

TEST REPORT

Report Number.: 14586572-E4V4

Applicant: SAMSUNG ELECTRONICS CO., LTD.

129, SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Model: SM-A145M/DS, SM-A145M, SM-A145MB/DS and

SM-A145MB

FCC ID : A3LSMA145M

EUT Description: GSM/WCDMA/LTE Phone with BT/BLE, DTS/UNII a/b/g/n/ac

Test Standard(s): FCC 47 CFR PART 15 SUBPART C

Date Of Issue:

2023-01-31

Prepared by:

UL VERIFICATION SERVICES 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000

TEL: (510) 319-4000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
V1	2023-01-18	Initial Issue	
V2	2023-01-26	Updated Section 9.3 and 10.2	Kiya Kedida
V3	2023-01-30	Updated Section 10.2	Kiya Kedida
V4	2023-01-31	Updated Section 7	Kiya Kedida

REPOR	RT REVISION HISTORY	2
1. AT	TESTATION OF TEST RESULTS	5
2. TE	ST RESULTS SUMMARY	7
3. TE	ST METHODOLOGY	7
	CILITIES AND ACCREDITATION	
	CISION RULES AND MEASUREMENT UNCERTAINTY	
5.1.	METROLOGICAL TRACEABILITY	
5.2.	DECISION RULES	
5.3.	MEASUREMENT UNCERTAINTY	
5.4.	SAMPLE CALCULATION	
	UIPMENT UNDER TEST	
6.1.	EUT DESCRIPTION	
6.2.	MAXIMUM OUTPUT POWER	
6.3.	DESCRIPTION OF AVAILABLE ANTENNAS	
6.4.	SOFTWARE	
6.5.	WORST-CASE CONFIGURATION AND MODE	
6.6.	DESCRIPTION OF TEST SETUP	12
7. ME	EASUREMENT METHOD	14
8. TE	ST AND MEASUREMENT EQUIPMENT	15
9. AN	ITENNA PORT TEST RESULTS	16
9.1.	ON TIME AND DUTY CYCLE	16
9.2.		
_	2.1. 802.11b MODE 2.2. 802.11g MODE	
	2.2. 802.11g MODE 2.3. 802.11n HT20 MODE	
9.3.	OUTPUT POWER	24
9.3		
	3.2. 802.11g MODE 3.3. 802.11n HT20 MODE	
9.4.		
9.4	l.1. 802.11b MODE	28
	l.2. 802.11g MODEll.3. 802.11n HT20 MODE	
9.5.		
9.5. 9.5	5.1. 802.11b MODE	34
9.5	3	
9.5	5.3. 802.11n HT20 MODE	

10. RADIATED TEST RESULTS	41
10.1. TRANSMITTER ABOVE 1 GHz	43
10.1.1. TX ABOVE 1 GHz 802.11b MODE IN THE 2.4 GHz BAND	
10.1.2. TX ABOVE 1 GHz 802.11g MODE IN THE 2.4 GHz BAND	61
10.1.3. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 2.4 GHz BAND	81
10.2. WORST CASE BELOW 30MHz	103
10.3. WORST CASE BELOW 1 GHz	105
10.4. WORST CASE 18-26 GHz	107
11. AC POWER LINE CONDUCTED EMISSIONS	109
12. SETUP PHOTOS	112

REPORT NO: 14586572-E4V4 FCC ID: A3LSMA145M

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SAMSUNG ELECTRONICS CO., LTD.

129, SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

EUT DESCRIPTION: GSM/WCDMA/LTE Phone with BT/BLE, DTS/UNII a/b/g/n/ac

MODEL: SM-A145M/DS, SM-A145M, SM-A145MB/DS and SM-A145MB

SERIAL NUMBER: Conducted: R93TA00067A

Radiated: R93TA0007MT

DATE TESTED: 2022-12-05 to 2023-01-10

APPLICABLE STANDARDS

STANDARD

CFR 47 Part 15 Subpart C Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document.

DATE: 2023-01-31

TEST RESULTS

Approved & Released For UL Verification Services Inc. By:

Prepared By:

Dan Coronia
Operations Leader
Consumer Technology Division

UL Verification Services Inc.

1st Reviewed By:

Glenn Escano Test Engineer Consumer Technology Division UL Verification Services Inc.

2nd Reviewed By:

Vien Tran Senior Laboratory Engineer Consumer Technology Division UL Verification Services Inc. Kiya Kedida Senior Project Engineer Consumer Technology Division UL Verification Services Inc.

2. TEST RESULTS SUMMARY

This report contains data provided by the customer which can impact the validity of results. UL Verification Services Inc. is only responsible for the validity of results after the integration of the data provided by the customer.

Below is a list of the data provided by the customer:

1. Antenna gain and type (see section 6.3)

FCC Clause	Requirement	Result	Comment
See Comment	Duty Cycle	Reporting	ANSI C63.10 Section
See Comment	Duty Cycle	purposes only	11.6.
	99% OBW	Reporting	ANSI C63.10 Section
-	99 % OBVV	purposes only	6.9.3.
15.247 (a) (2)	6dB BW		None.
15.247 (b) (3)	Output Power		None.
See Comment	Average power	Reporting	Per ANSI C63.10,
		purposes only	Section 11.9.2.3.2.
15.247 (e)	PSD		None.
15.247 (d)	Conducted Spurious Emissions		None.
15.209, 15.205	Radiated Emissions		None.
15.207	AC Mains Conducted Emissions		None.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01.

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, Certificate Number 0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	FCC Registration
	Building 1: 47173 Benicia Street Fremont, CA 94538, U.S.A	550739
	Building 2: 47266 Benicia Street Fremont, CA 94538, U.S.A	550739
\boxtimes	Building 4: 47658 Kato Rd Fremont, CA 94538, U.S.A	550739

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U_Lab
Radio Frequency (Spectrum Analyzer)	141.16 Hz
Occupied Bandwidth	1.22%
Power Spectral Density	2.47 dB
RF Power Measurement Direct Method Using Power Meter	1.3 dB (PK) / 0.45 dB (AV)
Unwanted Emissions, Conducted	1.94 dB
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.29 dB
Time Domain Measurements	3.39%
Temperature	0.57°C
Humidity	3.39%
DC Supply Voltages	0.57%

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided:
Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss.
36.5 dBuV + 0 dB +10.1 dB+ 0 dB = 46.6 dBuV

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The EUT is a GSM/WCDMA/LTE Phone with BT/BLE, DTS/UNII a/b/g/n/ac. The model SM-A145M/DS was used for final testing and is representative of the test results in this report.

The models are electronically equivalent the only differences is as follows:

1) SM-A145M/DS: Dual SIM

2) SM-A145M: Single SIM

3) SM-A145MB/DS: Dual SIM with KNOX Security Platform

4) SM-A145MB: Single SIM with KNOX Security Platform

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
1Tx			
2412 - 2472	802.11b	18.15	65.31
2412 - 2472	802.11g	16.13	41.02
2412 - 2472	802.11n HT20	16.16	41.30

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna(s) gain and type, as provided by the manufacturer' are as follows.

The radio utilizes an LDS antenna, with a maximum gain:

Frequency Band (GHz)	Antenna Gain (dBi)
2412-2472	-4.51

6.4. SOFTWARE

The test utility software used during testing was A145M.001.

6.5. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle, and high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20mode: MCS0

FCC ID: A3LSMA145M

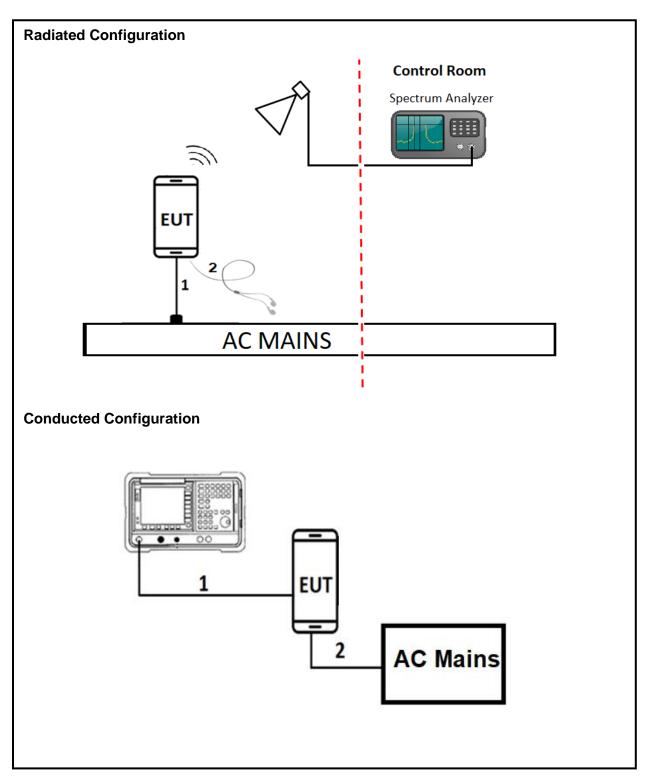
6.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
AC Adapter	Samsung	EP-TA800	R37MAMT21J2SE3	N/A		
Earphone	Samsung	N/A	N/A	N/A		

I/O CABLES CONDUCTED

I/O Cable List							
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	Antenna	1	RF	Shielded	0.2	To spectrum Analyzer	
2	USB	1	USB	Un-shielded	1	EUT to AC Mains	


I/O CABLES (RADIATED AND CONDUCTED EMISSIONS)

	I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	USB	1	USB	Shielded	1	N/A	
2	Earphone	1	3.5mm	Un-shielded	1	N/A	

TEST SETUP

The EUT is a stand-alone unit. Test software exercised the radio card.

SETUP DIAGRAM

7. MEASUREMENT METHOD

On Time and Duty Cycle: ANSI C63.10 Section 11.6.

6 dB BW: ANSI C63.10 Subclause -11.8.1 RBW ≥ DTS BW

Output Power: ANSI C63.10 Subclause -11.9.2.3.2 Method AVGPM-G (Measurement using a gated RF average-reading power meter)

PSD: ANSI C63.10 Subclause -11.10.3Method AVGPSD-1

Radiated emissions non-restricted frequency bands: ANSI C63.10 Subclause -11.11

Radiated emissions restricted frequency bands: ANSI C63.10 Subclause -11.12.1

Conducted emissions in restricted frequency bands: ANSI C63.10 Subclause -11.12.2

<u>Band-edge:</u> ANSI C63.10 Subclause -11.13.3.2 Integration method -Peak detection Integration method -Trace averaging with continuous transmission at full power

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

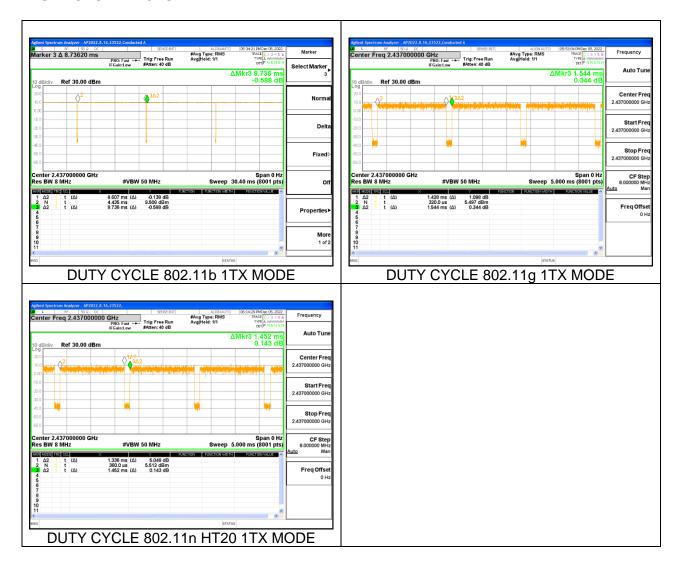
TEST EQUIPMENT LIST							
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal		
Antenna, Broadband Hybrid, 30MHz to 3GHz	Sunol Sciences Corp.	JB3	80706	2023-07-28	2022-07-28		
Amplifier, 10KHz to 1GHz, 32dB	SONOMA INSTRUMENT	310	175953	2023-02-03	2022-02-08		
Amplifier, 10KHz to 1GHz, 32dB	SONOMA INSTRUMENT	310N	29654	2023-04-24	2022-04-24		
Antenna, Horn 1-18GHz	ETS-Lindgren (Cedar Park, Texas)	3117	223083	2023-07-05	2022-07-05		
RF Filter Box, 1-18GHz	UL-FR1	N/A	171875	2023-08-12	2022-08-12		
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	169937	2023-02-20	2022-02-20		
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	169927	2023-02-13	2022-02-13		
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826/B	172364	2023-03-08	2023-03-08		
Amplifier 18-26.5GHz, +5Vdc, 60dB min	AMPLICAL	AMP18G26.5-60	215705	2023-02-26	2022-02-26		
Antenna, Passive Loop 30Hz - 1MHz	ELECTRO METRICS	EM-6871	219909	2023-05-10	2022-05-10		
Antenna, Passive Loop 100KHz - 30MHz	ELECTRO METRICS	EM-6872	219911	2023-05-10	2022-05-10		
Spectrum Analyzer, PSA, 3Hz to 44GHz	Agilent Technologies	N4440A	80386	2023-03-02	2022-03-02		
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	T1268	2023-02-03	2022-02-03		
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	90419	2023-03-02	2022-03-02		
10dB Fixed Attenuator	Pasternack Enterprises	PE7087-10	N/A	Verified	Verified		
	UL TEST SO	OFTWARE LIST					
Radiated Software	UL	UL EMC		0-25, 2022-05- 6-05, 2020-06- 15,			
Antenna Port Software	UL	UL RF	Ver 2022-08-16				
AC Line Software	UL	UL EMC	Ver. 2022-02-17				

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.


PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

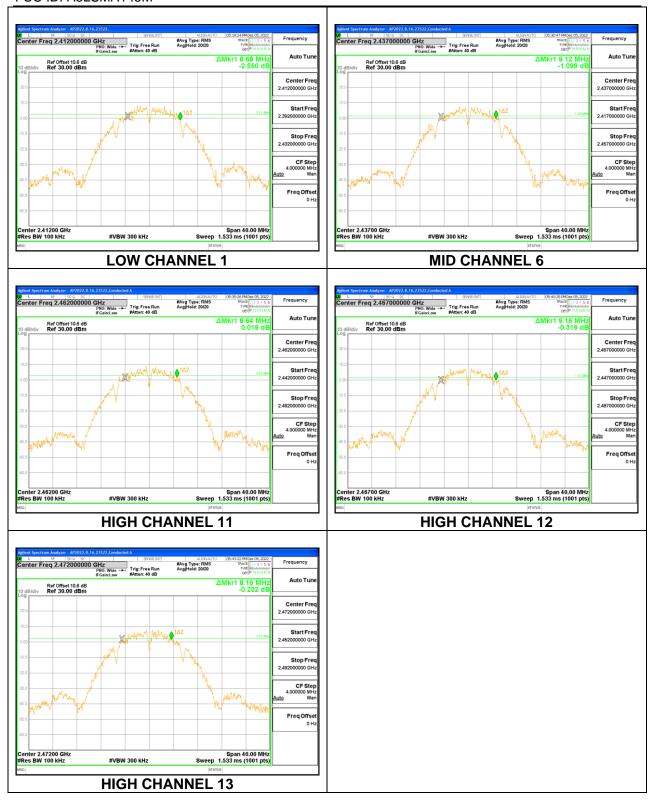
Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		х	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
802.11b 1TX	8.607	8.736	0.985	98.52	0.00	0.010
802.11g 1TX	1.428	1.544	0.925	92.49	0.34	0.700
802.11n HT20 1TX	1.336	1.452	0.920	92.01	0.36	0.749

DUTY CYCLE PLOTS

9.2. 6 dB BANDWIDTH

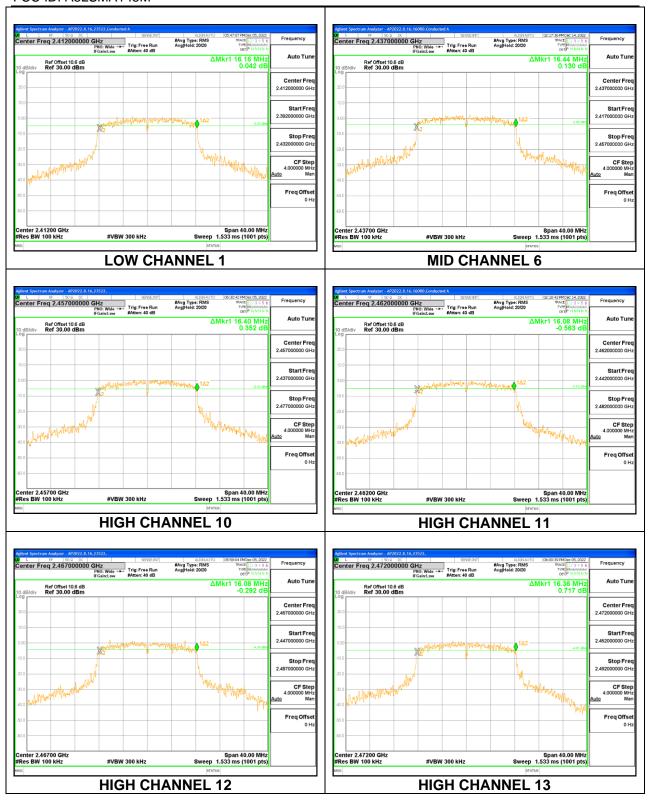
LIMITS

FCC §15.247 (a) (2)

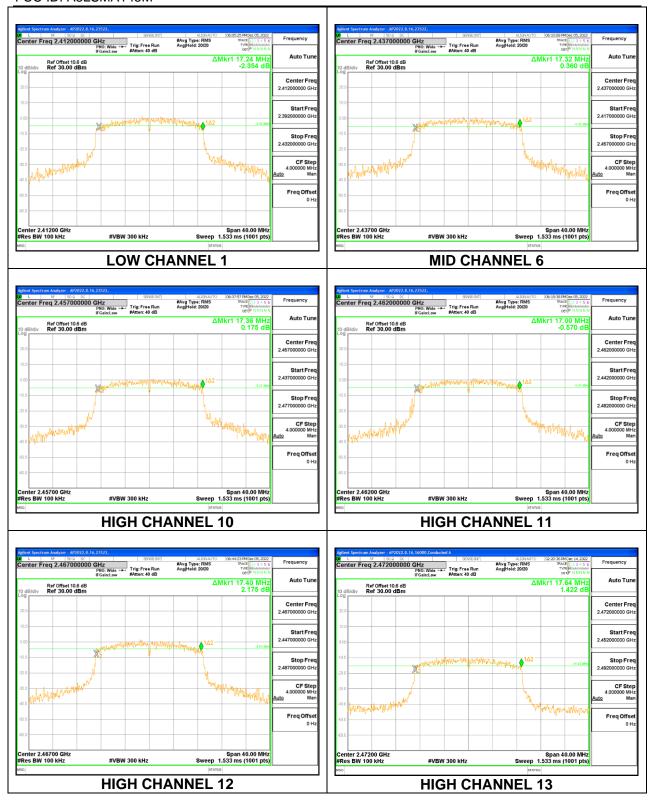

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

9.2.1. 802.11b MODE


1TX Antenna 1 MODE

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low 1	2412	8.68	0.5
Mid 6	2437	9.12	0.5
High 11	2462	8.64	0.5
High 12	2467	9.16	0.5
High 13	2472	8.16	0.5


9.2.2. 802.11g MODE

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low 1	2412	16.16	0.5
Mid 6	2437	16.44	0.5
High 10	2457	16.40	0.5
High 11	2462	16.08	0.5
High 12	2467	16.08	0.5
High 13	2472	16.36	0.5

9.2.3. 802.11n HT20 MODE

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low 1	2412	17.24	0.5
Mid 6	2437	17.32	0.5
High 10	2457	17.36	0.5
High 11	2462	17.00	0.5
High 12	2467	17.40	0.5
High 13	2472	17.64	0.5

9.3. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband power sensor. Gated average output power was read directly from power meter.

DIRECTIONAL ANTENNA GAIN

For 1 TX:

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

9.3.1. 802.11b MODE

1TX Antenna 1 MODE

Test Engineer:	ZS 16080
Test Date:	2022-12-08

Limits

Channel	Frequency	Directional	FCC
		Gain	Power
			Limit
	(MHz)	(dBi)	(dBm)
Low 1	2412	-4.51	30.00
Mid 6	2437	-4.51	30.00
High 11	2462	-4.51	30.00
High 12	2467	-4.51	30.00
High 13	2472	-4.51	30.00

Results

Channel	Frequency		Total	Power	Margin
Grianner	rrequeries				margini
		Meas	Corr'd	Limit	
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low 1	2412	18.15	18.15	30.00	-11.85
Mid 6	2437	18.03	18.03	30.00	-11.97
High 11	2462	18.11	18.11	30.00	-11.89
High 12	2467	18.08	18.08	30.00	-11.92
High 13	2472	16.12	16.12	30.00	-13.88

9.3.2. 802.11g MODE

1TX Antenna 1 MODE

Test Engineer:	ZS 16080
Test Date:	2022-12-08

Limits

Channel	Frequency	Directional	FCC
		Gain	Power
			Limit
	(MHz)	(dBi)	(dBm)
Low 1	2412	-4.51	30.00
Mid 6	2437	-4.51	30.00
High 10	2457	-4.51	30.00
High 11	2462	-4.51	30.00
High 12	2467	-4.51	30.00
High 13	2472	-4.51	30.00

Results

Channel	Frequency		Total	Power	Margin
		Meas	Corr'd	Limit	
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low 1	2412	14.93	14.93	30.00	-15.07
Mid 6	2437	15.97	15.97	30.00	-14.03
High 10	2457	16.13	16.13	30.00	-13.87
High 11	2462	14.10	14.10	30.00	-15.90
High 12	2467	11.87	11.87	30.00	-18.13
High 13	2472	4.56	4.56	30.00	-25.44

9.3.3. 802.11n HT20 MODE

1TX Antenna 1 MODE

Test Engineer:	ZS 16080
Test Date:	2022-12-08

Limits

Channel	Frequency	Directional	FCC
		Gain	Power
			Limit
	(MHz)	(dBi)	(dBm)
Low 1	2412	-4.51	30.00
Mid 6	2437	-4.51	30.00
High 10	2457	-4.51	30.00
High 11	2462	-4.51	30.00
High 12	2467	-4.51	30.00
High 13	2472	-4.51	30.00

Results

Channel	Frequency		Total	Power	Margin
		Meas	Corr'd	Limit	
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low 1	2412	14.66	14.66	30.00	-15.34
Mid 6	2437	15.73	15.73	30.00	-14.27
High 10	2457	16.16	16.16	30.00	-13.84
High 11	2462	14.01	14.01	30.00	-15.99
High 12	2467	11.64	11.64	30.00	-18.36
High 13	2472	4.61	4.61	30.00	-25.39

9.4. POWER SPECTRAL DENSITY

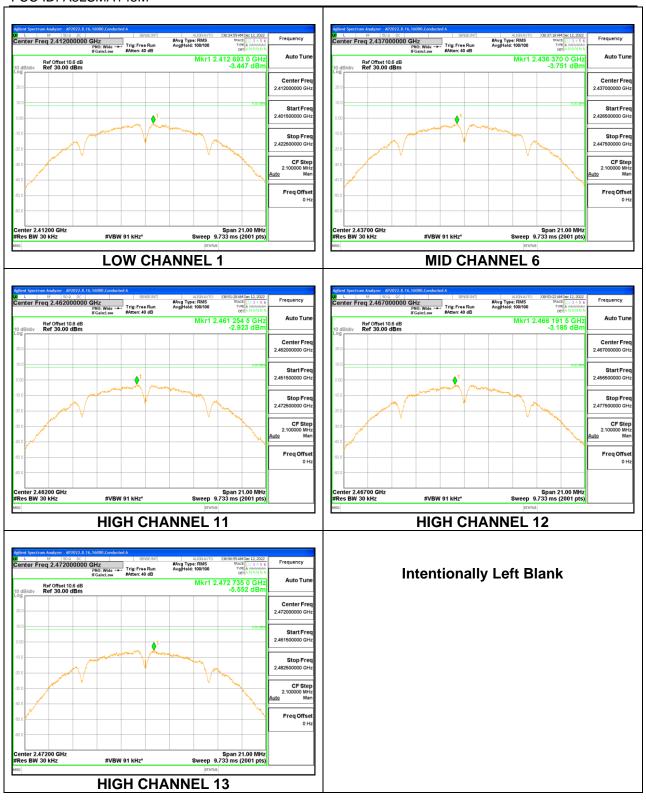
LIMITS

FCC §15.247 (e)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

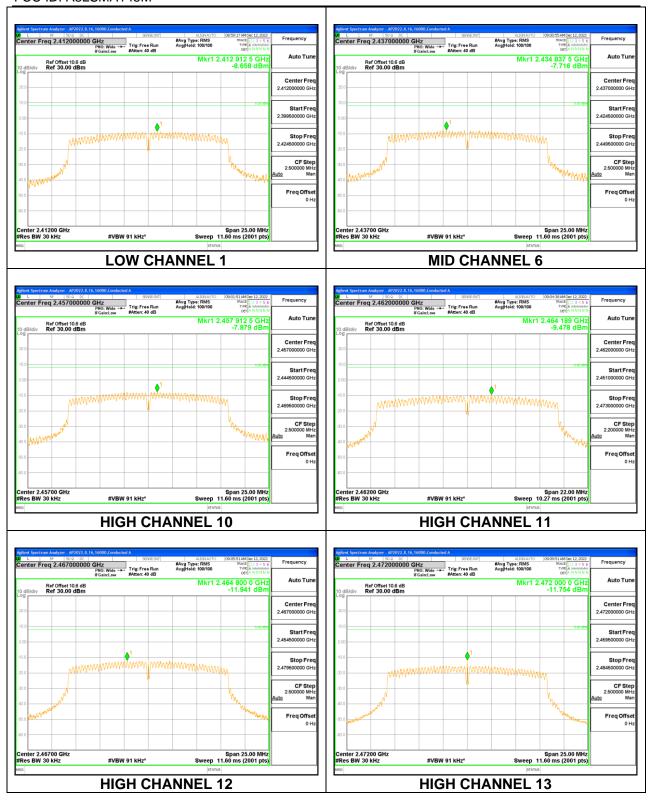
Included in Calculations of Corr'd PSD

RESULTS

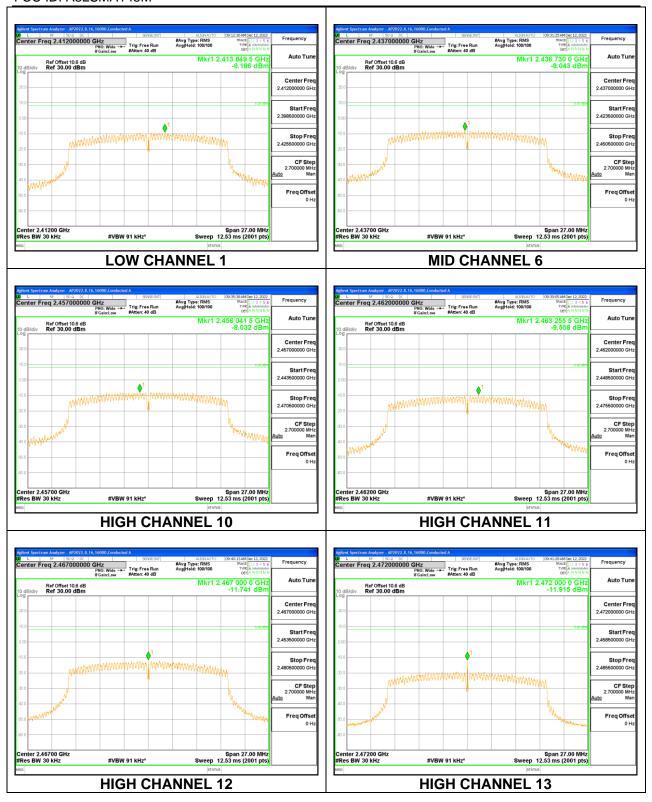

9.4.1. 802.11b MODE

Duty Cycle CF (dB)

1TX Antenna 1 MODE


	, ,						
PSD Results							
Channel	Frequency	Chain 0	Total	Limit	Margin		
		Meas	Corr'd				
	(MHz)		PSD				
		(dBm/	(dBm/	(dBm/			
		3kHz)	3kHz)	3kHz)	(dB)		
Low 1	2412	-3.45	-3.45	8.0	-11.4		
Mid 6	2437	-3.75	-3.75	8.0	-11.8		
High 11	2462	-2.92	-2.92	8.0	-10.9		
High 12	2467	-3.19	-3.19	8.0	-11.2		
High 13	2472	-5.55	-5.55	8.0	-13.6		

0.00

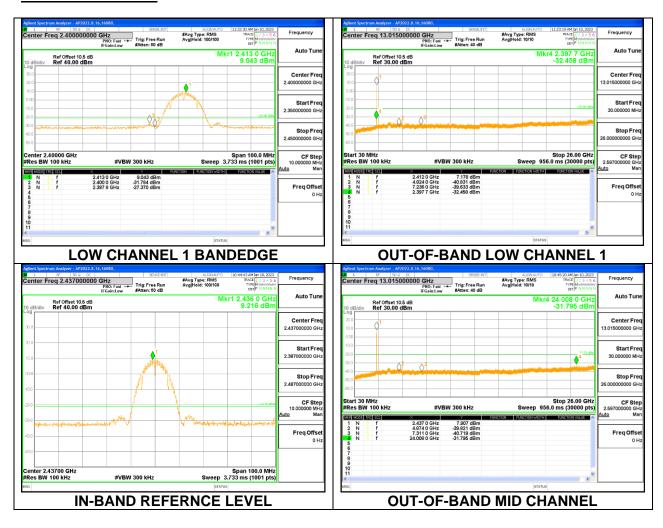

9.4.2. 802.11g MODE

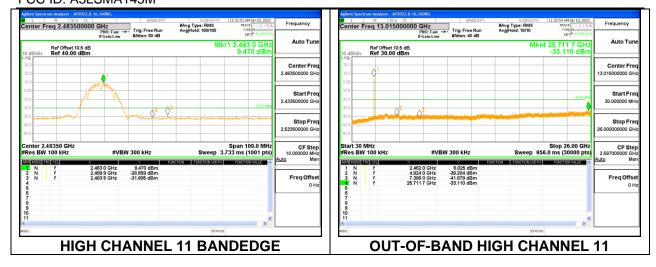
Duty Cycle CF (dB)		0.34	Included in Calculations of Corr'd PS			
PSD Results						
Channel	Frequency	Chain 0	Total	Limit	Margin	
		Meas	Corr'd			
	(MHz)		PSD			
		(dBm/	(dBm/	(dBm/		
		3kHz)	3kHz)	3kHz)	(dB)	
Low 1	2412	-8.66	-8.32	8.0	-16.3	
Mid 6	2437	-7.72	-7.38	8.0	-15.4	
High 10	2457	-7.88	-7.54	8.0	-15.5	
High 11	2462	-9.48	-9.14	8.0	-17.1	
High 12	2467	-11.94	-11.60	8.0	-19.6	
High 13	2472	-11.75	-11.41	8.0	-19.4	

9.4.3. 802.11n HT20 MODE

Duty Cycle CF (dB)		0.36	Included in Calculations of Corr'd PSD				
PSD Results							
Channel	Frequency	Chain 0	Total	Limit	Margin		
		Meas	Corr'd				
	(MHz)		PSD				
		(dBm/	(dBm/	(dBm/			
		3kHz)	3kHz)	3kHz)	(dB)		
Low 1	2412	-9.19	-8.83	8.0	-16.8		
Mid 6	2437	-8.04	-7.68	8.0	-15.7		
High 10	2457	-8.03	-7.67	8.0	-15.7		
High 11	2462	-9.56	-9.20	8.0	-17.2		
High 12	2467	-11.74	-11.38	8.0	-19.4		
High 13	2472	-11.92	-11.56	8.0	-19.6		

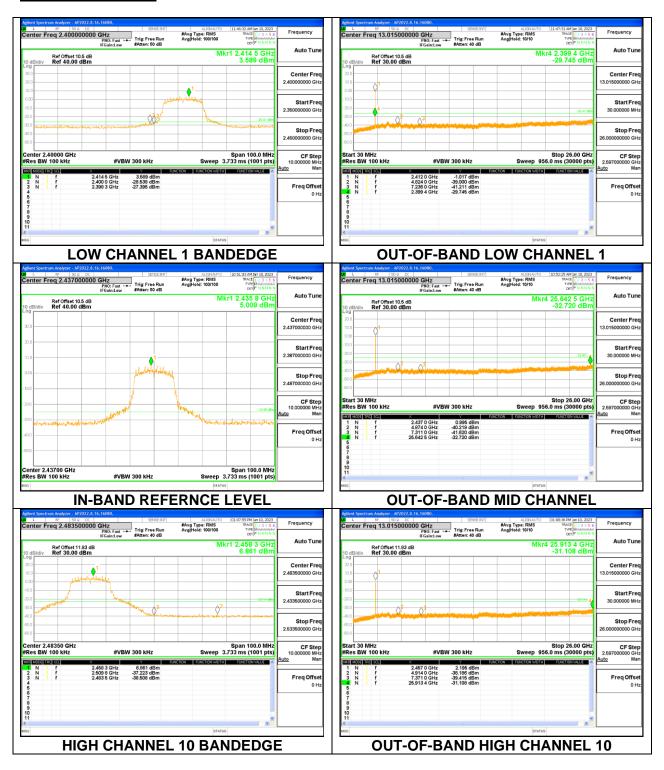
9.5. CONDUCTED SPURIOUS EMISSIONS


LIMITS


FCC §15.247 (d)

Output power was measured based on the use of average measurement; therefore, the required attenuation is 30 dB.

RESULTS


9.5.1. 802.11b MODE

9.5.2. 802.11g MODE

