

HAC - RF INTERFERENCE POTENTIAL TEST REPORT

FCC 47 CFR § 20.19 ANSI C63.19-2019

For

GSM/WCDMA/LTE/5G NR Phone + BT/BLE, DTS/UNII a/b/g/n/ac and NFC

MODEL NUMBER : SM-A166U, SM-A166U1, SM-S166V

FCC ID: A3LSMA166U

REPORT NUMBER: S-4791440365-S2V1

ISSUE DATE: 2024-10-04

Prepared for SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433

Testing Laboratory

TL-637

Revision History

Rev.	Date	Revisions	Revised By
V1	2024-10-04	Initial Issue	-

Page 2 of 20

Table of Contents

1.	Att	estation of Test Results	. 4
2.	Tes	st Methodology	. 5
3.	Fac	cilities and Accreditation	. 5
4.	Cal	libration and Uncertainty	. 5
4	1.1.	Measuring Instrument Calibration	. 5
4	1.2.	Measurement Uncertainty	. 6
4	1.3.	Decision Rule	. 6
5.	WD	ORF Emission Requirements	. 7
6.	Sys	stem Specifications	. 8
7.	Sys	stem Validation	. 9
7	7.1.	System Validation Results	. 9
8.	Eva	aluation for RF Audio Interference Power Level (RF _{AIPL})	10
9.	Мо	dulation Interference Factor (MIF)	12
10.	Dev	vice Under Test	14
1	0.1.	Air Interfaces and Operating Mode	15
11.	RF	Near-field Test Procedure (RF Audio Interference Level, RFAIL)	16
12.	RF	Near-field Test Results (RF Audio Interference Level, RF _{AIL})	18
		Worst Case of RF Near-field Test Plot (RF Audio Interference Level, RF _{AIL})	
Ap	penc	dixes	20
S	5-479	91440365-S2 Appendix A: Setup Photo	20
		91440365-S2 Appendix B: System Validation Plots	
5	5-479	91440365-S2 Appendix C: Test Plots	20
		91440365-S2 Appendix D: MIF Attestation Letter	
		91440365-S2 Appendix E: Probe Certificates	
5	5-479	91440365-S2 Appendix F: Dipole Certificates	20
S	5-479	91440365-S2 Appendix G: UID Specifications	20

1. Attestation of Test Results

Applicant Name	SAMSUNG ELECTRONICS CO., LTD.
FCC ID	A3LSMA166U
Model Name	SM-A166U, SM-A166U1, SM-S166V
Applicable Standards	FCC 47 CFR § 20.19 ANSI C63.19-2019
Date Tested	2024-09-30
Test Results	Pass

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report..

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released By:	Prepared By:	
flex	zver	
Justin Park	Eunji Choi	
Operations Leader	Senior Laboratory Engineer	
UL Korea, Ltd. Suwon Laboratory	UL Korea, Ltd. Suwon Laboratory	

2. Test Methodology

The tests documented in this report were performed in accordance with ANSI C63.19-2019 Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids abd FCC Published procedure.

KDB 285076 D01 HAC Guidance v06r04 KDB 285076 D03 HAC FAQ v01r06 TCB workshop updates

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

Suwon	
SAR 6 Room (HAC)	

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637.

The full scope of accreditation can be viewed at <u>https://www.iasonline.org/wp-content/uploads/2017/05/TL-637 - cert-New.pdf.</u>

4. Calibration and Uncertainty

4.1. Measuring Instrument Calibration

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Thermometer	Lutron	MHB-382SD	AK.18789	2025-07-26
MXG Analog Signal Generator	KEY SIGHT	N5173B	MY59101083	2025-07-23
Pow er Sensor	KEY SIGHT	U2000A	MY 60490008	2025-07-23
Pow er Sensor	KEY SIGHT	U2000A	MY60160004	2025-07-23
Pow er Amplifier	EXODUS	AMP2027ADB	10002	2025-01-05
Pow er Amplifier	MINI-CIRCUITS	TVA-R5-13A+	2111006	2025-01-03
Directional Coupler	KRYTAR	100318010	215541	2025-01-04
Low Pass Filter	MINI-CIRCUITS	VLF-6000+	S0142	2025-07-24
Low Pass Filter	MINI-CIRCUITS	VLF-3000+	S0143	2025-07-24
Low Pass Filter	MINI-CIRCUITS	NLP-1200+	VUU19301915	2025-01-04
Attenuator	KEY SIGHT	8491B020	MY 39272300	2025-07-23
Attenuator	KEY SIGHT	8491B010	MY 39272293	2025-07-23
Attenuator	KEY SIGHT	8491B003	MY 39272275	2025-07-23
Data Acquisition Electronics	SPEAG	DAE4	1468	2025-08-15
E-Field Probe	SPEAG	EF3DV3	4066	2025-07-10
Calibration Dipole	SPEAG	CD835V3	1000	2025-09-22
Calibration Dipole	SPEAG	CD1880V3	1000	2025-09-22
Calibration Dipole	SPEAG	CD2600V3	1009	2025-09-22
Calibration Dipole	SPEAG	CD3500V3	1011	2025-08-21
Wireless Radio Communication Tester	R&S	CMW500	150314	2025-07-24
UXM 5G Wireless Test Platform	KEY SIGHT	E7515B	MY 57510596	2025-07-30

Notes:

According to SPEAG's Technical Report, "MIF Verification", Doc # TR-FB-12.09.04-1, issued date: 9/4/2012. E-field probes are calibrated with specified uncertainty according to ISO 17025 as described in their calibration certificate. The MIF according to the definition in ANSI C63.19 is specific for a modulation and therefore can be used as a constant value if the probe has been PMR calibrated.

Measurement Uncertainty 4.2.

Error Description	Explanation	Uncertainty value (±%) for ANSI C63.19-2019	Probe Dist.	Divisor	(Ci) E	Std. Unc.(±%) for ANSI C63.19-2019 E
Measurement System						
Probe Calibration	A.1	5.10	Normal	1	1	5.10
Axial Isotropy	A.2	4.70	Rectangular	1.732	1	2.70
Sensor Displacement	A.3	7.20	Rectangular	1.732	0.5	2.10
Boundary Effects	A.4	2.40	Rectangular	1.732	1	1.40
Phantom Boundary Effects	A.5	7.20	Rectangular	1.732	1	4.20
Linearity	A.6	4.70	Rectangular	1.732	1	2.70
Scaling to PMR Calibration	A.7	10.00	Rectangular	1.732	1	5.80
System Detection Limit	A.8	1.00	Rectangular	1.732	1	0.60
Readout Electronics	A.9	0.30	Normal	1	1	0.30
Response Time		0.80	Rectangular	1.732	0	0.00
Integration Time	— A.10	2.60	Rectangular	1.732	0	0.00
RF Ambient Conditions	A.11	3.00	Rectangular	1.732	1	1.70
RF Reflections	A.12	12.00	Rectangular	1.732	1	6.90
Probe Positioner	A.13	1.20	Rectangular	1.732	1	0.70
Probe Positioning	A.14	3.00	Rectangular	1.732	1	1.70
Extrapolation and Interpolation	A.15	1.00	Rectangular	1.732	1	0.60
Test sample Related	·					
Test Positioning Vertical	A.16	4.70	Rectangular	1.732	1	2.70
Test positioning Lateral	A.17	1.00	Rectangular	1.732	1	0.60
Device Holder and Phantom	A.18	2.40	Rectangular	1.732	1	1.40
Power Drift	A.19	5.00	Rectangular	1.732	1	2.90
Phantom and Setup Related						
Phantom Thickness A.20 2.40 Rectangular 1.732 1					1	1.40
Combined Std. Uncertainty						13.20
Expanded Std. Uncertainty on Power					26.40	
Expanded Std. Uncertainty on Field					13.20	
Notes for table 1. Ci - is te sensitivity coefficient 2. Expanded Std. Uncertainty on F 3. Expanded Std. Uncertainty on F				n power		

td. Uncertainty on Field is half value of Expanded Std. Uncertainty on power

Decision Rule 4.3.

Decision rule for statement(s) of conformity is based on Procedure 2, Clause 4.4.3 in IEC Guide 115:2021.

Page 6 of 20

5. WD RF Emission Requirements

The WD's conducted power must be at or below either the stated RF_{AIPL} (Table 4.1) or the stated peak power level (Table 4.2), or the average near-field emissions over the measurement area must be at or below the stated RF_{AIL} (Table 4.3), or the stated peak field strength (Table 4.4).

The WD may demonstrate compliance by meeting any of these four requirements, but it must do so in each of its operating bands at its established worst-case normal speech-mode operating condition.

Table 4.1—Wireless device F	RF audio interference power level
-----------------------------	-----------------------------------

Frequency range (MHz)	RF _{AIPL} (dBm)
<960	29
960-2000	26
>2000	25

Table 4.2—Wireless device RF peak power level

Frequency range (MHz)	RFPeak Power (dBm)
< 960	35
960-2000	32
>2000	31

Table 4.3—Wireless device RF audio interference level

Frequency range (MHz)	RF _{AIL} [dB(V/m)]
≤960	39
960-2000	36
>2000	35

Table 4.4—Wireless device RF peak near-field level

Frequency range (MHz)	RF _{peak} [dB(V/m)]
≤960	45
960-2000	42
>2000	41

Page 7 of 20 UL Korea, Ltd. Suwon Laboratory This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd

6. System Specifications

E-field measurements are performed using the DASY8 automated dosimetric assessment system. The DASY8 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland.

The DASY8 HAC Extension consists of the following parts:

Test Arch Phantom

The specially designed Test Arch allows high precision positioning of both the device and any of the validation dipoles.

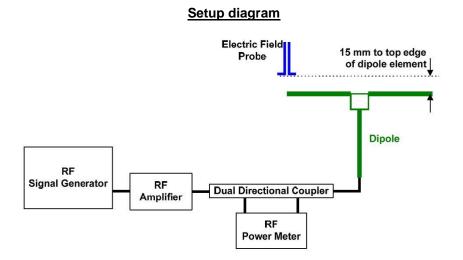
EF3DV3 Isotropic E-Field Probe

Construction:	One dipole parallel, two dipoles normal to probe axis Interleaved sensors Built-in shielding against static charges PEEK enclosure material
Calibration:	In air from 30 MHz to 5.8 GHz (absolute accuracy \pm 5.1%, k=2) ISO/IEC 17025 <u>calibration service</u> available.
Frequency:	30 MHz – 6 GHz; Linearity: ±0.2 dB (100 MHz – 3 GHz)
Directivity:	± 0.2 dB in air (rotation around probe axis) ± 0.4 dB in air (rotation normal to probe axis)
Dynamic Range:	2 V/m to > 1000 V/m; Linearity: ± 0.2 dB
Dimensions:	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1.5 mm Sensor displacement to probe's calibration point: <0.7 mm
Application:	General near-field measurements up to 6 GHz HAC measurements up to 6 GHz Field component measurements Fast automatic scanning in phantoms

UL Korea, Ltd. Suwon Laboratory *This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd*

7. System Validation

The test setup was validated when first configured and verified periodically thereafter to ensure proper function. The procedure provided in this section is a validation procedure using dipole antennas for which the field levels were computed by numeric modeling.


Procedure:

Place a dipole antenna meeting the requirements given in ANSI C63.19 in the normally occupied by the WD.

The dipole antenna serves as a known source for an electrical and magnetic output. Position the E-field probe so that the following occurs:

- · The probes and their cables are parallel to the coaxial feed of the dipole antenna
- The probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions
- The center point of the probe element(s) is 15 mm from the closest surface of the dipole elements.

Scan the length of the dipole with the E-field probe and record the two maximum values found near the dipole ends. Average the two readings and compare the reading to the expected value in the calibration certificate or the expected value in this standard.

7.1. System Validation Results

SAR			Dipole Cal.	Max. measured from		Avg. Emax	Target (V/m)	Deviation	Plot
Lab	Date	Dipole Type_Serial #_Freq.	Due Data	Emax 1 (V/m)	Emax 2 (V/m)	•	(From SPEAG)	(note 1) ± %	No.
SAR 6	2024-09-30	CD835V3	1000	105.00	111.00	108.00	111.30	-2.96	1
SAR 6	2024-09-30	CD1880V3	1000	89.90	87.70	88.80	85.20	4.23	2
SAR 6	2024-09-30	CD2600V3	1009	84.20	83.20	83.70	86.00	-2.67	3
SAR 6	2024-09-30	CD3500V3	1011	82.60	83.70	83.15	83.30	-0.18	4

Notes:

1) Delta (Deviation) % = 100 * (Measured value minus Target value) divided by the Target value. Deltas within ±18% are acceptable, of which 12% is deviation and 13% is measurement uncertainty.

2) The maximum E-field were evaluated and compared to the target values provided by SPEAG in the calibration certificate of specific dipoles.

3) Please refer to the appendix for detailed measurement data and plots.

Page 9 of 20

8. Evaluation for RF Audio Interference Power Level (RF_{AIPL})

An analysis shall be performed following the guidance of the RF air interface technology being evaluated. Factors that will affect the RF interference potential shall be evaluated, and the worst-case operating mode shall be identified and used in the evaluation. Any factor that can affect the RF interference potential shall be evaluated. Examples of such factors are those that will change the RF signal envelope, such as discontinuous transmission due to data load, power management, or configuration options of the RF air interface technology.

The primary method for establishing the RF interference potential of a WD is based on conducted power to the antenna. The waveform-specific modulation interference factor (MIF) is measured separately and added to the measured average conducted power, in dBm.

Air-Interface	Antenna	Average Antenna Input Power (dBm) ¹	Worst Case MIF (dB)	RF _{AIPL} (dBm)	RF _{AIPL} Limit (dBm)	HAC Tested
GSM 850	Ant.A	33.5	3.63	37.13	29	Measurement
GSM 1900	Ant.A	31.0	3.63	34.63	26	Measurement
WCDMA Band 2	Ant.A	25.0	-27.23	-2.23	26	Pass
WCDMA Band 4	Ant.A	25.0	-27.23	-2.23	26	Pass
WCDMA Band 5	Ant.A	25.5	-27.23	-1.73	29	Pass
LTE Band 2	Ant.A	25.5	-9.76	15.74	26	Pass
LTE Band 2	Ant.B	24.0	-9.76	14.24	26	Pass
LTE Band 4	Ant.A	25.0	-9.76	15.24	26	Pass
LTE Band 5	Ant.A	25.5	-9.76	15.74	29	Pass
LTE Band 7	Ant.A	24.0	-9.76	14.24	25	Pass
LTE Band 12	Ant.A	25.5	-9.76	15.74	29	Pass
LTE Band 13	Ant.A	25.0	-9.76	15.24	29	Pass
LTE Band 14	Ant.A	25.0	-9.76	15.24	29	Pass
LTE Band 25	Ant.A	25.0	-9.76	15.24	26	Pass
LTE Band 26	Ant.A	25.5	-9.76	15.74	29	Pass
LTE Band 30	Ant.A	22.5	-9.76	12.74	25	Pass
LTE Band 66	Ant.A	25.5	-9.76	15.74	26	Pass
LTE Band 66	Ant.B	25.5	-9.76	15.74	26	Pass
LTE Band 71	Ant.A	25.5	-9.76	15.74	29	Pass
LTE Band 38	Ant.A	24.0	-1.44	22.56	25	Pass
LTE Band 41	Ant.A	24.5	-1.44	23.06	25	Pass
LTE Band 41 UL CA	Ant.A	24.5	-1.44	23.06	25	Pass
LTE Band 41 HPUE	Ant.A	27.5	-1.44	26.06	25	Measurement
LTE Band 48	Ant.E	21.5	-1.44	20.06	25	Pass
LTE Band 48 UL CA	Ant.E	21.5	-1.44	20.06	25	Pass

RF audio interference power level is compared to the limits in Sec.5 Table 4.1.

Note(s):

1. Max tune-up limit.

2. All tests were performed with the transmit power set to the maximum power for held-to-head conditions (RCV active). For air interfaces with a Time Averaged SAR (TAS) algorithm Pmax is considered the maximum power.

3. Testing for all UL CA is not required because it uses same Tx band, modulations, and output power is equal or less than non-CA modes.

Air-Interface	Antenna	Average Antenna Input Power (dBm) ¹	Worst Case MIF (dB)	RF _{AIPL} (dBm)	RF _{AIPL} Limit (dBm)	HAC Tested
NR Band n2	Ant.A	25.5	-15.07	10.43	26	Pass
NR Band n2	Ant.B	25.0	-15.07	9.93	26	Pass
NR Band n5	Ant.A	25.5	-15.06	10.44	29	Pass
NR Band n25	Ant.A	25.5	-15.07	10.43	26	Pass
NR Band n30	Ant.A	22.5	-15.06	7.44	25	Pass
NR Band n66	Ant.A	25.5	-15.07	10.43	26	Pass
NR Band n66	Ant.B	25.0	-15.07	9.93	26	Pass
NR Band n70	Ant.A	25.5	-15.06	10.44	26	Pass
NR Band n71	Ant.A	25.5	-15.06	10.44	29	Pass
NR Band n41 HPUE	Ant.A	27.5	-1.64	25.86	25	Measurement
NR Band n48	Ant.E	22.0	-1.64	20.36	25	Pass
NR Band n77 HPUE	Ant.E	28.0	-1.64	26.36	25	Measurement
NR Band n78 HPUE	Ant.E	27.0	-1.64	25.36	25	Measurement
WiFi 2.4GHz 802.11b	Ant.D	21.0	-2.02	18.98	25	Pass
WiFi 2.4GHz 802.11g	Ant.D	20.0	0.12	20.12	25	Pass
WiFi 2.4GHz 802.11n	Ant.D	20.0	-5.59	14.41	25	Pass
WiFi 5GHz 802.11a	Ant.D	16.0	-3.15	12.85	25	Pass
WiFi 5GHz 802.11n	Ant.D	16.0	-5.59	10.41	25	Pass
WiFi 5GHz 802.11ac	Ant.D	16.0	-5.57	10.43	25	Pass

Note(s):

1. Max tune-up limit.

2. All tests were performed with the transmit power set to the maximum power for held-to-head conditions (RCV active). For air interfaces with a Time Averaged SAR (TAS) algorithm Pmax is considered the maximum power.

9. Modulation Interference Factor (MIF)

The HAC Standard ANSI C63.19 defines a new scaling using the Modulation Interference Factor (MIF) which replaces the need for the Articulation Weighting Factor (AWF) during the evaluation and is applicable to any modulation scheme.

The Modulation Interference factor (MIF, in dB) is added to the measured average E-field (in dBV/m) and converts it to the RF Audio Interference level (in dBV/m). This level considers the audible amplitude modulation components in the RF E-field. CW fields without amplitude modulation are assumed to not interfere with the hearing aid electronics. Modulations without time slots and low fluctuations at low frequencies have low MIF values, TDMA modulations with narrow transmission and repetition rates of few 100 Hz have high MIF values and give similar classifications as ANSI C63.19.

Definitions

E-field probes have a bandwidth <10 kHz and can therefore not evaluate the RF envelope in the full audio band. DASY8 is therefore using the "indirect" measurement method according to ANSI C63.19 which is the primary method. These near field probes read the averaged E-field measurement. Especially for the new high peak-to-average (PAR) signal types, the probes shall be linearized by probe modulation response (PMR) calibration in order to not overestimate the field reading.

The evaluation method or the MIF is defined in ANSI C63.19 section D.7. An RMS demodulated RF signal is fed to a spectral filter (similar to an A weighting filter) and forwarded to a temporal filter acting as a quasi-peak detector. The averaged output of these filtering is called to a 1 kHz 80% AM signal as reference. MIF measurement requires additional instrumentation and is not well suited for evaluation by the end user with reasonable uncertainty It may alternatively be determined through analysis and simulation, because it is constraint and characteristic for a communication signal. DASY8 uses well defined signals for PMR calibration. The MIF of these signals has been determined by simulation and is automatically applied.

MIF values were not tested by a probe or as specified in the standards but are based on analysis provided by SPEAG for all the air interfaces (GSM, WCDMA, LTE, NR and Wi-Fi). The data included in this report are for the worst case operating modes. The UIDs used are listed below:

UID	Communication System Name	MIF (dB)
10021-DAC	GSM-FDD (TDMA, GMSK)	3.63
10011-CAC	UMTS-FDD (WCDMA)	-27.23
10170-CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	-9.76
10182-CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	-9.76
10176-CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	-9.76
10173-CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	-1.44
10934-AAC	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	-15.07
10931-AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	-15.06
10930-AAC	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	-15.06
10929-AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	-15.06
10973-AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	-1.64
10061-CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	-2.02
10077-CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	0.12
10069-CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	-3.15
10591-AAD	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	-5.59
10599-AAD	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	-5.59
10607-AAD	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	-5.6
10616-AAD	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	-5.57
10626-AAD	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	-5.64

The MIF measurement uncertainty is estimated as follows, for modulation frequencies from slotted waveforms with fundamental frequency and at least 2 harmonics within 10 kHz:

- 0.2 dB for MIF -7 to +5 dB,
- 0.5 dB for MIF -13 to +11 dB
- 1 dB for MIF > -20 dB

10. Device Under Test

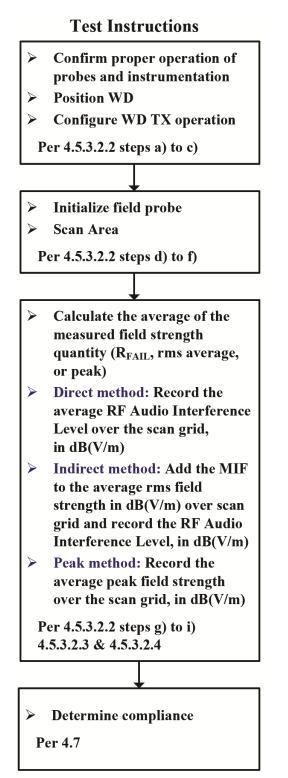
Normal operation	Held to head			
Back Cover	The Back Cover is not removable			
_	S/N	Notes		
Test sample information	R3CX807W47E	RF Audio Interference Level Test		

10.1. Air Interfaces and Operating Mode

GSM .	850				
GSM .		vo	RF _{AIL}	Wi-Fi and BT	CMRS
GSM	1900		· " AIL		
	GPRS/EDGE	VD	No	Wi-Fi and BT	Google Meet
	850 (V)				
	1750 (IV)	VO	RF _{AIPL}	Wi-Fi and BT	CMRS
W-CDMA (UMTS)	1900 (II)				
	HSPA	VD	No	Wi-Fi and BT	Google Meet
	680 (B71)				
-	700 (B12)	VD			
-	780 (B13)				
-	790 (B14)				
LTE - FDD	850 (B5/26)		RF _{AIPL}	NR, Wi-Fi and BT	VoLTE Google Meet
-	1700 (B4/66)				
-	1900 (B2/25)				
	2300 (B30)				
	2600 (B7)				
	2600 (B38/41)				VoLTE
LTE - TDD	3600 (B48)	- VD	RF_{AIPL}, RF_{AIL}	NR, Wi-Fi and BT	Google Meet
	680 (n71)	-	RF _{AIPL}		
	850 (n5)			LTE, Wi-Fi and BT	VoNR Google Meet
	1700 (n66)				
NR - FDD	1700 (n70)	- VD			
	1900 (n2/25)				
-	2300 (n30)				
	2600 (n41)				
	3600 (n48)				VoNR
NR - TDD	3500 (n77/78 DoD)	- VD	RF_{AIPL},RF_{AIL}	LTE, Wi-Fi and BT	Google Meet
-	3700 (n77/89)	-			
	2450			WWAN	
	5200 (U-NII-1)	1			-
Wi-Fi	5300 (U-NII-2A)	VD	RF _{AIPL}		VoWiFi
	5500 (U-NII-2C)	1		WWAN and BT	Google Meet
-	5800 (U-NII-3)	1			
BT	2450	DT	N/A	WWAN and U-NII	N/A
e			Note:		
: Legacy Cellular Voice Digital Transport only (IP Voice Service over	(no voice)				

BT: Bluetooth

Note(s):


All tests were performed with the transmit power set to the maximum power for held-to-head conditions (RCV active). For air interfaces with a Time Averaged SAR (TAS) algorithm Pmax is considered the maximum power.

Page 15 of 20

UL-QP-23-11(03)

11. RF Near-field Test Procedure (RF Audio Interference Level, RF_{AIL})

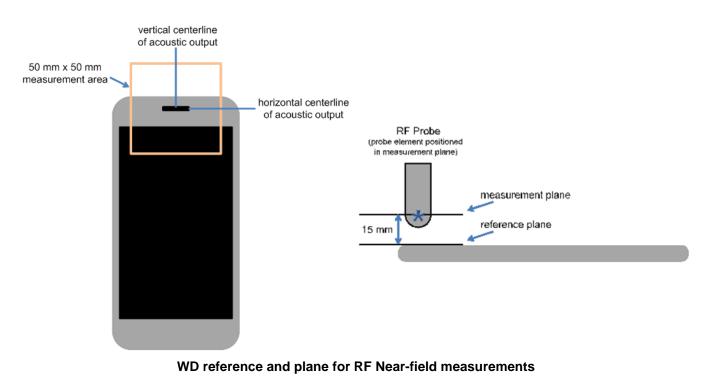
WD near-field RF emission scan flowchart Per ANSI-63.19-2019

The following steps, included in the depiction of flowchart above, shall be followed when using this test procedure:

- a) Confirm proper operation of the field probe, probe measurement system, spectral and temporal weighting filters, and the positioning system.
- b) Position the WD in its intended test position.

- c) Set the WD to transmit a fixed and repeatable combination of signal power and modulation characteristic that is representative of the worst case (highest interference potential) encountered in normal use. Transiently occurring start-up, changeover, or termination conditions, or other operation likely to occur less than 1% of the time during normal operation, may be excluded from consideration.
- d) The measurement area shall be centered on the acoustic output or the T-Coil mode measurement reference point, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm measurement area, which is contained in the measurement plane. If the field alignment method is used, align the probe for maximum field reception.
- e) Record the reading at the output of the measurement system.
- f) Scan the entire 50 mm by 50 mm measurement area in equally spaced step sizes and record the reading at each measurement point. The step size shall meet the specification for step size ≤ 10mm.
- g) Calculate the average of the measurements taken in Step f).
- h) Convert the average value found in Step g) to RF audio interference level, in volts per meter, by taking the square root of the reading and then dividing it by the measurement system transfer function. Convert the result to dB(V/m) by taking the base-10 logarithm and multiplying it by 20. Expressed as a formula:

RF audio interference level in db(V/M) = $20 \times \log(R_{avg^{1/2}} / TF)$ (3)


where, Ravg is the average reading

i) Compare this RF audio interference level to the limits in Sec.5 and record the result.

The picture below illustrates the references and reference plane that shall be used in the WD RF emissions measurement.

The measurement area is 50.0 mm by 50.0 mm and centered on the audio frequency output transducer of the WD (speaker or T-Coil signal) and the area in a reference plane, which is defined as the planar area tangent to the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the WD handset, which, in normal handset use, rest against the ear.

The measurement plane is parallel to, and 15.0 mm in front of, the reference plane.

Page 17 of 20

UL Korea, Ltd. Suwon Laboratory UL-QP-23-11(03) This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd

12. RF Near-field Test Results (RF Audio Interference Level, RF_{AIL})

MIF values were not tested by a probe or as specified in the standards but are based on analysis provided by SPEAG for the following User Identifiers and air interfaces.

The data included in this report are for the worst case operating modes. Refer to Appendix D and G for the MIF vales that represent the worst case operation modes.

Mode / Band	Antenna	Ch. No.	Freq. (MHz)	Results* (dB V/m)	Results plus 0.2dB uncertaninty (dB V/m)	RF _{AIL} Limit (dB V/m)	Margin (dB)	RF _{AIL} Pass/Fail	Plot No.
		128	824.2	33.84	34.04	39.00	4.96	Pass	1
GSM 850	Ant.A	190	836.6	35.13	35.33	39.00	3.67	Pass	2
		251	848.6	34.36	34.56	39.00	4.44	Pass	3
		512	1850.2	25.23	25.43	36.00	10.57	Pass	4
GSM 1900	Ant.A	661	1880	25.44	25.64	36.00	10.36	Pass	5
		810	1909.8	26.03	26.23	36.00	9.77	Pass	6
		39750	2506	21.27	21.47	35.00	13.53	Pass	10
LTE-TDD Band 41 PC2 20MHz 16QAM RB1/0	Ant.A	40620	2593	21.15	21.35	35.00	13.65	Pass	11
		41490	2680	20.56	20.76	35.00	14.24	Pass	12
NR-TDD Band n41		509202	2546.01	18.86	19.06	35.00	15.94	Pass	13
100MHz DFT-s-OFDM QPSK	Ant.A	518598	2592.99	18.96	19.16	35.00	15.84	Pass	14
RB 1/1		528000	2640	16.69	16.89	35.00	18.11	Pass	15
NR-TDD Band n77		633334	3500.01	21.34	21.54	35.00	13.46	Pass	16
100MHz DFT-s-OFDM QPSK	Ant.E	650000	3750	24.06	24.26	35.00	10.74	Pass	17
RB 1/1		662000	3930	25.17	25.37	35.00	9.63	Pass	18
NR-TDD Band n78 100MHz DFT-s-OFDM QPSK	Ant.E	633334	3500.01	21.39	21.59	35.00	13.41	Pass	19
RB 1/1	Ant.E	650000	3750	24.07	24.27	35.00	10.73	Pass	20

Note(s):

*: Measured Audio Interference level in dB (V/m): indirect method (max rms field strength Plus MIF)

12.1. Worst Case of RF Near-field Test Plot (RF Audio Interference Level, RF_{AIL})

RF Interference Potential Test Report

Measurement performed on September 30, 2024 at 13:47

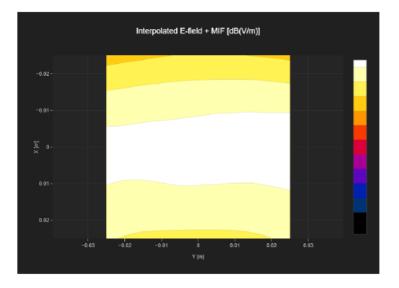
Device Under Test

Manufacturer	Model
Samsung Electronics	SM-A166U

Hardware Setup

Probe Name	Probe Calibration Date	DAE Name	DAE Calibration Date
EF3DV3 - SN4066	July 10, 2024	DAE4 Sn1468	August 15, 2024

Communication Systems


Band Name	Communication Systems Name	Channel	Frequency [MHz]
GSM 850	GSM-FDD (TDMA, GMSK)	190	836.6

Grid Settings

Extent X [mm]	Extent Y [mm]	Step X [mm]	Step Y [mm]	Distance [mm]
50.0	50.0	10.0	10.0	15.0

Results

Emax [dB(V/m)]	Eavg50x50 max [dB(V/m)]	MIF [dB]	RFail [dB(V/m)]
32.79	31.5	3.63	35.13

Page 19 of 20 UL Korea, Ltd. Suwon Laboratory This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd

Appendixes

Refer to separated files for the following appendixes

S-4791440365-S2 Appendix A: Setup Photo

- S-4791440365-S2 Appendix B: System Validation Plots
- S-4791440365-S2 Appendix C: Test Plots
- S-4791440365-S2 Appendix D: MIF Attestation Letter
- S-4791440365-S2 Appendix E: Probe Certificates
- S-4791440365-S2 Appendix F: Dipole Certificates
- S-4791440365-S2 Appendix G: UID Specifications

END OF REPORT