

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.381.1520 http://www.element.com

MEASUREMENT REPORT FCC PART 15.247 (OFDM)

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 09/08/2023-11/02/2023 Test Report Issue Date: 11/08/2023 Test Site/Location: Element lab., Columbia, MD, USA Element Morgan Hill, CA, USA Test Report Serial No.: 1M2309070105-08.A3L

FCC ID: APPLICANT:

A3LSMA156E

Certification SM-A156E/DS Portable Handset 2412 – 2472MHz CCK, DSSS, OFDM

Samsung Electronics Co., Ltd.

Application Type:
Model:
EUT Type:
Frequency Range:
Modulation Type:
FCC Classification:
FCC Rule Part(s):
Test Procedure(s):

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

Part 15 Subpart C (15.247)

ANSI C63.10-2013

Digital Transmission System (DTS)

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 1 of 55
© 2023 ELEMENT			V11.1 08/28/2023

TABLE OF CONTENTS

1.0	INTRO	DUCTION	4
	1.1	Scope	4
	1.2	Element Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PROD	UCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Antenna Description	7
	2.4	Software and Firmware	7
	2.5	EMI Suppression Device(s) / Modifications	7
3.0	DESC	RIPTION OF TESTS	8
	3.1	Evaluation Procedure	8
	3.2	AC Line Conducted Emissions	8
	3.3	Radiated Emissions	9
	3.4	Environmental Conditions	9
4.0	ANTE	NNA REQUIREMENTS	10
5.0	MEAS	UREMENT UNCERTAINTY	11
6.0	TEST	EQUIPMENT CALIBRATION DATA	11
7.0	TEST	RESULTS	13
	7.1	Summary	.13
	7.2	6dB Bandwidth Measurement	14
	7.3	Output Power Measurement	21
	7.4	Power Spectral Density	23
	7.5	Conducted Band Edge Emissions	30
	7.6	Conducted Spurious Emissions	37
	7.7	Radiated Emission Measurements	42
	7.8	Line-Conducted Test Data	52
8.0	CONC	LUSION	55

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 2 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 2 of 55
© 2023 ELEMENT		•	V11.1 08/28/2023

MEASUREMENT REPORT

			Ant1			
Channel Bandwidth	IEEE Mode	Tx Frequency	Avg. Co	nducted	Peak Co	nducted
[MHz]]		Max. Power [mW]	Max. Power [dBm]	Max. Power [mW]	Max. Power [dBm]
	802.11b	2412 - 2472	95.72	19.81	158.85	22.01
20	802.11g	2412 - 2472	59.57	17.75	332.66	25.22
	802.11n	2412 - 2472	57.81	17.62	345.94	25.39

EUT Overview

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of EE
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 3 of 55
© 2023 ELEMENT			V11.1 08/28/2023

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and\\or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

These measurement tests were conducted at the Element facility located at 18855 Adams Court, Morgan Hill, CA 95037. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO\\IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs).

Measurements were performed at Element located in Morgan Hill, CA 95037, U.S.A.

- Element is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element facility is a registered (22831) test laboratory with the site description on file with ISED.

FCC ID: A3LSMA156E		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2309070105-08.A3L	09/08/2023-11/02/2023	09/08/2023-11/02/2023 Portable Handset	
© 2023 ELEMENT			V11.1 08/28/2023

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMA156E**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

Test Device Serial No.: 0402M, 1384M

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR (FR1), 802.11b/g/n WLAN, 802.11a/n/ac UNII (5GHz), Bluetooth (1x, EDR, LE)

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	12	2467
		13	2472

Table 2-1. Frequency \ Channel Operations

Notes:

 The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of ANSI C63.10-2013 and KDB 558074 D01 v05r02. The RBW and VBW were both greater than 50\T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

	ANT1	
802.11 Mode/Band		Duty Cycle [%]
2.4GHz	b	99.51
	g	98.43
	n (HT20)	98.01

FCC ID: A3LSMA156E		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:	
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 5 of 55
© 2023 ELEMENT	•		V11.1 08/28/2023

2. The device employs MIMO technology. Below are the possible configurations.

WiEi Cont	SISO	
WiFi Conf	ANT1	
2.4GHz 11b		\checkmark
2.4GHz	11g	\checkmark
2.4GHz	11n	\checkmark

 \checkmark = Support; \times = NOT Support

SISO = Single Input Single Output

SDM = Spatial Diversity Multiplexing – MIMO function

CDD = Cyclic Delay Diversity - 2Tx Function

3. The device supports the following data rates (shown in Mbps):

802.11b	802.11a/g	MCS Index		Spatial	OFDM (802.11n)		
20MHz	201.411-			Stream	20MHz		
	20MHz	HT	HE		0.8µs Gl	0.4µs GI	
1	6	0	0	1	6.5	7.2	
2	9	1	1	1	13	14.4	
5.5	12	2	2	1	19.5	21.7	
11	18	3	3	1	26	28.9	
	24	4	4	1	39	43.3	
	36	5	5	1	52	57.8	
	48	6	6	1	58.5	65	
	54	7	7	1	65	72.2	
			8	1		`	
			9	1			
			10	1			
			11	1	`		
1	6	8	0	2	13	14.4	
2	9	9	1	2	26	28.9	
5.5	12	10	2	2	39	43.3	
11	18	11	3	2	52	57.8	
	24	12	4	2	78	86.7	
	36	13	5	2	104	115.6	
	48	14	6	2	117	130	
	54	15	7	2	130	144.4	
			8	2	156	173.3	
			9	2	N/A	N/A	
			10	2			
			11	2			
	Table	24	C		ata Pate		

Table 2-4. Supported Data Rates

ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 7.8 for AC line conducted emissions test setups, 7.7 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage C of EE
1M2309070105-08.A3L 09/08/2023-11/02/2023		Portable Handset	Page 6 of 55
© 2023 ELEMENT	<u> </u>	•	V11.1 08/28/2023

2.3 Antenna Description

The following antenna gains were used for the testing.

Frequency [GHz]	Antenna Gain [dBi]			
2.4	-6.0			
Table 2 F. Antonna Book Cain				

Table 2-5. Antenna Peak Gain

2.4 Software and Firmware

The test was conducted with software\firmware version A156EDXE0AWI4 installed on the EUT.

2.5 EMI Suppression Device(s) / Modifications

No EMI suppression device(s) were added and\or no modifications were made during testing.

FCC ID: A3LSMA156E		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 7 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 7 of 55
© 2023 ELEMENT		•	V11.1 08/28/2023

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure......None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF EnclosuresThe line-conducted facility is located inside a 7m x 3.66m x 2.7m shielded enclosure. The shielded enclosure is manufactured by AP Americas. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, 50Ω \\50µH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI\\RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration\\arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.8. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 9 of 55
1M2309070105-08.A3L 09/08/2023-11/02/		Portable Handset	Page 8 of 55
© 2023 ELEMENT	V11.1 08/28/2023		

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 9 of 55
© 2023 ELEMENT	V11.1 08/28/2023		

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules\Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connections to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of FF	
1M2309070105-08.A3L 09/08/2023-11/02/2023		Portable Handset	Page 10 of 55	
© 2023 ELEMENT	V11.1 08/28/2023			

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

MD

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.77
Line Conducted Disturbance	2.70
Radiated Disturbance (<30MHz)	4.38
Radiated Disturbance (30MHz - 1GHz)	4.75
Radiated Disturbance (1 - 18GHz)	5.20
Radiated Disturbance (>18GHz)	4.72

CA

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 11 of FF
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 11 of 55
© 2023 ELEMENT	V11.1 08/28/2023		

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	ETS-001	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-001
-	ETS-002	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-002
-	WL25-1	Conducted Cable Set (25GHz)	1/12/2023	Annual	1/12/2024	WL25-1
EMCO	3115	Horn Antenna (1-18GHz)	8/8/2022	Biennial	8/8/2024	9704-5182
EMCO	3116	Horn Antenna (18-40GHz)	7/5/2023	Biennial	7/5/2025	9203-2178
Keysight Technologies	N9030A	PXA Signal Analyzer (3Hz-26.5GHz)	8/7/2023	Annual	8/7/2024	MY54490576
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	3/15/2023	Annual	3/15/2024	MY52350166
Keysight Technologies	N9038A	MXE EMI Receiver	1/21/2022	Annual	7/31/2023	MY51210133
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	1/11/203	Annual	1/11/2024	NMLC-2
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	9/25/2023	Annual	9/25/2024	100342
Rohde & Schwarz	VULB9162	Bi-Log Antenna	2/21/2023	Biennial	2/21/2025	00301
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	8/30/2022	Biennial	8/30/2024	A051107

Table 6-1. Annual Test Equipment Calibration Schedule - MD

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	6/21/2023	Annual	6/21/2024	MY49430244
Anritsu	ML2495A	Power Meter	6/13/2023	Annual	6/13/2024	1039008
Anritsu	MA2411B	Pulse Power Sensor	6/14/2023	Annual	6/14/2024	1911105
ETS-Lindgren	3117	Double Ridged Guide Antenna (1-18GHz)	8/16/2023	Annual	8/16/2024	205956
Rohde & Schwarz	ESW44	EMI Test Receiver 2Hz-44GHz	3/6/2023	Annual	3/6/2024	101867
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	7/14/2023	Annual	7/14/2024	171001
Rohde & Schwarz	TS-PR8	Pre-Amplifier - Antenna System (30MHz-8GHz)	6/22/2023	Annual	6/22/2024	102356
Rohde & Schwarz	ENV216	Two-Line V-Network	6/20/2023	Annual	6/20/2024	101363
Rohde & Schwarz	180-442-KF	Horn Antenna 20dB Nominal (Small 18-40 GHz)	6/13/2023	Annual	6/13/2024	T058601-03
Rohde & Schwarz	TS-PR1840	Pre Amplifier 18-40GHz	6/2/2023	Annual	6/2/2024	100050
Schwarzbeck	VULB9162	Bilog Antenna (30MHz-6GHz)	4/17/2023	Annual	4/17/2024	'00304

Table 6-2. Annual Test Equipment Calibration Schedule - CA

FCC ID: A3LSMA156E		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 af 55	
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 12 of 55	
© 2023 ELEMENT			V11.1 08/28/2023	

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMA156E

FCC Classification: Digital Transmission System (DTS)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2(a)]	6dB Bandwidth	The minimum 6 dB bandwidth shall be at least 500 kHz.		PASS	Section 7.2
15.247(b)(3)	RSS-247 [5.4(b)]	Transmitter Output Power	shall not exceed 1 W		PASS	Section 7.3
15.247(e)	RSS-247 [5.2(b)]	Transmitter Power Spectral Density	shall not be greater than 8 dBm in any 3 kHz band	CONDUCTED	PASS	Section 7.4
15.247(d)	RSS-247 [5.5]	Band Edge \\ Out-of-Band Emissions	≥ 20dBc		PASS	Sections 7.5, 7.6
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Section 7.7
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen [8.8])	LINE CONDUCTED	PASS	Section 7.8

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst-case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "WLAN Automation," Version 3.5.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 1.3.1.

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 55	
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 13 of 55	
© 2023 ELEMENT	•		V11.1 08/28/2023	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

7.2 6dB Bandwidth Measurement

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure Used

ANSI C63.10-2013 - Section 11.8.2 Option 2

Test Settings

- The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 14 of 55
© 2023 ELEMENT		·	V11.1 08/28/2023

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

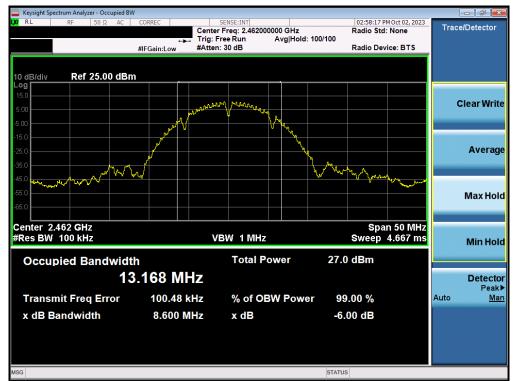
6dB Bandwidth Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	b	1	8.120	0.500
2437	6	b	1	9.087	0.500
2462	11	b	1	8.600	0.500
2412	1	g	6	15.16	0.500
2437	6	g	6	15.16	0.500
2462	11	g	6	15.18	0.500
2412	1	n	6.5/7.2 (MCS0)	15.17	0.500
2437	6	n	6.5/7.2 (MCS0)	15.18	0.500
2462	11	n	6.5/7.2 (MCS0)	15.19	0.500

Table 7-2. Conducted 6dB Bandwidth Measurements

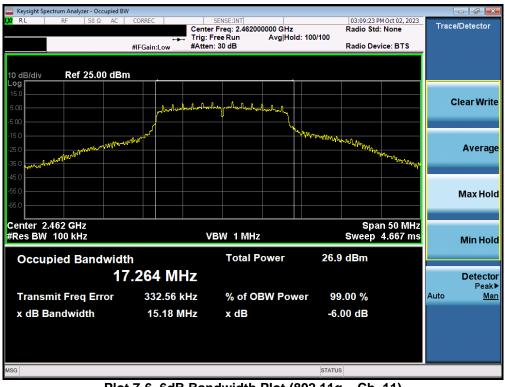
FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 15 of 55
© 2023 ELEMENT	•		V11.1 08/28/2023

6dB Bandwidth Measurements



Plot 7-2. 6dB Bandwidth Plot (802.11b - Ch. 6)

FCC ID: A3LSMA156E		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 55	
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 16 of 55	
© 2023 ELEMENT			V11 1 08/28/2023	


Plot 7-4. 6dB Bandwidth Plot (802.11g - Ch. 1)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of 55	
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 17 of 55	
© 2023 ELEMENT	-	•	V11.1 08/28/2023	

Plot 7-6. 6dB Bandwidth Plot (802.11g - Ch. 11)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 55	
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 18 of 55	
© 2023 ELEMENT	•		V11.1 08/28/2023	

Plot 7-7. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 1)

Plot 7-8. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 6)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 10 of FF	
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 19 of 55	
© 2023 ELEMENT	·		V11.1 08/28/2023	

Keysight Spectrum Analyzer - Occupied BV					
💢 RL RF 50Ω AC		SENSE:INT r Freq: 2.462000000 GHz	Radio Sto	M Oct 02, 2023	Trace/Detector
		Free Run Avg Holo n: 30 dB	d: 100/100 Radio De	vice: BTS	
,					
10 dB/div Ref 25.00 dBn	n				
Log 15.0 5.00		and the second property of			Clear Write
-15.0 -25.0 -35.0 pperustrative and a second			hay you have have have have have have have have	ang and a start of the start of	Average
-45.0					Max Hold
Center 2.462 GHz #Res BW 100 kHz	V	/BW 1 MHz	Sweep	an 50 MHz 4.667 ms	Min Hold
Occupied Bandwidt	h	Total Power	26.5 dBm		
18	3.027 MHz				Detector Peak
Transmit Freq Error	171.53 kHz	% of OBW Pow	ver 99.00 %		Auto <u>Mar</u>
x dB Bandwidth	15.19 MHz	x dB	-6.00 dB		
MSG			STATUS		

Plot 7-9. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 20 of 55
© 2023 ELEMENT			V11.1 08/28/2023

7.3 Output Power Measurement

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt per 15.247 and RSS-247. The e.i.r.p. shall not exceed 4 W per RSS-247.

Test Procedure Used

ANSI C63.10-2013 – Section 11.9.1.3 PKPM1 Peak Power Method ANSI C63.10-2013 – Section 11.9.2.3.2 Method AVGPM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique

Test Settings

Method PKPM1 (Peak Power Measurement)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

Test Notes

None.

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 21 of 55
© 2023 ELEMENT			V11.1 08/28/2023

	2.4GH	z WFI (20MI	Hz 802.11b S	SISO ANT1)	Conducted	Conducted
802.11b	Freq. [MHz]	Channel	Detector	Conducted Power [dBm]	Power Limit [dBm]	Power Margin [dB]
	2412	1		19.65	30.00	-10.35
\sim	2437	6		19.81	30.00	-10.19
Õ	2462	11	Average	19.47	30.00	-10.53
õ	2467	12		5.57	30.00	-24.43
ш	2472	13		5.66	30.00	-24.34
	2412	1		22.01	30.00	-7.99
Ξ	2437	6		21.97	30.00	-8.03
	2462	11	Peak	21.77	30.00	-8.23
	2467	12		9.62	30.00	-20.38
	2472	13		9.71	30.00	-20.29
	2.4GH	<u>z WFI (20MI</u>	lz 802.11g S	SISO ANT1)	Conducted	Conducted
1g	Freq. [MHz]	Channel	Detector	Conducted Power [dBm]	Power Limit [dBm]	Power Margin [dB]
	2412	1		17.63	30.00	-12.37
802.11	2437	6	Average	17.75	30.00	-12.25
	2462	11		17.40	30.00	-12.60
) M	2467	12		5.64	30.00	-24.36
	2472	13		5.71	30.00	-24.29
Щ	2412	1		25.22	30.00	-4.78
Ξ	2437	6		24.66	30.00	-5.34
Ш	2462	11	Peak	24.92	30.00	-5.08
	2467	12		11.57	30.00	-18.43
	2472	13		11.67	30.00	-18.33
	2.4GH	z WFI (20MI	<u> Iz 802.11n S</u>	SISO ANT1)	Conducted	Conducted
802.11n	Freq. [MHz]	Channel	Detector	Conducted Power [dBm]	Power Limit [dBm]	Power Margin [dB]
	2412	1		17.52	30.00	-12.48
\sim i	2437	6		17.62	30.00	-12.38
	2462	11	Average	17.29	30.00	-12.71
\sim	2467	12		5.93	30.00	-24.07
	2472	13	1	5.68	30.00	-24.32
Щ	2412	1		25.39	30.00	-4.61
Ш	2437	6	1	24.88	30.00	-5.12
Ш	2462	11	Peak	25.23	30.00	-4.77
	2467	12	1	11.96	30.00	-18.04
	2472	13		11.75	30.00	-18.25

Table 7-3. Conducted Output Power Measurements

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 22 of 55
© 2023 ELEMENT			V11.1 08/28/2023

7.4 Power Spectral Density

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates are investigated and the worst-case configuration results are reported in this section.

The maximum permissible power spectral density shall not be greater than 8 dBm in any 3 kHz band.

Test Procedure Used

ANSI C63.10-2013 – Section 11.10.2 Method PKPSD ANSI C63.10-2013 – Section 14.3.1 Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 23 of 55
© 2023 ELEMENT		•	V11.1 08/28/2023

Power Spectral Density Measurements

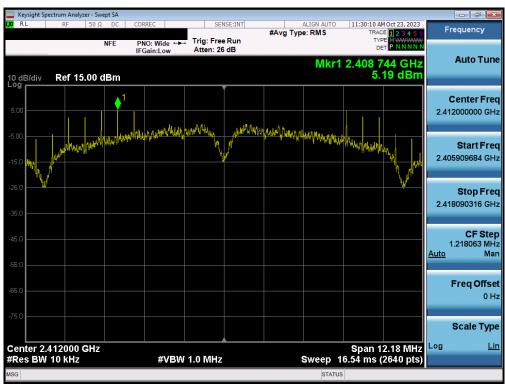
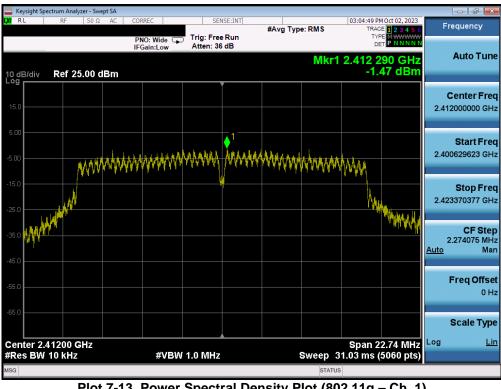

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	5.19	8.00	-2.81	Pass
2437	6	b	1	4.61	8.00	-3.39	Pass
2462	11	b	1	3.60	8.00	-4.40	Pass
2412	1	g	6	-1.47	8.00	-9.47	Pass
2437	6	g	6	-0.92	8.00	-8.92	Pass
2462	11	g	6	-0.81	8.00	-8.81	Pass
2412	1	n	6.5/7.2 (MCS0)	2.39	8.00	-5.62	Pass
2437	6	n	6.5/7.2 (MCS0)	0.55	8.00	-7.45	Pass
2462	11	n	6.5/7.2 (MCS0)	-0.97	8.00	-8.97	Pass

Table 7-4. Conducted Power Spectral Density Measurements

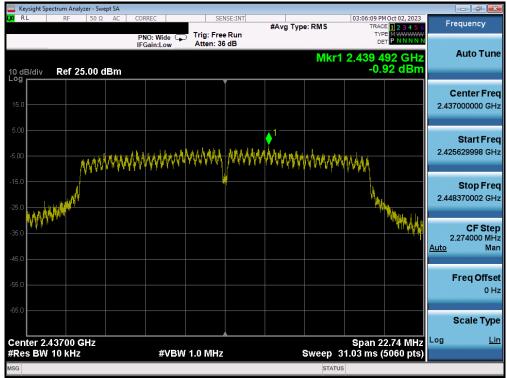
FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 24 of 55
© 2023 ELEMENT			V11.1 08/28/2023

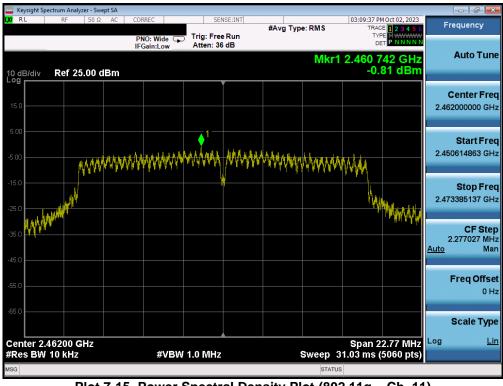
Power Spectral Density Measurements

Plot 7-10. Power Spectral Density Plot (802.11b - Ch. 1)


Plot 7-11. Power Spectral Density Plot (802.11b – Ch. 6)

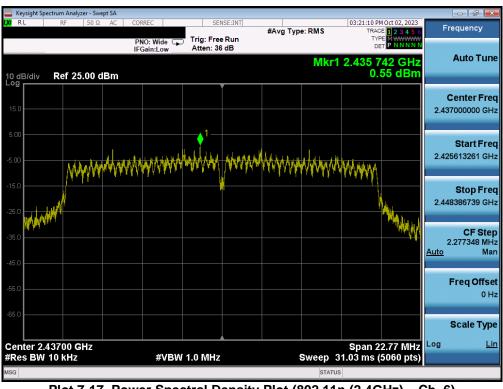
FCC ID: A3LSMA156E		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	es: EUT Type:	
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 25 of 55
© 2023 ELEMENT			V11 1 08/28/2023


Plot 7-12. Power Spectral Density Plot (802.11b - Ch. 11)

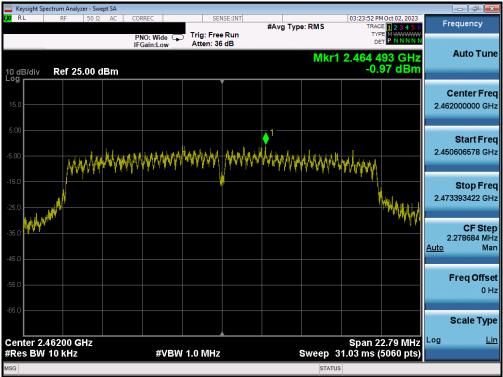

Plot 7-13. Power Spectral Density Plot (802.11g – Ch. 1)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of FF
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 26 of 55
© 2023 ELEMENT			V11.1 08/28/2023

Plot 7-14. Power Spectral Density Plot (802.11g - Ch. 6)


Plot 7-15. Power Spectral Density Plot (802.11g – Ch. 11)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 07 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 27 of 55
© 2023 ELEMENT			V11.1 08/28/2023


Plot 7-16. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 1)

Plot 7-17. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 6)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 28 of 55
© 2023 ELEMENT	-		V11.1 08/28/2023

Plot 7-18. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: A3LSMA156E		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 29 of 55
© 2023 ELEMENT			V11.1 08/28/2023

7.5 Conducted Band Edge Emissions

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g" mode, 6.5\\7.2Mbps for "n" mode, and 8.6Mbps for "ax" mode as these settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 7.4).

Test Procedure Used

ANSI C63.10-2013 - Section 11.11.3

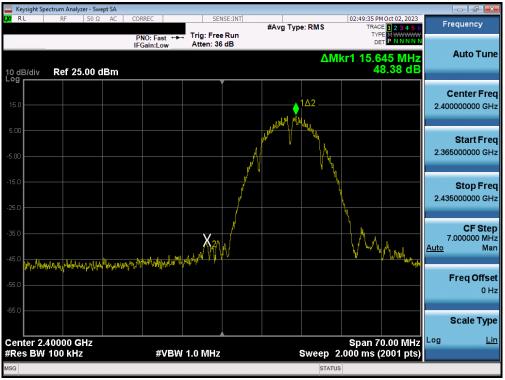
Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

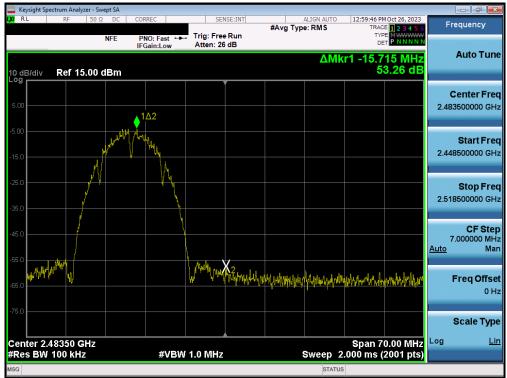
Figure 7-4. Test Instrument & Measurement Setup

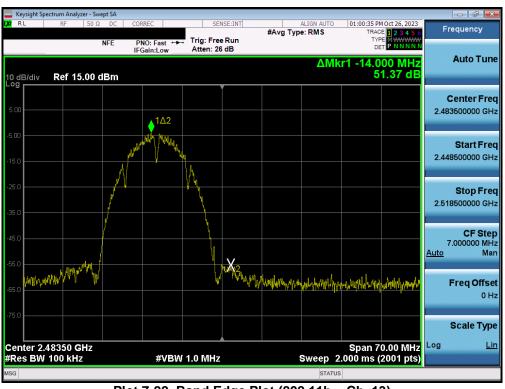

Test Notes

None.

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 30 of 55
© 2023 ELEMENT	•		V11.1 08/28/2023

Conducted Band Edge Emissions



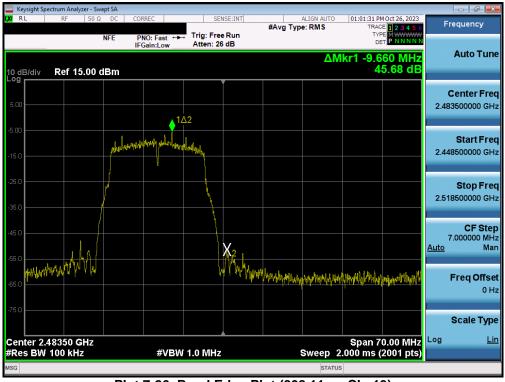

Plot 7-20. Band Edge Plot (802.11b – Ch. 11)

FCC ID: A3LSMA156E		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:		
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 31 of 55	
© 2023 ELEMENT		-	V11.1 08/28/2023	

Plot 7-21. Band Edge Plot (802.11b - Ch. 12)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 55	
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 32 of 55	
© 2023 ELEMENT	<u>.</u>	·	V11.1 08/28/2023	

Plot 7-23. Band Edge Plot (802.11g- Ch. 1)


Plot 7-24. Band Edge Plot (802.11g – Ch. 11)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 33 of 55
© 2023 ELEMENT		·	V11.1 08/28/2023

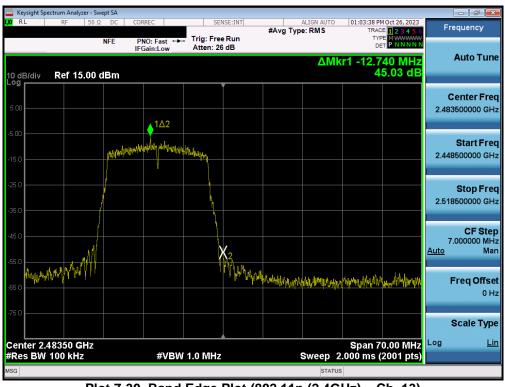
	pectrum Ana	lyzer - Sw	ept SA									×
XI RL	RF	50 Ω	DC	CORREC		SENSE:INT	#Avg Typ	ALIGN AUTO	TRACI	Oct 26, 2023	Frequency	
10 dB/div	Def (5.00 c	NFE	PNO: Fast IFGain:Low		Free Run n: 26 dB		ΔΜ	(r1 -16.5)	90 MHz 1.05 dB	Auto T	un
5.00	Rei 1	5.00 (JBIII	1Δ2							Center F 2.483500000	
5.00 15.0		photos	the Antimetric the	philippines	4						Start F 2.448500000	
35.0											Stop F 2.518500000	
45.0											CF S 7.000000 <u>Auto</u>	
.65.0	YMYW				, 199, 	Mun Kang	Aldon John Son	ng (Handland) and	www.	nynaannal	Freq Of	fs(0 ⊦
75.0 Center 2.	.48350	GHz							Span 7	0.00 MHz	Scale T	'ур <u>Ц</u>
Res BW	/ 100 kH	z		#V	3W 1.0 M	Hz		Sweep 2	2.000 ms (2	2001 pts)		
SG								STATU	S			

Plot 7-25. Band Edge Plot (802.11g - Ch. 12)

Plot 7-26. Band Edge Plot (802.11g - Ch. 13)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 24 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 34 of 55
© 2023 ELEMENT	·	·	V11.1 08/28/2023

Plot 7-27. Band Edge Plot (802.11n (2.4GHz) - Ch. 1)


Plot 7-28. Band Edge Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 35 of 55
© 2023 ELEMENT		·	V11.1 08/28/2023

Plot 7-29. Band Edge Plot (802.11n (2.4GHz) - Ch. 12)

Plot 7-30. Band Edge Plot (802.11n (2.4GHz) - Ch. 13)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 36 of 55
© 2023 ELEMENT	•	•	V11.1 08/28/2023

7.6 Conducted Spurious Emissions

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. For the following out of band conducted spurious emissions plots, the EUT was investigated in all available data rates for "b", "g", "n", "ax" modes. The worst-case spurious emissions for the 2.4GHz band were found while transmitting in "b" mode at 1 Mbps and are shown in the plots below.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.11.3 of ANSI C63.10-2013.

Test Procedure Used

ANSI C63.10-2013 – Section 11.11.3 ANSI C63.10-2013 – Section 14.3.3

Test Settings

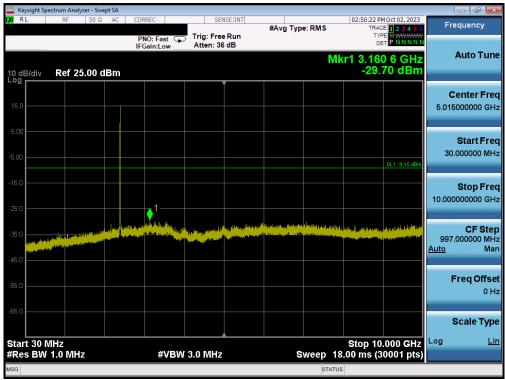
- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

FCC ID: A3LSMA156E		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:			
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 37 of 55		
© 2023 ELEMENT	-		V11.1 08/28/2023		

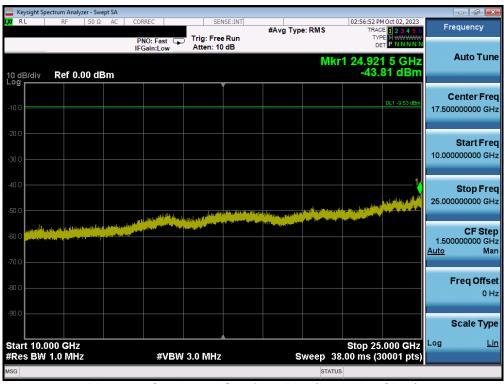

Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.

FCC ID: A3LSMA156E		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 55		
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 38 of 55		
© 2023 ELEMENT			V11.1 08/28/2023		

Conducted Spurious Emission

Plot 7-31. Conducted Spurious Plot (802.11b - Ch. 1)


Plot 7-32. Conducted Spurious Plot (802.11b – Ch. 1)

FCC ID: A3LSMA156E		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:			
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 39 of 55		
© 2023 ELEMENT	•		V11 1 08/28/2023		

	pectrum Analyz											d X
L <mark>XI</mark> RL	RF	50 Ω A	AC CO	RREC		NSE:INT	#Avg Typ	e: RMS	TRAC	M Oct 02, 2023	Frequei	ncy
				NO:Fast 🖵 Gain:Low	Trig: Free Atten: 36				TYI Di			_
10 dB/div Log	Ref 25	.00 dBr	m					M	kr1 3.03 -29.	0 6 GHz 35 dBm	Auto	o Tune
					, in the second se							er Freq
15.0											5.0150000	00 GHz
5.00											Sta	rt Freq
-5.00										DL1 -9.53 dBm	30.0000	00 MHz
-15.0											Sto	p Freq
-25.0				1							10.000000	00 GHz
-35.0		والمراجع المراجع	Ap Babb	Printer College	a Jan Jahar	and a should be		are public survey for	and a stand of the stand of the stand	(nellewer (right) bijt		F Step
-45.0					And the second second					A REAL PROPERTY AND A REAL	997.0000 <u>Auto</u>	00 MHz Man
-45.0											Erea	Offset
-55.0											1104	0 Hz
-65.0											Scal	е Туре
Start 30 I	MHz								Stop 10	.000 GHz	Log	Lin
#Res BW		2		#VBW	3.0 MHz		s	weep 1	8.00 ms (3	0000 GH2	_	
MSG								STATU	JS			

Plot 7-33. Conducted Spurious Plot (802.11b – Ch. 6)

Plot 7-34. Conducted Spurious Plot (802.11b - Ch. 6)

FCC ID: A3LSMA156E		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 55		
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 40 of 55		
© 2023 ELEMENT		·	V11.1 08/28/2023		

	sight Spect																_	
L <mark>XI</mark> RL		RF	50	0Ω	AC	CO	RREC				SE:INT	#Avg 1	Type: RM	s	TI	2 PM Oct 02, 2023 RACE 1 2 3 4 5 (0	Frequency
10 dB	l/div	Ref	25.00	0 de	3m	P IF	NO: Fa Gain:L	ast ⊊ ₋ow	Trig: Atte	Free n: 36		-		Mł	(r1 7.2	05 7 GHz		Auto Tune
Log 15.0 -																		Center Freq 15000000 GHz
5.00 - -5.00 -																DL1 -9.77 dBm	3	Start Freq 80.000000 MHz
-15.0 - -25.0 -													1				10.0	Stop Freq 00000000 GHz
-35.0	tig all all and a	age (sup Age (age	ng Djer slit							(leal) Stear	<mark>(</mark> a the and the second se	a (Barline e gio d'A) Anna anna anna anna anna anna anna anna			aithn aithn		99 <u>Auto</u>	CF Step 97.000000 MHz Man
-55.0																		Freq Offset 0 Hz
-65.0	00 84																Log	Scale Type
	: 30 Mi ; BW 1		Hz				#	≠VBW	3.0 N	۱Hz			Swee	p 18	Stop 3.00 ms	10.000 GHz (30001 pts	Log	
MSG														STATUS				

Plot 7-35. Conducted Spurious Plot (802.11b - Ch. 11)

Plot 7-36. Conducted Spurious Plot (802.11b - Ch. 11)

FCC ID: A3LSMA156E		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 41 of FF		
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 41 of 55		
© 2023 ELEMENT		·	V11.1 08/28/2023		

7.7 Radiated Emission Measurements

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst-case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in FCC §15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown FCC §15.209 and RSS-Gen (8.9).

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-5. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Section 6.6.4.3

Test Settings – Above 1GHz

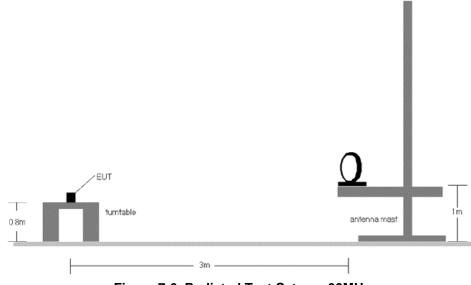
Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

FCC ID: A3LSMA156E		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:			
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 42 of 55		
© 2023 ELEMENT	-		V11.1 08/28/2023		

Peak Field Strength Measurements

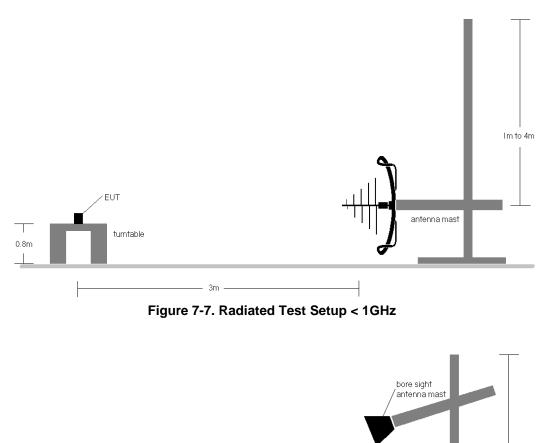
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

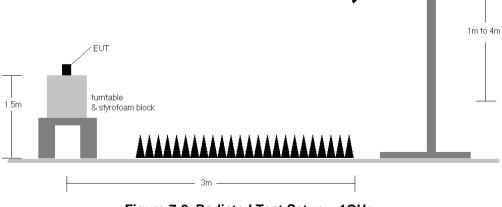

Test Settings - Below 1GHz

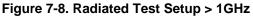
Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Test Setup


The EUT and measurement equipment were set up as shown in the diagram below.




Figure 7-6. Radiated Test Setup < 30MHz

FCC ID: A3LSMA156E		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 42 of 55		
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 43 of 55		
© 2023 ELEMENT	<u>.</u>	·	V11.1 08/28/2023		

Test Notes

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of ANSI C63.10-2013 Section 11.3 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limits shown in §15.209.

FCC ID: A3LSMA156E		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 44 of 55		
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 44 of 55		
© 2023 ELEMENT	-	•	V11.1 08/28/2023		

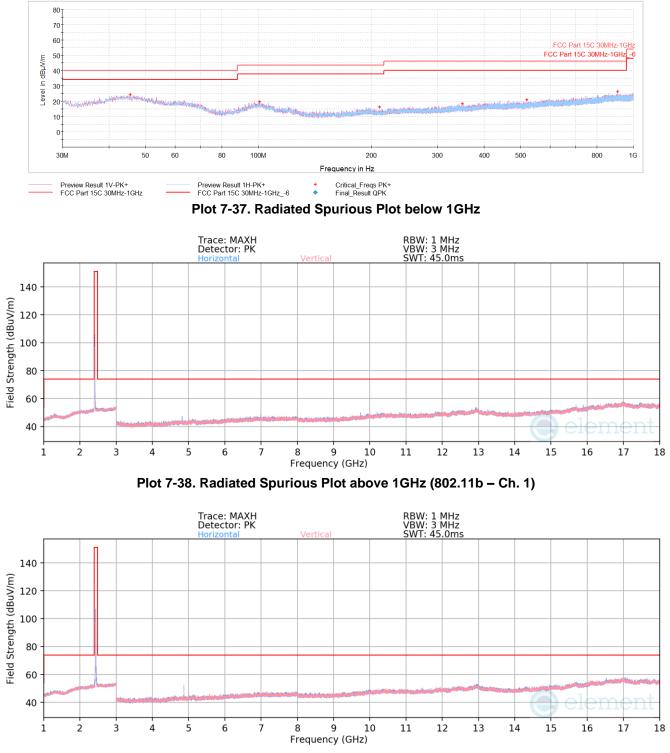
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 9. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst-case results during the transmitter spurious emissions testing.
- 10. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 11. The results recorded using the broadband antenna are known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- 12. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

Sample Calculations

Determining Spurious Emissions Levels

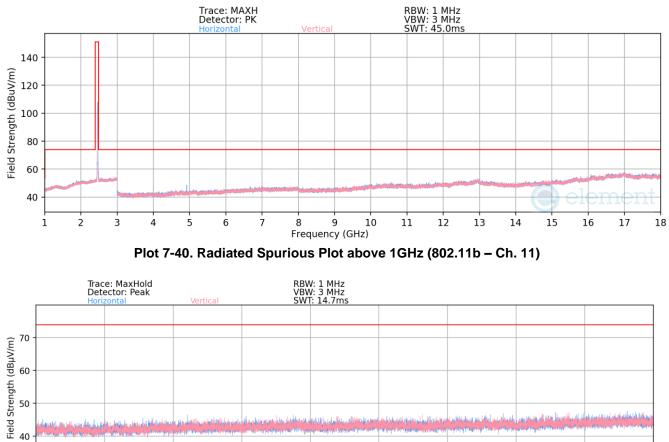
- Field Strength Level [dBμV\\m] = Analyzer Level [dBm] + 107 + AFCL [dB\\m]
- AFCL [dB\\m] = Antenna Factor [dB\\m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level $[dB\mu V | m]$ Limit $[dB\mu V | m]$

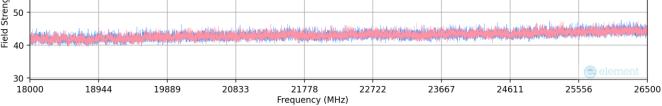
Radiated Band Edge Measurement Offset


• The amplitude offset shown in the radiated restricted band edge plots in Section 7.7 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

FCC ID: A3LSMA156E		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Daga 45 of 55		
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 45 of 55		
© 2023 ELEMENT	•		V11.1 08/28/2023		


Radiated Spurious Emission Measurements



FCC ID: A3LSMA156E		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 46 of 55	
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 46 of 55	
© 2023 ELEMENT	•		V11.1 08/28/2023	

Plot 7-41. Radiated Spurious Plot above 18GHz

FCC ID: A3LSMA156E		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 47 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 47 of 55
© 2023 ELEMENT		•	V11.1 08/28/2023

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	1

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	Н	286	20	-67.82	7.18	46.36	53.98	-7.62
4824.00	Peak	Н	286	20	-63.58	7.18	50.60	73.98	-23.38
12060.00	Avg	Н	-	-	-84.76	16.48	38.72	53.98	-15.26
12060.00	Peak	Н	-	-	-73.26	16.48	50.22	73.98	-23.76

Table 7-6. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11b 1 Mbps 3 Meters 2437MHz 6

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	Н	109	17	-63.25	6.99	50.74	53.98	-3.24
4874.00	Peak	Н	109	17	-60.10	6.99	53.89	73.98	-20.09
7311.00	Avg	н	-	-	-82.10	10.40	35.30	53.98	-18.68
7311.00	Peak	Н	-	-	-70.26	10.40	47.14	73.98	-26.84
12185.00	Avg	Н	-	-	-85.08	15.80	37.72	53.98	-16.26
12185.00	Peak	Н	-	-	-73.82	15.80	48.98	73.98	-25.00

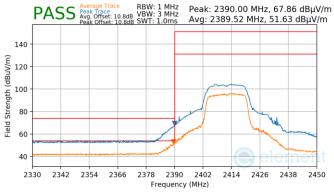
Table 7-7. Radiated Measurements

FCC ID: A3LSMA156E		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 48 of 55
© 2023 ELEMENT	•		V11.1 08/28/2023

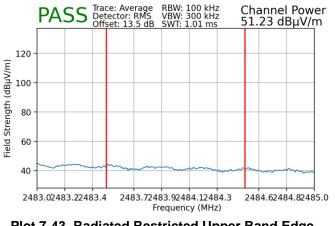
Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	Н	250	18	-69.72	7.13	44.41	53.98	-9.57
4924.00	Peak	н	250	18	-64.37	7.13	49.76	73.98	-24.22
7386.00	Avg	Н	-	-	-81.91	10.53	35.62	53.98	-18.36
7386.00	Peak	н	-	-	-69.78	10.53	47.75	73.98	-26.23
12310.00	Avg	Н	-	-	-84.96	17.20	39.24	53.98	-14.74
12310.00	Peak	Н	-	-	-73.30	17.20	50.90	73.98	-23.08

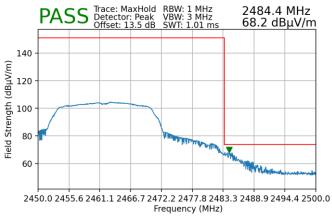
Table 7-8. Radiated Measurements


FCC ID: A3LSMA156E		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 55	
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 49 of 55	
© 2023 ELEMENT			V11.1 08/28/2023	

Radiated Restricted Band Edge Measurements

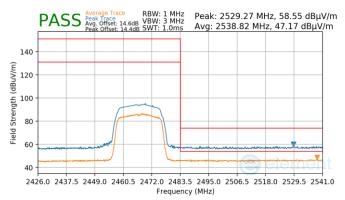

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

Worst Case Mode:	802.11g
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	1



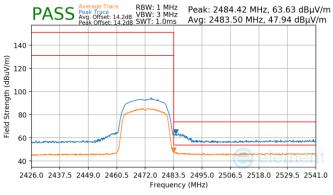
Plot 7-42. Radiated Restricted Lower Band Edge Measurement (Average & Peak)

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11



Plot 7-44. Radiated Restricted Upper Band Edge Measurement (Peak)

FCC ID: A3LSMA156E		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 50 of 55
© 2023 ELEMENT			V11 1 08/28/2023



Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	2467MHz
Channel:	12

Plot 7-45. Radiated Restricted Upper Band Edge Measurement (Average & Peak)

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	2472MHz
Channel:	13

Plot 7-46. Radiated Restricted Upper Band Edge Measurement (Average & Peak)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga E1 of EE
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 51 of 55
© 2023 ELEMENT			V11.1 08/28/2023

7.8 Line-Conducted Test Data

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below per §15.207 and RSS-Gen (8.8).

Frequency of emission (MHz)	Conducted Limit (dBµV)	
	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

 Table 7-9. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

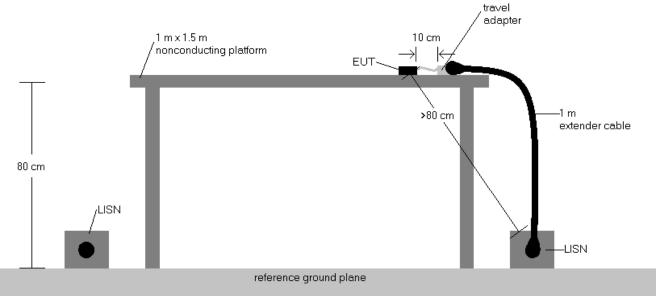
ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

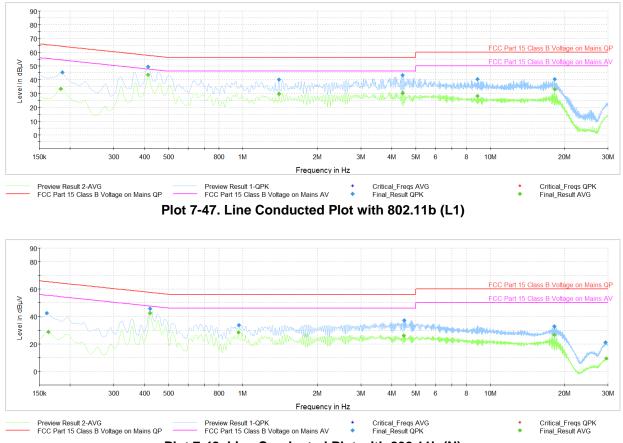
Average Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: A3LSMA156E		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Daga 52 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 52 of 55
© 2023 ELEMENT	*		V11.1 08/28/2023

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Test Notes

- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in Part 15.207 and RSS-Gen(8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP\\AV Level (dB μ V) = QP\\AV Analyzer\\Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP\\AV Limit (dB μ V) QP\\AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSMA156E		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 55
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 53 of 55
© 2023 ELEMENT	-		V11.1 08/28/2023

Plot 7-48. Line Conducted Plot with 802.11b (N)

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga E4 of EE
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 54 of 55
© 2023 ELEMENT			V11.1 08/28/2023

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSMA156E** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules.

FCC ID: A3LSMA156E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo EE of EE
1M2309070105-08.A3L	09/08/2023-11/02/2023	Portable Handset	Page 55 of 55
© 2023 ELEMENT V11.1 08/28/2023			