV4	7330	1-31-2020
E-Field Probe (SAR3)	SPEAG	EX3DV4	7314	8-30-2019
E-Field Probe (SAR4)	SPEAG	EX3DV4	3991	5-24-2019
Data Acquisition Electronics (SAR1)	SPEAG	DAE4	1494	7-23-2019
Data Acquisition Electronics (SAR2)	SPEAG	DAE4	1447	3-15-2019
Data Acquisition Electronics (SAR3)	SPEAG	DAE4	1468	8-22-2019
Data Acquisition Electronics (SAR4)	SPEAG	DAE4	1259	7-26-2019
System Validation Dipole	SPEAG	D835V2	4d194	7-24-2019
System Validation Dipole	SPEAG	D1900V2	5d199	3-15-2019
System Validation Dipole	SPEAG	D2450V2	960	3-20-2019
System Validation Dipole	SPEAG	D2600V2	1097	1-17-2019
Thermometer (SAR1)	Lutron	MHB-382SD	AH.91463	8-8-2019
Thermometer (SAR2)	Lutron	MHB-382SD	AH.50215	8-13-2019
Thermometer (SAR3)	Lutron	MHB-382SD	AH.50213	8-14-2019
Thermometer (SAR4)	Lutron	MHB-382SD	AH.91478	8-8-2019
Others				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Base Station Simulator	R&S	CMW500	150313	8-9-2019

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Base Station Simulator	R & S	CMW500	150313	8-9-2019
Base Station Simulator	R & S	CMW500	150314	8-9-2019
Base Station Simulator	R & S	CMW500	162790	8-9-2019
Wireless Connectivity Tester	R & S	CMW270	100982	8-8-2019
Bluetooth Tester	TESCOM	TC-3000C	3000C000546	8-7-2019

Note(s):

Refer to Appendix F that mentioned about justification for Extended SAR Dipole Calibrations (D2600, SN : 1097)

Page 10 of 53

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	Overall (Lend	uth x Width): 158.3 mm x 74.6 mm										
Device Dimension												
	Overall Diago	onal: 169.0 mm										
	Display Diago	Display Diagonal: 162.4 mm										
Back Cover	⊠ The Back (☑ The Back Cover is not removable.										
Battery Options	☑ The rechard	$oxedsymbol{\boxtimes}$ The rechargeable battery is not user accessible.										
Wireless Router (Hotspot)	Wi-Fi Hotspot	Wi-Fi Hotspot mode permits the device to share its cellular data connection with other Wi-Fi-enabled devices.										
		⊠ Mobile Hotspot (Wi-Fi 2.4 GHz)										
Wi-Fi Direct		Vi-Fi Direct enabled devices transfer data directly between each other										
		⊠ Wi-Fi Direct (Wi-Fi 2.4 GHz)										
Test Sample Information		S/N	Notes									
rest Gample mornation	No.	S/N	Notes									
	1	52004b804667b5e3	Main Conducted									
	2	R38K909WQ2L	Wi-Fi Conducted									
	3	R38M10DAGST	SAR									
	4	R38M10DAGXA	SAR									
	5	R38M10DAG9R	SAR									

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode		Duty Cycle used for SAR testing			
GSM	850 1900 Does this device suppo	Voice (GMSK) GPRS (GMSK) EGPRS (8PSK) rt DTM (Dual Transfer Mode)?	GSM Voice: 12.5% (E)GPRS: 1 Slot: 12.5% 2 Slot: 25% 3 Slot: 37.5% 4 Slot: 50%				
W-CDMA (UMTS)	Band I Band V	UMTS Rel. 99 (Voice & Data HSDPA (Category 24) HSUPA (Category 6)	100%				
LTE	FDD Band 5 TDD Band 41	QPSK 16QAM Rel. 10 Does not support Car	100% (FDD) 63.3% (TDD)				
		rt SV-LTE (1xRTT-LTE)? □ Ye	es 🗵 No	20.00/			
Wi-Fi	2.4 GHz	802.11b 802.11g 802.11n (HT20)		99.6% (802.11b) 95.6% (802.11g) 96.2% (802.11n 20MHz BW)			
Bluetooth	2.4 GHz	Version 5.0 LE	Version 5.0 LE 76.8% (DH5)				

Notes:

1. This device supports uplink-downlink configuration 0-6. The configuration with the highest duty cycle was used (uplink-downlink configuration 0 at 63.3%).

2. The Bluetooth protocol is considered source-based averaging. Bluetooth GFSK (DH5) was verified to have the highest duty cycle of 76.8% and was considered and used for SAR Testing.

3. Duty cycle for Wi-Fi is referenced from the DTS report.

Page 12 of 53

6.3. Nominal and Maximum Output Power

KDB 447498 sec.4.1. at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

RF Air interface	Antenna	Mode	Time Slots	Max. RF Output Pow er (dBm)			
		Voice/GPRS		Tune-up Limit	Frame Pw r		
			1	33.5	24.5		
		GPRS	2	31.5	25.5		
		GPRS	3	30.0	25.7		
GSM850	Main 1	GPRS	4	28.0	25.0		
GSIVIBSU	iviain i	EGPRS	1	27.0	18.0		
		EGPRS	2	25.0	19.0		
		EGPRS	3	23.5	19.2		
		EGPRS	4	21.5	18.5		
		Voice/GPRS	1	30.5	21.5		
		GPRS	2	28.0	22.0		
		GPRS	3	26.5	22.2		
GSM1900	Main 1	GPRS	4	25.0	22.0		
63111900	iviali i	EGPRS	1	26.5	17.5		
		EGPRS	2	24.0	18.0		
		EGPRS	3	22.5	18.2		
		EGPRS	4	20.5	17.5		

RF Air interface	Antenna	Mode	Max. RF Output Pow er (dBm)	Reduced. RF Output Pow er (dBm)
		R99	24.5	21.5
W-CDMA Band II	DMA Main 1 DMA Main 1	HSDPA	24.0	21.0
Dandii		HSUPA	24.0	21.0
		R99	25.5	
W-CDMA Band V	Main 1	HSDPA	23.5	
Baild V		HSUPA	25.0	

RF Air interface	Antenna	Mode	Max. RF Output Pow er (dBm)
LTE Band 5	Main 1	QPSK	25.5
LTE Band 41	Main 2	QPSK	25.0

Note(s):

 The device utilizes power reduction under some portable hotspot conditions for SAR compliance. There is power reduction for WCDMA Band II. The reduced powers were confirmed via conducted power measurements the RF port. Detailed description of the hotspot power reduction mechanism is included in the operational description.

WCDMA Band II supports to proximity sensor back-off function. It is operating during extremity (hand-held) use conditions. And this
function is applied to phablet 10-g SAR exposure condition. Other Head and Body exposure conditions are performed SAR test at full
power. The proximity sensor details are explained in SAR report according to Section 6 in KDB 616217.

3. All Power reduction mechanisms are not work at the same time.

4. LTE QPSK configuration has the highest maximum average output power per 3GPP standard.

Page 13 of 53

RF Air interface	Mode	Max. RF Output Pow er (dBm)	Reduced. RF Output Pow er (dBm)
	802.11b	18.0	12.0
WiFi 2.4 GHz (Ch.1 - Ch.10)	802.11g	17.0	12.0
(01.1 - 01.10)	802.11n HT20	17.0	12.0
	802.11b	18.0	12.0
	802.11g	17.0	12.0
(01.11)	(Ch.11) 802.11n HT20	16.0	12.0
	802.11b	17.0	8.0
WiFi 2.4 GHz (Ch.12)	802.11g	12.5	8.0
(01.12)	802.11n HT20	12.0	6.0
	802.11b	16.0	8.0
WiFi 2.4 GHz (Ch.13)	802.11g	10.0	8.0
(01.13)	802.11n HT20	7.0	6.0
BI	uetooth	10.0	
Blue	etooth LE	6.0	

Note(s):

This device uses an independent fixed level power reduction mechanism for WLAN operations during RCV operated Detailed descriptions of the power reduction mechanism are included in the operational description.

Page 14 of 53

6.4. General LTE SAR Test and Reporting Considerations

Item	Description											
Frequency range, Channel Bandwidth,			F	requency	range: 8	24 - 849 MI	Hz					
Numbers and Frequencies	Band 5			Cha	nnel Ban	dwidth						
		20 MHz	15 MHz	10 M	Hz	5 MHz	3 MHz	1.4 MHz				
	Low			2045	50/	20425/	20415/	20407/				
	LOW			829)	826.5	825.5	824.7				
	Mid			2052		20525/	20525/	20525/				
	IVIG			836	.5	836.5	836.5	836.5				
	High			2060		20625/	20635/	20643/				
	riigii			844		846.5	847.5	848.3				
			Frequency range: 2496 - 2690 MHz									
	Band 41			-	nnel Ban			_				
		20 MHz	15 MHz	10 M	Hz	5 MHz	3 MHz	1.4 MHz				
	Low		39750	/ 2506.0								
	Low-Mid		40185	/ 2549.5								
	Mid		40620	/ 2593.0								
	Mid-High		41055 / 2636.5									
	High		41490	/ 2680.0								
Maximum power reduction (MPR)		Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Modulation Channel bandwidth / Transmission bandwidth						and 3 MPR (dB)				
		1.4	3.0	5	10	15	20					
		MHz		MHz	MHz	MHz	MHz					
	QPSK		> 4	> 8	> 12	> 16	> 18	<u>≤ 1</u>				
	16 QAN 16 QAN		≤ 4 > 4	≤ 8 > 8	≤ 12 > 12	≤ 16 > 16	≤ <u>18</u> > <u>18</u>	≤ 1 ≤ 2				
	64 QAN		≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2				
	64 QAN		> 4	> 8	> 12	> 16	> 18	≤ 3				
	256 QA	M		2	: 1		·	≤ 5				
	MPR Built-in	by design										
		, ,	aluaa ara alwa	vo within		movimum		noo hut mov				
			alues are alwa	iys within		maximum	IVIF K allowa	nce but may				
		e default MPI										
	A-MPR (add	itional MPR)	was disabled o	during SA	R testing							
Power reduction	No											
Spectrum plots for RB configurations		No A properly configured base station simulator was used for the SAR and power measurements; therefore, spectrum plots for each RB allocation and offset configuration are not included in the SAR report.										

Note(s):

1. SAR Testing for LTE was performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

Page 15 of 53

LTE (TDD) Considerations 6.5.

According to KDB 941225 D05 SAR for LTE Devices, for Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

LTE TDD Bands support 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplinkdownlink configurations and Table 4.2-1 for Special subframe configurations.

	Nori	mal cyclic prefix in	downlink	Exter	nded cyclic prefix ir	n downlink	
Special	DwPTS	UpF	PTS	DwPTS	UpP	PTS	
subframe configuration		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink	
0	$6592 \cdot T_s$			$7680 \cdot T_{s}$			
1	$19760 \cdot T_s$			$20480 \cdot T_s$	$2192 \cdot T_s$	$2560 \cdot T_s$	
2	$21952 \cdot T_{\rm s}$	$2192 \cdot T_{\rm s}$	$2560 \cdot T_{s}$	$23040 \cdot T_s$	2192.18	2300 · I _s	
3	$24144 \cdot T_s$			$25600 \cdot T_s$			
4	$26336 \cdot T_s$			$7680 \cdot T_s$			
5	$6592 \cdot T_{\rm s}$			$20480 \cdot T_s$	$4384 \cdot T_s$	$5120 \cdot T_{s}$	
6	$19760 \cdot T_s$			$23040 \cdot T_s$	$4364 \cdot I_s$	$5120 \cdot I_s$	
7	$21952 \cdot T_s$	$4384 \cdot T_{s}$	$5120 \cdot T_{\rm s}$	$12800 \cdot T_{s}$			
8	$24144 \cdot T_s$			-	-	-	
9	$13168 \cdot T_s$			-	-	-	

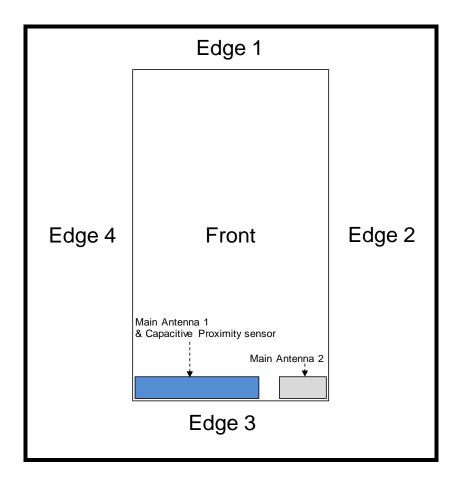
Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

Calculated Duty Cycle

Uplink-	Downlink-to-				Sub	frame	e Num	nber				
Downlink Configuration	Uplink Switch-point Periodicity	0	1	2	3	4	5	6	7	8	9	Calculated Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	63.33
1	5 ms	D	S	U	U	D	D	S	U	U	D	43.33
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.33
3	10 ms	D	S	U	U	U	D	D	D	D	D	31.67
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.67
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.67
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.33

Calculated Duty Cycle = Extended cyclic prefix in uplink x (T_s) x # of S + # of U

Example for Calculated Duty Cycle for Uplink-Downlink Configuration 0: Calculated Duty Cycle = 5120 x [1/(15000 x 2048)] x 2 + 6 ms = 63.33% where $T_s = 1/(15000 \times 2048)$ seconds

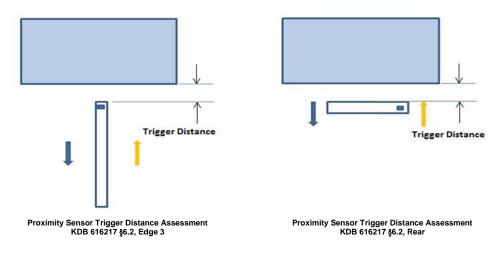

Note(s):

This device supports uplink-downlink configurations 0-6. The configuration with highest duty cycle was used for SAR Testing: configuration 0 at 63.3% duty cycle and Special Subframe 7.

UL Korea, Ltd. Suwon Laboratory This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

6.6. Proximity sensor feature

The DUT has one proximity sensor to reduce the output power. The position of the sensor and antenna are as shown in the graphic.



6.6.1. Proximity Sensor Triggering Distance (KDB 616217 §6.2)

Rear and Edge 1 of the DUT was placed directly below the flat phantom. The DUT was moved toward the phantom in accordance with the steps outlined in KDB 616217 §6.2 to determine the trigger distance for enabling power reduction. The DUT was moved away from the phantom to determine the trigger distance for resuming full power.

The DUT featured a visual indicator on its display that showed the status of the proximity sensor (Triggered or not triggered). This was used to determine the status of the sensor during the proximity sensor assessment as monitoring the output power directly was not practical without affecting the measurement.

It was confirmed separately that the output power was altered according to the proximity sensor status indication. This was achieved by observing the proximity sensor status at the same time as monitoring the conducted power. Section 9 contains both the full and reduced conducted power measurements.

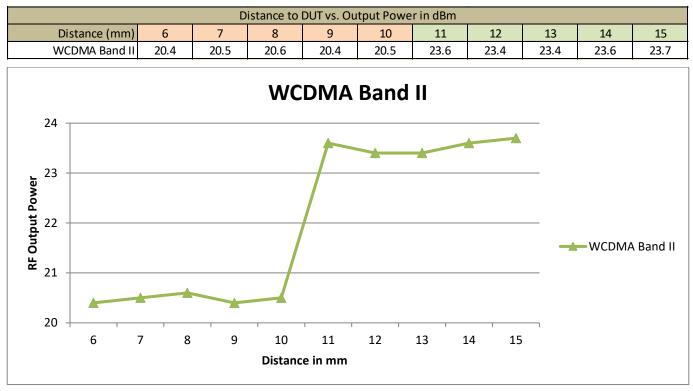
LEGEND

Direction of DUT travel for determination of power reduction triggering point

Direction of DUT travel for determination of full power resumption triggering point

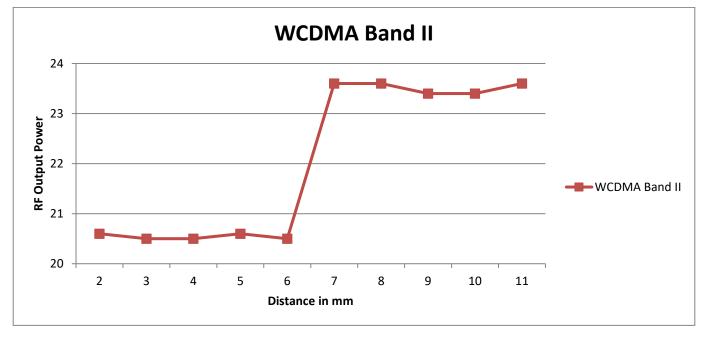
Summary of Trigger Distances

Tissue	Trigger	distance	Trigger distance			
Simulating	- R	ear	– Edge 3			
Liquid	Moving	Moving	Moving Moving			
	toward	from	toward from			
	phantom	phantom	phantom phanton			
1900 Body	10 mm	10 mm	6 mm	6 mm		


Note(s):

Triggering distances were verified for supported positions according to Sec.6.2 in KDB 616217.

Proximity Sensor Triggering Distance Measurement Results

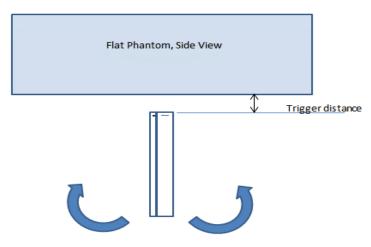

WCDMA Band II

Rear, DUT Moving Toward (Trigger) from the Phantom

Edge 3, DUT Moving Toward (Trigger) from the Phantom

Distance to DUT vs. Output Power in dBm											
Distance (mm) 2 3 4 5 6 7 8 9 10 11											
WCDMA Band II	20.6	20.5	20.5	20.6	20.5	23.6	23.6	23.4	23.4	23.6	

Page 19 of 53


6.6.2. Proximity Sensor Coverage (KDB 616217 §6.3)

As there is no spatial offset between the antenna and the proximity sensor element, proximity sensor coverage did not need to be assessed.

6.6.3. Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4)

The DUT was positioned directly below the flat phantom at the minimum measured trigger distance with Edge 3 parallel to the base of the flat phantom for each band.

The EUT was rotated about Edge 3 for angles up to $+/-45^{\circ}$. If the output power increased during the rotation the DUT was moved 1mm toward the phantom and the rotation repeated. This procedure was repeated until the power remained reduced for all angles up to $+/-45^{\circ}$.

Proximity sensor tilt angle assessment (Edge 3) KDB 616217 §6.4

Summary of Tablet Tilt Angle Influence to Proximity Sensor Triggering (Edge 3)

Band (MHz) Minimum trigger distance measured according to KDB 616217 §6.2	Minimum distance at which power		Power reduction status										
	reduction was maintained over +/-45°	-45°	-40°	-30°	-20°	-10°	0°	10°	20°	30°	40°	45°	
1900	6 mm	6 mm	On	On	On	On	On	On	On	On	On	On	On

6.6.4. Resulting test positions for SAR measurements

Wireless technologies	Position	§6.2 Triggering Distance	§6.3 Coverage	§6.4 Tilt Angle	Worst case distance for SAR
WWAN	Rear	10 mm	N/A	N/A	9 mm
(Main Ant.1)	Edge 3	6 mm	N/A	6 mm	5 mm

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Wireless	DE Exposuro		DUT-to-User	Test	Antenna-to-	SAR	
technologies	RF Exposure Conditions	Antenaa	Separation	Position	edge/surface	Required	Note
toormologico	Conditionio		Copulation	Left Touch	N/A	Yes	
		Main Ant.		Left Tilt (15°)	N/A	Yes	
	Head	1 & 2	0 mm	Right Touch	N/A	Yes	
				Right Tilt (15°)	N/A	Yes	
		Main Ant.		Rear	N/A	Yes	
	Body	1 & 2	15 mm	Front	N/A	Yes	
				Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
				Edge 1 (Top)	> 25 mm	No	1
	Hotspot	Main Ant. 1	10 mm	Edge 2 (Right)	< 25 mm	Yes	
				Edge 3 (Bottom)	< 25 mm	Yes	
				Edge 4 (Left)	< 25 mm	Yes	
				Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
				Edge 1 (Top)	> 25 mm	No	1
WWAN	Hotspot	Main Ant. 2	10 mm	Edge 2 (Right)	< 25 mm	Yes	
				Edge 3 (Bottom)	< 25 mm	Yes	
				Edge 4 (Left)	> 25 mm	No	1
				Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
				Edge 1 (Top)	> 25 mm	No	1
	Phablet-10g	Main Ant. 1	0 mm	Edge 2 (Right)	< 25 mm	Yes	
				Edge 3 (Bottom)	< 25 mm	Yes	
				Edge 4 (Left)	< 25 mm	Yes	
				Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
				Edge 1 (Top)	> 25 mm	No	1
	Phablet-10g	Main Ant. 2	0 m m	Edge 2 (Right)	< 25 mm	Yes	- ·
					< 25 mm	Yes	_
				Edge 3 (Bottom)			-
				Edge 4 (Left)	> 25 mm	No	1
				Left Touch	N/A	Yes	
	Head		0 m m	Left Tilt (15°)	N/A	Yes	
				Right Touch	N/A	Yes	
	-			Right Tilt (15°)	N/A	Yes	
	Body		15 mm	Rear	N/A	Yes	
				Front	N/A	Yes	
				Rear	< 25 mm	Yes	_
				Front	< 25 mm	Yes	
WLAN &	Hotspot	Wi-Fi & BT	10 mm	Edge 1 (Top)	< 25 mm	Yes	
BT	riotopot	Ant.		Edge 2 (Right)	< 25 mm	Yes	
				Edge 3 (Bottom)	> 25 mm	No	1
				Edge 4 (Left)	> 25 mm	No	1
		1		Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
	Dhahlat 40		0	Edge 1 (Top)	< 25 mm	Yes	
	Phablet-10g		0 mm	Edge 2 (Right)	< 25 mm	Yes	
				Edge 3 (Bottom)	> 25 mm	No	1
	1			Edge 4 (Left)	> 25 mm	No	1

Notes:

1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hotspot SAR.

2. When Hotspot Mode is not supported, 10-g Phablet SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.

3. When hotspot mode applies, 10-g Phablet SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg. When hotspot mode does not apply, 10-g Phablet SAR is required for all surfaces and Edges within 25mm of the antenna.

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	He	ad	Bo	dy
	۶ _۲	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

SAR 1 Room

Date	Freq. (MHz)		Liqu	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 2600	e'	52.6200	Relative Permittivity (ε_r):	52.62	52.51	0.21	5
	B00y 2000	e"	15.2400	Conductivity (o):	2.20	2.16	1.96	5
2-14-2019	Body 2500	e'	52.8900	Relative Permittivity (ε_r):	52.89	52.64	0.48	5
2-14-2019	B00y 2500	e"	14.9400	Conductivity (σ):	2.08	2.02	2.80	5
	Body 2700	e'	52.3700	Relative Permittivity (ε_r):	52.37	52.38	-0.03	5
	B00y 2700	e"	15.5500	Conductivity (σ):	2.33	2.30	1.44	5
	Body 2450	e'	51.6200	Relative Permittivity (ε_r):	51.62	52.70	-2.05	5
	B00y 2450	e"	14.8100	Conductivity (σ):	2.02	1.95	3.46	5
2-18-2019	Body 2400	e'	51.7200	Relative Permittivity (ε_r):	51.72	52.77	-1.99	5
2-10-2019	B00y 2400	e"	14.6300	Conductivity (σ):	1.95	1.90	2.86	5
	Body 2480	e'	51.5900	Relative Permittivity (ε_r):	51.59	52.66	-2.04	5
	B00y 2480	e"	14.8800	Conductivity (o):	2.05	1.99	3.00	5
	Head 2450	e'	40.0300	Relative Permittivity (ε_r):	40.03	39.20	2.12	5
	Tiedu 2450	e"	13.5600	Conductivity (σ):	1.85	1.80	2.62	5
2-19-2019	Head 2400	e'	40.1900	Relative Permittivity (ε_r):	40.19	39.30	2.27	5
2-19-2019	Head 2400	e"	13.4600	Conductivity (σ):	1.80	1.75	2.54	5
	Head 2480	e'	39.9300	Relative Permittivity (ε_r):	39.93	39.16	1.96	5
	Tiedu 2400	e"	13.6300	Conductivity (σ):	1.88	1.83	2.57	5
	Head 2600	e'	39.5200	Relative Permittivity (ε_r):	39.52	39.01	1.31	5
		e"	13.8900	Conductivity (σ):	2.01	1.96	2.34	5
2-19-2019	Head 2500	e'	39.8600	Relative Permittivity (ε_r):	39.86	39.14	1.85	5
2-19-2019	ineau 2000	e"	13.6700	Conductivity (σ):	1.90	1.85	2.49	5
	Head 2700	e'	39.1900	Relative Permittivity (ε_r):	39.19	38.88	0.79	5
		e"	14.1000	Conductivity (σ):	2.12	2.07	2.25	5

SAR 2 Room

Date	Freq. (MHz)		Liqu	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 835	e'	55.8400	Relative Permittivity (ε_r):	55.84	55.20	1.16	5
	body 055	e"	20.5000	Conductivity (o):	0.95	0.97	-1.88	5
2-18-2019	Body 820	e'	55.9800	Relative Permittivity (ε_r):	55.98	55.28	1.27	5
2-10-2019	BOUY 820	e"	20.6000	Conductivity (σ):	0.94	0.97	-3.02	5
	Dody 950		55.7000	Relative Permittivity (ε_r):	55.70	55.16	0.98	5
	Body 850		20.4300	Conductivity (σ):	0.97	0.99	-2.18	5

SAR 3 Roor	n							
Date	Freq. (MHz)		Liqu	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Head 835		41.0000	Relative Permittivity (ε_r):	41.00	41.50	-1.20	5
	Tieau 000	e"	19.6400	Conductivity (σ):	0.91	0.90	1.32	5
2-8-2019	Head 820	e'	41.0700	Relative Permittivity (ε_r):	41.07	41.60	-1.28	5
2-0-2019	Tieau 020	e"	19.5800	Conductivity (σ):	0.89	0.90	-0.64	5
	Head 850	e'	40.8800	Relative Permittivity (ε_r):	40.88	41.50	-1.49	5
	Tieau 050	e"	19.6100	Conductivity (σ):	0.93	0.92	1.29	5
	Head 835	e'	41.2100	Relative Permittivity (ε_r):	41.21	41.50	-0.70	5
	Tieau 000	e"	19.5300	Conductivity (σ):	0.91	0.90	0.75	5
2-16-2019	Head 820	e'	41.3100	Relative Permittivity (ε_r):	41.31	41.60	-0.70	5
2-10-2019	Tieau 020	e"	19.5400	Conductivity (σ):	0.89	0.90	-0.84	5
	Head 850		41.0900	Relative Permittivity (ε_r):	41.09	41.50	-0.99	5
	TIEAU 000	e"	19.5300	Conductivity (σ):	0.92	0.92	0.88	5

SAR 4 Room

Date	Freq. (MHz)		Liqu	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Head 1900	e'	40.2700	Relative Permittivity (ε_r):	40.27	40.00	0.68	5
	Head 1900	e"	13.5300	Conductivity (σ):	1.43	1.40	2.10	5
2-11-2019	Head 1850	e'	40.5000	Relative Permittivity (ε_r):	40.50	40.00	1.25	5
2-11-2019	Head 1650	e"	13.2900	Conductivity (σ):	1.37	1.40	-2.35	5
	Head 1910	e'	40.2300	Relative Permittivity (ε_r):	40.23	40.00	0.57	5
	Head 1910	e"	13.5900	Conductivity (σ):	1.44	1.40	3.09	5
	Body 1900	e'	52.2300	Relative Permittivity (ε_r):	52.23	53.30	-2.01	5
	Body 1900	e"	14.8600	Conductivity (σ):	1.57	1.52	3.28	5
2-13-2019	Body 1850	e'	52.5300	Relative Permittivity (ε_r):	52.53	53.30	-1.44	5
2-13-2019	B00y 1850	e"	14.7600	Conductivity (σ):	1.52	1.52	-0.11	5
	Body 1910	e'	52.1400	Relative Permittivity (ε_r):	52.14	53.30	-2.18	5
	Body 1910	e"	14.8400	Conductivity (σ):	1.58	1.52	3.69	5
	Body 1900	e'	52.7500	Relative Permittivity (ε_r):	52.75	53.30	-1.03	5
	Body 1900	e"	14.9100	Conductivity (σ):	1.58	1.52	3.63	5
2-18-2019	Body 1850	e'	52.8600	Relative Permittivity (ε_r):	52.86	53.30	-0.83	5
2-16-2019	B00y 1850	e"	15.1000	Conductivity (σ):	1.55	1.52	2.19	5
	Body 1910	e'	52.7500	Relative Permittivity (ε_r):	52.75	53.30	-1.03	5
	Body 1910	e"	14.9100	Conductivity (σ):	1.58	1.52	4.18	5
	Head 1900	e'	40.2200	Relative Permittivity (ε_r):	40.22	40.00	0.55	5
	Head 1900	e"	13.5200	Conductivity (σ):	1.43	1.40	2.02	5
2-20-2019	Head 1850	e'	40.2700	Relative Permittivity (ε_r):	40.27	40.00	0.68	5
2-20-2019		e"	13.5900	Conductivity (σ):	1.40	1.40	-0.15	5
	Head 1910	e'	40.2100	Relative Permittivity (ε_r):	40.21	40.00	0.53	5
	17eau 1910	e"	13.5300	Conductivity (σ):	1.44	1.40	2.64	5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 2.5 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 1.4 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles.

System Dipole	Serial No.	Cal. Date	Freq. (MHz)	Т	arget SAR Values (W/k	g)
System Dipole	Senarivo.	Cal. Dale		1g/10g	Head	Body
D835V2	4d194	7-24-2018	835	1g	9.36	9.61
D033 V2	40194	7-24-2010	055	10g	6.02	6.32
D1900V2	5d199	3-15-2018	1900	1g	40.40	39.60
D1900V2	50199	3-13-2010	1900	10g	21.10	20.80
D2450V2	960	3-20-2018	2450	1g	53.60	49.80
D2430V2	900	3-20-2010	2430	10g	25.10	23.50
D2600V2	1097	1-17-2018	2600	1g	56.40	54.40
D2000V2	1097	1-11-2010	2000	10g	25.30	24.20

Note(s):

Refer to Appendix F that mentioned about justification for Extended SAR Dipole Calibrations (D2600, SN : 1097)

Page 26 of 53

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR 1 Room

	System	n Dipole	T.S.		Measure	d Results	Torret	Dalta	Diet
Date Tested	Туре	Serial #	Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
2-14-2019	D2600V2	1097	Body	1g	5.68	56.80	54.40	4.41	
2-14-2019	D2000V2	1097	воцу	10g	2.54	25.40	24.20	4.96	
2-18-2019	D2450V2	960	Body	1g	5.09	50.90	49.80	2.21	
2-10-2019	D2450V2	900	воцу	10g	2.29	22.90	23.50	-2.55	
2-19-2019	D2450V2	960	Head	1g	5.56	55.60	53.60	3.73	1,2
2-19-2019	D2450V2	900	neau	10g	2.54	25.40	25.10	1.20	1,2
2-19-2019	D2600V2	1097	Head	1g	5.96	59.60	56.40	5.67	3,4
2-19-2019	D2000V2	1097	Tieau	10g	2.60	26.00	25.30	2.77	3,4

SAR 2 Room

	System Dipole		те		Measure	d Results	Torget	Delta	
Date Tested	Туре	Serial #	T.S. Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	±10 %	Plot No.
2-18-2019	D835V2	4d194	Body	1g	0.95	9.53	9.61	-0.83	5,6
2-10-2019	D033V2	40194	воцу	10g	0.62	6.24	6.32	-1.27	5,0

SAR 3 Room

	System	n Dipole	те		Measure	d Results	Torret	Dalta	Dist
Date Tested	Туре	Serial #	T.S. Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
2-8-2019	D835V2	4d194	Head	1g	0.99	9.92	9.36	5.98	7,8
2-0-2019	D033V2	40194	neau	10g	0.65	6.52	6.02	8.31	7,0
2-16-2019	D835V2	4d194	Head	1g	0.97	9.70	9.36	3.63	
2-10-2019	D033V2	40194	neau	10g	0.64	6.39	6.02	6.15	

SAR 4 Room

	System	n Dipole	T.S.		Measure	d Results	Torgot	Delta	Plot
Date Tested	Туре	Serial #	Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	No.
2-11-2019	D1900V2	5d199	Head	1g	3.95	39.50	40.40	-2.23	
2-11-2019	D1900V2	50199	neau	10g	1.94	19.40	21.10	-8.06	
2-13-2019	D1900V2	5d199	Body	1g	4.20	42.00	39.60	6.06	
2-13-2019	D1900V2	50199	воцу	10g	2.22	22.20	20.80	6.73	
2-18-2019	D1900V2	5d199	Body	1g	4.21	42.10	39.60	6.31	9,10
2-10-2019	D1900V2	50199	воцу	10g	2.21	22.10	20.80	6.25	9,10
2-20-2019	D1900V2	5d199	Head	1g	3.89	38.90	40.40	-3.71	
2-20-2019	D1900V2	50199	riedu	10g	2.01	20.10	21.10	-4.74	

9. Conducted Output Power Measurements

9.1. GSM

Per KDB 941225 D01 3G SAR Procedures:

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

GSM850 Measured Results

					Maximum Average Power (dBm)					
Mode	Coding	Time	Ch No.	Freq.	Meas	(dE sured		ıp Limit		
Schem	Scheme	Slots		(MHz)	Burst Pw r	Frame Pw r	Burst Pw r	Frame Pw r		
			128	824.2	32.0	23.0				
GSM	CS1	1	190	836.6	32.1	23.1	33.5	24.5		
(Voice)			251	848.8	32.0	23.0		-		
			128	824.2	32.0	23.0				
		1	190	836.6	32.0	22.9	33.5	24.5		
			251	848.8	31.8	22.8				
			128	824.2	30.8	24.8				
		2	190	836.6	31.0	24.9	31.5	25.5		
GPRS	004		251	848.8	30.8	24.8				
(GMSK)	CS1	3	128	824.2	29.1	24.9	30.0	25.7		
			190	836.6	29.3	25.0				
			251	848.8	29.4	25.1				
		4	128	824.2	27.3	24.3		25.0		
			190	836.6	27.6	24.6				
			251	848.8	27.4	24.4				
			128	824.2	25.6	16.5				
		1	190	836.6	26.0	16.9	27.0	18.0		
			251	848.8	25.8	16.8				
			128	824.2	23.8	17.8				
		2	190	836.6	24.2	18.2	25.0	19.0		
EGPRS	MCS5		251	848.8	24.1	18.1				
(8PSK)	1010-55		128	824.2	22.0	17.8				
		3	190	836.6	22.1	17.8	23.5	19.2		
			251	848.8	22.8	18.5				
			128	824.2	20.8	17.8				
		4	190	836.6	20.2	17.2	21.5	18.5		
			251	848.8	21.0	18.0				

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

• GMSK (GPRS) mode with 3 time slots for Max power, based on the Tune-up Procedure. Refer to §6.3.

• SAR is not required for EGPRS (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4dB higher than GMSK GPRS or the adjusted SAR of the highest reported SAR of GMSK GPRS is ≤ 1.2W/kg.

GSM1900	Measured	Results							
					Maximum Average Power (dBm)				
Mode	Coding Scheme	Time Slots	Ch No.	Freq. (MHz)	Mea	(de sured	Tune-up Limit		
		0.010		(Burst Pwr	Frame Pw r	Burst Pw r	Frame Pw r	
0014			512	1850.2	28.7	19.6			
GSM (Voice)	CS1	1	661	1880.0	28.9	19.9	30.5	21.5	
(voice)			810	1909.8	29.1	20.1			
			512	1850.2	28.7	19.6			
		1	661	1880.0	28.8	19.7	30.5	21.5	
			810	1909.8	29.0	19.9			
			512	1850.2	26.7	20.7			
		2	661	1880.0	27.0	21.0	28.0	22.0	
GPRS	CS1		810	1909.8	26.9	20.9			
(GMSK)	CS1	3	512	1850.2	24.9	20.7	26.5	22.2 22.0	
			661	1880.0	25.3	21.0			
			810	1909.8	25.3	21.0			
			512	1850.2	23.3	20.2			
		4	661	1880.0	23.7	20.7	25.0		
			810	1909.8	23.6	20.6			
			512	1850.2	24.7	15.7			
		1	661	1880.0	25.3	16.2	26.5	17.5	
			810	1909.8	24.9	15.9			
			512	1850.2	22.5	16.5			
		2	661	1880.0	23.1	17.1	24.0	18.0	
EGPRS	MCS5		810	1909.8	22.8	16.7			
(8PSK)	IVICOD		512	1850.2	21.3	17.0			
		3	661	1880.0	21.6	17.3	22.5	18.2	
			810	1909.8	21.5	17.2			
			512	1850.2	18.9	15.9			
		4	661	1880.0	18.9	15.9	20.5	17.5	
			810	1909.8	19.1	16.1			

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- GMSK (GPRS) mode with 3 time slots for Max power, based on the Tune-up Procedure. Refer to §6.3.
- SAR is not required for EGPRS (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4dB higher than GMSK GPRS or the adjusted SAR of the highest reported SAR of GMSK GPRS is ≤ 1.2W/kg.

9.2. W-CDMA

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 2
WCDMA Constal Sottings	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA
	Subtest	1	2	3	4
	Loopback Mode	Test Mode 1			
	Rel99 RMC	12.2kbps RMC			
	HSDPA FRC	H-Set 1			
	Power Control Algorithm	Algorithm 2			
W-CDMA General	βc	2/15	11/15	15/15	15/15
Settings	βd	15/15	15/15	8/15	4/15
Settings	Bd (SF)	64			
	βc/βd	2/15	11/15	15/8	15/4
	βhs	4/15	24/15	30/15	30/15
	MPR (dB)	0	0	0.5	0.5
	D _{ACK}	8			
	D _{NAK}	8			
HSDPA	DCQI	8			
Specific	Ack-Nack repetition factor	3			
Settings	CQI Feedback (Table 5.2B.4)	4ms			
	CQI Repetition Factor (Table 5.2B.4)	2			
	Ahs=βhs/βc	30/15			

HSPA (HSDPA & HSUPA) Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to Release 6 procedures in table C,11.1.3 of 3GPP TS 34.121-1 v13. A summary of these settings are illustrated below:

,	Mode	HSPA						
	Subtest	1	2	3	4	5		
	Loopback Mode	Test Mode 1						
	Rel99 RMC	12.2 kbps RMC						
	HSDPA FRC	H-Set 1						
	HSUPA Test	HSPA						
	Power Control Algorithm	Algorithm 2				Algorithm 1		
WCDMA	βc	11/15	6/15	15/15	2/15	15/15		
General	βd	15/15	15/15	9/15	15/15	0		
Settings	βec	209/225	12/15	30/15	2/15	5/15		
-	βc/βd	11/15	6/15	15/9	2/15	-		
	βhs	22/15	12/15	30/15	4/15	5/15		
	βed	1309/225	94/75	47/15	56/75	47/15		
	CM (dB)	1	3	2	3	1		
	MPR (dB)	0	2	1	2	0		
	DACK	8				0		
	DNAK	8						
HSDPA	DCQI		0					
Specific	Ack-Nack repetition factor 3							
Settings	CQI Feedback (Table 5.2B.4) 4ms							
-	CQI Repetition Factor (Table 5.2B.4)	2						
	Ahs = β hs/ β c	30/15						
	E-DPDCCH	6	8	8	5	0		
	DHARQ	0	0	0	0	0		
	AG Index	20	12	15	17	12		
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	67		
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9		
	Reference E-TFCIs	5	5	2	5	1		
	Reference E-TFCI	11	11	11	11	67		
HSUPA	Reference E-TFCI PO	4	4	4	4	18		
Specific	Reference E-TFCI	67	67	92	67	67		
Settings	Reference E-TFCI PO	18	18	18	18	18		
-	Reference E-TFCI	71	71	71	71	71		
	Reference E-TFCI PO	23	23	23	23	23		
	Reference E-TFCI	75	75	75	75	75		
	Reference E-TFCI PO	26	26	26	26	26		
	Reference E-TFCI	81	81	81	81	81		
	Reference E-TFCI PO	27	27	27	27	27		
	Maximum Channelization Codes	2xSF2	·	·	•	SF4		

W-CDMA Band II Measured Results Hotspot Reduced Proximity sensor Reduced Maximum Average Power Freq. (dBm) Average Power (dBm) Average Power (dBm) UL Ch No. Mode (MHz) Measured Measured Tune-up Tune-up Measured Tune-up MPR MPR MPR Pw r Limit Pw r Limit Limit Pw r 9262 1852.4 23.2 20.3 20.3 Rel 99 Release 99 (RMC, 12.2 9400 1880.0 23.0 N/A 24.5 20.1 N/A 21.5 20.1 N/A 21.5 kbps) 9538 1907.6 23.3 20.3 20.3 9262 1852.4 23.2 20.3 20.3 Subtest 1 9400 1880.0 23.1 0 24.0 20.1 0 21.0 20.1 0 21.0 9538 1907.6 23.3 20.3 20.3 9262 1852.4 23.1 20.4 20.4 Subtest 2 9400 1880.0 23.0 0 24.0 20.2 0 21.0 20.2 0 21.0 9538 1907.6 23.4 20.3 20.3 HSDPA 9262 1852.4 22.2 20.4 20.4 Subtest 3 9400 1880.0 22.0 0.5 23.5 20.2 0 21.0 20.2 0 21.0 9538 1907.6 22.6 20.4 20.4 9262 1852.4 22.2 20.4 20.4 21.0 Subtest 4 0.5 23.5 0 21.0 0 9400 1880.0 22.0 20.2 20.2 9538 1907.6 22.6 20.4 20.4 9262 1852.4 22.1 19.3 19.3 Subtest 1 0 24.0 0 21.0 0 21.0 9400 1880.0 21.9 19.1 19.1 9538 1907.6 22.4 19.3 19.3 9262 1852.4 19.7 19.4 19.4 Subtest 2 2 22.0 0 21.0 0 21.0 9400 19.5 19.2 19.2 1880.0 9538 20.1 19.4 19.4 1907.6 9262 19.4 19.3 1852.4 22.2 HSUPA Subtest 3 23.0 0 21.0 0 21.0 9400 1880.0 22.0 1 19.2 19.2 9538 1907.6 19.3 19.3 22.5 9262 1852.4 19.7 19.4 19.4 Subtest 4 2 22.0 0 21.0 0 21.0 9400 1880.0 19.5 19.2 19.2 9538 1907.6 20.1 19.4 19.4 20.4 20.4 9262 1852.4 23.4 Subtest 5 0 24.0 0 21.0 0 21.0 9400 1880.0 20.2 20.2 23.1 9538 1907.6 20.3 23.4 20.3

W-CDMA Band V Measured Results

Mode		UL Ch No.	Freq.	Maxim un	n Averaç (dBm)	je Power
100		OL CITNO.	(MHz)	Measured Pw r	MPR	Tune-up Limit
	Rel 99	4132	826.4	24.7		
Release 99	(RMC, 12.2	4183	836.6	25.0	N/A	25.5
	kbps)	4233	846.6	25.0		
		4132	826.4	23.2		
	Subtest 1	4183	836.6	23.5	0	23.5
		4233	846.6	23.5		
		4132	826.4	22.3		
	Subtest 2	4183	836.6	22.6	0	23.5
		4233	846.6	22.7		
HSDPA		4132	826.4	22.4		
	Subtest 3	4183	836.6	22.6	0.5	23.0
		4233	846.6	22.7		
		4132	826.4	21.2		
	Subtest 4	4183	836.6	21.6	0.5	23.0
		4233	846.6	21.7		
		4132	826.4	22.3		
	Subtest 1	4183	836.6	22.6	1	24.0
		4233	846.6	22.6		
		4132	826.4	20.2		
	Subtest 2	4183	836.6	20.5	3	22.0
		4233	846.6	20.5		
		4132	826.4	22.3		
HSUPA	Subtest 3	4183	836.6	22.6	1	24.0
		4233	846.6	22.6		
		4132	826.4	20.3		
	Subtest 4	4183	836.6	20.5	3	22.0
		4233	846.6	20.5		
		4132	826.4	24.7		
	Subtest 5	4183	836.6	25.0	0	25.0
		4233	846.6	25.0		

9.3. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	(N _{RB})	MPR (dB)				
	1.4	3.0	5	10	15	20	1
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3
256 QAM		≤ 5					

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)	
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A	
			3	>5	≤ 1	
			5	>6	≤ 1	
NS 03	6.6.2.2.1	2, 4, 10, 23, 25,	10	>6	≤ 1	
_		35, 36, 66, 70	15	>8	≤ 1	
			20	>10	≤ 1	
NS_04	6.6.2.2.2, 6.6.3.3.19	41	5, 10, 15, 20	Table 6.2.4-4	Table 6.2.4-4a	
		1	10,15,20	≥ 50 (NOTE1)	≤ 1 (NOTE1)	
NS 05	6.6.3.3.1		15, 20		-18 (NOTE2)	
-			10.15.20		≤ 1 (NOTE 1)	
		65 (NOTE 3)	15,20	Table 6.2.4	18 (NOTE 2)	
NS 06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1		
NS_07	6.6.2.2.3 6.6.3.3.2	13	10		6.2.4-2	
NS 08	6.6.3.3.3	19	10, 15	> 44	≤ 3	
-				> 40	≤ 1	
NS_09	6.6.3.3.4	21	10, 15	> 55	≤ 2	
NS 10		20	15, 20		6.2.4-3	
NS_11	6.6.2.2.1 6.6.3.3.13	23	1.4, 3, 5, 10, 15, 20		6.2.4-5	
NS_12	6.6.3.3.5	26	1.4, 3, 5, 10, 15	Table	6.2.4-6	
NS 13	6.6.3.3.6	26	5	Table 6.2.4-7		
NS 14	6.6.3.3.7	26	10, 15		6.2.4-8	
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15	Table	6.2.4-9 6.2.4-10	
NS_16	6.6.3.3.9	27	3, 5, 10	Table 6.2.4-11	, Table 6.2.4-12, 6.2.4-13	
NS 17	6.6.3.3.10	28	5, 10	Table 5.6-1	N/A	
			5	≥ 2	≤ 1	
NS_18	6.6.3.3.11	28	10, 15, 20	≥ 1	≤ 4	
NS 19	6.6.3.3.12	44	10, 15, 20	Table	6.2.4-14	
NS_20	6.2.2 6.6.2.2.1 6.6.3.3.14	23	5, 10, 15, 20	Table	8.2.4-15	
NS_21	6.6.2.2.1 6.6.3.3.15	30	5, 10	Table	8.2.4-16	
NS 22	6.6.3.3.16	42, 43	5, 10, 15, 20	Table	8.2.4-17	
NS 23	6.6.3.3.17	42, 43	5, 10, 15, 20		VA	
NS_24	6.6.3.3.20	65 (NOTE 4)	5, 10, 15, 20		8.2.4-19	
NS 25	6.6.3.3.21	65 (NOTE 4)	5, 10, 15, 20		8.2.4-20	
NS 26	6.6.3.3.22	68	10, 15		8.2.4-21	
NS_27	6.6.2.2.5, 6.6.3.3.23	48	5, 10, 15, 20		6.2.4-22	
NS_28	6.2.2A, 6.6.3.3.24	46 (NOTE 5)	20	Table	8.2.4-23	
NS_29	6.2.2A, 6.6.2.3.1a, 6.6.3.3.25	46 (NOTE 5)	20	Table	8.2.4-24	
NS_30	6.2.2A, 6.6.3.3.26	46 (NOTE 5)	20	Table	8.2.4-25	
NS_31	6.2.2A, 6.6.3.3.27	46 (NOTE 5)	20	Table	8.2.4-26	
NS 32		-				
	policable when the	lower edge of the as	signed E-LITPA	UL channel ban	dwidth	
fn	equency is larger th	an or equal to the up gned, where channe	pper edge of PH	IS band (1915.7	MHz) + 4 MHz +	

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Page 34 of 53

LTE Band 5 Measured Results

					Maximum	n Average Powe	r	
BW			RB			(dBm)	1	
(MHz)	Mode	RB Allocation	offset		leasured Pwr(dB	1		Tune-up
(1011 12)		Allocation	onser	20450	20525	20600	MPR	Limit
				829 MHz	836.5 MHz	844 MHz		
		1	0		24.6	_	0.0	25.5
		1	25		24.6	-	0.0	25.5
		1	49		24.5	-	0.0	25.5
	QPSK	25	0		23.6	-	1.0	24.5
		25	12		23.6	_	1.0	24.5
		25	25		23.5	_	1.0	24.5
10 MHz		50	0		23.5	_	1.0	24.5
		1	0		23.5		1.0	24.5
		1	25		23.4	_	1.0	24.5
		1	49		23.4		1.0	24.5
	16QAM	25	0		22.6	_	2.0	23.5
		25	12		22.5		2.0	23.5
		25	25		22.5	_	2.0	23.5
		50	0		22.5		2.0	23.5
BW		RB	RB		Aeasured Pwr (dB	1	1000	Tune-up
(MHz)	Mode	Allocation	offset	20425	20525	20625	MPR	Limit
				826.5 MHz	836.5 MHz	846.5 MHz		
		1	0	24.7	24.5	24.6	0.0	25.5
		1	12	24.6	24.5	24.6	0.0	25.5
		1	24	24.6	24.5	24.5	0.0	25.5
	QPSK	12	0	23.7	23.5	23.6	1.0	24.5
		12	7	23.7	23.5	23.6	1.0	24.5
		12	13	23.6	23.5	23.6	1.0	24.5
5 MHz		25	0	23.7	23.5	23.6	1.0	24.5
• · · · -		1	0	23.8	23.3	23.5	1.0	24.5
		1	12	23.7	23.3	23.5	1.0	24.5
		1	24	23.7	23.3	23.5	1.0	24.5
	16QAM	12	0	22.6	22.5	22.6	2.0	23.5
		12	7	22.6	22.4	22.6	2.0	23.5
		12	13	22.6	22.4	22.6	2.0	23.5
		25	0	22.6	22.5	22.6	2.0	23.5
BW		RB	RB		leasured Pwr (dB	· · · · · · · · · · · · · · · · · · ·		Tune-up
(MHz)	Mode	Allocation	offset	20415	20525	20635	MPR	Limit
				825.5 MHz	836.5 MHz	847.5 MHz		
		1	0	24.7	24.6	24.5	0.0	25.5
		1	8	24.7	24.5	24.5	0.0	25.5
		1	14	24.6	24.5	24.5	0.0	25.5
	QPSK	8	0	23.7	23.5	23.6	1.0	24.5
		8	4	23.7	23.5	23.6	1.0	24.5
		8	7	23.7	23.5	23.5	1.0	24.5
3 MHz		15	0	23.7	23.5	23.5	1.0	24.5
U IL		1	0	23.9	23.6	23.7	1.0	24.5
		1	8	23.7	23.5	23.6	1.0	24.5
		1	14	23.4	23.5	23.4	1.0	24.5
	16QAM	8	0	22.6	22.6	22.5	2.0	23.5
		8	4	22.7	22.6	22.5	2.0	23.5
		8	7	22.7	22.5	22.5	2.0	23.5
		15	0	22.6	22.5	22.5	2.0	23.5

LTE Band 5 Measured Results (Continued)

				Maximum Average Power (dBm)					
BW	Mode	RB	RB	N	leasured Pwr (dBr	m)		Tuno un	
(MHz)		Allocation	offset	20407	20525	20643	MPR	Tune-up Limit	
				824.7 MHz	836.5 MHz	848.3 MHz		Link	
		1	0	24.7	24.5	24.5	0.0	25.5	
		1	3	24.7	24.5	24.5	0.0	25.5	
		1	5	24.6	24.5	24.5	0.0	25.5	
	QPSK	3	0	24.7	24.5	24.4	0.0	25.5	
			3	1	24.7	24.5	24.4	0.0	25.5
		3	3	24.6	24.5	24.4	0.0	25.5	
1.4 MHz		6	0	23.7	23.5	23.5	1.0	24.5	
1.4 10112		1	0	23.7	23.2	23.4	1.0	24.5	
		1	3	23.9	23.1	23.4	1.0	24.5	
		1	5	23.9	23.2	23.4	1.0	24.5	
	16QAM	3	0	23.7	23.5	23.4	1.0	24.5	
		3	1	23.6	23.5	23.4	1.0	24.5	
		3	3	23.6	23.5	23.4	1.0	24.5	
		6	0	22.5	22.5	22.5	2.0	23.5	

Note(s):

10 MHz Bandwidths does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices

LTE Band TDD Measured Results

Procedure used to establish SAR test signal for LTE TDD Band

Set to CMW-500 with following parameters:

- Turn the LTE Signaling off using "ON | OFF" key
- Operating Band: Select Band 41 and TDD
- Go to "Config...."

LTE Signaling 1 - X3.2.10.6						LTE
Connection Status	PCC S	ICC				LTE 1
Cell	Operating Band	Band 41	•	TDD	-	TX Meas.
Packet Switched OFF		Downlink		Uplink		
RRC State Idle	Channel	40620 Ch		40620	Ch	LTE 1 Ext.BLER
Event Log	Frequency	2593.0 MHz	r.	2593.0	MHz	
13:21:26 🚹 State 'Cell Off'	Cell Bandwidth	20.0 MHz	•	20.0 MI	lz 🗸	Go to
)3:21:17 🕦 State 'Cell On')3:21:16 🚺 Signaling Failure	RS EPRE	-85.8 dBn	n/15kHz			
3:21:13 () Network Originated Detach	Full Cell BW Pow		1			
3:21:02 State 'Connection Established' 3:21:02 EPS Dedicated Bearer Established	PUSCH Open Lo	Routing				
03:20:57 👩 State 'Attached'	PUSCH Closed L	oop Target Powe	r	23.0	dBm	
	Connection Set	hun				
UE Info -	Scheduling RM	394 C.	•			<u> </u>
IMEI IMSI		Downlink	Up	link		
UE IPv4 Address [0] UE IPv6 Prefix [0]	#RB	1	00 -		100 -	
	RB Pos./Start RE	3 Iow 🔻	0	low 🕶	0	
	Modulation	QPS	SK 🕶	Q	PSK 🕶	
	TBS ldx / Value	5 -	8760	2	4584	LTE Signaling
	Throughput	3.970 Mbi	t/s	1.834	Mbit/s	OFF
	Ť	Ĭ		Ĭ .		Config

• Go to "Physical Cell Setup"

UL Korea, Ltd. Suwon Laboratory

- Select "TDD" and Set "Uplink Downlink Configuration" to "0"
- (Uplink Downlink Configuration "0" for Power class 3, Uplink Downlink Configuration "1" for Power class 2.)
- Turn the cell on using "ON | OFF" key

🐉 LTE Signal	ling Configuration			LTE
PCC	SCC		LTE :	
Path: Physic	cal Cell Setup/TDD/Uplink	Downlink Configuration	TX M	leas.
Duplex	Mode	TDD -		
Scenari	io	Standard Cell 🔹		BLER
B RF Setti				
	nk Power Levels			
	Power Control		Go te	o
	I Cell Setup			
	Cell Bandwidth	20.0 MHz - #RB Max: 100		
UL C	Cell Bandwidth	20.0 MHz	Rout	ing
Phys	sical Cell ID	0		_
Cycl	lic Prefix	Normal 🔻		
Sou	nding RS (SRS)			
⊟- TDD				
	Jplink Downlink Configu			
	Subframe Number	0 1 2 3 4 5 6 7 8 9		
	Direction	istttisttt		
⊡-PRA	Special Subframe	7		
-Connec				
E CQI Rep	porting		LTE	
⊕-UE Mea	surement Report		Sign	aling
	Y Y	Y Y Y	Y	
			Confi	g

Doc. No.: 1.0

This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Connect to EUT

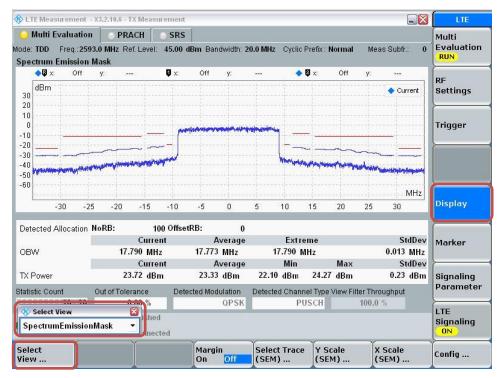
- Turn the cell on using "ON | OFF" key
- After EUT is Attached
- Select "Connect"

🚯 LTE Signaling 1 - X3.2.10.6						LTE
Connection Status		PCC	icc			LTE 1
Cell 🕎		Operating Band	Band 41	-	TDD	TX Meas.
Packet Switched Attached	J		Downlink		Uplink	
RRC State Connected		Channel	40620 C	ĥ	40620 Ch	LTE 1 Ext.BLER
Event Log		Frequency	2593.0 M	IHz	2593.0 MHz	
03:31:31 () State 'Attached'		Cell Bandwidth	20.0 MHz	•	20.0 MHz	Go to
03:31:31 O EPS Default Bearer Established		RS EPRE	-85.8 d	Bm/15kHz		dotom
03:31:31 🕜 RRC Connection Established 03:31:02 🔒 State 'Cell On'		Full Cell BW Pow	55.0 dl	Bm		
03:31:00 🕜 State 'Cell Off'		PUSCH Open Lo	op Nom.Power	r	23 dBm	Routing
03:30:23 🕜 State 'Cell On' 03:30:22 🚺 Signaling Failure		PUSCH Closed L	oop Target Po	wer	23.0 dBm	
03:30:19 A Network Originated Detach	•					
UE Info 👻		Connection Se	399.80%			
IMEI 001027009999998		Scheduling RM	5			
IMSI 001010123456789			Downlink	Up	link	
UE IPv4 Address [0] 192.168.48.129 UE IPv6 Prefix [0] fc01:abab:cdcd:efe0::		#RB		100 -	100 -	
		RB Pos./Start RE	B low -	0	low 🕶 0	
		Modulation	0	PSK -	QPSK 🕶	
		TBS ldx / Value	5	8760	2 4584	LTE Signaling
		Throughput	3.970 N	Abit/s	1.834 Mbit/s	ON ON
Detach Connect		Ŷ	Sel	nd SMS	Handover	Config
Connect			36		indiad ver in	comig in

Max Power Setting

- Select "LTE 1 TX Meas."
- Press "RESTART | STOP" Soft key

LTE Signaling 1 - X3.2.10.6					LTE
Connection Status	PCC S	cc			LTE 1
Cell 🥎	Operating Band	Band 41	-	TDD	TX Meas.
Packet Switched 📩 Connection Established		Downlink		Uplink	
RRC State Connected	Channel	40620	Ch	40620 Ch	LTE 1 Ext.BLER
Event Log	Frequency	2593.0	MHz	2593.0 MHz	
03:33:07 🕦 State 'Connection Established'	Cell Bandwidth	20.0 MHz	•	20.0 MHz	Go to
03:33:07 () EPS Dedicated Bearer Established 03:31:31 () State 'Attached'	RS EPRE	-85.8	dBm/15kHz		
03:31:31 C EPS Default Bearer Established	Full Cell BW Pow		dBm		
03:31:31 🔴 RRC Connection Established	PUSCH Open Loc	Routing			
03:31:02 🕜 State 'Cell On' 03:31:00 🍘 State 'Cell Off'	PUSCH Closed Lo				
03:30:23 A State 'Cell On'	Connection Set				
UE Info 🔹 🔲	Scheduling RMC	19 1 6	•		<u> </u>
IMEI 001027009999998 IMSI 001010123456789		Downlink	Uţ	olink	
UE IPv4 Address [0] 192.168.48.129 UE IPv6 Prefix [0] fc01:abab:cdcd:efe0::	#RB		100 -	100 -	. }
	RB Pos./Start RE	low -	0	low 🕶	0
	Modulation	-	QPSK -	QPSK •	
	TBS ldx / Value	5	8760	2 458	4 LTE Signaling
	Throughput	3.970) Mbit/s	1.834 Mbit/s	
T Y Y	- Y	- T	Send SMS	Handover	. Config


Page 38 of 53

- Select "Signaling Parameter"
- Select "TX Power Control (TPC)" > Select "Active TPC Setup" to "Max Power" > Set "Closed Loop Target Power" to "23 dBm"

LTE Measur	ement - X3.2.10.6 - TX Measurem	ent				LTE
OMulti Eva	iluation PRACH S req.:2593.0 MHz Ref. Level: 44.	RS 80 dBm Bandwidt	h: 20.0 MHz Cyclic F	Prefix : Normal	Meas Subfr.: 0	Multi Evaluation
EVM						
x 					CC CC Marconatori	RF Settings
nband Emis	sions					<u>}</u>
dB					Resource Block	Trigger
qualizer Sp	ectrum Flatness					
dB					Subcarrier	
Spectrum A	CLR					
dBm			-			Display
spectrum 🎽	Signaling TPC				<u> </u>	
dBm	TX Power Control (TPC) Active TPC Setup		Max Power		-	
	Closed Loop Target Powe		23.0 dBm			Signaling
FX Measu	closed coop rangerrow		20.0 0011			Paramete
TX Power						1.75
PS:						LTE Signaling ON
ell ietup	Connection Setup	DL Error Insertion .	ТРС	Power	Enable	Config

View TX Power

- Go to "Display"
- Select "Select View..."
- Select "Spectrum Emission Mask"

Page 39 of 53

LTE Band 41 Measured Results

						Maximum	Average Power (dBm)	•		
BW	Mode	RB Allocation	RB		N	leasured Pwr (dB				Tune-up
(MHz)		Allocation	offset	39750	40185	40620	41055	41490	MPR	Limit
			0	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	0.0	05
		1	0 49	24.2 24.4	24.0 24.2	23.8 23.7	23.5 23.5	23.5 23.4	0.0	25 25
		1	49 99	24.4	24.2	23.7	23.5	23.4	0.0	25
	QPSK	50	0	23.3	23.1	23.9	23.5	23.3	1.0	23
	0.011	50	24	23.3	23.1	22.8	22.4	22.4	1.0	24
		50	50	23.4	23.2	22.8	22.4	22.4	1.0	24
		100	0	23.3	23.1	22.8	22.4	22.4	1.0	24
20 MHz		1	0	22.9	23.0	22.5	22.2	22.3	1.0	24
		1	49	23.2	23.0	22.7	22.5	22.0	1.0	24
		1	99	22.9	22.8	22.4	22.3	22.2	1.0	24
	16QAM	50	0	22.3	22.1	21.8	21.5	21.4	2.0	23
		50	24	22.4	22.1	21.8	21.6	21.4	2.0	23
		50	50	22.4	22.1	21.8	21.5	21.4	2.0	23
		100	0	22.4	22.1	21.8 leasured Pw r (dB	21.5	21.4	2.0	23
BW	Mode	RB	RB	39750	40185	40620	41055	41490	MPR	Tune-up
(MHz)	mode	Allocation	offset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	1	Limit
		1	0	24.2	24.1	23.9	23.5	23.5	0.0	25
		1	37	24.5	24.1	23.9	23.5	23.4	0.0	25
		1	74	24.2	24.1	23.9	23.5	23.5	0.0	25
	QPSK	36	0	23.4	23.2	22.9	22.5	22.4	1.0	24
		36	20	23.4	23.2	22.9	22.5	22.4	1.0	24
		36	39	23.4	23.2	22.9	22.5	22.5	1.0	24
15 MHz		75	0	23.4	23.2	22.9	22.5	22.4	1.0	24
		1	0	23.2	23.0	22.4	22.5	22.0	1.0	24
		1	37	23.2	22.8	22.6	22.2	21.9	1.0	24
	1604.M	1	74	23.3	23.0	22.5	22.2	21.9	1.0	24
	16QAM	36	0	22.4	22.1	21.8	21.6	21.5	2.0	23
		36 36	20 39	22.5 22.5	22.2 22.2	21.9 21.9	21.6 21.5	21.5 21.5	2.0 2.0	23 23
		75	0	22.3	22.2	21.9	21.5	21.3	2.0	23
		13	0	22.7		leasured Pw r (dB		21.4	2.0	25
BW	Mode	RB	RB	39750	40185	40620	41055	41490	MPR	Tune-up
(MHz)		Allocation	offset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	1	Limit
		1	0	24.2	24.1	23.7	23.5	23.4	0.0	25
		1	25	24.3	24.1	23.7	23.5	23.4	0.0	25
		1	49	24.2	24.1	23.7	23.5	23.4	0.0	25
	QPSK	25	0	23.3	23.1	22.0	00.4			
			-			22.8	22.4	22.4	1.0	24
		25	12	23.3	23.1	22.8	22.5	22.4	1.0 1.0	24
		25 25	12 25	23.3 23.4	23.1 23.1	22.8 22.8	22.5 22.4	22.4 22.4	1.0 1.0 1.0	24 24
10 MHz		25 25 50	12 25 0	23.3 23.4 23.3	23.1 23.1 23.1	22.8 22.8 22.8	22.5 22.4 22.4	22.4 22.4 22.4	1.0 1.0 1.0 1.0	24 24 24
10 MHz		25 25 50 1	12 25 0 0	23.3 23.4 23.3 23.3	23.1 23.1 23.1 22.9	22.8 22.8 22.8 22.6	22.5 22.4 22.4 22.4 22.4	22.4 22.4 22.4 22.0	1.0 1.0 1.0 1.0 1.0 1.0	24 24 24 24 24
10 MHz		25 25 50 1 1	12 25 0 0 25	23.3 23.4 23.3 23.3 23.3 23.3	23.1 23.1 23.1 22.9 22.9	22.8 22.8 22.8 22.6 22.7	22.5 22.4 22.4 22.4 22.4 22.5	22.4 22.4 22.4 22.0 22.1	1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 24 24 24 24 24
10 MHz		25 25 50 1	12 25 0 0	23.3 23.4 23.3 23.3	23.1 23.1 23.1 22.9	22.8 22.8 22.8 22.6	22.5 22.4 22.4 22.4 22.4	22.4 22.4 22.4 22.0	1.0 1.0 1.0 1.0 1.0 1.0	24 24 24 24 24
10 MHz	16QAM	25 25 50 1 1 1	12 25 0 0 25 49	23.3 23.4 23.3 23.3 23.3 23.3 23.4	23.1 23.1 23.1 22.9 22.9 22.9 22.9	22.8 22.8 22.8 22.6 22.7 22.7	22.5 22.4 22.4 22.4 22.5 22.5 22.4	22.4 22.4 22.4 22.0 22.1 22.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24 24 24 24 24 24 24
10 MHz	16QAM	25 25 50 1 1 1 25	12 25 0 0 25 49 0	23.3 23.4 23.3 23.3 23.3 23.4 23.4 22.4	23.1 23.1 22.9 22.9 22.9 22.9 22.9 22.1	22.8 22.8 22.6 22.7 22.7 22.7 21.7	22.5 22.4 22.4 22.4 22.5 22.4 22.5 22.4 21.5	22.4 22.4 22.0 22.1 22.0 22.1 22.0 21.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0	24 24 24 24 24 24 24 23
10 MHz	16QAM	25 25 50 1 1 1 25 25	12 25 0 0 25 49 0 12	23.3 23.4 23.3 23.3 23.3 23.4 22.4 22.4	23.1 23.1 22.9 22.9 22.9 22.9 22.1 22.1	22.8 22.8 22.6 22.7 22.7 21.7 21.7 21.7 21.7 21.8	22.5 22.4 22.4 22.5 22.4 21.5 21.5 21.5 21.5 21.5	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0	24 24 24 24 24 24 24 23 23
10 MHz	16QAM	25 25 50 1 1 25 25 25 25	12 25 0 25 49 0 12 25	23.3 23.4 23.3 23.3 23.3 23.4 22.4 22.4	23.1 23.1 22.9 22.9 22.9 22.9 22.1 22.1 22.1	22.8 22.8 22.6 22.7 22.7 21.7 21.7 21.7 21.7 21.8	22.5 22.4 22.4 22.5 22.4 21.5 21.5 21.5 21.5 21.5 21.5	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0	24 24 24 24 24 24 23 23 23 23
10 MHz		25 25 50 1 1 25 25 25 25	12 25 0 25 49 0 12 25	23.3 23.4 23.3 23.3 23.3 23.4 22.4 22.4	23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.6 22.7 22.7 21.7 21.7 21.7 21.7 21.8 Maximum	22.5 22.4 22.4 22.5 22.5 22.4 21.5 21.5 21.5 21.5 21.5 Average Power (dBm)	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0	24 24 24 24 24 24 23 23 23 23
	16QAM Mode	25 25 50 1 1 25 25 25 50	12 25 0 25 49 0 12 25 0	23.3 23.4 23.3 23.3 23.3 23.4 22.4 22.4	23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.6 22.7 22.7 21.7 21.7 21.7 21.8 Maxim un leasured Pw r (dB	22.5 22.4 22.4 22.5 22.5 21.5 21.5 21.5 21.5 Average Power (dBm)	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0	24 24 24 24 24 24 23 23 23 23
BW		25 25 50 1 1 25 25 25 50 RB	12 25 0 25 49 0 12 25 0 RB	23.3 23.4 23.3 23.3 23.3 23.4 22.4 22.4	23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.6 22.7 22.7 21.7 21.7 21.7 21.8 Maxim un leasured Pw r (dB 40620	22.5 22.4 22.4 22.5 22.5 22.4 21.5 21.5 21.5 21.5 0 Average Power (dBm) m) 41055	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0	24 24 24 24 24 23 23 23 23 23 23
BW		25 25 50 1 1 25 25 25 50 RB	12 25 0 25 49 0 12 25 0 RB	23.3 23.4 23.3 23.3 23.3 23.4 22.4 22.4	23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.6 22.7 22.7 21.7 21.7 21.7 21.8 Maxim un leasured Pw r (dB	22.5 22.4 22.4 22.5 22.5 21.5 21.5 21.5 21.5 Average Power (dBm)	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0	24 24 24 24 24 23 23 23 23 23 23
BW		25 25 50 1 1 25 25 25 50 RB Allocation	12 25 0 25 49 0 12 25 0 RB offset	23.3 23.4 23.3 23.3 23.4 22.4 22.4 22.4	23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.6 22.7 22.7 21.7 21.7 21.7 21.7 21.8 Maxim um leasured Pw r (dB 40620 2593 MHz	22.5 22.4 22.4 22.5 22.5 21.5 21.5 21.5 21.5 0 Average Power (dBm) m) 41055 2636.5 MHz	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 MPR	24 24 24 24 24 23 23 23 23 23 23 Tune-up Limit
BW		25 25 50 1 1 25 25 25 50 RB Allocation	12 25 0 25 49 0 12 25 0 RB offset 0	23.3 23.4 23.3 23.3 23.3 23.4 22.4 22.4	23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.8 22.6 22.7 21.7 21.7 21.7 21.7 21.8 Maxim um leasured Pw r (dB 40620 2593 MHz 23.7	22.5 22.4 22.4 22.5 22.5 22.4 21.5 21.5 21.5 21.5 21.5 Average Power (dBm) m) 41055 2636.5 MHz 23.4	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 MPR 0.0	24 24 24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23
BW		25 25 50 1 1 25 25 25 50 RB Allocation	12 25 0 25 49 0 12 25 0 RB offset 0 12	23.3 23.4 23.3 23.3 23.3 23.4 22.4 22.4	23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.8 22.6 22.7 21.7 21.7 21.7 21.7 21.8 Maxim un leasured Pw r (dB 40620 2593 MHz 23.7 23.7	22.5 22.4 22.4 22.5 22.5 21.5 21.5 21.5 21.5 21.5 Average Power (dBm) m) 41055 2636.5 MHz 23.4 23.4	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 MPR 0.0 0.0	24 24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23
BW	Mode	25 25 50 1 1 25 25 25 50 RB Allocation 1 1	12 25 0 25 49 0 12 25 0 RB offset 0 12 24	23.3 23.4 23.3 23.3 23.4 22.4 22.4 22.4	23.1 23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.8 22.6 22.7 21.7 21.7 21.7 21.7 21.7 21.8 Maxim un keasured Pw r (dB 40620 2593 MHz 23.7 23.7 23.7	22.5 22.4 22.4 22.5 22.5 21.5 21.5 21.5 21.5 21.5 Average Power (dBm) m) 41055 2636.5 MHz 23.4 23.4 23.4	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0	24 24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23
BW	Mode	25 25 50 1 1 25 25 25 50 RB Allocation 1 1 1 1 25	12 25 0 25 49 0 12 25 0 RB offset 0 12 24 0	23.3 23.4 23.3 23.3 23.4 22.4 22.4 22.4	23.1 23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.8 22.6 22.7 21.7 21.7 21.7 21.7 21.7 21.8 Maxim un leasured Pw r (dB 40620 2593 MHz 23.7 23.7 23.7 23.7	22.5 22.4 22.4 22.5 22.4 21.5 21.5 21.5 21.5 21.5 21.5 Average Powe (dBm) m) 41055 2636.5 MHz 23.4 23.4 23.4 23.4 23.4	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0	24 24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23
BW (MHz)	Mode	25 25 50 1 1 25 25 25 50 RB Allocation 1 1 1 1 2 5 25 50 25 50 25 50 25 50 25 25 50 25 25 25 25 25 25 25 25 25 25 25 25 25	12 25 0 25 49 0 12 25 0 RB offset 0 12 24 0 7 13 0	23.3 23.4 23.3 23.3 23.4 22.4 22.4 22.4	23.1 23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.8 22.6 22.7 21.7 21.7 21.7 21.7 21.7 21.8 Maxim un Maxim un Maxim un Maxim 21.7 21.8 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	22.5 22.4 22.4 22.5 22.4 21.5 21.5 21.5 21.5 Average Power (dBm) m) 41055 2636.5 MHz 23.4 23.4 23.4 23.4 23.4 22.4 22.4	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0	24 24 24 24 23 23 23 23 23 23 23 Tune-up Limit 25 25 25 25 25 24 24 24 24
BW	Mode	25 25 50 1 1 25 25 25 50 RB Allocation 1 1 1 2 12 12 12 12 25 1	12 25 0 25 49 0 12 25 0 RB offset 0 12 24 0 7 13 0 0 0	23.3 23.4 23.3 23.3 23.4 22.4 22.4 22.4	23.1 23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.8 22.6 22.7 21.7 21.7 21.7 21.7 21.7 21.7 21.8 Maxim un keasured Pw r (dB 40620 2593 MHz 23.7 23.7 23.7 23.7 23.7 23.7 22.7 22.8 22.7	22.5 22.4 22.4 22.5 22.4 21.5 21.5 21.5 21.5 21.5 Average Power (dBm) m) 41055 2636.5 M-tz 23.4 23.4 23.4 23.4 22.4 22.4 22.4 22.4	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0	24 24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23
BW (MHz)	Mode	25 25 50 1 1 25 25 25 50 RB Allocation 1 1 1 1 2 2 5 1 2 5 0 1 1 1 1 2 12 12 12 12 12 12 11 1 1 1	12 25 0 25 49 0 12 25 0 RB offset 0 12 24 0 7 13 0 0 12	23.3 23.4 23.3 23.3 23.3 23.4 22.4 22.4	23.1 23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.8 22.6 22.7 22.7 21.7 21.7 21.7 21.8 Maxim un Reasured Pw r (dB 40620 2593 M-Hz 23.7 23.7 23.7 23.7 22.7 22.8 22.7 22.8 22.7 22.8 22.7 22.8 22.7 22.8 22.5	22.5 22.4 22.4 22.5 22.5 21.5 21.5 21.5 21.5 21.5 Average Power (dBm) m) 41055 2636.5 MHz 23.4 23.4 23.4 23.4 23.4 23.4 23.4 22.4 22	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0	24 24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23
BW (MHz)	Mode QPSK	25 25 50 1 1 25 25 25 50 RB Allocation 1 1 1 2 12 12 12 12 12 12 12 12 12 12 1	12 25 0 25 49 0 12 25 0 RB offset 0 12 24 0 7 13 0 0 12 24	23.3 23.4 23.3 23.3 23.4 22.4 22.4 22.4	23.1 23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.8 22.6 22.7 22.7 21.7 21.7 21.7 21.8 Maxim un Reasured Pw r (dB 40620 2593 MHz 23.7 23.7 23.7 23.7 22.7 22.8 22.7 22.8 22.7 22.8 22.7 22.8 22.7 22.8 22.5 22.5	22.5 22.4 22.4 22.5 22.4 21.5 21.5 21.5 21.5 Average Power (dBm) m) 41055 2636.5 MHz 23.4 23.4 23.4 23.4 22.4 22.4 22.4 22.4	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0	24 24 24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23
BW (MHz)	Mode	25 25 50 1 1 25 25 25 50 RB Allocation 1 1 12 12 12 12 12 12 12 12 12 12 12 12	12 25 0 49 0 12 25 0 12 25 0 RB offset 0 12 24 0 7 13 0 0 12 24 0 12 24 0	23.3 23.4 23.3 23.3 23.4 22.4 22.4 22.4	23.1 23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.8 22.6 22.7 22.7 21.7 21.7 21.7 21.7 21.8 Maxim un Resured Pw r (dB 40620 2593 MHz 23.7 23.7 23.7 23.7 22.7 22.8 22.7 22.8 22.7 22.8 22.7 22.8 22.5 22.5 22.5 22.5 21.8	22.5 22.4 22.4 22.5 22.4 21.5 21.5 21.5 21.5 21.5 Average Power (dBm) m) 41055 2636.5 MHz 23.4 23.4 23.4 23.4 22.4 22.4 22.4 22.4	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 0.0 0	24 24 24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23
BW (MHz)	Mode QPSK	25 25 50 1 1 25 25 25 50 RB Allocation 1 1 12 12 12 12 12 12 12 12 12 12	12 25 0 25 49 0 12 25 0 RB offset 0 12 24 0 7 13 0 0 12 24 0 7 13 0 0 7 7 13 0 0 7 12 24 0 7 13 0 0 12 24 0 7 13 0 0 12 24 13 0 0 12 24 13 13 0 12 13 13 13 13 13 12 12 13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13	23.3 23.4 23.3 23.3 23.4 22.4 22.4 22.4	23.1 23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.8 22.6 22.7 21.7 21.7 21.7 21.7 21.8 Maxim un leasured Pw r (dB 40620 2593 MHz 23.7 23.7 23.7 23.7 23.7 22.7 22.8 22.7 22.8 22.7 22.8 22.5 22.5 22.5 22.5 22.5 21.8 21.8	22.5 22.4 22.4 22.5 21.5 21.5 21.5 21.5 21.5 Average Power (dBm) 41055 2636.5 MHz 23.4 23.4 23.4 22.4 22.4 22.4 22.4 22.4	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 0.0 0	24 24 24 24 24 23 23 23 23 23 23 23 7 23 7
BW (MHz)	Mode QPSK	25 25 50 1 1 25 25 25 50 RB Allocation 1 1 12 12 12 12 12 12 12 12 12 12 12 12	12 25 0 49 0 12 25 0 12 25 0 RB offset 0 12 24 0 7 13 0 0 12 24 0 12 24 0	23.3 23.4 23.3 23.3 23.4 22.4 22.4 22.4	23.1 23.1 23.1 22.9 22.9 22.9 22.1 22.1 22.1 22.1 22	22.8 22.8 22.8 22.6 22.7 22.7 21.7 21.7 21.7 21.7 21.8 Maxim un Resured Pw r (dB 40620 2593 MHz 23.7 23.7 23.7 23.7 22.7 22.8 22.7 22.8 22.7 22.8 22.7 22.8 22.5 22.5 22.5 22.5 21.8	22.5 22.4 22.4 22.5 22.4 21.5 21.5 21.5 21.5 21.5 Average Power (dBm) m) 41055 2636.5 MHz 23.4 23.4 23.4 23.4 22.4 22.4 22.4 22.4	22.4 22.4 22.0 22.1 22.0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 0.0 0	24 24 24 24 24 23 23 23 23 23 23 23 23 23 23 23 23 23

Page 40 of 53

UL Korea, Ltd. Suwon Laboratory This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

9.4. Wi-Fi 2.4 GHz (DTS Band)

Measured Results (Max power)

Band (GHz)	Mode	Data Rate	Ch #	Freq. (MHz)	Avg Pwr (dBm)	Max Output Pow er (dBm)	SAR Test (Yes/No)
			1	2412	16.5		
			6	2437	16.9	18.0	
	802.11b	1 Mbps	11	2462	16.9		
			12	2467	16.1	17.0	No
			13	2472	15.2	16.0	INO
			1	2412			
			6	2437		17.0	
2.4	802.11g	6 Mbps	11	2462	Not Require		No
			12	2467		12.5	
			13	2472		10.0	
			1	2412		17.0	
	000.44		6	2437		17.0	
	802.11n (HT20)	6.5 Mbps	11	2462	Not Require	16.0	No
	(1120)		12	2467]	12.0	
			13	2472		7.0	

Measured Results (Reduced power)

Band (GHz)	Mode	Data Rate	Ch #	Freq. (MHz)	Avg Pwr (dBm)	Max Output Pow er (dBm)	SAR Test (Yes/No)	
			1	2412	11.2			
			6	2437	11.4	12.0	Yes	
	802.11b	1 Mbps	11	2462	11.3			
			12	2467	7.0	8.0	No	
			13	2472	6.7	8.0	INO	
			1	2412	11.1			
			6	2437	10.9	12.0		
2.4	802.11g	6 Mbps	11	2462	10.7		No	
			12	2467	6.8	8.0		
			13	2472	7.2	0.0		
			1	2412	11.0			
	902 11n		6	2437	10.7	12.0		
	802.11n (HT20)	6.5 Mbps	11	2462	10.5		No	
		12 2467 4.6 6.0						
			13	2472	5.3	0.0		

Note(s):

1. SAR is not required for 802.11g/n modes when the adjusted SAR for 802.11b is < 1.2 W/kg.

- 2. For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.
- 3. Additionally, SAR is not required for Channels 12 and 13 because the tune-up limit and the measured output power for these two channels are no greater than those for the default test channels. Refer to §6.3.

9.5. Bluetooth

Average Power Measured Results

Band (GHz)	Mode	Ch #	Freq. (MHz)	Meas. Avg Pwr (dBm)	Tune-up Limit	
		0	2402	8.7		
	GFSK	39	2441	9.0		
		78	2480	8.1	10.0	
		EDR,	0	2402	7.2	10.0
	EDR, 8-DPSK	39	2441	7.6		
2.4	0-0101	78	2480	6.7		
2.4		0	2402	5.0		
	LE, GFSK, 1Mbps	19	2440	5.5		
	GI SR, HVIDPS	39	2480	5.0	6.0	
		0	2402	4.8	0.0	
	LE, GFSK, 2Mbps	19	2440	5.3		
		39	2480	4.8		

Note(s):

SAR test is evaluated at GFSK mode in Bluetooth

Duty Factor Measured Results

Mode	Туре	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
GFSK	DH5	2.879	3.751	76.8%	1.30

Duty Cycle plots

GFSK

Keysight	Spectrun	n Analyz	er - Swe	pt SA																	7
RL		₹F	50 Ω	DC	CC	ORREC				SENSE:1	NT		AL	IGN AUTO						1 PM Jan 25	
										T -1				#Avg	Type:	RMS			т	RACE 1 2	345
							PN	O: Fast	•		g: RF B ten: 30										NNI
							IFG	ain:Lov	N	At	ten: 30	aв									
																		Δ	Mkr3	3.751	m
dB/div	R	ef 20	.00 d	Bm																-0.53	d d
g									. 1						Λ <mark>2Δ</mark> ΄	1	<mark>∧</mark> 3∆1				
).0									\bigcirc												_
									1						Y		Y				
.0		_															_				
.0		-					11.11.1	All the later	-						(min)	hann					
.0							Jule	(ARADA)	ska							n an tha tha th					
.0							1								Code -	LA U.A.					
.0		-																			
.0																					
enter	2.441	0000	00 G	Hz																Span	0 H
s BW	1 8 MI	dz							#VE	3W 50	MHz					S	weep	10.0)0 ms	(20001	l pt
																					-
R MODE				Х	2	754			Y	4 d Dun	FUN	CTION	FUNCT	TION WIDTH				UNCTIO	N VALUE		
Ν 2 Δ1	1 1					751 m 879 m		۸۱		4 dBm .41 dB											
Δ1		(Δ)				751 m				.53 dB											
1																					
		_							_		III			STATU	_						

Page 42 of 53

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

Reported SAR(W/kg) for WWAN= Measured SAR *Tune-up Scaling Factor Reported SAR(W/kg) for Wi-Fi and Bluetooth= Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 648474 D04 Handset SAR (Phablet Only):

When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at \leq 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

Additional 1-g SAR testing at 5 mm is not required when hotspot mode 10-g extremity SAR is not required for the surfaces and edges; since all 1-g reported SAR < 1.2 W/kg.

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply.

KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the *initial test position*, Area Scans were performed to determine the position with the *Maximum Value of SAR* (*measured*). The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the *initial test position*.

Page 44 of 53

10.1. GSM 850

	RF		PWR	Dist.	Test		Freq.	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot
Antenna	Exposure Conditions	Mode	Back-off	(mm)	Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
					Left Touch	190	836.6	33.5	32.1	0.138	0.188	
	Head	Voice	N/A	0	Left Tilt	190	836.6	33.5	32.1	0.072	0.099	
		VOICE	IVA	0	Right Touch	190	836.6	33.5	32.1	0.165	0.225	1
					Right Tilt	190	836.6	33.5	32.1	0.079	0.108	
Main	Body-w orn	GPRS 3	N/A	15	Rear	190	836.6	30.0	29.3	0.327	0.385	2
Ant.1	Bouy-worn	Slots	IVA	15	Front	190	836.6	30.0	29.3	0.203	0.239	
7.116.1					Rear	190	836.6	30.0	29.3	0.619	0.730	3
					Front	190	836.6	30.0	29.3	0.198	0.233	
	Hotspot	GPRS 3 Slots	N/A	10	Edge 2	190	836.6	30.0	29.3	0.335	0.395	
		Slots			Edge 3	190	836.6	30.0	29.3	0.210	0.248	
					Edge 4	190	836.6	30.0	29.3	0.123	0.145	

10.2. GSM 1900

	RF		PWR	Dist.	Test		Freq.	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot
Antenna	Exposure Conditions	Mode	Back-off	(mm)	Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
					Left Touch	661	1880.0	30.5	28.9	0.079	0.114	4
	Head	Voice	N/A	0	Left Tilt	661	1880.0	30.5	28.9	0.048	0.069	
	neau	VOICE	INA	0	Right Touch	661	1880.0	30.5	28.9	0.064	0.092	
					Right Tilt	661	1880.0	30.5	28.9	0.066	0.095	
Main	Body-w orn	GPRS 3	N/A	15	Rear	661	1880.0	26.5	25.3	0.131	0.173	5
Ant.1	bouy-worn	Slots		15	Front	661	1880.0	26.5	25.3	0.085	0.112	
And					Rear	661	1880.0	26.5	25.3	0.284	0.374	6
					Front	661	1880.0	26.5	25.3	0.187	0.246	
	Hotspot	GPRS 3 Slots	N/A	10	Edge 2	661	1880.0	26.5	25.3	0.048	0.063	
		3013			Edge 3	661	1880.0	26.5	25.3	0.166	0.219	
					Edge 4	661	1880.0	26.5	25.3	0.137	0.181	

10.3. W-CDMA Band II

	RF		PWR	Dist.	Test		Freq.	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot
Antenna	Exposure Conditions	Mode	Back-off	(mm)	Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
					Left Touch	9400	1880.0	24.5	23.0	0.262	0.367	7
	Head	Rel.99 RMC	Off	0	Left Tilt	9400	1880.0	24.5	23.0	0.143	0.200	
	neau	Rel.99 RIVIC	On	0	Right Touch	9400	1880.0	24.5	23.0	0.192	0.269	
					Right Tilt	9400	1880.0	24.5	23.0	0.160	0.224	
Main	Body-w orn		Off	15	Rear	9400	1880.0	24.5	23.0	0.309	0.432	8
Ant.1	Body-wom	INCI.33 ININC	On	15	Front	9400	1880.0	24.5	23.0	0.221	0.309	
7.11.1					Rear	9400	1880.0	21.5	20.1	0.346	0.474	9
					Front	9400	1880.0	21.5	20.1	0.225	0.308	
	Hotspot	Rel.99 RMC	On	10	Edge 2	9400	1880.0	21.5	20.1	0.065	0.089	
					Edge 3	9400	1880.0	21.5	20.1	0.244	0.334	
					Edge 4	9400	1880.0	21.5	20.1	0.197	0.270	

10.4. W-CDMA Band V

	RF		PWR	Dist.	Test		Freq.	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot
Antenna	Exposure Conditions	Mode	Back-off	(mm)	Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
					Left Touch	4183	836.6	25.5	25.0	0.045	0.051	
	Head	Rel.99 RMC	N/A	0	Left Tilt	4183	836.6	25.5	25.0	0.024	0.028	
	neau	INCI.33 ININC	IVA	0	Right Touch	4183	836.6	25.5	25.0	0.057	0.064	10
					Right Tilt	4183	836.6	25.5	25.0	0.024	0.027	
Main	Body worn	Rel.99 RMC	N/A	15	Rear	4183	836.6	25.5	25.0	0.333	0.378	11
Ant.1	Body-wom	INCI.33 ININC	IVA	15	Front	4183	836.6	25.5	25.0	0.182	0.206	
7116.1					Rear	4183	836.6	25.5	25.0	0.686	0.778	12
					Front	4183	836.6	25.5	25.0	0.195	0.221	
	Hotspot	Rel.99 RMC	N/A	10	Edge 2	4183	836.6	25.5	25.0	0.288	0.327	
					Edge 3	4183	836.6	25.5	25.0	0.279	0.316	
					Edge 4	4183	836.6	25.5	25.0	0.092	0.104	

10.5. LTE Band 5 (10MHz Bandwidth)

	RF		PWR	Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Antenna	Exposure Conditions	Mode	Back-off	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
					Left Touch	20525	836.5	1	0	25.5	24.6	0.037	0.045	
					Lent Touch	20020	030.5	25	0	24.5	23.6	0.030	0.037	
					Left Tilt	20525	836.5	1	0	25.5	24.6	0.022	0.027	
	Head	QPSK	N/A	0	Leit IIIt	20020	000.0	25	0	24.5	23.6	0.017	0.021	
	ricau	GION	19/2	Ū	Right Touch	20525	836.5	1	0	25.5	24.6	0.055	0.067	13
					Right Touch	20020	000.0	25	0	24.5	23.6	0.043	0.053	
					Right Tilt	20525	836.5	1	0	25.5	24.6	0.024	0.029	
					ragin inc	20020	000.0	25	0	24.5	23.6	0.019	0.023	
					Rear	20525	836.5	1	0	25.5	24.6	0.191	0.233	14
	Body-w orn	QPSK	N/A	15	riour	20020	000.0	25	0	24.5	23.6	0.155	0.192	
Main	body wom	GION	19/2	10	Front	20525	836.5	1	0	25.5	24.6	0.162	0.198	
Ant.1					TIOIR	20020	000.0	25	0	24.5	23.6	0.134	0.166	
					Rear	20525	836.5	1	0	25.5	24.6	0.284	0.347	15
					riour	20020	000.0	25	0	24.5	23.6	0.236	0.292	
					Front	20525	836.5	1	0	25.5	24.6	0.169	0.206	
					TION	20020	000.0	25	0	24.5	23.6	0.136	0.168	
	Hotspot	QPSK	N/A	10	Edge 2	20525	836.5	1	0	25.5	24.6	0.246	0.300	
	riotopot	Q. OIL	1	10	Edge 2	20020	000.0	25	0	24.5	23.6	0.205	0.253	
					Edge 3	20525	836.5	1	0	25.5	24.6	0.080	0.098	
					Luge 3	20020	000.0	25	0	24.5	23.6	0.068	0.084	
					Edge 4	20525	836.5	1	0	25.5	24.6	0.099	0.120	
					Luge 4	20020	000.0	25	0	24.5	23.6	0.079	0.097	

10.6. LTE Band 41 (20MHz Bandwidth)

	RF		PWR	Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Antenna	Exposure Conditions	Mode	Back-off	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
					Left Touch	39750	2506.0	1	49	25.0	24.4	0.124	0.142	
					Lent Touch	33730	2300.0	50	50	24.0	23.4	0.100	0.115	
					Left Tilt	39750	2506.0	1	49	25.0	24.4	0.141	0.162	
	Head	QPSK	N/A	0	Lort Int	00/00	2000.0	50	50	24.0	23.4	0.113	0.130	
	ricau	GIOR	19/3	Ū	Right Touch	39750	2506.0	1	49	25.0	24.4	0.181	0.208	16
					rught rouch	00/00	2000.0	50	50	24.0	23.4	0.145	0.167	
					Right Tilt	39750	2506.0	1	49	25.0	24.4	0.073	0.083	
					Nghi Hit	33730	2300.0	50	50	24.0	23.4	0.056	0.065	
					Rear	39750	2506.0	1	49	25.0	24.4	0.239	0.274	17
Main	Body-w orn	QPSK	N/A	15	itear	00/00	2000.0	50	50	24.0	23.4	0.174	0.200	
Ant.2	bouy-wom	GION	IVA.	15	Front	39750	2506.0	1	49	25.0	24.4	0.237	0.272	
					TION	33730	2300.0	50	50	24.0	23.4	0.188	0.216	
					Rear	39750	2506.0	1	49	25.0	24.4	0.451	0.517	
					Real	39750	2000.0	50	50	24.0	23.4	0.375	0.431	
					Front	39750	2506.0	1	49	25.0	24.4	0.461	0.529	18
	Hotspot	QPSK	N/A	10	TION	33730	2300.0	50	50	24.0	23.4	0.392	0.451	
	riotapot			10	Edge 2	39750	2506.0	1	49	25.0	24.4	0.336	0.385	
				Edge 2	33730	2000.0	50	50	24.0	23.4	0.261	0.300		
					Edge 3	39750	2506.0	1	49	25.0	24.4	0.288	0.330	
					Luge 3	33730	2000.0	50	50	24.0	23.4	0.240	0.276	

10.7. Wi-Fi (DTS Band)

Frequency		RF	PWR	Dist.	Test		Freq.	Scan	Duty Cycle	Pow er	(dBm)	1-g SAI	R (W/kg)		Plot
Band	Mode	Exposure Conditions	Back-off	(mm)	Position	Ch #.		Max. SAR		Tune-up limit	Meas.	Meas.	Scaled	Note	No.
					Left Touch	6	2437.0	0.251	99.6%	12.0	11.4				
		Head	On	0	Left Tilt	6	2437.0	0.278	99.6%	12.0	11.4	0.200	0.229	1	19
		neau	On	0	Right Touch	6	2437.0	0.149	99.6%	12.0	11.4				
					Right Tilt	6	2437.0	0.151	99.6%	12.0	11.4				
2.4GHz	802.11b	Body-w orn	Off	15	Rear	11	2462.0	0.078	99.6%	18.0	16.9	0.061	0.079	1	20
2.4012	1 Mbps	Douy-wom	01	15	Front	11	2462.0	0.068	99.6%	18.0	16.9				
					Rear	11	2462.0	0.190	99.6%	18.0	16.9	0.162	0.209	1	21
		Hotspot	Off	10	Front	11	2462.0	0.111	99.6%	18.0	16.9				
		Ποιδρυί	OII	10	Edge 1	11	2462.0	0.174	99.6%	18.0	16.9				
					Edge 2	11	2462.0	0.064	99.6%	18.0	16.9				

Note(s):

1. When the Highest reported SAR is ≤ 0.4 or 1.0 W/kg (1-g or 10-g respectively). Therefore, further SAR measurements within this exposure condition are not required.

2. Highest reported SAR is > 0.4 or 1.0 W/kg (1-g or 10-g respectively). Due to the highest reported SAR for this test position, other test positions in this exposure condition were evaluated until a SAR ≤ 0.8 or 2.0 W/kg (1-g or 10-g respectively) was reported.

Testing for a second channel was required because the reported SAR for this test position was > 0.8 or 2.0 W/kg (1-g or 10-g respectively).
 Additional testing required in order satisfying FCC simultaneous transmission limit criteria.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Page 47 of 53

10.8. Bluetooth

Frequency		RF	Dist.	Test		Freq.	Duty Cycle	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot
Band	Mode	Exposure Conditions	(mm)	Position	Ch #.	(MHz)	(%)	Tune-up limit	Meas.	Meas.	Scaled	No.
				Left Touch	39	2441.0	76.8%	10.0	9.0	0.096	0.156	
2.4GHz	GFSK	Head	0	Left Tilt	39	2441.0	76.8%	10.0	9.0	0.097	0.158	22
2.40112	GFSK	neau	0	Right Touch	39	2441.0	76.8%	10.0	9.0	0.046	0.075	
				Right Tilt	39	2441.0	76.8%	10.0	9.0	0.044	0.071	

Standalone SAR Test Exclusion Considerations & Estimated SAR

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)}$] \leq 3.0, for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

- (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[√f_(GHz)/x] W/kg for test separation distances ≤ 50 mm;
 - where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

RF Air interface	RF Exposure	Frequency	Max. tune-up to	blerance Pow er	Min. test separation	SAR test exclusion	Estimated	
	Conditions	(GHz)	(dBm)	(mW)	distance (mm)	Result*	1-g SAR (W/kg)	
Bluetooth	Body-w orn	2.480	10.0	10	15	1.0	0.140	
Bidelootin	Hotspot	2.480	10.0	10	10	1.6	0.210	

Conclusion:

*: The computed value is \leq 3; therefore, this qualifies for Standalone SAR test exclusion.

Page 48 of 53

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequency				Repeated	Highest	Repeated	Largest to
Band	Air Interface	RF Exposure Conditions	Test Position	SAR	Measured SAR	Measured SAR	Smallest
(MHz)				(Yes/No)	(W/kg)	(W/kg)	SAR Ratio
	GSM 850	Hotspot	Rear	No	0.619	N/A	N/A
835	W-CDMA Band V	Hotspot	Rear	No	0.686	N/A	N/A
	LTE Band 5	Hotspot	Rear	No	0.284	N/A	N/A
1900	GSM 1900	Hotspot	Rear	No	0.284	N/A	N/A
1900	W-CDMA Band II	Hotspot	Rear	No	0.346	N/A	N/A
2450	Wi-Fi 802.11b/g/n	Head	Left Tilt	No	0.200	N/A	N/A
2400	Bluetooth	Head	Left Tilt	No	0.097	N/A	N/A
2600	LTE Band 41	Hotspot	Front	No	0.461	N/A	N/A

Peak spatial-average (1g of tissue)

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

12. DUT Holder Perturbations

In accordance with published DUT Holder Perturbations in Oct.2016 TCB workshop,

When Highest reported SAR is over 1.2 or 3.0 W/kg (1-g or 10-g respectively), Holder perturbation verification is required for each antenna, using the highest configuration among all applicable frequency bands. Both Head test and Body test (Edge 1-4 sides) are evaluated with DUT holder. Both Front and Rear sides are evaluated without DUT holder. (Details of test setup are refer to Appendix A.)

So we are only consider about Head test and Body test (Edge 1-4 sides).

All highest SAR level is not over 1.2 or 3.0 W/kg (1-g or 10-g respectively) in All bands.

Please refer to Section 10. So DUT Holder perturbations verification are not required.

13. Simultaneous Transmission SAR Analysis

Simultaneous Transmission Condition

RF Exposure Condition	ltem		Capab	le Transmit Configurations						
	1	GSM (Voice)	+	DTS						
	2	GSM (Voice)	+	BT						
Head &	3	W-CDMA	+	DTS						
Body-w orn	4	W-CDMA	+	BT						
	5	LTE	+	DTS						
	6	LTE	+	BT						
	7	GSM (GPRS)	+	DTS						
	8	GSM (GPRS)	+	BT						
Hotspot &	9	W-CDMA	+	DTS						
Phablet 10-g	10	W-CDMA	+	BT						
	11	LTE	+	DTS						
	12	LTE	+	BT						
Notes:										
1. DTS supports W	1. DTS supports Wi-Fi Direct, Hotspot and VoIP.									
2. W-CDMA and LT	TE suppo	ort Hotspot and VoIP.								
3. DTS Radio cann	ot transr	mit simultaneously with B	Bluetooth Ra	adio.						
4. BT tethering is c	4. BT tethering is consider about each RF exposure conditions.									

Simultaneous transmission SAR test exclusion considerations

KDB 447498 D01 General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

SAR to Peak Location Ratio (SPLSR)

KDB 447498 D01 General RF Exposure Guidance explains how to calculate the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

Where:

SAR¹ is the highest reported or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

SAR² is the highest reported or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

Ri is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of

$[(x_1-x_2)_2 + (y_1-y_2)_2 + (z_1-z_2)_2]$

In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of: $(24R + 24R) = (24R) + (25 \le 24R)$

$(SAR_1 + SAR_2)_{1.5}/Ri \leq 0.04$

When an individual antenna transmits at on two bands simultaneously, the sum of the highest *reported* SAR for the frequency bands should be used to determine **SAR**₁.or **SAR**₂. When SPLSR is necessary, the smallest distance between the peak SAR locations for the antenna pair with respect to the peaks from each antenna should be used.

The antennas in all antenna pairs that do not qualify for simultaneous transmission SAR test exclusion must be tested for SAR compliance, according to the enlarged zoom scan and volume scan post-processing procedures in KDB Publication 865664 D01

The antennas for the unlicensed transmitters are closely situated. As a result, the associated SAR hotspots are also closely situated. Some of the sum of SAR calculations yielded results over 1.6 W/kg. The SPSLR calculations for these situations were performed by treating the unlicensed SAR values as a single transmitter. The most conservative distance between all the unlicensed hotspots to the licensed hotspot was used for the value of d in the SPSLR calculation.

Simultaneous transmission SAR measurement

When simultaneous transmission SAR measurements are required in different frequency bands not covered by a single probe calibration point then separate tests for each frequency band are performed. The tests are performed using enlarged zoom scans which are processed, by means of superposition, using the DASY5 volume scan postprocessing procedures to determine the 1-g SAR for the aggregate SAR distribution.

The spatial resolution used for all enlarged zoom scans is the same as used for the most stringent zoom scans. I.E. the scan parameters required for the highest frequency assessed are used for all enlarged zoom scans. The scans cover the complete area of the device to ensure all transmitting antennas and radiating structures are assessed.

DASY5 provides the ability to perform Multiband Evaluations according to the latest standards using the Volume Scan job as well as appropriate routines for the Post-processing.

In order to extract and process measurements within different frequency bands, the SEMCAD X Post-processor performs the combination and subsequent superposition of these measurement data via DASY5= Combined MultiBand Averaged SAR.

Combined Multi Band Averaged SAR allows - in addition to the data extraction - an evaluation of the 1 g, 10 g and/or arbitrary averaged mass SAR.

Power Scaling Factor is used to allow the volume scans to be scaled by a value other than "1", this is important when the results need to be scaled to different maximum power levels. The Power Scaling Factor is applied to each individual point of the scan. When power scaling is used in multi-band combinations the scaling factor is applied to each individual point of the first scan, the second factor is then applied to each individual point of the second scan and so on. The scans are then combined.

RF Exposure	Test	Stand	alone SAR (W/kg)	(1) + WWAN	- ② + DTS	(1) + (3) WWAN + BT		
RF Exposure	Position	(1) WWAN	② DTS	③ BT	∑ 1-g SAR (mW/g)	SPLSR (Yes/No)	∑ 1-g SAR (mW/g)	SPLSR (Yes/No)	
Head	All position	0.367	0.229	0.158	0.596	No	0.525	No	
Body-Worn	All position	0.432	0.079	0.140	0.511	No	0.572	No	
Hotspot	All position	0.778	0.209	0.210	0.987	No	0.988	No	

13.1. Sum of the SAR for WWAN & Wi-Fi & BT

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is \leq 0.04 for all circumstances that require SPLSR calculation.

Page 52 of 53

Appendixes

Refer to separated files for the following appendixes.

4788852501-S1V3 FCC Report SAR_App A_Photos & Ant. Locations

4788852501-S1V3 FCC Report SAR_App B_Highest SAR Test Plots

4788852501-S1V3 FCC Report SAR_App C_System Check Plots

4788852501-S1V3 FCC Report SAR_App D_SAR Tissue Ingredients

4788852501-S1V3 FCC Report SAR_App E_Probe Cal. Certificates

4788852501-S1V3 FCC Report SAR_App F_Dipole Cal. Certificates

END OF REPORT