

Element

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

HEARING AID COMPATIBILITY

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 16677, Korea

Date of Testing:

10/16/2023 – 10/30/2023 Test Site/Location: Element Washington DC LLC, Columbia, MD, USA Test Report Serial No.: 1M2309070100-20-R4.A3L Date of Issue: 11/10/2023

FCC ID:

A3LSMA156U

APPLICANT:

SAMSUNG ELECTRONICS CO., LTD.

Scope of Test: Application Type: FCC Rule Part(s): HAC Standard/ Guidance:	Volume Control Testing Certification CFR §20.19(b) ANSI C63.19-2019 ANSI/TIA-5050-2018 285076 D01 HAC Guidance v06 285076 D04 Volume Control v02 285076 D05 CG Interim Waiver DA 23-914 v01
DUT Type:	Portable Handset
Model:	SM-A156U
Additional Model(s):	SM-A156U1/DS, SM-S156V
Test Device Serial No.:	<i>Sample</i> [S/N: 2074M]

C63.19-2019 HAC Verdict: PASS

Note: This revised Test Report (S/N: 1M2309070100-20-R4.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be hearing-aid compatible, specified in ANSI/IEEE Std. C63.19-2019 and ANSI/TIA- 5050-2018 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Orta

Executive Vice President

FCC ID: A3LSMA156U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 1 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2019 PERFORMANCE CATEGORIES	6
4.	METHOD OF MEASUREMENT	8
5.	FCC 2G & 3G MEASUREMENTS	. 18
6.	VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION	. 19
7.	VONR TEST SYSTEM SETUP AND DUT CONFIGURATION	. 21
8.	VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION	. 23
9.	INTERIM WAIVER DA 23-914	. 25
10.	VOLUME CONTROL TEST SUMMARY	. 26
11.	MEASUREMENT UNCERTAINTY	. 30
12.	EQUIPMENT LIST	. 31
13.	TEST DATA	. 32
14.	CALIBRATION CERTIFICATES	. 47
15.	CONCLUSION	. 54
16.	REFERENCES	. 55
17.	TEST SETUP PHOTOGRAPHS	. 57

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 2 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index
- T-coil mode, acoustic-signal conversational gain in the audio band
- T-coil mode, acoustic-signal frequency response through the audio band
- T-coil mode, acoustic-signal distortion through audio band
- Volume Control, receive volume control performance
- Volume Control, receive distortion and noise performance
- Volume Control, receive acoustic frequency response performance

The hearing aid may be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: A3LSMA156U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 3 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

2. DUT DESCRIPTION

FCC ID:	A3LSMA156U
Applicant:	Samsung Electronics Co., Ltd.
	129, Samsung-ro, Maetan dong,
	Yeongtong-gu, Suwon-si
	Gyeonggi-do 16677, Korea
Model:	SM-A156U
Additional Model(s):	SM-A156U1/DS, SM-S156V
Serial Number:	2074M
HW Version:	REV1.0
SW Version:	A156U.001
Antenna:	Internal Antenna
DUT Type:	Portable Handset

I. LTE Band Selection

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of one LTE band falls completely within another LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, hearing-aid compatibility compliance was only assessed for the band with the larger transmission frequency range. However, overlapped LTE bands which are anchor bands for dual connectivity (EN-DC) scenarios between LTE and NR were evaluated as independent LTE bands.

II. NR Band Selection

This device supports NR capabilities with overlapping transmission frequency ranges. When the supported frequency range of an NR band falls completely within an NR band with a larger transmission frequency range, both NR bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both NR bands share the same transmission path and signal characteristics, hearing-aid compatibility compliance was only assessed for the band with the larger transmission frequency transmission frequency.

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 4 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

Table 2-1 HAC Air Interfaces

Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Name of Voice Service	Audio Codec Evaluated	
GSM	850	vo	Yes ¹	Yes: WIFI or BT	CMRS Voice	EFR	
USIVI	1900	vo	res	Tes. WIFI OF BI	CIVIRS VOICE	LIN	
	850						
UMTS	1700	VD	Yes ¹	Yes: WIFI or BT	CMRS Voice	NB AMR, WB AMR	
	1900						
	680 (B71)						
	700 (B12)						
	780 (B13)						
	790 (B14)						
	850 (B5)						
LTE (FDD)	850 (B26)	VD	Yes ¹²	Yes: NR, WIFI or BT	VoLTE	VoLTE: NB AMR, WB AMR, EVS	
LIE (FDD)	1700 (B4)	VD	res	Tes. NR, WIFI OF BI	VOLTE		
	1700 (B66)						
	1900 (B2)						
	1900 (B25)						
	2300 (B30)						
	2500 (B7)						
LTE (TDD)	2600 (B41)	VD					
	2600 (B38)		Yes ¹²	Yes: NR, WIFI or BT	Volte	Volte: NB AMR, WB AMR, EVS	
	3600 (B48)						
	680 (n71)						
	850 (n5)			Yes: LTE, WIFI or BT	VoNR	VONR: NB AMR, WB AMR, EVS	
NR (FDD)	1700 (n70)	VD	Yes ¹²				
NK (FDD)	1700 (n66)	VD	Yes				
	1900 (n2)						
	1900 (n25)						
	2600 (n41)						
	3500 (n77, DoD)						
	3500 (n78, DoD)						
NR (TDD)	3600 (n78)	VD	Yes ¹²	Yes: LTE, WIFI or BT	VoNR	VoNR: NB AMR, WB AMR, EVS	
	3600 (n48)						
	3750 (n78)						
	3800 (n77)						
	2450						
	5200 (U-NII 1)						
WIFI	5300 (U-NII 2A)	VD	Yes ¹²	Yes: GSM, UMTS, LTE, or NR	VoWIFI	VoWIFI: NB AMR, WB AMR, EVS	
	5500 (U-NII 2C)						
	5800 (U-NII 3)						
BT	2450	DT	No	Yes: GSM, UMTS, LTE, or NR	N/A	N/A	
			2. According to	o FCC guidance and waiver DA 23-914, all CMRS o o FCC guidance and waiver DA 23-914, manufactu pported on this device for Frequency Response a	ur has chosen NB EVS 24.4KBPS and W		
L							

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 5 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

3. ANSI C63.19-2019 PERFORMANCE CATEGORIES

I. Acoustic Coupling Requirements

According to ANSI C63.19-2019 §7, devices shall comply with ANSI/TIA-5050-2018 in order to comply with C63.19-2019. No additional requirements are imposed and no special allowances are made regarding testing to and compliance with ANSI/TIA-5050-2018.

II. ANSI/TIA-5050-2018 Volume Control

All Volume Control requirements (i.e., Volume Control, Distortion and Noise, and Frequency Response) shall be met for at least one volume control setting for narrowband as well as wideband (as applicable) per §5. All testing shall be performed with both a 2N mounting force and an 8N mounting force. The passing volume control setting may be different between narrowband and wideband tests as well as between 2N and 8N tests, but the setting may not change within a test in order to pass the separate performance criteria.

Note: The test data margins indicate a margin from the limit for compliance.

1. Receive Volume Control Performance

With a mounting force of 8N, the EUT shall have a Conversational Gain of \geq 18dB per §5.1.1, and with a mounting force of 2N, the EUT shall have a Conversational Gain of \geq 6dB per ANSI/TIA-5050-2018 §5.1.1.

2. Receive Distortion and Noise Performance

With a mounting force of 8N and 2N, the Pulsed Noise Signal-to-Distortion Ratio (PN-SDNR) of the stimulus signal to the 100Hz to 8kHz total distortion and noise shall be \geq 20dB when tested over the applicable 1/3 octave band center frequencies per ANSI/TIA-5050-2018 §5.2.1. For narrowband, the applicable 1/3 octave band center frequencies are those from 400Hz to 3.15kHz; for wideband, the applicable 1/3 octave band center frequencies are those from 250Hz to 5kHz.

3. Receive Acoustic Frequency Response Performance

With a mounting force of 8N and 2N, the receive frequency response, as measured at the DRP in 1/12 octave bands and after translation to the diffuse field or free field, shall fall between the applicable upper and lower limits per ANSI/TIA-5050-2018 §5.3.1. See below for narrowband limits (Table 3-1 and Figure 3-1) and wideband limits (Table 3-2 and Figure 3-2).

FCC ID: A3LSMA156U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 6 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

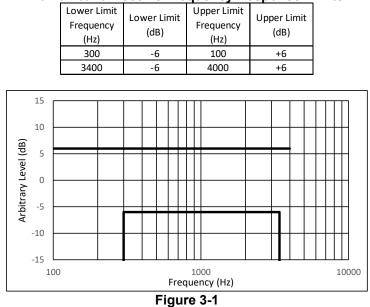
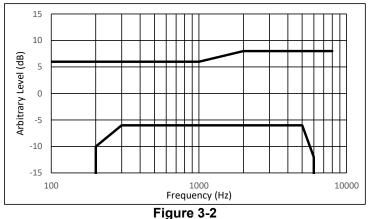


 Table 3-1

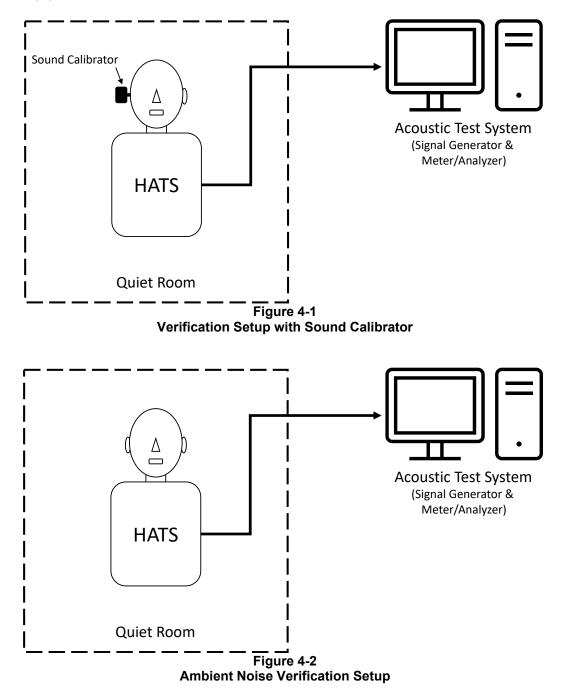

 Narrowband Receive Frequency Response Limits

Narrowband Receive Frequency Response Limits

 Table 3-2

 Wideband Receive Frequency Response Limits

Lower Limit Frequency (Hz)	Lower Limit (dB)	Upper Limit Frequency (Hz)	Upper Limit (dB)
200	-10	100	+6
300	-6	1000	+6
5000	-6	2000	+8
6000	-12	8000	+8


Wideband Receive Frequency Response Limits

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 7 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an RF-shielded chamber:

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 8 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

II. Head and Torso Simulator

Manufacturer:	Brüel & Kjær			
Model:	Туре 4128-D			
Frequency Response:	Conforms to ITU-T Rec. P.58 up to 16 kHz ITU-T Rec. P.57 Type 3.3-			
Ear Simulator:	based calibrated ear simulator complying with ITU-T Rec. P.57			
Ear Simulator Output:	7-core, 3 m cable terminated with a Lemo® (1B) plug			
Pressure-field Response:	±1 dB from 5 Hz to 7 kHz ±3 dB from 3.15 Hz to 20 kHz			
Typical Noise Level	19 dBA at DRP			
Pinna Simulator:	Compliant with ITU-T Rec. P.58	25		
Total Head and Torso Height:	695mm			
HATS Dimensions:	Main dimensions comply with the dimensional requirements of	14		
	ITU-T Rec. P.58	Figure 4-3 Heat and Torso Simulator		
Handset Positioner:	Brüel & Kjær Type 4606	(with Handset Positioner)		
Positioner Angles:	Variable positions; $\angle A$ adjustable from +15° to +35°, $\angle B$ adjustable from +30° to -10°, $\angle C$ adjustable from +20° to -20°; 0.5° resolution			
Applied Ear Force:	Mounting force can be adjusted from 0 to	9 18 N		

III. IEEE Std 269 Uncompressed Real Male Speech

Manufacturer:	IEEE
Active Frequency Range:	100 Hz – 8 kHz
Stimulus Type:	Multi-talker speech signal, four male speakers
Single Sample Duration:	12 seconds
Activity Level:	84%

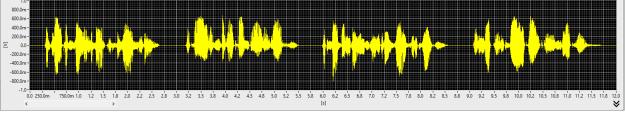


Figure 4-4 Temporal Characteristic of full IEEE 269

FCC ID: A3LSMA156U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 9 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

Volume Control Measurement Block Diagrams:

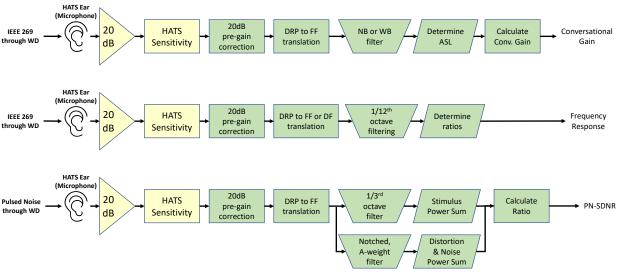
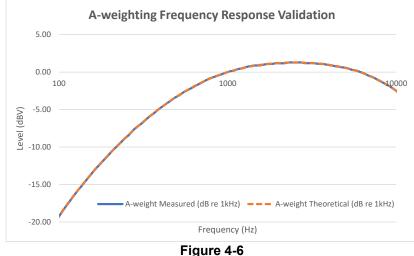
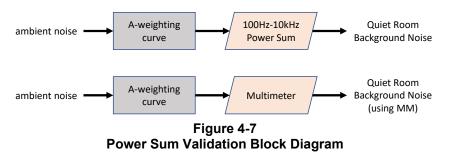



Figure 4-5 Acoustic Measurement Processing Steps

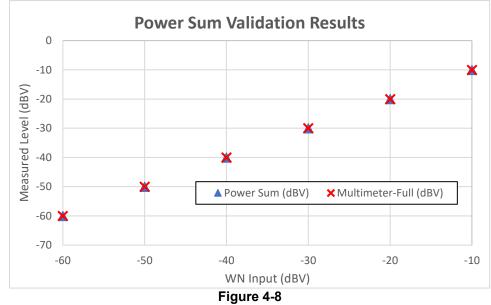
IV. Test Procedure

- 1. Ambient Noise Check per ANSI/TIA-5050-2018 §3.1 (See Figure 4-2)
 - a. Ambient noise was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/12 octave filtering.
 - b. "A-weighting" was applied to the measurements per the definition of a "quiet room" in ANSI/TIA-5050-2018. Below is the verification of the system processing A-weighting between system input to output within 0.5 dB of the theoretical result:

A-weighting Frequency Response Validation


FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 10 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

	A-weight	A-weight	Deviation		A-weight	A-weight	Deviation
f (Hz)	Measured (dB re 1kHz)	Theoretical (dB re 1kHz)	(dB)	f (Hz)	Measured (dB re 1kHz)	Theoretical (dB re 1kHz)	(dB)
97.2	-19.63	-19.54	-0.09	1030	0.10	0.09	0.01
103	-18.81	-18.74	-0.07	1090	0.20	0.25	-0.05
109	-18.01	-17.97	-0.04	1150	0.40	0.38	0.02
115	-17.31	-17.26	-0.05	1220	0.50	0.52	-0.02
122	-16.51	-16.50	-0.01	1300	0.70	0.66	0.04
130	-15.71	-15.70	-0.01	1370	0.80	0.76	0.04
137	-15.11	-15.06	-0.05	1450	0.89	0.85	0.04
145	-14.41	-14.38	-0.03	1540	0.89	0.94	-0.05
154	-13.71	-13.68	-0.03	1630	0.99	1.02	-0.03
163	-13.01	-13.04	0.03	1730	1.09	1.08	0.01
173	-12.40	-12.38	-0.02	1830	1.09	1.14	-0.05
183	-11.80	-11.77	-0.03	1940	1.19	1.18	0.01
194	-11.20	-11.16	-0.04	2050	1.18	1.22	-0.04
205	-10.60	-10.60	0.00	2180	1.19	1.24	-0.05
218	-10.00	-9.98	-0.02	2300	1.29	1.26	0.03
230	-9.50	-9.46	-0.04	2440	1.29	1.27	0.02
244	-8.90	-8.90	0.00	2590	1.29	1.27	0.02
259	-8.40	-8.35	-0.05	2740	1.29	1.26	0.03
274	-7.80	-7.84	0.04	2900	1.19	1.24	-0.05
290	-7.30	-7.35	0.05	3070	1.20	1.22	-0.02
307	-6.90	-6.86	-0.04	3250	1.20	1.18	0.02
325	-6.40	-6.39	-0.01	3450	1.10	1.13	-0.03
345	-5.90	-5.90	0.00	3650	1.10	1.08	0.02
365	-5.50	-5.46	-0.04	3870	1.00	1.01	-0.01
387	-5.00	-5.02	0.02	4100	0.90	0.93	-0.03
410	-4.60	-4.59	-0.01	4340	0.80	0.84	-0.04
434	-4.20	-4.19	-0.01	4600	0.70	0.73	-0.03
460	-3.80	-3.79	-0.01	4870	0.61	0.61	0.00
487	-3.40	-3.42	0.02	5160	0.51	0.48	0.03
516	-3.10	-3.05	-0.05	5460	0.31	0.33	-0.02
546	-2.70	-2.71	0.01	5790	0.21	0.16	0.05
579	-2.40	-2.37	-0.03	6130	0.01	-0.02	0.03
613	-2.10	-2.05	-0.05	6490	-0.19	-0.22	0.03
649	-1.80	-1.75	-0.05	6880	-0.49	-0.45	-0.04
688	-1.50	-1.47	-0.03	7290	-0.69	-0.70	0.01
729	-1.20	-1.20	0.00	7720	-0.99	-0.97	-0.02
772	-0.90	-0.94	0.04	8180	-1.30	-1.26	-0.04
818	-0.70	-0.71	0.01	8660	-1.59	-1.58	-0.01
866	-0.50	-0.49	-0.01	9170	-1.89	-1.92	0.03
917	-0.30	-0.28	-0.02	9720	-2.29	-2.30	0.01
972	-0.10	-0.09	-0.01	10300	-2.69	-2.70	0.01


 Table 4-1

 A-weighting Frequency Response Validation

c. The ambient room noise is a power sum of the A-weighted spectrum from 100-10,000 Hz. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level. Therefore, the setup in this step was used to verify the power sum post-processing for measurements. See below block diagram:

FCC ID: A3LSMA156U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 11 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.

Power Sum Validation Results

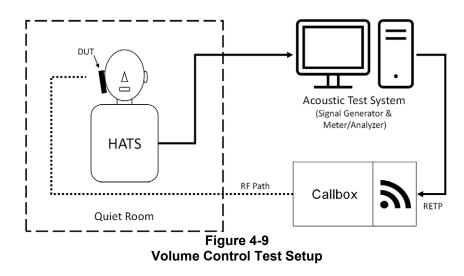
Table 4-2				
Power Sum Validation Results				

WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)
-60	-60.05	-60.03	0.02
-50	-50.04	-50.03	0.01
-40	-40.04	-40.02	0.02
-30	-30.04	-30.02	0.02
-20	-20.05	-20.03	0.02
-10	-10.05	-10.03	0.02

- d. The maximum room noise inside the quiet room was recorded and verified to be less than or equal to 40dBA.
- 2. Measurement System Validation (See Figure 4-1)
 - a. The measurement system including the HATS, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - b. HATS Sensitivity Verification A pure tone of 1kHz was applied into the HATS ear (microphone) using a calibrated sound calibrator. The sound calibrator generates an expected sound pressure level of 97.1dBSPL at the HATS ear which was used to verify the measured signal from the HATS. This measured value was verified to be within ±0.2dB of the 97.1dBSPL expected
- 3. Measurement Test Setup
 - a. Positioning DUT in HATS

value (see Page 29).

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 12 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	


- i. According to ANSI/TIA-5050-2018 §4.2, a HATS which is ITU-T P.58 compliant and an ear simulator which is ITU-T P.57 type 3.3 compliant are used for Volume Control testing.
- ii. Per ANSI/TIA-5050-2018 §4.3, the DUT is positioned on the HATS in the standard test position according to IEEE Std 269 or, alternatively, a recommended test position specified by the manufacturer. Manufacturer recommended positions must comply with the recommended test position requirements in IEEE Std 269 and, if used, are noted in this report.
- iii. The DUT is mounted such that a certain force, in Newtons, is applied when the DUT is placed against the artificial pinna. ANSI/TIA-5050-2018 specifies a mounting force of either 2N or 8N, depending on the test. Mounting force is indicated for each test in this report.
- b. Speech Signal Setup and Analysis
 - i. For testing in this report, the test signal is the uncompressed real male speech as published with IEEE Std 269 unless otherwise specified.
 - ii. The test signal is used with an Active Speech Level (ASL) of -20dBm0, and analysis is performed with 1/12 octave bands averaged over one complete sequence of the test signal unless otherwise specified.
 - iii. The acoustic listener reference point for testing is the Free Field (FF) for Conversational Gain and PN-SDNR measurements. For Frequency Response (FR) measurements, the acoustic listener reference point is either the Free Field (FF) or the Diffuse Field (DF); the chosen acoustic listener reference point for FR measurements in this report is indicated for each test.
 - iv. Per the Spring 2021 TCB Workshop, all supported audio voice codecs are tested for the DUT. For each codec, narrowband and wideband modes are tested if supported. For narrowband modes, a source coding bit-rate of 12.2 kbps, or the closest available setting, is used. For wideband modes, a source coding bit-rate of 12.65 kbps, or the closest available setting, is used.
- c. DUT Radio Configuration
 - i. Each supported codec may be tested with any air interface which supports the codec being tested. Air interfaces used for testing in this report are noted with each test.
- 4. Measurement Data Analysis
 - a. Conversational Gain
 - i. With the DUT at its maximum volume control setting and tone control set such that the DUT meets the FR requirements, the test signal is applied to the DUT, and the resulting acoustic output is measured at the Drum Reference Point (DRP). A lower volume setting may be used if needed to meet the PN-SDNR requirements.
 - ii. The appropriate post processing is applied according to the system processing chain shown in Figure 4-5, and the Conversational Gain is determined.
 - iii. Conversational Gain is tested with both 8N and 2N mounting force.
 - b. PN-SDNR
 - i. The DUT is tested for distortion using PN-SDNR which is the ratio of the signal power to the full, A-weighted distortion and noise power of the DUR output (in dB).
 - ii. The pulsed noise stimulus signal is a combination of the real speech test signal followed by a series of pink noise pulses from a 1/3 octave band. A stimulus signal is generated for each 1/3 octave band centered within the applicable frequency range for either narrowband or wideband.
 - iii. Each stimulus signal is applied to the DUT, and the resulting acoustic output is measured at the DRP.

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename: 1M2309070100-20-R4.A3L	Test Dates: 10/16/2023 – 10/30/2023	DUT Type: Portable Handset	Page 13 of 58
1M2309070100-20-R4.A3L	10/16/2023 - 10/30/2023	Portable Handset	·9- · • •

- iv. The appropriate post processing is applied according to the system processing chain shown in Figure 4-5, and the PN-SDNR is determined by subtracting the full, A-weighted distortion and noise power, from the signal power, in This process is repeated to determine ethe PN-SDNR for all applicable 1/3 octave band center frequencies.
- v. PN-SDNR is tested with both 8N and 2N mounting force and may be repeated at volume levels below maximum if needed to get passing results. Note that Conversational Gain must still receive passing results while at the lower volume level if such a lower level is used for PN-SDNR compliance.
- c. Frequency Response
 - i. Frequency response is measured with respect to the appropriate curves from either Figure 3-1, for narrowband modes, or Figure 3-2, for wideband modes. The measurement is taken over one full sequence of the test signal, although a delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
 - ii. The appropriate post processing is applied according to the system processing chain shown in Figure 4-5, and the FR is determined. All 1/12 octave band center frequencies were plotted and aligned with respect to the applicable mask in a floating, or best fit, fashion.
 - iii. FR is tested with both 8N and 2N mounting force and may be repeated with tone control settings other than default if needed to get passing results. Note that Conversational Gain must still receive passing results while using the non-default tone control settings if such non-default settings are used for FR compliance.
- d. Speech Signal Setup to Base Station Simulator
 - i. See Section 6 and 8 for more information regarding CMW500 audio level settings for Voice Over LTE (VoLTE) and Voice Over WIFI (VoWIFI) testing.
 - ii. See Section 7 for more information regarding CMX500 audio level settings for Voice Over NR (VoNR).
- e. WD Radio Configuration Selection
 - i. The device was chosen to be tested in the default test configuration (See Section 5 for more information regarding worst-case configurations for GSM and UMTS. LTE configuration information can be found in Section 6. NR configuration information can be found in Section 7. WIFI configuration information can be found in Section 8.)

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 14 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

V. Test Setup

Environmental conditions such as temperature and relative humidity are monitored to ensure there are no impacts on system specifications. Proper voltage and power line frequency conditions are maintained with three phase power sources. Environmental noise and reflections are monitored through system checks.

VI. Deviation from ANSI/TIA-5050-2018 Test Procedure

Deviation from ANSI/TIA-5050-2018 Test Procedure to indicate guidance in FCC HAC waiver was followed.

VII. Air Interface Technologies Tested

According to ANSI/TIA-5050-2018, any air interface which support voice capabilities over a managed CMRS or pre-installed OTT VoIP applications may be chosen for Volume Control testing. According to the Spring 2021 TCB Workshop, all voice codecs supported by the DUT must be tested for Volume Control. The air interfaces used during testing were chosen such that all voice codecs supported by the DUT were able to be tested. See Table 2-1 for more details regarding which modes were tested.

element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director	
Test Dates: 10/16/2023 – 10/30/2023	DUT Type: Portable Handset	Page 15 of 58	
	•	Test Dates: DUT Type:	

VIII. Wireless Device Channels and Frequencies

1. 2G/3G Modes

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. The middle channel for each supported band was tested to confirm that results between bands are substantially similar. More information on default test configuration chosen for testing can be found in Section 5.

Center Channels and Frequence	uencies		
Test frequencies & associated c	hannels		
Channel	Frequency (MHz)		
Cellular 850			
190 (GSM)	836.60		
4183 (UMTS)	836.60		
AWS 1750			
1412 (UMTS)	1730.40		
PCS 1900			
661 (GSM)	1880		
9400 (UMTS)	1880		

Table 4-3
Center Channels and Frequencies

2. 4G (LTE) Modes

The middle channel for every band was tested for conversational gain to confirm that the band configuration for VoLTE over IMS does not substantially affect the results. The default band was additionally tested for Frequency Response and Distortion. More information on default LTE test configuration chosen for testing can be found in Section 6. See Table 10-4 for full volume control evaluation.

3. 5G (NR) Modes

The middle channel for every band was tested for conversational gain to confirm that the band configuration for VoNR over IMS does not substantially affect the results. The default band was additionally tested for Frequency Response and Distortion. More information on default NR test configuration chosen for testing can be found in Section 7. See Table 10-5 for full volume control evaluation.

4. WIFI

The middle channel for each IEEE 802.11 standard was tested for conversational gain to confirm that the standard and data rate configuration for VoWIFI over IMS does not substantially affect the results. The 2.4GHz IEEE802.11b was additionally tested for Frequency Response and Distortion. More information on default WIFI test configuration chosen for testing can be found in Section 8. See Table 10-6 for full volume control evaluation.

FCC ID: A3LSMA156U		HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 16 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

IX. Test Flow

The flow diagram below was followed:

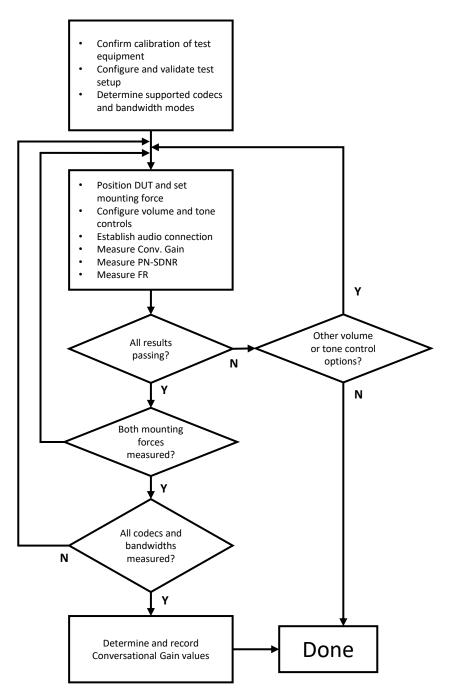


Figure 4-10 C63.19 Volume Control Test Process

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director		
Filename:	Test Dates:	DUT Type:	Page 17 of 58		
1M2309070100-20-R4.A3L	10/16/2023 - 10/30/2023	Portable Handset	. ago ol oo		

5. FCC 2G & 3G MEASUREMENTS

I. GSM Test Configurations

1. Band Configuration

An investigation was performed to ensure the GSM band used for testing does not substantially affect the measurement results. GSM EFR FR V1 codec was used for this evaluation. The effects of band configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. See below table for comparisons between different bands:

Mode	Channel	HAC Mode	Mounting Force (N)	Traffic Mode	Codec Bandwidth	Volume Level	Ambient Noise (dBA)	Conversational Gain (CG) (dB)	FCC CG Limit (dB)	CG Margin dB)	Verdict		
GSM850	190	On	2	FR V1	NB	MAX -1	31.23	19.63	6.00	13.63	Pass		
GSM1900	661	On	2	FR V1	NB	MAX -1	31.23	19.21	6.00	13.21	Pass		

Table 5-1 GSM Results by Band

• Mute off; Backlight off; Max Volume-1; Max Contrast

Power Control Bits = GSM850: PCL=0, GSM1900: PCL=0;

II. UMTS Test Configurations

1. Radio Configuration

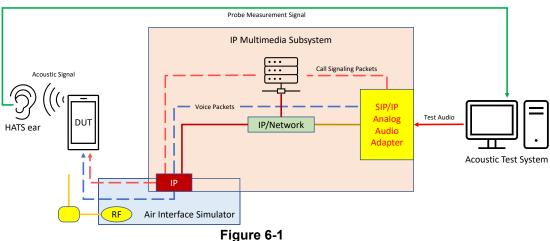
An investigation was performed to ensure that UMTS band used for testing does not substantially affect the measurement results. NB AMR 4.75KBPS, 13.6kbps SRB was used for this evaluation. The effects of band configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. See below table for comparisons between different bands:

Mode	Channel	Channel I HAC Mode I		Codec Bitrate (kbps)	Volume Level	Ambient Noise (dBA)	Conversational Gain (CG) (dB)	FCC CG Limit (dB)	CG Margin dB)	Verdict			
UMTS V	4183	On	2	NB	4.75	MAX -1	31.23	18.86	6.00	12.86	Pass		
UMTS IV	1412	On	2	NB	4.75	MAX -1	31.23	18.80	6.00	12.80	Pass		
UMTS II	9400	On	2	NB	4.75	MAX -1	31.23	18.99	6.00	12.99	Pass		

Table 5-2 UMTS Results by Radio Configuration

Mute off; Backlight off; Max Volume-1; Max Contrast

Power Control Bits = "All Up"


FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 18 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

6. VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoLTE over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoLTE over IMS is shown below. The callbox used when performing VoLTE over IMS Volume Control measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

Test Setup for VoLTE over IMS Volume Control Measurements

2. Audio Level Settings

According to ANSI/TIA-5050-2018, the appropriate audio level to be used for VoLTE over IMS Volume Control testing is -20dBm0 (ASL) and shall be used for the normal speech input level. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 (ASL) speech input level to the DUT for the VoLTE over IMS connection.

FCC ID: A3LSMA156U		HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director		
Filename:	Test Dates:	DUT Type:	Page 19 of 58		
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset			

II. DUT Configuration for VoLTE over IMS Volume Control Testing

1. Radio Configuration

An investigation was performed to ensure the modulation and RB configuration used for testing do not substantially affect the measurement results. The effects of modulation and RB configuration were found to be independent of band and bandwidth; therefore, only one band and bandwidth were used for this investigation. 16QAM, 1RB, 0RB offset was used as the default testing configuration for the handset given the results of this investigation. See below table for comparison between different radio configurations:

Table 6-1									
VoLTE over IMS Results by	y Radio Configuration								

	Mode	RF Bandwidth (MHz)	Radio Configuration	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Volume Level	DRP Translation	Ambient Noise (dBA)	Distortion Value (dB)	FR Margin (dB)	Conversational Gain (CG) (dB)	Distortion Margin dB)		CG Margin dB)	Verdict	
			QPSK/1RB/0RB offset	132322								DF	31.23	25.49	1.90	18.59	5.49	6.00	12.59	Pass
	LTE Band		16QAM/1RB/0RB offset		2322 On		EVS	NB	B 24.4	24.4 MAX -1	DF	31.23	25.84	1.94	18.60	5.84	6.00	12.60	Pass	
Ľ		20	64QAM/1RB/0RB offset			2					DF	31.23	26.20	2.15	18.57	6.20	6.00	12.57	Pass	
	66	20	256QAM/1RB/0RB offset		On	2					DF	31.23	25.18	2.07	18.57	5.18	6.00	12.57	Pass	
		[16QAM/50RB/0RB offset								DF	31.23	27.49	2.11	18.62	7.49	6.00	12.62	Pass	
			16QAM/100RB/0RB offset								DF	31.23	28.07	1.99	18.60	8.07	6.00	12.60	Pass	

2. Band Configuration

An investigation was performed to ensure the LTE band used for testing does not substantially affect the measurement results. The effects of band configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. LTE B66 was used as the default test band for VoLTE over IMS Volume Control testing given the results of this investigation. See below table for comparisons between different bands:

Mode	Antenna Config	RF Bandwidth (MHz)	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Ambient Noise (dBA)	Conversational Gain (CG) (dB)	FCC CG Limit (dB)	CG Margin (dB)	Verdict
LTE Band 71	A	20	133297		2				31.22	18.40	6.00	12.40	Pass
LTE Band 12	А	10	23095		2				31.22	18.38	6.00	12.38	Pass
LTE Band 13	A	10	23230	On	2	EVS	NB	24.4	31.22	18.40	6.00	12.40	Pass
LTE Band 14	A	10	23330		2				31.22	18.40	6.00	12.40	Pass
LTE Band 26	A	15	26865		2				31.22	18.44	6.00	12.44	Pass
LTE Band 66	В	20	132322	On	2	EVS	NB	24.4	31.22	18.43	6.00	12.43	Pass
LIE Band 66	С	20	132322		2	EVS			31.22	18.40	6.00	12.40	Pass
LTE Band 25	В	20	26365	On	2	EVS	NB	24.4	31.22	18.39	6.00	12.39	Pass
LIE Dallu 25	С	20	20303	UII	2	EVS	IND	24.4	31.22	18.51	6.00	12.51	Pass
LTE Band 30	В	10	27710		2				31.22	18.43	6.00	12.43	Pass
LTE Band 7	В	20	21100		2				31.22	18.40	6.00	12.40	Pass
LTE Band 41 (PC3)	В	20	40620	On	On 2	EVS	NB	24.4	31.22	18.58	6.00	12.58	Pass
LTE Band 41 (PC2)	В	20	40620		2				31.22	18.65	6.00	12.65	Pass
LTE Band 48	F	20	55990		2				31.22	18.66	6.00	12.66	Pass

Table 6-2 VoLTE over IMS Results by Band

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 20 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

7. VONR TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoNR over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoNR over IMS is shown below. The callboxes used when performing VoNR over IMS Volume Control measurements are a CMX500 and CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server. The CMX500 provided the baseband signal to perform NR signaling. An external USB audio interface is used to perform the A/D conversion and ensure proper speech input level to the DUT.

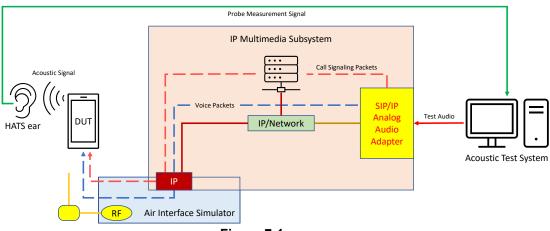


Figure 7-1 Test Setup for VoNR over IMS Volume Control Measurements

2. Audio Level Settings

According to ANSI/TIA-5050-2018, the appropriate audio level to be used for VoNR over IMS Volume Control testing is -20dBm0 (ASL) and shall be used for the normal speech input level. The acoustic test system was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 (ASL) speech input level to the DUT for the VoNR over IMS connection.

FCC ID: A3LSMA156U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 21 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

II. DUT Configuration for VoNR over IMS Volume Control Testing

1. Radio Configuration

An investigation was performed to ensure the waveform, modulation, and RB configuration used for testing do not substantially affect the measurement results. The effects of waveform, modulation, and RB configuration were found to be independent of band and bandwidth; therefore, only one band and bandwidth were used for this investigation. DFT-s-OFDM, 16QAM, 1RB, 1RB offset was used as the default testing configuration for the handset given the results of this investigation. See below table for comparison between different radio configurations:

Table 7-1
VoNR over IMS Results by Radio Configuration – CP-OFDM

Mode	RF Bandwidth (MHz)	Waveform	Radio Configuration	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Volume Level	DRP Translation	Ambient Noise (dBA)	Distortion Value (dB)	FR Margin (dB)	Conversational Gain (CG) (dB)		FCC CG Limit (dB)	CG Margin dB)	Verdict
			QPSK/1RB/1RB offset								DF	31.22	28.68	2.06	18.03	8.68	6.00	8.68	PASS
			16QAM/1RB/0RB 1ffset								DF	31.22	26.62	2.37	17.91	6.62	6.00	6.62	PASS
NR n66	40	CP-OFDM	64QAM/1RB/1RB offset	349000	On		EVS	NB	24.4	MAX-1	DF	31.22	27.35	2.53	17.97	7.35	6.00	7.35	PASS
NRC 1100	40	CP-OFDM	256QAM/1RB/1RB offset	349000	On	2	EVS	IND	24.4	MAX - I	DF	31.22	26.59	2.49	17.96	6.59	6.00	6.59	PASS
			16QAM/50RB/0RB offset								DF	31.22	26.88	2.50	17.89	6.88	6.00	6.88	PASS
			16QAM/100RB/0RB offset								DF	31.22	27.18	2.53	17.97	7.18	6.00	7.18	PASS

Table 7-2 VoNR over IMS Results by Radio Configuration – DFT-s-OFDM

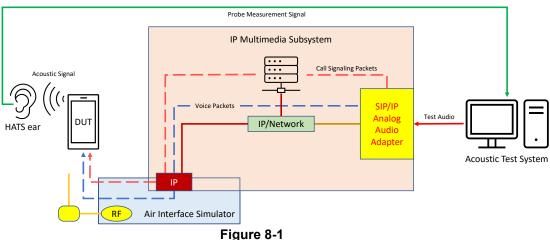
Mode	RF Bandwidth (MHz)	Waveform	Radio Configuration	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Volume Level	DRP Translation	Ambient Noise (dBA)	Distortion Value (dB)	FR Margin (dB)	Conversational Gain (CG) (dB)		FCC CG Limit (dB)	CG Margin dB)	Verdict
			PV2 BPSK /1RB/0RB offset								DF	31.22	26.55	2.47	17.83	6.55	6.00	6.55	PASS
			QPSK/1RB/0RB offset								DF	31.22	26.87	2.69	17.87	6.87	6.00	6.87	PASS
			16QAM/1RB/0RB offset								DF	31.22	27.60	2.67	18.11	7.60	6.00	7.60	PASS
NR n66	40	DFT-s-OFDM		349000	On	2	EVS	NB	24.4	MAX -1	DF	31.22	27.35	2.68	17.87	7.35	6.00	7.35	PASS
			256QAM/1RB/0RB offset								DF	31.22	27.09	2.68	17.93	7.09	6.00	7.09	PASS
			16QAM/50RB/0RB offset								DF	31.22	26.51	2.60	17.96	6.51	6.00	6.51	PASS
			16QAM/100RB/0RB offset								DF	31.22	26.85	2.59	17.90	6.85	6.00	6.85	PASS

2. Band Configuration

An investigation was performed to ensure the NR band used for testing does not substantially affect the measurement results. The effects of band configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. NR n66 was used as the default test band for VoNR over IMS Volume Control testing given the results of this investigation. See below table for comparisons between different bands:

Mode	Antenna Config	RF Bandwidth (MHz)	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Ambient Noise (dBA)	Conversational Gain (CG) (dB)	FCC CG Limit (dB)	FCC Margin from Limit (dB)	Verdict
NR n71	A	20	136100	On	2	EVS	NB	24.4	31.22	18.13	6.00	12.13	PASS
NR n5	А	20	167300	On	2	EVS	NB	24.4	31.22	18.10	6.00	12.10	PASS
NR n70	В	15	340500		2				31.22	18.20	6.00	12.20	PASS
NR n66	В	40	349000	On	2	EVS	NB	24.4	31.22	18.03	6.00	12.03	PASS
NK 100	С	40	349000		2				31.22	18.09	6.00	12.09	PASS
NR n25	В	40	376500	On	2	EVS	NB	24.4	31.22	18.03	6.00	12.03	PASS
NR n2	С	40	376000	OII	2	EVS	IND	24.4	31.22	18.15	6.00	12.15	PASS
NR n41 (PC2)	В	100	518598		2				31.22	18.19	6.00	12.19	PASS
NR n77 DoD (PC2)	F	100	633334	On	2	EVS	NB	24.4	31.22	18.10	6.00	12.10	PASS
NR n77 C (PC2)	F	100	656000	011	2	LV3	IND	24.4	31.22	18.14	6.00	12.14	PASS
NR n48	F	40	55990		2				31.22	18.08	6.00	12.08	PASS

Table 7-3 VoNR over IMS Results by Band


FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 22 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

8. VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoWIFI over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoWIFI over IMS, or CMRS WIFI Calling, is shown below. The callbox used when performing VoLTE over IMS Volume Control measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

Test Setup for VoLTE over IMS Volume Control Measurements

2. Audio Level Settings

According to ANSI/TIA-5050-2018, the appropriate audio level to be used for VoWIFI over IMS Volume Control testing is -20dBm0 (ASL) and shall be used for the normal speech input level. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 (ASL) speech input level to the DUT for the VoWIFI over IMS connection.

FCC ID: A3LSMA156U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 23 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

II. DUT Configuration for VoWIFI over IMS Volume Control Testing

1. IEEE Standard Configuration

An investigation was performed to ensure the IEEE standard used for testing does not substantially affect the measurement results. The effects of IEEE standard were found to be independent of WIFI data rate; therefore, only one data rate was used for each IEEE standard in this investigation. IEEE 802.11b was used as the default testing configuration for the handset given the results of this investigation. See below table for comparison between different radio configurations:

Mode	RF Bandwidth (MHz)	U-NII Band	Channel	HAC Mode	Mounting Force (N)	Codec Bandwidth	Volume Level	DRP Translation	Ambient Noise (dBA)	Distortion Value (dB)	FR Margin (dB)	Conversational Gain (CG) (dB)	Distortion Margin dB)	FCC CG Limit (dB)	Distortion Margin (dB)	CG Margin (dB)	Verdict
IEEE 802.11b	20	1	6	On	2	NB	MAX -1	DF	31.22	25.29	1.11	18.37	5.29	6.00	5.29	12.37	PASS
IEEE 802.11g	20	1	6	On	2	NB	MAX -1	DF	31.22	24.20	1.52	18.41	4.20	6.00	4.20	12.41	PASS
IEEE 802.11n	20	1	6	On	2	NB	MAX -1	DF	31.22	26.41	1.48	18.55	6.41	6.00	6.41	12.55	PASS
IEEE 802.11a	20	1	40	On	2	NB	MAX -1	DF	31.22	25.42	1.29	18.32	5.42	6.00	5.42	12.32	PASS
IEEE 802.11n	20	1	40	On	2	NB	MAX -1	DF	31.22	25.85	1.55	18.17	5.85	6.00	5.85	12.17	PASS
IEEE 802.11n	40	1	38	On	2	NB	MAX -1	DF	31.22	26.07	1.47	18.48	6.07	6.00	6.07	12.48	PASS
IEEE 802.11ac	20	1	40	On	2	NB	MAX -1	DF	31.22	25.39	1.36	18.34	5.39	6.00	5.39	12.34	PASS
IEEE 802.11ac	40	1	38	On	2	NB	MAX -1	DF	31.22	26.68	1.26	18.30	6.68	6.00	6.68	12.30	PASS

Table 8-1 VoWIFI over IMS Results by IEEE Standard

2. Data Rate Configuration

An investigation was performed to ensure the WIFI data rate used for testing does not substantially affect the measurement results. The effects of data rate configuration were found to be independent of IEEE standard; therefore, only one IEEE standard was used for this investigation. 1Mbps was used as the default WIFI data rate for VoWIFI over IMS Volume Control testing given the results of this investigation. See below table for comparisons between different bands:

 Table 8-2

 VoWIFI over IMS Results by Data Rate

Mode	Band	Bandwidth	Data Rate (Mbps)	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Volume Level	DRP Translation	Ambient Noise (dBA)	Distortion Value (dB)	FR Margin (dB)	Conversational Gain (CG) (dB)	Distortion Margin dB)	FCC CG Limit (dB)	CG Margin dB)	Verdict
IEEE 802.11b	2.4GHz	20	1	6	On	2	EVS	NP	24.4	MAX -1	DF	31.23	25.79	1.59	18.27	5.79	6.00	12.27	PASS
IEEE 002.11D	2.40112	20	11		0ii	2	LVO	ND	24.4	101003-1	Di	31.23	26.29	1.61	18.30	6.29	6.00	12.30	PASS

FCC ID: A3LSMA156U	element 🤅	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 24 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

9. INTERIM WAIVER DA 23-914

- I. Under the waiver, only CMRS narrowband and CMRS wideband voice codecs are required to comply with the volume control requirements of the TIA 5050-2018 Volume Control Standard as amended as follows:
 - a. For the 2N mounting force test, one narrowband and one wideband voice codec embedded with the handset must pass with at least one volume control setting with a conversational gain of ≥ 6 dB for all voice services, bands of operation and air interfaces over which it operates using one codec bit rate of the applicant's choosing.
 - b. For the 8N mounting force test, one narrowband and one wideband voice codec embedded with the handset must pass with at least one volume control setting with a conversational gain of ≥ 6 dB for all voice services, bands of operation and air interfaces over which they operate but is not required to meet or exceed the full 18 dB of conversational gain specified in section 5.1.1 of the TIA 5050 Volume Control Standard using one codec bit rate of the applicant's choosing.
- II. For all other narrowband and wideband codecs not evaluated in I.a. above, TIA 5050-2018 Receive Distortion and Noise Performance and Receive Acoustic Frequency Response Performance evaluations are not required; however, these codecs shall be assessed for conversational gain and documented in the test report at the 2N and 8N levels with a gain of ≥ 6 dB for all voice services, bands of operation and air interfaces over which they operate. The handset volume setting used to comply with I.a. shall be used for these other CMRS codec evaluations.
- III. Any other codec for voice services embedded in the handset, not identified in section I and II above are not required to comply or demonstrate in the test reports for conversational gain.
- IV. Under the waiver, the manufacturer has chosen NB EVS 24.4kbps and WB EVS 24.4kbps audio codec bitrates for full evaluation.

FCC ID: A3LSMA156U	element 🤅	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 25 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

10. VOLUME CONTROL TEST SUMMARY

Table 10-1 Consolidated Tabled Results								
	Convers Gain (C	sational G) (dB)	FR Margin (dB)	Distortion Value (dB)	C63.19 Verdict			
	2N	8N	(40)	Value (ub)				
GSM	19.21	21.91	-	-	Compliant			
UMTS	18.58	21.51	-	-	Compliant			
LTE	18.05	21.48	0.48	21.64	Compliant			
NR	17.76	20.93	0.48	24.27	Compliant			
WLAN	18.12	20.73	0.59	25.54	Compliant			

I. Raw Handset Data

Table 10-2 Raw Data Results for GSM

Mode	Channel	HAC Mode	Mounting Force (N)	Traffic Mode	Codec Bandwidth	Volume Level	Ambient Noise (dBA)	Conversational Gain (CG) (dB)	FCC CG Limit (dB)	CG Margin dB)	Verdict
	661	Off	2	FR V1	NB	MAX -1	31.23	19.21	6.00	13.21	Pass
	661	Off	2	FR V2	NB	MAX -1	31.23	19.85	6.00	13.85	Pass
GSM1900	661	Off	2	HR V1	NB	MAX -1	31.23	20.64	6.00	14.64	Pass
G3W1900	661	Off	8	FR V1	NB	MAX -1	31.23	21.91	6.00	15.91	Pass
	661	Off	8	FR V2	NB	MAX -1	31.23	22.06	6.00	16.06	Pass
	661	Off	8	HR V1	NB	MAX -1	31.23	22.98	6.00	16.98	Pass

Table 10-3 Raw Data Results for UMTS

Mode	Channel	HAC Mode	Mounting Force (N)	Codec Bandwidth	Codec Bitrate (kbps)	Volume Level	Ambient Noise (dBA)	Conversational Gain (CG) (dB)	FCC CG Limit (dB)	CG Margin dB)	Verdict
	9400	On	2	NB	4.75	MAX -1	31.23	18.99	6.00	12.99	Pass
	9400	On	2	NB	12.20	MAX -1	31.23	19.29	6.00	13.29	Pass
	9400	On	2	WB	6.60	MAX -1	31.23	18.58	6.00	12.58	Pass
	9400	On	2	WB	12.65	MAX -1	31.23	18.70	6.00	12.70	Pass
UMTS II	9400	On	2	WB	23.85	MAX -1	31.23	18.78	6.00	12.78	Pass
UNITST	9400	On	8	NB	4.75	MAX -1	31.23	21.93	6.00	15.93	Pass
	9400	On	8	NB	12.20	MAX -1	31.23	22.20	6.00	16.20	Pass
	9400	On	8	WB	6.60	MAX -1	31.23	21.51	6.00	15.51	Pass
	9400	On	8	WB	12.65	MAX -1	31.23	21.65	6.00	15.65	Pass
	9400	On	8	WB	23.85	MAX -1	31.23	21.66	6.00	15.66	Pass

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 26 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

Table 10-4 Raw Data Results for VoLTE

Mode	RF Bandwidth (MHz)	Radio Configuration	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Volume Level	DRP Translation	Ambient Noise (dBA)	Distortion Value (dB)	FR Margin (dB)	Conversational Gain (CG) (dB)	Distortion Margin dB)	FCC CG Limit (dB)	CG Margin dB)	Verdict
				On	2	EVS	NB	5.9	MAX -1	NA	31.23	-	-	18.12	-	6.00	12.12	PASS
				On	2	EVS	NB	13.2	MAX -1	NA	31.23	-	-	18.05	-	6.00	12.05	PASS
				On	2	EVS	NB	24.4	MAX -1	DF	31.23	23.01	2.21	18.06	3.01	6.00	12.06	PASS
				On	8	EVS	NB	5.9	MAX -1	NA	31.23	-	-	21.59	-	6.00	15.59	PASS
				On	8	EVS	NB	13.2	MAX -1	NA	31.23	-	-	21.48	-	6.00	15.48	PASS
				On	8	EVS	NB	24.4	MAX -1	DF	31.23	21.64	2.27	21.52	1.64	6.00	15.52	PASS
				On	2	EVS	WB	5.9	MAX -1	NA	31.23	-	-	18.99	-	6.00	12.99	PASS
				On	2	EVS	WB	13.2	MAX -1	NA	31.23	-	-	19.05	-	6.00	13.05	PASS
				On	2	EVS	WB	24.4	MAX -1	FF	31.23	24.66	0.48	18.98	4.66	6.00	12.98	PASS
				On	8	EVS	WB	5.9	MAX -1	NA	31.23	-	-	21.72	-	6.00	15.72	PASS
LTE Band	20	16QAM/1RB/0	132322	On	8	EVS	WB	13.2	MAX -1	NA	31.23	-	-	21.74	-	6.00	15.74	PASS
66	20	RB offset	132322	On	8	EVS	WB	24.4	MAX -1	FF	31.23	22.73	0.52	21.76	2.73	6.00	15.76	PASS
				On	2	AMR	NB	4.75	MAX -1	NA	31.23	-	-	19.24	-	6.00	13.24	PASS
				On	2	AMR	NB	12.2	MAX -1	NA	31.23	-	-	19.45	-	6.00	13.45	PASS
				On	8	AMR	NB	4.75	MAX -1	NA	31.23	-	-	21.97	-	6.00	15.97	PASS
				On	8	AMR	NB	12.2	MAX -1	NA	31.23	-	-	22.18	-	6.00	16.18	PASS
				On	2	AMR	WB	6.6	MAX -1	NA	31.23	-	-	18.58	-	6.00	12.58	PASS
				On	2	AMR	WB	12.65	MAX -1	NA	31.23	-	-	18.64	-	6.00	12.64	PASS
				On	2	AMR	WB	23.85	MAX -1	NA	31.23	1	-	18.75	-	6.00	12.75	PASS
				On	8	AMR	WB	6.6	MAX -1	NA	31.23	1	-	21.59	-	6.00	15.59	PASS
				On	8	AMR	WB	12.65	MAX -1	NA	31.23	-	-	21.71	-	6.00	15.71	PASS
				On	8	AMR	WB	23.85	MAX -1	NA	31.23	-	-	21.68	-	6.00	15.68	PASS

Table 10-5 Raw Data Results for VoNR

Mode	RF Bandwidth (MHz)	Waveform	Radio Configuration	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Volume Level	DRP Translation	Ambient Noise (dBA)	Distortion Value (dB)	FR Margin (dB)	Conversational Gain (CG) (dB)	Distortion Margin dB)	FCC CG Limit (dB)	CG Margin dB)	Verdict
	1			On	2	EVS	NB	5.9	MAX -1	NA	31.22	-	-	17.86	-	6.00	11.86	PASS	
					On	2	EVS	NB	13.2	MAX -1	NA	31.22	-	-	17.76	-	6.00	11.76	PASS
					On	2	EVS	NB	24.4	MAX -1	DF	31.22	26.05	2.07	18.05	6.05	6.00	12.05	PASS
					On	8	EVS	NB	5.9	MAX -1	NA	31.22		-	20.99	-	6.00	14.99	PASS
					On	8	EVS	NB	13.2	MAX -1	NA	31.22	-	-	20.93	-	6.00	14.93	PASS
					On	8	EVS	NB	24.4	MAX -1	DF	31.22	26.85	2.67	21.07	6.85	6.00	15.07	PASS
					On	2	EVS	WB	5.9	MAX -1	NA	31.22	-	-	18.19	-	6.00	12.19	PASS
					On	2	EVS	WB	13.2	MAX -1	NA	31.22	-	-	18.17	-	6.00	12.17	PASS
					On	2	EVS	WB	24.4	MAX -1	FF	31.22	24.27	0.48	18.43	4.27	6.00	12.43	PASS
					On	8	EVS	WB	5.9	MAX -1	NA	31.22	-	-	21.05	-	6.00	15.05	PASS
NR n66	40	DFT-S-OFDM	16QAM /1RB /	349000	On	8	EVS	WB	13.2	MAX -1	NA	31.22	-		21.03	-	6.00	15.03	PASS
	40	D11-3-01 DM	1RB offset	348000	On	8	EVS	WB	24.4	MAX -1	FF	31.22	24.66	1.46	21.23	4.66	6.00	15.23	PASS
					On	2	AMR	NB	4.75	MAX -1	NA	31.22	-		18.54	-	6.00	12.54	PASS
					On	2	AMR	NB	12.2	MAX -1	NA	31.22	-		18.81	-	6.00	12.81	PASS
					On	8	AMR	NB	4.75	MAX -1	NA	31.22	-		21.27	-	6.00	15.27	PASS
					On	8	AMR	NB	12.2	MAX -1	NA	31.22		4	21.60	-	6.00	15.60	PASS
					On	2	AMR	WB	6.6	MAX -1	NA	31.22		4	18.17	-	6.00	12.17	PASS
					On	2	AMR	WB	12.65	MAX -1	NA	31.22		4	18.25		6.00	12.25	PASS
					On	2	AMR	WB	23.85	MAX -1	NA	31.22		-	18.31	-	6.00	12.31	PASS
					On	8	AMR	WB	6.6	MAX -1	NA	31.22		-	20.98	-	6.00	14.98	PASS
					On	8	AMR	WB	12.65	MAX -1	NA	31.22	1.1	-	21.04	-	6.00	15.04	PASS
					On	8	AMR	WB	23.85	MAX -1	NA	31.22	-		21.06	-	6.00	15.06	PASS

Table 10-6 Raw Data Results for VoWIFI

Mode	Band	Bandwidth	Data Rate (Mbps)	Channel	HAC Mode	Mounting Force (N)	Codec Type	Codec Bandwidth	Codec Bitrate	Volume Level	DRP Translation	Ambient Noise (dBA)	Distortion Value (dB)	FR Margin (dB)	Conversational Gain (dB)	Distortion Margin dB)	FCC CG Limit (dB)	CG Margin dB)	Verdict
				On	2	EVS	NB	5.9	MAX -1	NA	31.23	-	-	18.32	-	6.00	12.32	PASS	
					On	2	EVS	NB	13.2	MAX -1	NA	31.23	-	-	18.25	-	6.00	12.25	PASS
					On	2	EVS	NB	24.4	MAX -1	DF	31.23	26.19	1.52	18.12	6.19	6.00	12.12	PASS
					On	8	EVS	NB	5.9	MAX -1	NA	31.23	-	-	21.77	-	6.00	15.77	PASS
					On	8	EVS	NB	13.2	MAX -1	NA	31.23	-	-	22.00	-	6.00	16.00	PASS
					On	8	EVS	NB	24.4	MAX -1	DF	31.23	26.07	1.44	21.99	6.07	6.00	15.99	PASS
					On	2	EVS	WB	5.9	MAX -1	NA	31.23	-	-	18.35	-	6.00	12.35	PASS
					On	2	EVS	WB	13.2	MAX -1	NA	31.23	-	-	19.00	-	6.00	13.00	PASS
					On	2	EVS	WB	24.4	MAX -1	FF	31.23	25.76	0.09	18.11	5.76	6.00	12.11	PASS
					On	8	EVS	WB	5.9	MAX -1	NA	31.23	-	-	20.73	-	6.00	14.73	PASS
IEEE 802.11b	2.4GHz	20	1	6	On	8	EVS	WB	13.2	MAX -1	NA	31.23	-	-	21.00	-	6.00	15.00	PASS
					On	8	EVS	WB	24.4	MAX -1	FF	31.23	25.54	0.59	21.06	5.54	6.00	15.06	PASS
					On	2	AMR	NB	4.75	MAX -1	NA	31.23	-	-	19.26	-	6.00	13.26	PASS
					On	2	AMR	NB	12.2	MAX-1	NA	31.23	-	-	19.56	-	6.00	13.56	PASS
					On	8	AMR	NB NB	4.75	MAX -1 MAX -1	NA NA	31.23 31.23	-	-	21.13 21.37	-	6.00 6.00	15.13 15.37	PASS
					On	8							-	-		-			PASS
					On On	2	AMR	WB WB	6.6 12.65	MAX -1 MAX -1	NA NA	31.23 31.23	-	-	18.98 18.87	-	6.00 6.00	12.98 12.87	PASS
					On	2	AMR	WB	23.85	MAX-1	NA	31.23			19.32		6.00	13.32	PASS
					On	8	AMR	WB	6.6	MAX-1	NA	31.23	-	-	20.88	-	6.00	13.32	PASS
					On	8	AMR	WB	12.65	MAX-1	NA	31.23		-	20.80		6.00	14.00	PASS
					On	8	AMR	WB	23.85	MAX-1	NA	31.23			20.80		6.00	14.00	PASS

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 27 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

II. Test Notes

A. General

- 1. Phone Condition: Phone Condition: Mute off; Backlight off; Max Volume -1; Max Contrast
- 2. Test Signal: IEEE Std 269 uncompressed real male speech
- 3. Hearing Aid Mode was set according to the following menu path: (Phone→Call Settings→Other call Settings→Hearing aids) was set to ON for HAC compliance.
- 4. Bluetooth and WIFI were disabled while testing 2G/3G/4G/5G modes.
- 5. WD was evaluated with one volume notch down from MAX volume setting for HAC compliance.
- 6. The FCC Margin from Limit column indicates a margin from the FCC limit for compliance.

B. GSM

- 1. Power Configuration: GSM1900: PCL=0;
- 2. Vocoder Configuration: EFR (GSM): FR V1, FR V2, HR V1

C. UMTS

- 1. Power Configuration: TPC = "All 1's"
- 2. Vocoder Configuration:
 - a. AMR-NB: 4.75kbps, 12.2kbps
 - b. AMR-WB: 6.60kbps, 12.65kbps, 23.85kbps
- D. Voice over LTE
 - 1. Power Configuration: TPC = "Max Power"
 - 2. Radio Configuration: 16QAM, 1RB, 0RB offset
 - 3. Vocoder Configuration:
 - a. AMR-NB: 4.75kbps, 12.2kbps
 - b. AMR-WB: 6.60kbps, 12.65kbps, 23.85kbps
 - c. EVS-NB: 5.9kbps, 13.2kbps, 24.4kbps
 - d. EVS-WB: 5.9kbps, 13.2kbps, 24.4kbps

E. Voice over NR

- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: DFT-s-OFDM, 16QAM, 1RB, 1RB offset
- 3. Vocoder Configuration:
 - a. AMR-NB: 4.75kbps, 12.2kbps
 - b. AMR-WB: 6.60kbps, 12.65kbps, 23.85kbps
 - c. EVS-NB: 5.9kbps,13.2kbps, 24.4kbps
 - d. EVS-WB: 5.9kbps,13.2kbps, 24.4kbps
- F. Voice over WIFI
 - 1. Radio Configuration: IEEE 802.11b: DSSS, 1Mbps
 - 2. Vocoder Configuration:
 - a. AMR-NB: 4.75kbps, 12.2kbps
 - b. AMR-WB: 6.60kbps, 12.65kbps, 23.85kbps
 - c. EVS-NB: 5.9kbps, 13.2kbps, 24.4kbps
 - d. EVS-WB: 5.9kbps,13.2kbps, 24.4kbps

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 28 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

III. Volume Control Verification Test Results

	Verification Results Table									
Date of Testing	Test Location	Air Interface Equipment	Acoustical Calibrator	HATS Sens. [dB]	Ambient Noise (dBA)					
10/16/2023	Whisper1	CMW500	2343018	97.22	31.23					
10/30/2023	Whisper1	CMW500	2343018	97.11	31.22					

Table 10-7 Verification Results Tabl

FCC ID: A3LSMA156U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 29 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

11. MEASUREMENT UNCERTAINTY

Receive Volume Control Requirement	Expanded uncertainty (k=2), 95% confidence level (dB)
Conversational Gain	0.33
Frequency Response (FF)	0.23
Frequency Response (DF)	0.19
Distortion	0.81

Table 11-1 Uncertainty Estimation Table

Notes:

1. Test equipment is calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.

 All equipment has traceability according to NIST. Measurement Uncertainties are defined in further detail in NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement, the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. The above uncertainties were estimated experimentally using the techniques contained in NIS 81 and NIS 3003.

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 30 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

12. EQUIPMENT LIST

Table 12-1 Equipment List

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Listen	SoundConnect	Microphone Power Supply 9/*		Biennial	9/15/2024	0899-PS150
RME	Fireface UC	Soundcheck Acoustic Analyzer External Audio Interface	9/19/2022	Biennial	9/19/2024	23792992
Rohde & Schwarz	CMW 500	Wideband Radio Communication Tester	8/9/2023	Annual	8/9/2024	162125
Rohde & Schwarz	CMW 500	Radio Communication Tester	8/10/2023	Annual	8/10/2024	140144
Rohde & Schwarz	CMX500	Radio Communication Tester	N/A		N/A	100298
Seekonk	NC-100	Torque Wrench (8" lb)	11/28/2022	Biennial	11/28/2024	80790
YellowTec	YT4211	USB Audio Interface	N/A		N/A	20000365
Netgear	XS708E	Ethernet Switch	N/A		N/A	4FU3875C001A8
Bruel & Kjaer (HBK)	4128	Head and Torso Simulator	4/5/2022	Biennial	4/5/2024	1947220
Bruel & Kjaer (HBK)	4231	Acoustical Calibrator Type 4231 with UA1546	4/6/2022	Biennial	4/6/2024	2343018
Bruel & Kjaer (HBK)	DZ-9769	Artificial Ear	9/15/2022	Triennial	9/15/2025	SBM553623

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 31 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

13. TEST DATA

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 32 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

10/16/2023

Element Hearing-Aid Compatibility Facility

Whisper Room 1 / HATS Type: HATS 4128 Serial: 1947220

Measurement Standard: ANSI C63.19

Equipment:

- Head and Torso Simulator Type 4128: SN: 1947220; Calibrated: 4/5/2024
- Acoustical Calibrator Type 4231 W/ UA1546: SN 2343018; Calibrated: 4/6/2023

Ambient Noise Level Check (Analysis)	31.23	dB	<
Ambient Noise Level Check (RTA)	32.25	dB	~
Ambient Noise Level Check (Voltmeter)	31.1	dB	~
CMW500 0dBm0 Level Check	969m	v	~
HATS Sensitivity Check	97.22	dB	~

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 33 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

10/30/2023

Element Hearing-Aid Compatibility Facility

Whisper Room 1 / HATS Type: HATS 4128 Serial: 1947220

Measurement Standard: ANSI C63.19

Equipment:

- Head and Torso Simulator Type 4128: SN: 1947220; Calibrated: 4/5/2024
- Acoustical Calibrator Type 4231 W/ UA1546: SN 2343018; Calibrated: 4/6/2023

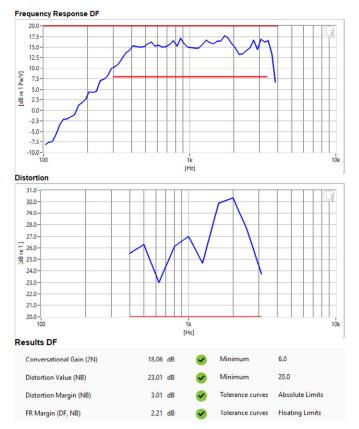
Ambient Noise Level Check (Analysis)	31.22	dB	~
Ambient Noise Level Check (RTA)	32.69	dB	~
Ambient Noise Level Check (Voltmeter)	31.2	dB	~
CMW500 0dBm0 Level Check	1	v	<
HATS Sensitivity Check	97.11	dB	~

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 34 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

Element Hearing-Aid Compatibility Facility

DUT: A3LSMA156U

Type: Portable Handset Serial: 2074M


Measurement Standard: ANSI C63.19-2019; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022 • ٠
 - Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

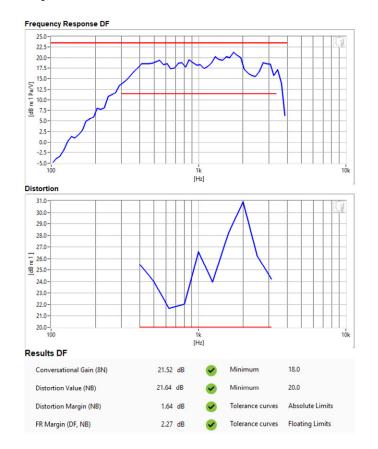
- Mode: LTE Band 66 •
- Bandwidth: 20MHz
- Channel: 132322 .
- Codec Bandwidth: Narrowband ٠
- Mounting Force: 2N •

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename: 1M2309070100-20-R4.A3L	Test Dates: 10/16/2023 – 10/30/2023	DUT Type: Portable Handset	Page 35 of 58
1112309070100-20-R4.A3L	10/10/2023 - 10/30/2023	Follable Hallusel	

Element Hearing-Aid Compatibility Facility

DUT: A3LSMA156U

Type: Portable Handset Serial: 2074M


Measurement Standard: ANSI C63.19-2019; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

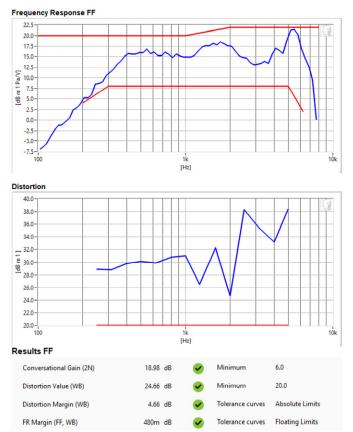
Test Configuration:

- Mode: LTE Band 66
- Bandwidth: 20MHz
- Channel: 132322
- Codec Bandwidth: Narrowband
- Mounting Force: 8N

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 36 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

DUT: A3LSMA156U

Type: Portable Handset Serial: 2074M


Measurement Standard: ANSI C63.19-2019; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022 • ٠
 - Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

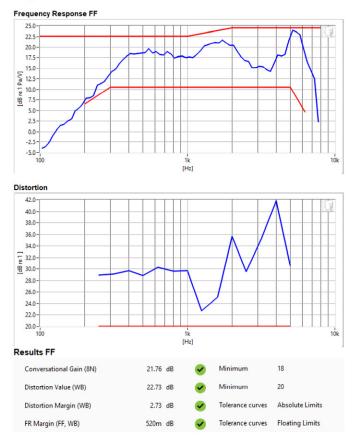
Test Configuration:

- Mode: LTE Band 66 •
- Bandwidth: 20MHz
- Channel: 132322 .
- Codec Bandwidth: Wideband ٠
- Mounting Force: 2N •

FCC ID: A3LSMA156U	element 🤤	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 37 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

DUT: A3LSMA156U

Type: Portable Handset Serial: 2074M


Measurement Standard: ANSI C63.19-2019; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022 • ٠
 - Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

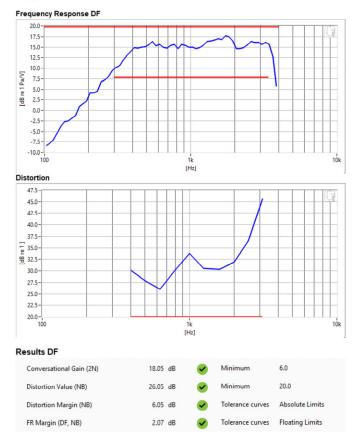
Test Configuration:

- Mode: LTE Band 66 •
- Bandwidth: 20MHz •
- Channel: 132322 .
- Codec Bandwidth: Wideband ٠
- Mounting Force: 8N •

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 38 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

DUT: A3LSMA156U

Type: Portable Handset Serial: 2074M


Measurement Standard: ANSI C63.19-2019; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

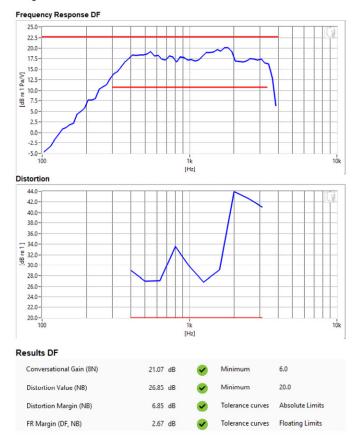
Test Configuration:

- Mode: NR n66
- Bandwidth: 40MHz
- Channel: 349000
- Codec Bandwidth: Narrowband
- Mounting Force: 2N

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 39 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

DUT: A3LSMA156U

Type: Portable Handset Serial: 2074M


Measurement Standard: ANSI C63.19-2019; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

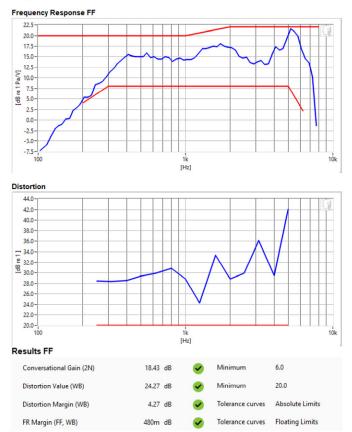
Test Configuration:

- Mode: NR n66
- Bandwidth: 40MHz
- Channel: 349000
- Codec Bandwidth: Narrowband
- Mounting Force: 8N

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 40 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

DUT: A3LSMA156U

Type: Portable Handset Serial: 2074M


Measurement Standard: ANSI C63.19-2019; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

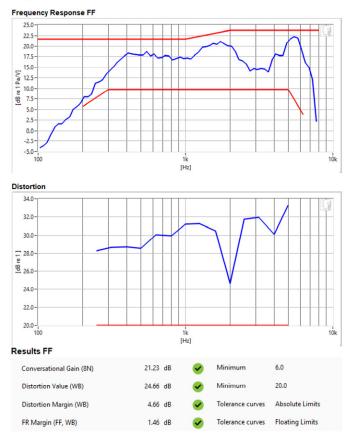
Test Configuration:

- Mode: NR n66
- Bandwidth: 40MHz
- Channel: 349000
- Codec Bandwidth: Wideband
- Mounting Force: 2N

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 41 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

DUT: A3LSMA156U

Type: Portable Handset Serial: 2074M


Measurement Standard: ANSI C63.19-2019; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

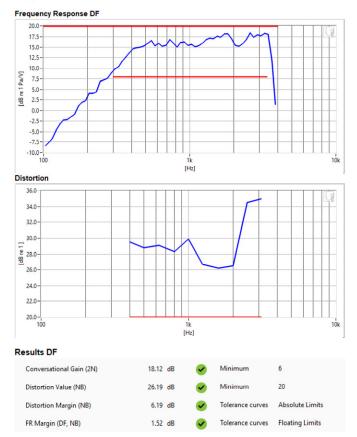
Test Configuration:

- Mode: NR n66
- Bandwidth: 40MHz
- Channel: 349000
- Codec Bandwidth: Wideband
- Mounting Force: 8N

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 42 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

DUT: A3LSMA156U

Type: Portable Handset Serial: 2074M


Measurement Standard: ANSI C63.19-2019; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

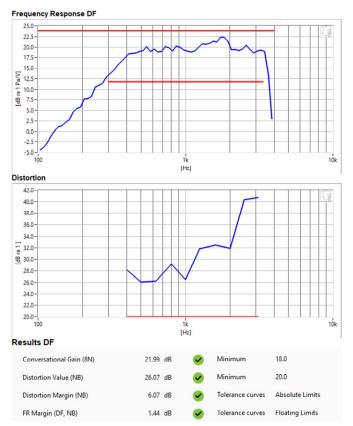
Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: IEEE 802.11b
- Channel: 6
- Codec Bandwidth: Narrowband
- Mounting Force: 2N

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 43 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

DUT: A3LSMA156U

Type: Portable Handset Serial: 2074M


Measurement Standard: ANSI C63.19-2019; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

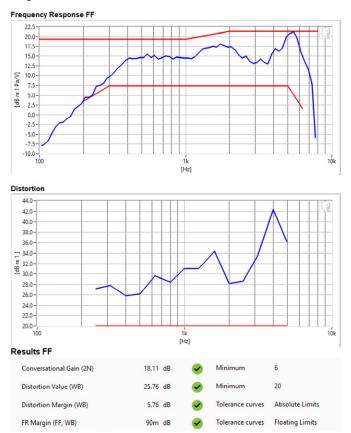
Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: IEEE 802.11b
- Channel: 6
- Codec Bandwidth: Narrowband
- Mounting Force: 8N

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 44 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

DUT: A3LSMA156U

Type: Portable Handset Serial: 2074M


Measurement Standard: ANSI C63.19-2019; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

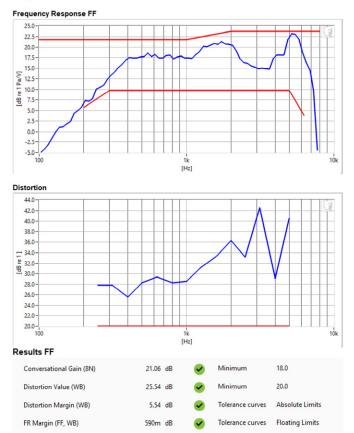
Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: IEEE 802.11b
- Channel: 6
- Codec Bandwidth: Wideband
- Mounting Force: 2N

FCC ID: A3LSMA156U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 45 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

DUT: A3LSMA156U

Type: Portable Handset Serial: 2074M


Measurement Standard: ANSI C63.19-2019; ANSI/TIA-5050-2018

Equipment:

- Head and Torso Simulator: Bruel & Kjaer Model 4128 SN: 1947220; Calibrated: 4/5/2022
- Ear Simulator: Bruel & Kjaer Model 4158 SN: 18862222; Calibrated: 4/6/2022

Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: IEEE 802.11b
- Channel: 6
- Codec Bandwidth: Wideband
- Mounting Force: 8N

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 46 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

14. CALIBRATION CERTIFICATES

FCC ID: A3LSMA156U	element 🤤	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 47 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

The Hettin and Duttel & K	Carling to California I should be			Page 1 of 2
3079 Pre Dulut Telephon	Cjær Inc. Calibration Laboratory miere Parkway h, GA 30097 e: 770-209-6907 70-447-4033		tinger Brüel and K er is Certified to IS	
	http://www.hbkworld.com	CERTIFICATI No.: CAS-56502		
Calibration Of:				
Model Number :	4128-C-001	Serial Number:	1947220	
Customer:				
PCTI	EST Engineering Laboratory Inc		١	/ TK
	Oakland Mills Road			/ TK 5/6/2022
Colu	mbia, MD 21046			5/0/
CALIBRATION CON	NDITIONS:			
Environment conditions	Air temperature :	23 °C		
Environment conditions	Air temperature : Air pressure:	23 °C 97.3 kPa		
SPECIFICATIONS: This document certifies that th Data", meets acceptance criteri		97.3 kPa : 32 % RH Number" has been calibrat	npliance, where ap	plicable, are based on calibration
SPECIFICATIONS: This document certifies that th Data", meets acceptance criter results falling within specified accomplished using a test syst I. For "as received" and "final" without written approval of the Instrumentation has been calib National Measurement Institut PROCEDURE:	Air pressure: Relative Humidity e instrument as listed under "Model ia as prescribed by the referenced Pro-	97.3 kPa : 32 % RH Number" has been calibrat ocedure. Statements of cor ertainty of the measureme nents of ISO/IEC 17025, / Certificate and attached d bration Laboratory-Dulut with values traceable to th onstants.	npliance, where ap nts. The calibration ANSI/NCSL Z540- ata pages shall not n, GA. Results relat	plicable, are based on calibration of the listed instrumentation v -1, and guidelines of ISO 10012 be reproduced, except in full, te only to the items tested. The
SPECIFICATIONS: This document certifies that th Data", meets acceptance criter results falling within specified accomplished using a test syst I. For "as received" and "final" without written approval of the Instrumentation has been calib National Measurement Institut PROCEDURE:	Air pressure: Relative Humidity e instrument as listed under "Model ia as prescribed by the referenced Pr criteria with no reduction by the und em which conforms with the requirer " data, see the attached page(s). This e Hottinger Bruel and Kjaer Inc. Cali rated using Measurement Standards es or derived from natural physical c	97.3 kPa : 32 % RH Number" has been calibrat ocedure. Statements of cor ertainty of the measureme nents of ISO/IEC 17025, / Certificate and attached d bration Laboratory-Dulut with values traceable to th onstants.	npliance, where ap nts. The calibration ANSI/NCSL Z540- ata pages shall not n, GA. Results relat	plicable, are based on calibration of the listed instrumentation v -1, and guidelines of ISO 10012 be reproduced, except in full, te only to the items tested. The
SPECIFICATIONS: This document certifies that th Data", meets acceptance criteri results falling within specified accomplished using a test syst 1. For "as received" and "final" without written approval of the Instrumentation has been callib National Measurement Institut PROCEDURE: The calibration was performed RESULTS:	Air pressure: Relative Humidity e instrument as listed under "Model ia as prescribed by the referenced Pro criteria with no reduction by the unc em which conforms with the requirer " data, see the attached page(s). This b Hottinger Bruel and Kjaer Inc. Cali rated using Measurement Standards es or derived from natural physical c according to procedure number: 412	97.3 kPa : 32 % RH Number" has been calibrat ocedure. Statements of cor ertainty of the measureme nents of ISO/IEC 17025, / Certificate and attached d bration Laboratory-Dulut with values traceable to th onstants.	npliance, where ap nts. The calibration ANSI/NCSL Z540- ata pages shall not n, GA. Results relat	plicable, are based on calibration of the listed instrumentation v -1, and guidelines of ISO 10012 be reproduced, except in full, te only to the items tested. The
SPECIFICATIONS: This document certifies that th Data", meets acceptance criter results falling within specified accomplished using a test syst 1. For "as received" and "final" without written approval of the Instrumentation has been calib National Measurement Institut PROCEDURE: The calibration was performed RESULTS: "As Received" Physical Com	Air pressure: Relative Humidity e instrument as listed under "Model ia as prescribed by the referenced Pr criteria with no reduction by the und em which conforms with the requirer " data, see the attached page(s). This e Hottinger Bruel and Kjaer Inc. Cali rated using Measurement Standards es or derived from natural physical c	97.3 kPa : 32 % RH Number" has been calibrat codure. Statements of cor ertainty of the measureme nents of ISO/IEC 17025, J Certificate and attached d bration Laboratory-Dulutt with values traceable to th onstants. 18 DP Rev. 7.21	npliance, where ap nts. The calibration ANSI/NCSL Z540- ata pages shall not n, GA. Results relat	plicable, are based on calibration of the listed instrumentation v -1, and guidelines of ISO 10012 be reproduced, except in full, te only to the items tested. The e of Standards and Technology,
SPECIFICATIONS: This document certifies that th Data", meets acceptance criter results falling within specified accomplished using a test syst 1. For "as received" and "final" without written approval of th Instrumentation has been calib National Measurement Institut PROCEDURE: The calibration was performed RESULTS: "As Received" Physical Com "As Received" Data: "A The reported expanded uncerter approximately 95%. The uncer	Air pressure: Relative Humidity e instrument as listed under "Model ia as prescribed by the referenced Pr criteria with no reduction by the unc em which conforms with the requirer " data, see the attached page(s). This e Hottinger Bruel and Kjaer Inc. Cali rated using Measurement Standards es or derived from natural physical c according to procedure number: 412 dition: Acceptable for Calibration	97.3 kPa : 32 % RH Number" has been calibrat beedure. Statements of cor ertainty of the measureme nents of ISO/IEC 17025, / Certificate and attached d bration Laboratory-Dulut with values traceable to th onstants. 28 DP Rev. 7.21 "Final Da" inty multiplied by a cover at in accordance with EA-4	npliance, where ap nts. The calibration ANSI/NCSL Z540: ata pages shall not n, GA. Results relat e National Institute ata": Within Accep age factor k =2 pro 4/02 from elements	plicable, are based on calibration of the listed instrumentation y -1, and guidelines of ISO 10012 be reproduced, except in full, te only to the items tested. The e of Standards and Technology, ptance Criteria
SPECIFICATIONS: This document certifies that th Data", meets acceptance criter results falling within specified accomplished using a test syst 1. For "as received" and "final" without written approval of th Instrumentation has been calib National Measurement Institut PROCEDURE: The calibration was performed RESULTS: "As Received" Physical Com "As Received" Data: "A The reported expanded uncerter approximately 95%. The uncer	Air pressure: Relative Humidity e instrument as listed under "Model ia as prescribed by the referenced Pro- criteria with no reduction by the und- em which conforms with the requirer "data, see the attached page(5). This be Hottinger Bruel and Kjaer Inc. Cali- rated using Measurement Standards es or derived from natural physical of according to procedure number: 412 dition: Acceptable for Calibration s Received" = "Final Data" inty is based on the standard uncerta- tatinty evaluation has been carried on nyuronmental conditions and any sho	97.3 kPa : 32 % RH Number" has been calibrat beedure. Statements of cor ertainty of the measureme nents of ISO/IEC 17025, 4 Certificate and attached d bration Laboratory-Dulut with values traceable to th onstants. 28 DP Rev. 7.21 "Final Da "Final Da inty multiplied by a cover at accordance with EA-4 rt term contribution from the	npliance, where ap nts. The calibration ANSI/NCSL Z540: ata pages shall not n, GA. Results relat e National Institute ata": Within Accep age factor k =2 pro 4/02 from elements	plicable, are based on calibratie a of the listed instrumentation y- 1, and guidelines of ISO 10012 be reproduced, except in full, te only to the items tested. The c of Standards and Technology, ptance Criteria widing a level of confidence of s originating from standards, alibration.
SPECIFICATIONS: This document certifies that th Data", meets acceptance criteri results falling within specified accomplished using a test syst 1. For "as received" and "final" without written approval of the Instrumentation has been calib National Measurement Institut PROCEDURE: The calibration was performed RESULTS: "As Received" Physical Com "As Received" Data: "A The reported expanded uncerter approximately 95%. The uncer calibration method, effect of en	Air pressure: Relative Humidity e instrument as listed under "Model ia as prescribed by the referenced Pro- criteria with no reduction by the under m which conforms with the requirer "data, see the attached page(5). This be Hottinger Bruel and Kjaer Inc. Cali- rated using Measurement Standards es or derived from natural physical of according to procedure number: 412 dition: Acceptable for Calibration s Received" = "Final Data" inty is based on the standard uncerta- tatinty evaluation has been carried on nvironmental conditions and any sho : 05-Apr-2022	97.3 kPa : 32 % RH Number" has been calibrat beedure. Statements of cor ertainty of the measureme nents of ISO/IEC 17025, 4 Certificate and attached d bration Laboratory-Dulut with values traceable to th onstants. 28 DP Rev. 7.21 "Final Da "Final Da inty multiplied by a cover at accordance with EA-4 rt term contribution from the	npliance, where ap nts. The calibration ANSI/NCSL Z540- ata pages shall not a, GA. Results relat e National Institute ata": Within Accep age factor k =2 pro 4/02 from elements the device under ca	plicable, are based on calibratie a of the listed instrumentation y- 1, and guidelines of ISO 10012 be reproduced, except in full, te only to the items tested. The c of Standards and Technology, ptance Criteria widing a level of confidence of s originating from standards, alibration.
SPECIFICATIONS: This document certifies that th Data", meets acceptance criteri results falling within specified accomplished using a test syst 1. For "as received" and "final" without written approval of the Instrumentation has been calib National Measurement Institut PROCEDURE: The calibration was performed RESULTS: "As Received" Physical Com "As Received" Data: "A The reported expanded uncerta approximately 95%. The uncer calibration method, effect of en Date of Calibration	Air pressure: Relative Humidity e instrument as listed under "Model ia as prescribed by the referenced Pro- criteria with no reduction by the under m which conforms with the requirer "data, see the attached page(5). This be Hottinger Bruel and Kjaer Inc. Cali- rated using Measurement Standards es or derived from natural physical of according to procedure number: 412 dition: Acceptable for Calibration s Received" = "Final Data" inty is based on the standard uncerta- tatinty evaluation has been carried on nvironmental conditions and any sho : 05-Apr-2022	97.3 kPa : 32 % RH Number" has been calibrat beedure. Statements of cor ertainty of the measureme nents of ISO/IEC 17025, 4 Certificate and attached d bration Laboratory-Dulut with values traceable to th onstants. 28 DP Rev. 7.21 "Final Da "Final Da inty multiplied by a cover at accordance with EA-4 rt term contribution from the	npliance, where ap nts. The calibration ANSI/NCSL Z540- ata pages shall not a, GA. Results relat e National Institute ata": Within Accep age factor k =2 pro 4/02 from elements the device under ca	plicable, are based on calibratie a of the listed instrumentation y- 1, and guidelines of ISO 10012 be reproduced, except in full, te only to the items tested. The c of Standards and Technology, ptance Criteria widing a level of confidence of s originating from standards, alibration.

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 48 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

CERTIFICATE OF CALIBRATION No.: CAS-565027-G1J7F1-101 Page 2 of 2

Hottinger Brüel & Kjær Inc. Calibration

Laboratory

RESULTS:

Rev 7.21

I. Bruel & Kjaer Torso Model 4128, Serial Number: 1947220.

As Received Data Final Data		As Received = Final Data		
1. Co C 1. 1.				
		Acceptance Criteria	Actual	
A. Speaker and Speaker Assembly Mechanical Check.		Pass/Fail	Pass	
B. Protection Circuit		Acceptance Criteria	Actual	
1. 6.4 VRMS 750 Hertz Input	S	ignal remains for more than 30 Seconds	Pass	
2. 7.5 VRMS 750 Hertz Input		Signal disappears in 12 Seconds Pass/Fail		
C. Ear Simulator				
1. See enclosed Calibration Results for 4158, serial number: 1886222.		Calibration Results Included Yes/No/NA	Yes	
2. See enclosed Calibration Results for 4159, serial number:		Calibration Results Included Yes/No/NA	N/A	

Reference Standards:						
	Model	Serial Number	Trace Number	Cal Due	Interval (mo)	
HP	3458A	2823A03931	472263	30Sep22	12	
HP	5315A	2536A15836	468431	30Jun22	12	

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 49 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

CERTIFICATE OF CALIBRATION No.: CAS-565027-G1J7F1-401 Page 1 of 2 **CALIBRATION OF:** Microphone: Brüel & Kjær 4158/2669/UA1345 Serial No. 1886222/2025786 Type **CUSTOMER:** √TK 5/6/2022 PCTEST Engineering Laboratory Inc 7185 Oakland Mills Road Columbia, MD 21046 **CALIBRATION CONDITIONS:** Environment conditions: Air temperature: 23.2 °C Air pressure: 98.229 kPa Relative Humidity: 30 %RH Applied polarization voltage: 200 Vdc SPECIFICATIONS: This document certifies that the instrument as listed under "Type" has been calibrated and unless otherwise indicated under "Final Data", meets acceptance criteria as prescribed by the referenced Procedure. Statements of compliance, where applicable, are based on calibration results falling

within specified criteria with or reduction by the uncertainty of the measurements. The calibration of the listed transducer was accomplished using a test system which conforms to the requirements of ISO/IEC 17025, ANSI/NCSL Z540-1, and guidelines of ISO 10012-1. For "as received" and "final" data, see the attached page(s). Items marked with one asterisk (*) are not covered by the scope of the current A2LA accreditation. This Certificate and attached data pages shall not be reproduced, except in full, without written approval of the Hottinger Brüel & Kjær Inc. Calibration Laboratory-Duluth, GA. Results relate only to the items tested. The transducer has been calibrated using Measurement Standards with values traceable to the National Institute of Standards and Technology, National Measurement Institutes or derived from natural physical constants.

PROCEDURE:

The measurements have been performed with the assistance of the Hottinger Brüel & Kjær Inc. Microphone Calibration System B&K 9721 with application software WT9649 and WT9650 version 5.3.0.10 using calibration procedure: 4158-2669-UA1345-S251

RESULTS:

X "As Received" Data: Within Acceptance Criteria

As Received" Data: Outside Acceptance Criteria

X "Final" Data : Within Acceptance Criteria

"Final" Data : Outside Acceptance Criteria

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k=2 providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from standards, calibration method, effect of environmental conditions and any short term contribution from the device under calibration.

Date of Calibration: April 11, 2022

Meshaun Hobbs

Calibration Technician

Certificate issued: April 11, 2022

Kyle Chancey

Quality Representative

 FCC ID: A3LSMA156U
 element
 HAC (VOLUME CONTROL) TEST REPORT
 Approved by: Managing Director

 Filename:
 Test Dates:
 DUT Type:
 Page 50 of 58

 1M2309070100-20-R4.A3L
 10/16/2023 – 10/30/2023
 Portable Handset
 Page 50 of 58

CERTIFICATE OF CALIBRATION

			No.: CAS-565027-G1J7F1-401				
			Type: 41: 1886222/	58/2669/UA13 2025786	45	Serial No.:	Page 2 of
Sensitiv	ity						
Nominal s	ensitivity:		-38 dB	re. 1V/Pa	+/-	2 dB	
	at calibration	conditions:	-38.26 dB	re. 1V/Pa	or	12.22 mV/Pa	
Sensitivity	at reference c	onditions:	-38.28 dB	re. 1V/Pa	or	12.19 mV/Pa	
Uncertainty:		+/- 0.08 dB					
Correction factor K at reference conditions:		12.28 dB					
Calibratio	n Frequency:		251.19 Hz				
Reference	Conditions:						
Pressure:							
Temperati	ire: 23 °C						
Dolating L	(
Kelauve r							
Traceab	le reference	S					
Туре	Serial no	Cal. date	Due date	Calibra	ated by	Trace number	
4180	2602426	2020-06-09	2022-06-30	DPLA		M2.10-1392-2.	1
4100	2002420	2020-00-09	2022-00-30	DFLA		IV12.10*1392*2.	.1

Condition "As Received":

Good

Comments:

This Preamplifier predates the availability of TEDS

Acoustic Pressure Response Results *

The results in this table are not covered by the current A2LA Scope of Accreditation *

Frequency in Hertz	Sound Pressure Level in dB	IEC 711 Tolerance in dB	Actual Result in dB
100	-0.3	± 0.5	-0.59
125	-0.2	± 0.5	-0.36
160	-0.2	± 0.5	-0.47
200	-0.1	± 0.4	-0.41
250	-0.1	± 0.4	0.09
315	-0.1	± 0.4	-0.36
400	0	± 0.4	-0.34
500	Ref	Ref	0.00
630	0.1	± 0.4	-0.25
800	0.2	± 0.4	0.16
1,000	1.6	± 0.5	1.61
1,250	3.3	± 0.5	3.06
1,600	4.5	± 0.5	4.89
2,000	5.2	± 0.6	4.99
2,500	6	± 0.6	5.49
3,150	6.9	± 0.7	6.59
4,000	8	± 0.8	8.08
5,000	9.3	± 1.0	9.27
6,300	11.4	± 1.0	10.57
8,000	13.7	± 1.5	12.95
10,000	18	± 2.0	17.57

FCC ID: A3LSMA156U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 51 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

Calibration

Certificate

1568.01

CERTIFICATE OF CALIBRATION No.: CAS-565027-G1J7F1-501 Page 1 of 2 **CALIBRATION OF:** Calibrator: Brüel & Kjær Type 4231 Serial No .: 2343018 Identification: IEC Class: 1 **CUSTOMER:** VTK 5/6/2022 PCTEST Engineering Laboratory Inc 7185 Oakland Mills Road Columbia, MD 21046 **CALIBRATION CONDITIONS:** Environment conditions: Air temperature: °C 23 Air pressure: 96.93 kPa Relative Humidity: 40 %RH

SPECIFICATIONS:

This document certifies that the acoustic calibrator as listed under "Type" has been calibrated and unless otherwise indicated under "Final Data", meets acceptance criteria as prescribed by the referenced Procedure. Statements of compliance, where applicable, are based on calibration results falling within specified criteria with no reduction by the uncertainty of the measurements. The calibration of the listed transducer was accomplished using a test system which conforms to the requirements of ISO/IEC 17025, ANSI/NCSL Z540-1, and guidelines of ISO 10012-1. For "as received" and "final" data, see the attached page(s). Items marked with one asterisk (*) are not covered by the scope of the current A2LA accreditation. This Certificate and attached data pages shall not be reproduced, except in full, without written approval of the Hottinger Brüel & Kjær Inc. Calibration Laboratory-Duluth, GA. Results relate only to the items tested. The transducer has been calibrated using Measurement Standards with values traceable to the National Institute of Standards and Technology, National Measurement Institutes or derived from natural physical constants. The acoustic calibrator has been calibrated in accordance with the requirements as specified in IEC60942.

PROCEDURE:

The measurements have been performed with the assistance of Hottinger Brüel & Kjær Inc. acoustic calibrator calibration application

Software version 2.3.4 Type 7794 using calibration procedure 4231 Complete

RESULTS:

X "As Received" Data: Within Acceptance Criteria

As Received" Data: Outside Acceptance Criteria

X "Final" Data : Within Acceptance Criteria

"Final" Data : Outside Acceptance Criteria

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the calibrator under calibration.

Date of Calibration: 06 April 2022

Jimmy Smith

Calibration Technician

Certificate issued: 06 April 2022

Meshaun Hobbs Quality Representative

 FCC ID: A3LSMA156U
 element
 HAC (VOLUME CONTROL) TEST REPORT
 Approved by: Managing Director

 Filename:
 Test Dates:
 DUT Type:
 Page 52 of 58

 1M2309070100-20-R4.A3L
 10/16/2023 – 10/30/2023
 Portable Handset
 Page 52 of 58

CERTIFICATE OF CALIBRATION

No.: CAS-565027-G1J7F1-501

Type: 4231 Serial No.: 2343018

Page 2 of 2

Sound Pressure Levels All stated values are valid at environmental reference conditions

Nominal Level [dB]	Accept Limit Lower [dB]	Accept Limit Upper [dB]	Measured Level [dB]	Measurement Uncertainty [dB]
94	93.80	94.20	93.99	0.12
114	113.80	114.20	114.03	0.12

Frequency

Nominal	Accept Limit	Accept Limit	Measured	Measurement
Frequency	Lower	Upper	Frequency	Uncertainty
[Hz]	[Hz]	[Hz]	[Hz]	[Hz]
1000	999.00	1001.00	999.98	

Total Distortion*

X TD* THD* Distortion mode:

Calibration Level [dB]*	Accept Limit [%]*	Measured Distortion [%]*	Measurement Uncertainty [%]*
94	1.00	0.53	0.13
114	1.00	0.17	0.13

Environmental Reference Conditions:

Pressure: 101.3 kPa, Temperature: 23 °C, Relative Humidity: 50%

Instrument List

Туре 3560	Description PULSE Analyzer	Serial no 2723320	Cal. date 2021-10-18	Due date 2022-10-18	Calibrated by JCA	Trace number CAS-541708-
9545	Transfer Microphone	3	2021-10-28	2022-10-31	MH	J2Z8Q8-301 CAS-541708- J2Z8Q8-403
4228	Reference Sound Source	1618502	2021-04-30	2023-04-30	M. Hobbs	CAS-512601- T0X4B1-402

During the calibration the calibrator has been loaded by the load volume of the Transfer Microphone. The load volumes

For a number of different types of Transfer Microphones are listed in the table below. For Bruel & Kjær Pistonphones types 4220 and 4228 the result of the SPL calibration has been corrected to be valid for a load volume of 1333 mm³. For all other types the result is valid with the actual load volume.

Transfer Microphone Type	Fulfils standard IEC 61094-1 LS	Fulfils standard IEC 61094-4 WS	Load Volume 1" (1/2" mic including DP-0776)	Load Volume 1/2"
4180	yes	yes	1126 mm ³	43 mm ³
4192	-	yes	1273 mm ³	190 mm ³
9545	-	-	1333 mm ³	-

Condition "As Received": Good

Comments

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 53 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

15. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: A3LSMA156U	element	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 54 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

16. **REFERENCES**

- 1. ANSI C63.19-2019, "American National Standard Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids," IEEE, New York, NY, August 2019
- ANSI/TIA-5050-2018, "Communications Products Receive Volume Control Requirements for Wireless (Mobile) Devices," Telecommunications Industry Association, Arlington, VA, January 2018
- FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v06r04," September 29, 2023
- FCC Office of Engineering and Technology KDB, "285076 D04 Volume Control v02," September 29, 2023
- 5. FCC Office of Engineering and Technology KDB, "285076 D05 CG Interim Waiver DA 23-914 v01," September 29, 2023
- FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 7. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- 8. ANSI/IEEE Std 269-2010, "IEEE Standard Methods for Measuring Transmission Performance of Analog and Digital Telephone Sets, Handsets, and Headsets," IEEE, 2010
- 9. ANSI/IEEE Std 1652-2016, "IEEE Standard for Translating Head and Torso Simulator Measurements from Eardrum to Other Acoustic Reference Points," IEEE, 2016
- 10. ITU-T Recommendation P.56, "Objective measurement of active speech level," ITU, December 2011
- 11. ITU-T Recommendation P.57, "Artificial ears," ITU December 2011
- 12. ITU-T Recommendation P.58, "Head and torso simulator for telephonometry," ITU, May 2013
- 13. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 14. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 15. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- 16. Byme, D. and Dillon, H., "The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid," Ear and Hearing 7:257-265, 1986.
- 17. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.

FCC ID: A3LSMA156U	element 💽	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 55 of 58
1M2309070100-20-R4.A3L	10/16/2023 – 10/30/2023	Portable Handset	

- 18. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- EHIMA GSM Project Final Report, "Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity." Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 20. HAMPIS Report, "Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference," October 1999.
- 21. "Hearing Aids/GSM," Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 22. IEEE 100, "The Authoritative Dictionary of IEEE Standards Terms," Seventh Edition.
- Joyner, K. H, et. al., "Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard," National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- 24. Joyner, K. H., et. al., "Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM)," NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 29. McCandless, G. A., and Lyregaard, P. E., "Prescription of Gain/Output (POGO) for Hearing Aids," Hearing Instruments 1:16-21, 1983
- 30. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones," IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 31. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 32. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 33. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: A3LSMA156U	element)	HAC (VOLUME CONTROL) TEST REPORT	Approved by: Managing Director
Filename: 1M2309070100-20-R4.A3L	Test Dates: 10/16/2023 – 10/30/2023	DUT Type: Portable Handset	Page 56 of 58
TM2309070100-20-R4.A3L	10/16/2023 - 10/30/2023	Portable Handset	